1
|
Hou R, Bai H, Zhong X, Cheng J, Gao J, Tang J, Xu B. N-doped carbon/Ti 3C 2T x MXene free-standing films as sulfur hosts for Li-S batteries. RSC Adv 2025; 15:15443-15449. [PMID: 40356612 PMCID: PMC12066992 DOI: 10.1039/d5ra01727k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
The performance of sulfur-based cathodes is restricted by the poor conductivity of sulfur and the shuttle effect of lithium polysulfides (LiPSs). Herein, an effective N-doped carbon/Ti3C2T x (NC/Ti3C2T x ) free-standing architecture was designed as a sulfur host for achieving high sulfur loadings, considerable electronic conductivity and good LiPS trapping ability to suppress the shuttle effect. Consequently, an excellent electrochemical performance was achieved for the NC-S/Ti3C2T x freestanding structure with a 38% increase in capacity compared with the counterpart electrode of slurry-coated NC-S/Ti3C2T x . Moreover, the NC-S/Ti3C2T x freestanding structure exhibits a high capacity of 1156 mA h g-1 at 0.1C and a high capacity retention of 79.5% after 100 cycles. Moreover, this architecture enabled high sulfur loadings, and thus, a high areal capacity of 3.41 mA h cm-2 was obtained.
Collapse
Affiliation(s)
- Renzhong Hou
- Department of Materials Science and Engineering, Southern University of Science and Technology Shenzhen 518055 China
- College of New Materials and New Energy, Shenzhen Technology University Shenzhen Guangdong 518118 China
| | - Haoyu Bai
- Department of Materials Science and Engineering, Southern University of Science and Technology Shenzhen 518055 China
| | - Xiongwei Zhong
- Department of Materials Science and Engineering, Southern University of Science and Technology Shenzhen 518055 China
| | - Jiaji Cheng
- School of Materials Science and Engineering, Hubei University Wuhan 430062 China
| | - Jie Gao
- IC Seal Co Ltd Shanghai 2001202 China
| | - Jun Tang
- College of New Materials and New Energy, Shenzhen Technology University Shenzhen Guangdong 518118 China
| | - Baomin Xu
- Department of Materials Science and Engineering, Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
2
|
Wu Y, Tang M, Barsoum ML, Chen Z, Huang F. Functional crystalline porous framework materials based on supramolecular macrocycles. Chem Soc Rev 2025; 54:2906-2947. [PMID: 39931748 DOI: 10.1039/d3cs00939d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Crystalline porous framework materials like metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs) possess periodic extended structures, high porosity, tunability and designability, making them good candidates for sensing, catalysis, gas adsorption, separation, etc. Despite their many advantages, there are still problems affecting their applicability. For example, most of them lack specific recognition sites for guest uptake. Supramolecular macrocycles are typical hosts for guest uptake in solution. Macrocycle-based crystalline porous framework materials, in which macrocycles are incorporated into framework materials, are growing into an emerging area as they combine reticular chemistry and supramolecular chemistry. Organic building blocks which incorporate macrocycles endow the framework materials with guest recognition sites in the solid state through supramolecular interactions. Distinct from solution-state molecular recognition, the complexation in the solid state is ordered and structurally achievable. This allows for determination of the mechanism of molecular recognition through noncovalent interactions while that of the traditional recognition in solution is ambiguous. Furthermore, crystalline porous framework materials in the solid state are well-defined and recyclable, and can realize what is impossible in solution. In this review, we summarize the progress of the incorporation of macrocycles into functional crystalline porous frameworks (i.e., MOFs and COFs) for their solid state applications such as molecular recognition, chiral separation and catalysis. We focus on the design and synthesis of organic building blocks with macrocycles, and then illustrate the applications of framework materials with macrocycles. Finally, we propose the future directions of macrocycle-based framework materials as reliable carriers for specific molecular recognition, as well as guiding the crystalline porous frameworks with their chemistry, applications and commercialization.
Collapse
Affiliation(s)
- Yitao Wu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P. R. China
| | - Meiqi Tang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Michael L Barsoum
- Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - Zhijie Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P. R. China
| |
Collapse
|
3
|
Huang C, Yu J, Yue Zhang C, Cui Z, He R, Yang L, Nan B, Li C, Qi X, Qi X, Li J, Yuan Zhou J, Usoltsev O, Simonelli L, Arbiol J, Lei YJ, Sun Q, Wang G, Cabot A. Anionic Doping in Layered Transition Metal Chalcogenides for Robust Lithium-Sulfur Batteries. Angew Chem Int Ed Engl 2025; 64:e202420488. [PMID: 39688080 DOI: 10.1002/anie.202420488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
Lithium-sulfur batteries (LSBs) are among the most promising next-generation energy storage technologies. However, a slow Li-S reaction kinetics at the LSB cathode limit their energy and power densities. To address these challenges, this study introduces an anionic-doped transition metal chalcogenide as an effective catalyst to accelerate the Li-S reaction. Specifically, a tellurium-doped, carbon-supported bismuth selenide with Se vacancies (Te-Bi2Se3-x@C) is prepared and tested as a sulfur host in LSB cathodes. X-ray absorption and in situ X-ray diffraction analyses reveal that Te doping induces lattice distortions and modulates the local coordination environment and electronic structure of Bi atoms to promote the catalytic activity toward the conversion of polysulfides. Additionally, the generated Se vacancies alter the electronic structure around atomic defect sites, increase the carrier concentration, and activate unpaired cations to effectively trap polysulfides. As a result, LSBs based on Te-Bi2Se3-x@C/S cathodes demonstrate outstanding specific capacities of 1508 mAh ⋅ g-1 at 0.1 C, excellent rate performance with 655 mAh ⋅ g-1 at 5 C, and near-integral cycle stability over 1000 cycles. Furthermore, under high sulfur loading of 6.4 mg ⋅ cm-2, a cathode capacity exceeding 8 mAh ⋅ cm-2 is sustained at 0.1 C current rate, with 6.4 mAh ⋅ cm-2 retained after 300 cycles under lean electrolyte conditions (6.8 μL ⋅ mg-1).
Collapse
Affiliation(s)
- Chen Huang
- Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
- Department of Chemistry, University of, Barcelona, 08028, Spain
| | - Jing Yu
- Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Catalonia, Spain
| | - Chao Yue Zhang
- School of Physical Science & Technology, Lanzhou University, Lanzhou, 730000, China
| | - Zhibiao Cui
- Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ren He
- Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
- Enginyeria Electrònica i Biomèdica Facultat de Física, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Linlin Yang
- Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
- Enginyeria Electrònica i Biomèdica Facultat de Física, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Bingfei Nan
- Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
| | - Canhuang Li
- Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
- Department of Chemistry, University of, Barcelona, 08028, Spain
| | - Xuede Qi
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xueqiang Qi
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Junshan Li
- Institute for Advanced Study, Chengdu University, 610106, Chengdu, China
| | - Jin Yuan Zhou
- School of Physical Science & Technology, Lanzhou University, Lanzhou, 730000, China
| | - Oleg Usoltsev
- ALBA Synchrotron Light Facility, Carrer de la Llum 2-26, 08290, Cerdanyola del Vallès, Spain
| | - Laura Simonelli
- ALBA Synchrotron Light Facility, Carrer de la Llum 2-26, 08290, Cerdanyola del Vallès, Spain
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Catalonia, Spain
- ICREA Pg. Lluis Companys, 08010, Barcelona, Catalonia, Spain
| | - Yao-Jie Lei
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Qing Sun
- Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450000, China
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Andreu Cabot
- Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
- ICREA Pg. Lluis Companys, 08010, Barcelona, Catalonia, Spain
| |
Collapse
|
4
|
Wang X, Fan Y, Xie L, He H, Wang G, Zhu J. Separator modification with a high-entropy hydroxyphosphate, Co 0.29Ni 0.15Fe 0.33Cu 0.16Ca 3.9(PO 4) 3(OH), for high-performance Li-S batteries. J Colloid Interface Sci 2025; 679:1076-1083. [PMID: 39418893 DOI: 10.1016/j.jcis.2024.10.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/01/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
The shuttle effect of lithium polysulfides (LiPSs) significantly hinders the practical application of lithium-sulfur batteries (LSBs). Herein, a high-entropy hydroxyphosphate (Co0.29Ni0.15Fe0.33Cu0.16Ca3.9(PO4)3(OH), denoted as HE-CHP), was synthesized by metal cation exchange with calcium hydroxyphosphate (CHP) and then coated on polypropylene (PP) separators to suppress the shuttling of LiPSs. Density functional theory calculations indicated that the various introduced metal cations could effectively modulate the binding strength of soluble polysulfides and enhance the reaction kinetics of LiPSs conversion. As a result, LSBs using the HE-CHP@PP separator exhibited an excellent discharge capacity (1297 mAh g-1 under 0.2 C) and a slow capacity decay during long-term cycling (0.046 % per cycle at 2 C). At a sulfur loading of up to 6.5 mg cm-2, the LSB with HE-CHP@PP separator displayed a discharge capacity of 5.8 mAh cm-2. Notably, the CNT@S||Li Li-S pouch cell with HE-CHP modified separator delivered an initial energy density of 432 Wh kg-1.
Collapse
Affiliation(s)
- Xinyuan Wang
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, PR China
| | - Yuxin Fan
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, PR China
| | - Lei Xie
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, PR China
| | - Huibing He
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, PR China
| | - Guifang Wang
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, PR China
| | - Jinliang Zhu
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
5
|
Li HB, Song XN, Wang CK, Hua W, Ma Y. Towards sensitive identification of fluorinated graphdiyne configurations by computational X-ray spectroscopy. Phys Chem Chem Phys 2025; 27:2711-2719. [PMID: 39810565 DOI: 10.1039/d4cp04723k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Fluorinated graphdiyne (F-GDY) materials exhibit exceptional performance in various applications, such as luminescent devices, electron transport, and energy conversion. Although F-GDY has been successfully synthesized, there is a lack of comprehensive identification of fluorinated configurations, either by theory or experiment. In this work, we investigated seven representative F-GDY configurations with low dopant concentrations and simulated their carbon and fluorine 1s X-ray photoelectron spectroscopy (XPS) and carbon 1s near-edge X-ray absorption fine-structure (NEXAFS) spectra. The goal was to establish the structure-spectroscopy relation for these materials. The simulated XPS spectra closely match the experimental data, providing sensitive identifications of certain fluorinated structures, although challenges still persist in distinguishing a few similar configurations. In contrast, the NEXAFS spectra, generated by three non-equivalent carbon atoms at the K-edges, offer more detailed information and are more sensitive for identifying all different F-GDY structures. Our theoretical study provides valuable insights for future experimental identification of F-GDY structures. These findings underscore the utility of computational X-ray spectroscopy in advancing the understanding and development of novel carbon-based materials.
Collapse
Affiliation(s)
- Hai-Bo Li
- School of Physics and Electronics, Shandong Normal University, 250358 Jinan, China.
| | - Xiu-Neng Song
- School of Physics and Electronics, Shandong Normal University, 250358 Jinan, China.
| | - Chuan-Kui Wang
- School of Physics and Electronics, Shandong Normal University, 250358 Jinan, China.
| | - Weijie Hua
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Physics, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Yong Ma
- School of Physics and Electronics, Shandong Normal University, 250358 Jinan, China.
| |
Collapse
|
6
|
Novikov IV, Krasnikov DV, Lee IH, Agafonova EE, Serebrennikova SI, Lee Y, Kim S, Nam JS, Kondrashov VA, Han J, Rakov II, Nasibulin AG, Jeon I. Aerosol CVD Carbon Nanotube Thin Films: From Synthesis to Advanced Applications: A Comprehensive Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2413777. [PMID: 39811988 DOI: 10.1002/adma.202413777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/20/2024] [Indexed: 01/16/2025]
Abstract
Carbon nanotubes (CNTs) produced by the floating-catalyst chemical vapor deposition (FCCVD) method are among the most promising nanomaterials of today, attracting interest from both academic and industrial sectors. These CNTs exhibit exceptional electrical conductivity, optical properties, and mechanical resilience due to their binder-free and low-defect structure, while the FCCVD method enables their continuous and scalable synthesis. Among the methodological FCCVD variations, aerosol CVD' is distinguished by its production of freestanding thin films comprising macroscale CNT networks, which exhibit superior performance and practical applicability. This review elucidates the complex interrelations between aerosol CVD reactor synthesis conditions and the resulting properties of the CNTs. A unified approach connecting all stages of the synthesis process is proposed as a comprehensive guide. This review examines the correlations between CNT structural parameters (length and diameter) and resultant film properties (conductivity, optical, and mechanical characteristics) to establish a comprehensive framework for optimizing CNT thin film synthesis. The analysis encompasses characterization methodologies specific to aerosol CVD-synthesized CNTs and evaluates how their properties influence applications across diverse domains, from energy devices to optoelectronics. The review concludes by addressing current challenges and prospects in this field.
Collapse
Affiliation(s)
- Ilya V Novikov
- Department of Nano Engineering, Department of Nano Science and Technology, Sungkyunkwan University Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Dmitry V Krasnikov
- Skolkovo Institute of Science and Technology, Nobel 3, Moscow, 121205, Russia
| | - Il Hyun Lee
- Department of Nano Engineering, Department of Nano Science and Technology, Sungkyunkwan University Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu, Suwon, 16419, Republic of Korea
| | | | | | - Yeounggyu Lee
- Department of Nano Engineering, Department of Nano Science and Technology, Sungkyunkwan University Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Sihyeok Kim
- Department of Nano Engineering, Department of Nano Science and Technology, Sungkyunkwan University Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Jeong-Seok Nam
- Department of Nano Engineering, Department of Nano Science and Technology, Sungkyunkwan University Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu, Suwon, 16419, Republic of Korea
| | | | - Jiye Han
- Department of Nano Engineering, Department of Nano Science and Technology, Sungkyunkwan University Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Ignat I Rakov
- Skolkovo Institute of Science and Technology, Nobel 3, Moscow, 121205, Russia
| | - Albert G Nasibulin
- Skolkovo Institute of Science and Technology, Nobel 3, Moscow, 121205, Russia
| | - Il Jeon
- Department of Nano Engineering, Department of Nano Science and Technology, Sungkyunkwan University Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu, Suwon, 16419, Republic of Korea
| |
Collapse
|
7
|
Zhang Y, Yu T, Xiao R, Tang P, Fang R, Li Z, Cheng HM, Sun Z, Li F. The Role of Long-Range Interactions Between High-Entropy Single-Atoms in Catalyzing Sulfur Conversion Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2413653. [PMID: 39791313 DOI: 10.1002/adma.202413653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/20/2024] [Indexed: 01/12/2025]
Abstract
Sulfur conversion reactions are the foundation of lithium-sulfur batteries but usually possess sluggish kinetics during practical battery operation. Herein, a high-entropy single-atom catalyst (HESAC) is synthesized for this process. In contrast to conventional dual-atom catalysts that form metal-metal bonds, the center metal atoms in HESAC are not bonded but exhibit long-range interactions at a sub-nanometer distance (<9 Å). The synergistic effect between the long-range interactions and entropy changes enables the regulation of d- and π-electron states. This alteration in the electronic structure improves the adsorption and electronic conductivity of intermediate polysulfides, thereby accelerating their conversion kinetics. Consequently, this leads to a significant enhancement in specific capacities by ≈40% at high rates compared to single-atom catalysts. The resulting lithium-sulfur battery with HESAC demonstrates a remarkable areal capacity of 3.4 mAh cm-2 at 10 C. These findings provide valuable insights into the design principle of metal atom catalysts for electrochemical reactions.
Collapse
Affiliation(s)
- Yu Zhang
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Tong Yu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Ru Xiao
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Pei Tang
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Ruopian Fang
- School of Chemical Engineering, The University of New South Wales, Sydney, 201101, Australia
| | - Zhuangnan Li
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB21TN, UK
| | - Hui-Ming Cheng
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518000, China
| | - Zhenhua Sun
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Feng Li
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
8
|
Zhang P, Wang C, Zhang J, Hou R, Zhang S, Liu K, Silva SRP, Zhang P, Shao G. Developing High Energy Density Li-S Batteries via Pore-Structure Regulation of Porous Carbon Based Electrocatalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2410907. [PMID: 39711258 DOI: 10.1002/smll.202410907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/15/2024] [Indexed: 12/24/2024]
Abstract
The mesopores and macropores within porous carbon materials help increase the surface for the depostion of solid-state products, reduce the Li2S film thickness, enhance electron and mass transport, and accelerate the reaction kinetics. However, an excessive amount of mesopores and macropores can lead to increased electrolyte consumption, particularly at high sulfur loadings, where excessive electrolyte usage hampers the enhancement of practical energy density in lithium-sulfur (Li-S) batteries. A rational pore structure can minimize the amount of electrolyte to fill the pores, thereby reducing electrolyte consumption while achieving rapid reaction kinetics and a high gravimetric energy density. In this work, the pore structure of carbon nanosheet-based electrocatalysts is precisely controlled by adjusting the content of a water-soluble potassium chloride template, allowing for in-depth investigation of the relationship between pore structure, electrolyte usage, and electrochemical performance in Li-S batteries. The molybdenum carbide-embedded carbon nanosheet (MoC-CNS) electrocatalyst, with an optimized pore structure, facilitates exceptional electrochemical performance under high sulfur loading and lean electrolyte conditions. Ultimately, the MoC-CNS-3-based Li-S battery achieved stable operation over 50 cycles under high sulfur loading (12 mg cm-2) and a low electrolyte-to-sulfur (E/S) ratio of 4 uL mg-1, delivering a high gravimetric energy density of 354.5 Wh kg-1. This work provides a viable strategy for developing high-performance Li-S batteries.
Collapse
Affiliation(s)
- Pengpeng Zhang
- School of Materials science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Zhengzhou, 450001, China
| | - Chen Wang
- School of Materials science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Zhengzhou, 450001, China
| | - Jingbo Zhang
- School of Materials science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Zhengzhou, 450001, China
| | - Ruohan Hou
- School of Materials science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Zhengzhou, 450001, China
| | - Shijie Zhang
- School of Materials science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Zhengzhou, 450001, China
| | - Kangli Liu
- School of Materials science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Zhengzhou, 450001, China
| | - S Ravi P Silva
- School of Materials science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
- Nanoelectronics Center, Advanced Technology Institute, University of Surrey, Guildford, 7XH, UK
| | - Peng Zhang
- School of Materials science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Zhengzhou, 450001, China
| | - Guosheng Shao
- School of Materials science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Zhengzhou, 450001, China
| |
Collapse
|
9
|
Guo W, Zhu J, Wang Y, Wang G, Wang H, Yuan G, Xue H, Xia Y, Wang B. Heterojunction and vacancy engineering strategies and dual carbon modification of MoSe 2-x@CoSe 2-C /GR for high-performance sodium-ion batteries and hybrid capacitors. J Colloid Interface Sci 2024; 680:651-665. [PMID: 39579431 DOI: 10.1016/j.jcis.2024.11.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/26/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
Sodium-ion batteries (SIBs) and hybrid capacitors (SIHCs) have great potential in related electrochemical energy storage fields. However, the inferior cycling performance and sluggish kinetics of Na+ transport in conventional anodes continue to impede their practical applications. Here, we propose a refined design by utilizing well-organized MoSe2 nanorods as precursors and introducing a metal-organic framework and graphene (GR), while resulting in the formation of bimetallic selenide heterostructures/carbon MoSe2-x@CoSe2-C/GR (MCCR) composite through electronegativity. The MoSe2-x/CoSe2 heterostructure can spontaneously form the built-in electric field to accelerate the charge transport, and the formation of anionic Se vacancies induced by electronegativity in situ can provide more active sites for enhancing sodium storage. The presence of external carbon and graphene can act as buffer layers to suppress the volume expansion of MoSe2-x/CoSe2 heterogeneous, and on the other hand, form a conductive network externally to improve electrode conductivity. As anticipated, the MCCR electrode demonstrates superior reversible specific capacity (446 mAh g-1 after 100 cycles) and substantial pseudocapacitance contribution, excellent rate performance in SIB half and full cells. In addition, system electrochemical analysis of multiple ex-situ characterizations elucidates the electrochemical reaction kinetics and transformation mechanism of MCCR electrodes during charging and discharging in depth. When coupled with activated carbon (AC), the MCCR//AC SIHC full hybrid capacitors exhibit impressive cycling stability over 2500 cycles at 1 A g-1 and excellent rate performance, demonstrating their widespread application in energy storage.
Collapse
Affiliation(s)
- Wentao Guo
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710127, Shannxi, China
| | - Jiaming Zhu
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710127, Shannxi, China
| | - Yingying Wang
- School of Foreign Languages, XiDian University, Xi'an 710126, China
| | - Gang Wang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710127, Shannxi, China
| | - Hui Wang
- College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shannxi, China
| | | | - Hongtao Xue
- Ankang Shunxiang Carbon Co., Ltd., Ankang 725100, China
| | - Yuan Xia
- Xi'an Shiyou University, Xi'an 710065, China.
| | - Beibei Wang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710127, Shannxi, China.
| |
Collapse
|
10
|
Shen M, Xu S, Wang X, Zhang Y, Feng Y, Xing F, Yang Y, Gao Q. Modification and Functionalization of Separators for High Performance Lithium-Sulfur Batteries. Int J Mol Sci 2024; 25:11446. [PMID: 39518999 PMCID: PMC11547115 DOI: 10.3390/ijms252111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Lithium-sulfur batteries (LSB) have been recognized as a prominent potential next-generation energy storage system, owing to their substantial theoretical specific capacity (1675 mAh g-1) and high energy density (2600 Wh kg-1). In addition, sulfur's abundance, low cost, and environmental friendliness make commercializing LSB feasible. However, challenges such as poor cycling stability and reduced capacity, stemming from the formation and diffusion of lithium polysulfides (LiPSs), hinder LSB's practical application. Introducing functional separators represents an effective strategy to surmount these obstacles and enhance the electrochemical performance of LSBs. Here, we have conducted a comprehensive review of recent advancements in functional separators for LSBs about various (i) carbon and metal compound materials, (ii) polymer materials, and (iii) novel separators in recent years. The detailed preparation process, morphology and performance characterization, and advantages and disadvantages are summarized, aiming to fundamentally understand the mechanisms of improving battery performance. Additionally, the development potential and future prospects of advanced separators are also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Fei Xing
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China; (M.S.); (S.X.); (X.W.); (Y.Z.); (Y.F.); (Y.Y.)
| | | | - Qiqian Gao
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China; (M.S.); (S.X.); (X.W.); (Y.Z.); (Y.F.); (Y.Y.)
| |
Collapse
|
11
|
Tran TN, Anh Duy NV, Hieu NH, Nguyen TA, Van NT, Bac Phung TV, Zulueta YA, Nguyen MT, Schall P, Dang MT. Electric field enhances the electronic and diffusion properties of penta-graphene nanoribbon anodes in lithium-ion batteries. RSC Adv 2024; 14:33524-33535. [PMID: 39439837 PMCID: PMC11495402 DOI: 10.1039/d4ra05464d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Enhancement of the ionic conductivity and reduction of diffusion barriers of lithium-ion batteries are crucial for improving the performance of the fast-growing energy storage devices. Recently, the fast-charging capability of commercial-like lithium-ion anodes with the smallest modification of the current manufacturing technology has been of great interest. We used first principles methods computations with density functional theory and the climbing image-nudged elastic band method to evaluate the impact of an external electric field on the stability, electronic band gap, ionic conductivity, and lithium-ion diffusion coefficient of penta-graphene nanoribbons upon lithium adsorption. By adsorbing a lithium atom, these semiconductor nanoribbons become metal with a formation energy of -0.22 eV, and an applied electric field perpendicular to the surface of these nanoribbons further stabilizes the structure of these lithium-ion systems. Using the Nernst-Einstein relation, in the absence of an electric field, the ionic conductivity of these penta-graphene nanoribbons amounts to 1.24 × 10-4 S cm-1. In the presence of an electric field, this conductivity can reach a maximum value of 8.89 × 10-2 S cm-1, emphasizing the promising role of an electric field for supporting fast-charging capability. Our results highlight the role of an external electric field as a novel switch to improve the efficiency of lithium-ion batteries with penta-graphene nanoribbon electrodes and open a new horizon for the use of pentagonal materials as anode materials in the lithium-ion battery industry.
Collapse
Affiliation(s)
- Thi Nhan Tran
- Faculty of Fundamental Sciences, Hanoi University of Industry 298 Cau Dien, Bac Tu Liem Hanoi Vietnam
| | | | - Nguyen Hoang Hieu
- Department of Physics Education, Can Tho University 3/2 Street, Ninh Kieu Can Tho Vietnam
| | - Truc Anh Nguyen
- Faculty of Mechanics, Can Tho University of Technology 256 Nguyen Van Cu Street, Ninh Kieu Can Tho Vietnam
| | - Nguyen To Van
- Faculty of Chemico-Physical Engineering, Le Quy Don Technical University Ha Noi Vietnam
| | - Thi Viet Bac Phung
- Center for Environmental Intelligence and College of Engineering & Computer Science, VinUniversity Hanoi Vietnam
| | - Yohandys A Zulueta
- Departamento de Física, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente Santiago de Cuba CP 90500 Cuba
| | - Minh Tho Nguyen
- Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University Ho Chi Minh City Vietnam
- Faculty of Applied Technology, School of Technology, Van Lang University Ho Chi Minh City Vietnam
| | - Peter Schall
- Van der Waals-Zeeman Institute, University of Amsterdam Science Park 904 Amsterdam The Netherlands
| | - Minh Triet Dang
- Department of Physics Education, Can Tho University 3/2 Street, Ninh Kieu Can Tho Vietnam
| |
Collapse
|
12
|
Ren H, Li H, Barry P, Wang Z, Campos AR, Takeuchi ES, Marschilok AC, Yan S, Takeuchi KJ, Reichmanis E. Recent Advances in the Application of Magnetite (Fe 3O 4) in Lithium-Ion Batteries: Synthesis, Electrochemical Performance, and Characterization Techniques. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:9299-9319. [PMID: 39398366 PMCID: PMC11467837 DOI: 10.1021/acs.chemmater.4c02013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 10/15/2024]
Abstract
With the promotion of portable energy storage devices and the popularization of electric vehicles, lithium-ion battery (LiB) technology plays a crucial role in modern energy storage systems. Over the past decade, the demands for LiBs have centered around high energy density and long cycle life. These parameters are often determined by the characteristics of the active materials in the electrodes. Given its high abundance, environmental friendliness, low cost and high capacity, magnetite (Fe3O4) emerges as a promising anode material. However, the practical application of Fe3O4 faces challenges, such as significant volume expansion during cycling. To overcome these obstacles and facilitate the commercialization of Fe3O4, a comprehensive understanding of its properties and behavior is essential. This review provides an overview of recent Fe3O4 research advances, focusing on its synthesis, factors influencing its electrochemical performance, and characterization techniques. By thoroughly understanding the characteristics of Fe3O4 in LiB applications, we can optimize its properties and enhance its performance, thereby paving the way for its widespread use in energy storage applications. Additionally, the review concludes with perspectives on promoting the commercialization of Fe3O4 in LiBs and future research directions.
Collapse
Affiliation(s)
- Haoze Ren
- Department
of Chemical and Bimolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Han Li
- Department
of Chemical and Bimolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Patrick Barry
- Institute
of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony
Brook, New York 11794, United States
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Zhongling Wang
- Institute
of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony
Brook, New York 11794, United States
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Armando Rodriguez Campos
- Institute
of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony
Brook, New York 11794, United States
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Esther S. Takeuchi
- Institute
of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony
Brook, New York 11794, United States
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
- Interdisciplinary
Science Department, Brookhaven National
Laboratory, Upton, New York 11973, United States
| | - Amy C. Marschilok
- Institute
of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony
Brook, New York 11794, United States
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
- Interdisciplinary
Science Department, Brookhaven National
Laboratory, Upton, New York 11973, United States
| | - Shan Yan
- Institute
of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony
Brook, New York 11794, United States
- Interdisciplinary
Science Department, Brookhaven National
Laboratory, Upton, New York 11973, United States
| | - Kenneth J. Takeuchi
- Institute
of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony
Brook, New York 11794, United States
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
- Interdisciplinary
Science Department, Brookhaven National
Laboratory, Upton, New York 11973, United States
| | - Elsa Reichmanis
- Department
of Chemical and Bimolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
13
|
Ju Z, Feng Q, Wang X, Zhuang Q, Shi Y, Jiang J. A cubic perovskite fluoride anode with the surface conversion reactions dominated mechanism for advanced lithium-ion batteries. NANOTECHNOLOGY 2024; 35:505601. [PMID: 39312901 DOI: 10.1088/1361-6528/ad7e34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Perovskite fluorides are attractive anode materials for lithium-ion batteries (LIBs) because of their three-dimensional diffusion channels and robust structures, which are advantageous for the rapid transmission of lithium ions. Unfortunately, the wide band gap results in poor electronic conductivity, which limits their further development and application. Herein, the cubic perovskite iron fluoride (KFeF3, KFF) nanocrystals (∼100 nm) are synthesized by a one-step solvothermal strategy. Thanks to the good electrical conductivity of carbon nanotubes (CNTs), the overall electrochemical performance of composite anode material (KFF-CNTs) has been significantly improved. In particular, the KFF-CNTs deliver a high specific capacity (363.8 mAh g-1), good rate performance (131.6 mAh g-1at 3.2 A g-1), and superior cycle stability (500 cycles). Note that the surface conversion reactions play a dominant role in the electrochemical process of KFF-CNTs, together with the stable octahedral perovskite structure and nanoscale particle sizes achieving high ion diffusion coefficients. Furthermore, the specific lithium storage mechanism of KFF has been explored by the distribution of relaxation times technology. This work opens up a new way for developing cubic perovskite fluorides as high-capacity and robust anode materials for LIBs.
Collapse
Affiliation(s)
- Zhicheng Ju
- Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipments, School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Qilin Feng
- Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipments, School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Xinfeng Wang
- Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipments, School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Quanchao Zhuang
- Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipments, School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Yueli Shi
- Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipments, School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Jiangmin Jiang
- Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipments, School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Macau 999078, People's Republic of China
| |
Collapse
|
14
|
Oshchepkov AS. Buckybowl Molecular Tweezers for Recognition of Fullerenes. Chemphyschem 2024; 25:e202400435. [PMID: 38775747 DOI: 10.1002/cphc.202400435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Indexed: 07/05/2024]
Abstract
Buckybowl tweezers are a relatively young research area closely associated with the development of non-planar polycyclic aromatic systems and supramolecular chemistry. Since the appearance of the first prototypes in the early 2000s, the tweezers have undergone evolutionary changes. Nowadays they are able to effectively interact with fullerenes and the results opened up prospects for development in the field of sensing, nonlinear optics, and molecular switchers. In the present study, examples of corannulene-based and other buckybowl tweezers for the recognition of C60 and C70 fullerenes were summarized and analyzed. The main structural components of the tweezers were also reviewed in detail and their role in the formation of complexes with fullerenes was evaluated. The revealed structural patterns should trigger the development of novel recognition systems and materials with a wide range of applications.
Collapse
Affiliation(s)
- Alexander S Oshchepkov
- Organic Chemistry Department, Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120, Halle, Germany
- Department of Physics, Max Planck Institute for the Science of Light, Staudtstrasse 2, 91058, Erlangen, Germany
| |
Collapse
|
15
|
Shi X, Jia Z, Wang D, Jiang B, Liao Y, Zhang G, Wang Q, He D, Huang Y. Phonon Engineering in Solid Polymer Electrolyte toward High Safety for Solid-State Lithium Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405097. [PMID: 38876140 DOI: 10.1002/adma.202405097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/23/2024] [Indexed: 06/16/2024]
Abstract
Extensively-used rechargeable lithium-ion batteries (LIBs) face challenges in achieving high safety and long cycle life. To address such challenges, ultrathin solid polymer electrolyte (SPE) is fabricated with reduced phonon scattering by depositing the composites of ionic-liquid (1-ethyl-3-methylimidazolium dicyamide, EMIM:DCA), polyurethane (PU) and lithium salt on the polyethylene separator. The robust and flexible separator matrix not only reduces the electrolyte thickness and improves the mobility of Li+, but more importantly provides a relatively regular thermal diffusion channel for SPE and reduces the external phonon scattering. Moreover, the introduction of EMIM:DCA successfully breaks the random intermolecular attraction of the PU polymer chain and significantly decreases phonon scattering to enhance the internal thermal conductivity of the polymer. Thus, the thermal conductivity of the as-obtained SPE increases by approximately six times, and the thermal runaway (TR) of the battery is effectively inhibited. This work demonstrates that optimizing thermal safety of the battery by phonon engineering sheds a new light on the design principle for high-safety Li-ion batteries.
Collapse
Affiliation(s)
- Xuemin Shi
- Institute of New Energy for Vehicles, Shanghai Key Laboratory of Development & Application for Metallic Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Zhuangzhuang Jia
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, China
| | - Donghai Wang
- Institute of New Energy for Vehicles, Shanghai Key Laboratory of Development & Application for Metallic Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Bowen Jiang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yaqi Liao
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Guohua Zhang
- Institute of New Energy for Vehicles, Shanghai Key Laboratory of Development & Application for Metallic Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Qingsong Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, China
| | - Danqi He
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan, 430070, China
| | - Yunhui Huang
- Institute of New Energy for Vehicles, Shanghai Key Laboratory of Development & Application for Metallic Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
16
|
Ren Y, Hu L, Chang S, Ma Y, Wang B, Wu H, Li F, Yang Y, Tang S, Meng X. MXene-Bimetallic Hybrids via Mixed Molten Salts Etching for Kinetics-Enhanced and Dendrite-Free Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400068. [PMID: 38593293 DOI: 10.1002/smll.202400068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Lithium-sulfur (Li-S) batteries with high theoretical energy density (2600 Wh kg-1) are considered to be one of the most promising secondary batteries. However, the practical application of Li-S batteries is limited by the polysulfides shuttling and unstable lithium metal anodes. Herein, an asymmetric separator (CACNM@PP), composed of Co-Ni/MXene (CNM) on the cathode and Cu-Ag/MXene (CAM) on the anode for high-performance Li-S batteries is reported. For the cathode, CNM provides a synergistic effect by integrating Co, Ni, and MXene, resulting in strong chemical interactions and fast conversion kinetics for polysulfides. For the anode, CAM with abundant lithiophilicity active sites can lower the nucleation barrier of Li. Moreover, LiCl/LiF layers are generated in situ as an ion conductor layer during charging and discharging, inducing a uniform deposition of Li. Therefore, the assembled cells with the CACNM@PP separators harvest excellent electrochemical performance. This work provides novel insights into the development of commercially available high-energy density Li-S batteries with asymmetric separators.
Collapse
Affiliation(s)
- Yilun Ren
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China
| | - Libing Hu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China
- College of Chemistry and Chemical Engineering, Tarim University, Alar, 843300, China
| | - Shaozhong Chang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China
| | - Yujie Ma
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China
| | - Biao Wang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China
| | - Hao Wu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China
| | - Fengqi Li
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China
| | - Yurong Yang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China
| | - Shaochun Tang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China
| | - Xiangkang Meng
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China
| |
Collapse
|
17
|
Ji J, Park M, Kim M, Kang SK, Park GH, Maeng J, Ha J, Seo MH, Kim WB. Accelerated Conversion of Polysulfides for Ultra Long-Cycle of Li-S Battery at High-Rate over Cooperative Cathode Electrocatalyst of Ni 0.261Co 0.739S 2/N-Doped CNTs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402389. [PMID: 38867385 PMCID: PMC11348136 DOI: 10.1002/advs.202402389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/17/2024] [Indexed: 06/14/2024]
Abstract
Despite the very high theoretical energy density, Li-S batteries still need to fundamentally overcome the sluggish redox kinetics of lithium polysulfides (LiPSs) and low sulfur utilization that limit the practical applications. Here, highly active and stable cathode, nitrogen-doped porous carbon nanotubes (NPCTs) decorated with NixCo1-xS2 nanocrystals are systematically synthesized as multi-functional electrocatalytic materials. The nitrogen-doped carbon matrix can contribute to the adsorption of LiPSs on heteroatom active sites with buffering space. Also, both experimental and computation-based theoretical analyses validate the electrocatalytic principles of co-operational facilitated redox reaction dominated by covalent-site-dependent mechanism; the favorable adsorption-interaction and electrocatalytic conversion of LiPSs take place subsequently by weakening sulfur-bond strength on the catalytic NiOh 2+-S-CoOh 2+ backbones via octahedral TM-S (TM = Ni, Co) covalency-relationship, demonstrating that fine tuning of CoOh 2+ sites by NiOh 2+ substitution effectively modulates the binding energies of LiPSs on the NixCo1-xS2@NPCTs surface. Noteworthy, the Ni0.261Co0.739S2@NPCTs catalyst shows great cyclic stability with a capacity of up to 511 mAh g-1 and only 0.055% decay per cycle at 5.0 C during 1000 cycles together with a high areal capacity of 2.20 mAh cm-2 under 4.61 mg cm-2 sulfur loading even after 200 cycles at 0.2 C. This strategy highlights a new perspective for achieving high-energy-density Li-S batteries.
Collapse
Affiliation(s)
- Junhyuk Ji
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohang‐siGyeongsangbuk‐do37673Republic of Korea
| | - Minseon Park
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohang‐siGyeongsangbuk‐do37673Republic of Korea
| | - Minho Kim
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohang‐siGyeongsangbuk‐do37673Republic of Korea
| | - Song Kyu Kang
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohang‐siGyeongsangbuk‐do37673Republic of Korea
| | - Gwan Hyeon Park
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohang‐siGyeongsangbuk‐do37673Republic of Korea
| | - Junbeom Maeng
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohang‐siGyeongsangbuk‐do37673Republic of Korea
| | - Jungseub Ha
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohang‐siGyeongsangbuk‐do37673Republic of Korea
| | - Min Ho Seo
- Department of Nanotechnology EngineeringPukyong National University (PKNU)45 Yongso‐ro, Nam‐guBusan‐si48513Republic of Korea
| | - Won Bae Kim
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohang‐siGyeongsangbuk‐do37673Republic of Korea
- Graduate Institute of Ferrous & Eco Materials TechnologyPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohang‐siGyeongsangbuk‐do37673Republic of Korea
| |
Collapse
|
18
|
Li G, Liu Y, Schultz T, Exner M, Muydinov R, Wang H, Scheurell K, Huang J, Szymoniak P, Pinna N, Koch N, Adelhelm P, Bojdys MJ. One-Pot Synthesis of High-Capacity Sulfur Cathodes via In-Situ Polymerization of a Porous Imine-Based Polymer. Angew Chem Int Ed Engl 2024; 63:e202400382. [PMID: 38619863 DOI: 10.1002/anie.202400382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/15/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
Lithium-ion batteries, essential for electronics and electric vehicles, predominantly use cathodes made from critical materials like cobalt. Sulfur-based cathodes, offering a high theoretical capacity of 1675 mAh g-1 and environmental advantages due to sulfur's abundance and lower toxicity, present a more sustainable alternative. However, state-of-the-art sulfur-based electrodes do not reach the theoretical capacities, mainly because conventional electrode production relies on mixing of components into weakly coordinated slurries. Consequently, sulfur's mobility leads to battery degradation-an effect known as the "sulfur-shuttle". This study introduces a solution by developing a microporous, covalently-bonded, imine-based polymer network grown in situ around sulfur particles on the current collector. The polymer network (i) enables selective transport of electrolyte and Li-ions through pores of defined size, and (ii) acts as a robust host to retain the active component of the electrode (sulfur species). The resulting cathode has superior rate performance from 0.1 C (1360 mAh g-1) to 3 C (807 mAh g-1). Demonstrating a high-performance, sustainable sulfur cathode produced via a simple one-pot process, our research underlines the potential of microporous polymers in addressing sulfur diffusion issues, paving the way for sulfur electrodes as viable alternatives to traditional metal-based cathodes.
Collapse
Affiliation(s)
- Guiping Li
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Ye Liu
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Thorsten Schultz
- Humboldt-Universität zu Berlin, Institut für Physik, Institut für Chemie, IRIS Adlershof, Zum Großen Windkanal 2, 12489, Berlin, Germany
- Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Moritz Exner
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Ruslan Muydinov
- Institute for Semiconductor- and High-Frequency-System Technologies, Technische Universität Berlin, Einsteinufer 25, 10587, Berlin, Germany
| | - Hui Wang
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Kerstin Scheurell
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Jieyang Huang
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Paulina Szymoniak
- Bundesanstalt für Materialforschung und-prüfung (BAM), Unter den Eichen 87, 12205, Berlin, Germany
| | - Nicola Pinna
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Norbert Koch
- Humboldt-Universität zu Berlin, Institut für Physik, Institut für Chemie, IRIS Adlershof, Zum Großen Windkanal 2, 12489, Berlin, Germany
- Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Philipp Adelhelm
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
- Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Michael J Bojdys
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
19
|
Niu L, Zhang R, Zhang Q, Wang D, Bi Y, Wen G, Qin LC. Carbon-coated silicon/graphite oxide composites as anode materials for highly stable lithium-ion batteries. Phys Chem Chem Phys 2024; 26:17292-17302. [PMID: 38860378 DOI: 10.1039/d4cp01424c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Silicon (Si) has been widely investigated as an anode material for lithium-ion batteries (LIBs) due to its high theoretical capacity. However, the huge volume expansion and low electrical conductivity limit its practical application to some extent. Here, we prepared silicon/reduced graphene oxide/amorphous carbon (Si/G/C) anode materials for lithium-ion batteries using a facile synergistic cladding layer. The protective effect of different carbon layers was explored and it was found that ternary composites have excellent electrochemical properties. In this work, the surface of Si was first modified using ammonia, and the positively charged Si was tightly anchored to the graphene sheet layer. In contrast, amorphous carbon was used as a reinforcing coating for further coating to synergistically build up the cladding layer of Si NPs with graphene oxide. The ternary composite (Si/G/C) material greatly ensures the structural integrity of the composites and shows excellent cycling as well as rate performance compared to Si/reduced graphene oxide and Si/carbon composites. For the Si/G/C composite, at a current density of 1 A g-1, it can be stably cycled over 267 times with 70% capacity retention (only 0.0711% capacity reduction per cycle).
Collapse
Affiliation(s)
- Lujie Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Rui Zhang
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Qiang Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Dong Wang
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
- Shangdong Si-Nano Materials Technology Co. Ltd., Zibo 255000, P. R. China
| | - Yanlei Bi
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Guangwu Wen
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Lu-Chang Qin
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, NC 27599-3255, USA
| |
Collapse
|
20
|
Li S, Zhang Z, Yuan F, Wang Z, Wang B. Balancing interlayer spacing, pore structures and conductivity endows hard carbon with high capacity for rechargeable aluminum batteries. Phys Chem Chem Phys 2024; 26:16838-16846. [PMID: 38832413 DOI: 10.1039/d4cp01415d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
As a key configuration, hard carbon (HC) is widely regarded as a promising cathode for rechargeable aluminum batteries (RABs), because of its enlarged interlayer spacing and well-developed pore structures. However, the trade-off between the pore structure, interlayer spacing and conductivity easily leads to an unsatisfactory electrochemical performance in terms of capacity and cycling stability. Hence, N-doped hard carbon (P-M) is synthesized at a relatively low temperature (700 °C) and anion intercalation associated with the energy storage process is investigated. The results demonstrate that the introduction of a N-doping agent not only expands the layer spacing and creates rich pore structures, but also boosts the conductivity. Compared with HC without N-doping, the expanded interlayer spacing in P-M can increase ion storage ability, and the rich pore channels contribute to electron transfer. Besides, compared with HC annealed at a higher temperature (900 °C), the enhanced conductivity in P-M is conducive to accelerating ion diffusion. Benefiting from these structure merits, the optimized P-M cathode delivers a high capacity (323 mA h g-1 at 500 mA g-1) and a prolonged cycle lifespan over 1000 cycles at 1 A g-1 retaining 109 mA h g-1. This work can provide a guidance for developing other high-performance hard carbon cathodes.
Collapse
Affiliation(s)
- Shuang Li
- Hebei Vocational University of Industry and Technology, Shijiazhuang 050000, China.
| | - Zeyu Zhang
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China.
| | - Fei Yuan
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China.
| | - Zhen Wang
- Hebei Vocational University of Industry and Technology, Shijiazhuang 050000, China.
| | - Bo Wang
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China.
| |
Collapse
|
21
|
Chen Y, Liu F, Wei S, Xia Y, Li X, Liu S, Zhang X, Tang S, Shen D, Dong W, Yang S. First-Principles Investigation of Phosphorus-Doped Graphitic Carbon Nitride as Anchoring Material for the Lithium-Sulfur Battery. Molecules 2024; 29:2746. [PMID: 38930812 PMCID: PMC11206158 DOI: 10.3390/molecules29122746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The utilization of lithium-sulfur battery is hindered by various challenges, including the "shuttle effect", limited sulfur utilization, and the sluggish conversion kinetics of lithium polysulfides (LiPSs). In the present work, a theoretical design for the viability of graphitic carbon nitride (g-C3N4) and phosphorus-doping graphitic carbon nitride substrates (P-g-C3N4) as promising host materials in a Li-S battery was conducted utilizing first-principles calculations. The PDOS shows that when the P atom is introduced, the 2p of the N atom is affected by the 2p orbital of the P atom, which increases the energy band of phosphorus-doping substrates. The energy bands of PC and Pi are 0.12 eV and 0.20 eV, respectively. When the lithium polysulfides are adsorbed on four substrates, the overall adsorption energy of PC is 48-77% higher than that of graphitic carbon nitride, in which the charge transfer of long-chain lithium polysulfides increase by more than 1.5-fold. It is found that there are powerful Li-N bonds between lithium polysulfides and P-g-C3N4 substrates. Compared with the graphitic carbon nitride monolayer, the anchoring effect of the LiPSs@P-g-C3N4 substrate is enhanced, which is beneficial for inhibiting the shuttle of high-order lithium polysulfides. Furthermore, the catalytic performance of the P-g-C3N4 substrate is assessed in terms of the S8 reduction pathway and the decomposition of Li2S; the decomposition energy barrier of the P-g-C3N4 substrate decrease by 10% to 18%. The calculated results show that P-g-C3N4 can promote the reduction of S8 molecules and Li-S bond cleavage within Li2S, thus improving the utilization of sulfur-active substances and the ability of rapid reaction kinetics. Therefore, the P-g-C3N4 substrates are a promising high-performance lithium-sulfur battery anchoring material.
Collapse
Affiliation(s)
- Yuehui Chen
- School of Mining, Liaoning Technical University, Fuxin 123000, China; (Y.C.); (F.L.); (S.W.); (Y.X.)
- College of Science, Liaoning Technical University, Fuxin 123000, China;
| | - Fengxia Liu
- School of Mining, Liaoning Technical University, Fuxin 123000, China; (Y.C.); (F.L.); (S.W.); (Y.X.)
| | - Shuang Wei
- School of Mining, Liaoning Technical University, Fuxin 123000, China; (Y.C.); (F.L.); (S.W.); (Y.X.)
| | - Yingkai Xia
- School of Mining, Liaoning Technical University, Fuxin 123000, China; (Y.C.); (F.L.); (S.W.); (Y.X.)
| | - Xiaodong Li
- College of Material Science and Engineering, Liaoning Technical University, Fuxin 123000, China; (X.L.); (X.Z.); (S.T.); (D.S.); (W.D.)
| | - Shengnan Liu
- College of Science, Liaoning Technical University, Fuxin 123000, China;
| | - Xu Zhang
- College of Material Science and Engineering, Liaoning Technical University, Fuxin 123000, China; (X.L.); (X.Z.); (S.T.); (D.S.); (W.D.)
| | - Shuwei Tang
- College of Material Science and Engineering, Liaoning Technical University, Fuxin 123000, China; (X.L.); (X.Z.); (S.T.); (D.S.); (W.D.)
| | - Ding Shen
- College of Material Science and Engineering, Liaoning Technical University, Fuxin 123000, China; (X.L.); (X.Z.); (S.T.); (D.S.); (W.D.)
| | - Wei Dong
- College of Material Science and Engineering, Liaoning Technical University, Fuxin 123000, China; (X.L.); (X.Z.); (S.T.); (D.S.); (W.D.)
| | - Shaobin Yang
- School of Mining, Liaoning Technical University, Fuxin 123000, China; (Y.C.); (F.L.); (S.W.); (Y.X.)
- College of Material Science and Engineering, Liaoning Technical University, Fuxin 123000, China; (X.L.); (X.Z.); (S.T.); (D.S.); (W.D.)
| |
Collapse
|
22
|
Ni W. Perspectives on Advanced Lithium-Sulfur Batteries for Electric Vehicles and Grid-Scale Energy Storage. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:990. [PMID: 38921866 PMCID: PMC11206452 DOI: 10.3390/nano14120990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
Intensive increases in electrical energy storage are being driven by electric vehicles (EVs), smart grids, intermittent renewable energy, and decarbonization of the energy economy. Advanced lithium-sulfur batteries (LSBs) are among the most promising candidates, especially for EVs and grid-scale energy storage applications. In this topical review, the recent progress and perspectives of practical LSBs are reviewed and discussed; the challenges and solutions for these LSBs are analyzed and proposed for future practical and large-scale energy storage applications. Major challenges for the shuttle effect, reaction kinetics, and anodes are specifically addressed, and solutions are provided on the basis of recent progress in electrodes, electrolytes, binders, interlayers, conductivity, electrocatalysis, artificial SEI layers, etc. The characterization strategies (including in situ ones) and practical parameters (e.g., cost-effectiveness, battery management/modeling, environmental adaptability) are assessed for crucial automotive/stationary large-scale energy storage applications (i.e., EVs and grid energy storage). This topical review will give insights into the future development of promising Li-S batteries toward practical applications, including EVs and grid storage.
Collapse
Affiliation(s)
- Wei Ni
- State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, ANSTEEL Research Institute of Vanadium & Titanium (Iron & Steel), Chengdu 610031, China
| |
Collapse
|
23
|
Zhou K, Guo B, Ma J, Cui S, Bao Y, Wang T, Qiu H, Jin D. Fe 3O 4-modified FeCl 3/graphite intercalation compound confinement architecture for unleashing the high-performance anode potential of lithium-ion batteries. Phys Chem Chem Phys 2024; 26:14898-14907. [PMID: 38738560 DOI: 10.1039/d4cp00847b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The ferric trichloride (FeCl3)-intercalated graphite intercalation compound (GIC) has high reversible capacity and bulk density, making it a promising anode material for lithium ion batteries. However, its practical application has been limited by the poor cycle performance due to chloride dissolution and shuttling issues. Herein, FeCl3-GIC is used as the precursor material to synthesize a nano-Fe3O4-modified intercalation material by a solvothermal method. The Fe3O4 moiety at the edge of FeCl3-GIC provides a robust chemical anchoring effect on the chlorides. Together with the two-dimensional graphite layer, it forms a confinement space, which effectively immobilizes soluble chlorides. Attributed to the distinctive structural design, the Fe3O4-FeCl3/GIC 25% C electrode offers a high reversible capacity of 691.4 mA h g-1 at 1000 mA g-1 after 400 cycles. At 2000 and 5000 mA g-1, the reversible specific capacity of the Fe3O4-FeCl3/GIC 25% C electrode is 345.6 and 218.3 mA h g-1, respectively. This work presents an innovative method to improve the lifespan of GIC.
Collapse
Affiliation(s)
- Kai Zhou
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, P. R. China.
| | - Baiyu Guo
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, P. R. China.
| | - Jun Ma
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, P. R. China.
| | - Siyu Cui
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, P. R. China.
| | - Yuying Bao
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, P. R. China.
| | - Tao Wang
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, P. R. China.
| | - Hailong Qiu
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, P. R. China.
| | - Di Jin
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
24
|
Li B, Xie X, Meng T, Guo X, Li Q, Yang Y, Jin H, Jin C, Meng X, Pang H. Recent advance of nanomaterials modified electrochemical sensors in the detection of heavy metal ions in food and water. Food Chem 2024; 440:138213. [PMID: 38134834 DOI: 10.1016/j.foodchem.2023.138213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
As one of the main pollutants, heavy metal ions can accumulate in the human body and cause a cascade of damage. Electrochemical sensors provide great prospects for tracing heavy metal ions because of their properties of high sensitivity, low detection limits and fast response. Electrode surface modification materials play a key role in enhancing the performance of electrochemical sensors. Herein, we summarize in detail the recent work on electrochemical sensors modified by carbon nanomaterials (graphene and its derivatives, carbon nanofibers and carbon nanotubes), metal nanomaterials (gold, silver, bismuth and iron), complexes (MOFs, ZIFs and MXenes) and their composites for the detection of heavy metal ions (mainly include Cd(II), Hg(II), Pb(II), As(III), Cu(II) and Zn(II)) in food and water. The synthetic strategies, mechanisms, innovations, advantages, challenges and prospects of various electrode modification nanomaterials for the detection of heavy metal ions in food and water are discussed.
Collapse
Affiliation(s)
- Bing Li
- College of Tourism and Culinary Science, Yangzhou University, Jiangsu 225127, PR China; College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, PR China.
| | - Xiaomei Xie
- College of Tourism and Culinary Science, Yangzhou University, Jiangsu 225127, PR China
| | - Tonghui Meng
- College of Tourism and Culinary Science, Yangzhou University, Jiangsu 225127, PR China
| | - Xiaotian Guo
- College of Tourism and Culinary Science, Yangzhou University, Jiangsu 225127, PR China
| | - Qingzheng Li
- College of Tourism and Culinary Science, Yangzhou University, Jiangsu 225127, PR China
| | - Yuting Yang
- College of Tourism and Culinary Science, Yangzhou University, Jiangsu 225127, PR China
| | - Haixia Jin
- College of Tourism and Culinary Science, Yangzhou University, Jiangsu 225127, PR China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, PR China
| | - Xiangren Meng
- College of Tourism and Culinary Science, Yangzhou University, Jiangsu 225127, PR China.
| | - Huan Pang
- College of Chemistry and Chemical Engineering, Yangzhou University, Jiangsu, 225002, PR China.
| |
Collapse
|
25
|
Yao W, Liao K, Lai T, Sul H, Manthiram A. Rechargeable Metal-Sulfur Batteries: Key Materials to Mechanisms. Chem Rev 2024; 124:4935-5118. [PMID: 38598693 DOI: 10.1021/acs.chemrev.3c00919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Rechargeable metal-sulfur batteries are considered promising candidates for energy storage due to their high energy density along with high natural abundance and low cost of raw materials. However, they could not yet be practically implemented due to several key challenges: (i) poor conductivity of sulfur and the discharge product metal sulfide, causing sluggish redox kinetics, (ii) polysulfide shuttling, and (iii) parasitic side reactions between the electrolyte and the metal anode. To overcome these obstacles, numerous strategies have been explored, including modifications to the cathode, anode, electrolyte, and binder. In this review, the fundamental principles and challenges of metal-sulfur batteries are first discussed. Second, the latest research on metal-sulfur batteries is presented and discussed, covering their material design, synthesis methods, and electrochemical performances. Third, emerging advanced characterization techniques that reveal the working mechanisms of metal-sulfur batteries are highlighted. Finally, the possible future research directions for the practical applications of metal-sulfur batteries are discussed. This comprehensive review aims to provide experimental strategies and theoretical guidance for designing and understanding the intricacies of metal-sulfur batteries; thus, it can illuminate promising pathways for progressing high-energy-density metal-sulfur battery systems.
Collapse
Affiliation(s)
- Weiqi Yao
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kameron Liao
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Tianxing Lai
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyunki Sul
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Arumugam Manthiram
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
26
|
Lv S, Ma X, Ke S, Wang Y, Ma T, Yuan S, Jin Z, Zuo JL. Metal-Coordinated Covalent Organic Frameworks as Advanced Bifunctional Hosts for Both Sulfur Cathodes and Lithium Anodes in Lithium-Sulfur Batteries. J Am Chem Soc 2024; 146:9385-9394. [PMID: 38512124 DOI: 10.1021/jacs.4c01620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The shuttling of polysulfides on the cathode and the uncontrollable growth of lithium dendrites on the anode have restricted the practical application of lithium-sulfur (Li-S) batteries. In this study, a metal-coordinated 3D covalent organic framework (COF) with a homogeneous distribution of nickel-bis(dithiolene) and N-rich triazine centers (namely, NiS4-TAPT) was designed and synthesized, which can serve as bifunctional hosts for both sulfur cathodes and lithium anodes in Li-S batteries. The abundant Ni centers and N-sites in NiS4-TAPT can greatly enhance the adsorption and conversion of the polysulfides. Meanwhile, the presence of Ni-bis(dithiolene) centers enables uniform Li nucleation at the Li anode, thereby suppressing the growth of Li dendrites. This work demonstrated the effectiveness of integrating catalytic and adsorption sites to optimize the chemical interactions between host materials and redox-active intermediates, potentially facilitating the rational design of metal-coordinated COF materials for high-performance secondary batteries.
Collapse
Affiliation(s)
- Sen Lv
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xingkai Ma
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Siwen Ke
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yaoda Wang
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tianrui Ma
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
27
|
Wang J, Li G, Zhang X, Zong K, Yang Y, Zhang X, Wang X, Chen Z. Undercoordination Chemistry of Sulfur Electrocatalyst in Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311019. [PMID: 38135452 DOI: 10.1002/adma.202311019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/20/2023] [Indexed: 12/24/2023]
Abstract
Undercoordination chemistry is an effective strategy to modulate the geometry-governed electronic structure and thereby regulate the activity of sulfur electrocatalysts. Efficient sulfur electrocatalysis is requisite to overcome the sluggish kinetics in lithium-sulfur (Li-S) batteries aroused by multi-electron transfer and multi-phase conversions. Recent advances unveil the great promise of undercoordination chemistry in facilitating and stabilizing sulfur electrochemistry, yet a related review with systematicness and perspectives is still missing. Herein, it is carefully combed through the recent progress of undercoordination chemistry in sulfur electrocatalysis. The typical material structures and operational strategies are elaborated, while the underlying working mechanism is also detailly introduced and generalized into polysulfide adsorption behaviors, polysulfide conversion kinetics, electron/ion transport, and dynamic reconstruction. Moreover, perspectives on the future development of undercoordination chemistry are further proposed.
Collapse
Affiliation(s)
- Jiayi Wang
- Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo, 315100, China
| | - Gaoran Li
- MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Department of Chemical Engineering, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Xiaomin Zhang
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangdong, 510006, China
| | - Kai Zong
- Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo, 315100, China
| | - Yi Yang
- Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo, 315100, China
| | - Xiaoyu Zhang
- Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo, 315100, China
| | - Xin Wang
- Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo, 315100, China
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangdong, 510006, China
| | - Zhongwei Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
28
|
Xu H, Jiang Q, Hui KS, Wang S, Liu L, Chen T, Zheng Y, Ip WF, Dinh DA, Zha C, Lin Z, Hui KN. Interfacial "Double-Terminal Binding Sites" Catalysts Synergistically Boosting the Electrocatalytic Li 2S Redox for Durable Lithium-Sulfur Batteries. ACS NANO 2024; 18:8839-8852. [PMID: 38465917 DOI: 10.1021/acsnano.3c11903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Catalytic conversion of polysulfides emerges as a promising approach to improve the kinetics and mitigate polysulfide shuttling in lithium-sulfur (Li-S) batteries, especially under conditions of high sulfur loading and lean electrolyte. Herein, we present a separator architecture that incorporates double-terminal binding (DTB) sites within a nitrogen-doped carbon framework, consisting of polar Co0.85Se and Co clusters (Co/Co0.85Se@NC), to enhance the durability of Li-S batteries. The uniformly dispersed clusters of polar Co0.85Se and Co offer abundant active sites for lithium polysulfides (LiPSs), enabling efficient LiPS conversion while also serving as anchors through a combination of chemical interactions. Density functional theory calculations, along with in situ Raman and X-ray diffraction characterizations, reveal that the DTB effect strengthens the binding energy to polysulfides and lowers the energy barriers of polysulfide redox reactions. Li-S batteries utilizing the Co/Co0.85Se@NC-modified separator demonstrate exceptional cycling stability (0.042% per cycle over 1000 cycles at 2 C) and rate capability (849 mAh g-1 at 3 C), as well as deliver an impressive areal capacity of 10.0 mAh cm-2 even in challenging conditions with a high sulfur loading (10.7 mg cm-2) and lean electrolyte environments (5.8 μL mg-1). The DTB site strategy offers valuable insights into the development of high-performance Li-S batteries.
Collapse
Affiliation(s)
- Huifang Xu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade Taipa, Macau SAR 999078, People's Republic of China
| | - Qingbin Jiang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade Taipa, Macau SAR 999078, People's Republic of China
| | - Kwan San Hui
- School of Engineering, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Shuo Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade Taipa, Macau SAR 999078, People's Republic of China
| | - Lingwen Liu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade Taipa, Macau SAR 999078, People's Republic of China
| | - Tianyu Chen
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade Taipa, Macau SAR 999078, People's Republic of China
| | - Yunshan Zheng
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade Taipa, Macau SAR 999078, People's Republic of China
| | - Weng Fai Ip
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR 999078, People's Republic of China
| | - Duc Anh Dinh
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Chenyang Zha
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade Taipa, Macau SAR 999078, People's Republic of China
| | - Zhan Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Kwun Nam Hui
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade Taipa, Macau SAR 999078, People's Republic of China
| |
Collapse
|
29
|
Ren H, Takeuchi ES, Marschilok AC, Takeuchi KJ, Reichmanis E. Enhancing composite electrode performance: insights into interfacial interactions. Chem Commun (Camb) 2024; 60:1979-1998. [PMID: 38190114 DOI: 10.1039/d3cc05608b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Propelled by the widespread adoption of portable electronic devices, electrochemical energy storage systems, particularly lithium-ion batteries (LIBs), have become ubiquitous in modern society. The electrode is the critical battery component, where intricate interactions between the materials govern both the energy output and the overall lifespan of the battery under operational conditions. However, the poor interfacial properties of traditional electrode materials fall short in meeting escalating performance demands. To facilitate the advent of next-generation lithium-ion batteries, attention must be devoted to the interfacial chemistry that dictates and modulates the various dynamic and transport processes across multiple length scales within the composite electrodes. Recent research has concentrated on systematically understanding the properties of distinct electrode components to engineer meticulously tailored electrode formulations. These are geared towards composite electrodes with heightened chemical stability, thermal robustness, enhanced local conductivities, and superior mechanical resilience. This review elucidates the latest advances in understanding the impact of interfacial interactions in achieving high-capacity, high-stability electrodes. Through comprehensive insights into the interfacial interactions between the various electrode components, we can create improved integrated systems that outperform those developed through empirical methods. In light of this, the adoption of a holistic approach to enhance the interactions among electrode materials becomes of paramount importance. This concerted effort ensures the attainment of heightened rate capability, facilitation of lithium-ion transport, and overall system stability throughout the entirety of the cyclic process.
Collapse
Affiliation(s)
- Haoze Ren
- Department of Chemical and Bimolecular Engineering, Lehigh University, Bethlehem, PA, 18015, USA.
| | - Esther S Takeuchi
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
- Institute for Energy Sustainability, Environment and Equity, Stony Brook University, Stony Brook, New York, 11794, USA
- Department of Material Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, 11794, USA
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Amy C Marschilok
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
- Institute for Energy Sustainability, Environment and Equity, Stony Brook University, Stony Brook, New York, 11794, USA
- Department of Material Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, 11794, USA
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Kenneth J Takeuchi
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
- Institute for Energy Sustainability, Environment and Equity, Stony Brook University, Stony Brook, New York, 11794, USA
- Department of Material Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, 11794, USA
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Elsa Reichmanis
- Department of Chemical and Bimolecular Engineering, Lehigh University, Bethlehem, PA, 18015, USA.
| |
Collapse
|
30
|
Feng J, Liu T, Li H, Hu YS, Mao H, Suo L. Ultralight Electrolyte with Protective Encapsulation Solvation Structure Enables Hybrid Sulfur-Based Primary Batteries Exceeding 660 Wh/kg. J Am Chem Soc 2024; 146:3755-3763. [PMID: 38308639 DOI: 10.1021/jacs.3c10260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
An electrochemical couple of lithium and sulfur possesses the highest theoretical energy density (>2600 Wh/kg) at the material level. However, disappointingly, it is out of place in primary batteries due to its low accessible energy density at the cell level (≤500 Wh/kg) and poor storage performance. Herein, a low-density methyl tert-butyl ether was tailored for an ultralight electrolyte (0.837 g/mL) with a protective encapsulation solvation structure which reduced electrolyte weight (23.1%), increased the utilization of capacity (38.1%), and simultaneously forfended self-discharge. Furthermore, active fluorinated graphite partially replaced inactive carbon to construct a hybrid sulfur-based cathode to bring the potential energy density into full play. Our demonstrated pouch cell achieved an incredible energy density of 661 Wh/kg with a negligible self-discharge rate based on the above innovations. Our work is anticipated to provide a new direction to realize the practicality of lithium-sulfur primary batteries.
Collapse
Affiliation(s)
- Jingnan Feng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huajun Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Sheng Hu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huican Mao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China
- Department of Energy Storage Science and Engineering, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liumin Suo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Liu X, Ding X, Zheng T, Jin Y, Wang H, Yang X, Yu B, Jiang J. Single Cobalt Ion-Immobilized Covalent Organic Framework for Lithium-Sulfur Batteries with Enhanced Rate Capabilities. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4741-4750. [PMID: 38239127 DOI: 10.1021/acsami.3c16319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Covalent organic frameworks (COFs) are notable for their remarkable structure, function designability, and tailorability, as well as stability, and the introduction of "open metal sites" ensures the efficient binding of small molecules and activation of substrates for heterogeneous catalysis and energy storage. Herein, we use the postsynthetic metal sites to catalyze polysulfide conversion and to boost the binding affinity to active matter for lithium-sulfur batteries (LSBs). A dual-pore COF, USTB-27, with hxl topology has been successfully assembled from the imine chemical reaction between 2,3,8,9,14,15-hexa(4-formylphenyl)diquinoxalino [2,3-a:2',3'-c]phenazine and [2,2'-bipyridine]-5,5'-diamine. The chelating nitrogen sites of both modules are able to postsynthetically functionalize with single cobalt sites to generate USTB-27-Co. The discharge capacity of the sulfur-loaded S@USTB-27-Co composite in a LSB is 1063, 945, 836, 765, 696, and 644 mA h g-1 at current densities of 0.1, 0.2, 0.5, 1.0, 2.0, and 5.0 C, respectively, much superior to that of non-cobalt-functionalized species S@USTB-27. Following the increased current densities, the rate performance of S@USTB-27-Co is much better than that of S@USTB-27. In particular, the capacity retention at 5.0 C has a magnificent increase from 19% for the latter species to 61% for the former one. Moreover, S@USTB-27-Co exhibits a higher specific capacity of 543 mA h g-1 than that of S@USTB-27 (402 mA h g-1) at a current density of 1.0 C after electrochemical cycling for 500 runs. This work illustrates the "open metal sites" strategy to engineer the active chemical component conversion in COF channels as well as their binding strength for specific applications.
Collapse
Affiliation(s)
- Xiaolin Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Xu Ding
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tianyu Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
32
|
Li Y, Hu Y, Wang S, Zhou X, Yang Y, Xiao X, Chen G. Compressible and Elastic Reduced Graphene Oxide Sponge for Stable and Dendrite-Free Lithium Metal Anodes. NANO LETTERS 2024; 24:672-680. [PMID: 38166484 DOI: 10.1021/acs.nanolett.3c03973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Dendritic Li deposition, an unstable solid-electrolyte interphase (SEI), and a nearly infinite relative volume change during cycling are three major obstacles to the practical application of Li metal batteries. Herein, we introduce a compressible and elastic reduced graphene oxide sponge (rGO-S) to simultaneously eliminate Li dendrite growth, stabilize the SEI, and accommodate the volume change. The volume change is contained by compressing and expanding the rGO-S anode, which effectively releases the Li plating-induced stress during cycling. The smooth and dense Li metal is deposited on rGO-S without dendrites, which preserves the SEI, reduces consumption of the electrolyte, and prevents the formation of Li debris. The half-cells employing rGO-S show a steady and high Coulombic efficiency. The Li@rGO-S symmetric cells demonstrate excellent cycling stability over 1200 cycles with a low overpotential. When paired with LiFePO4 (LFP), the Li@rGO-S||LFP full cells exhibit a high specific capacity (150.3 mAh g-1 at 1C), superior rate performance, and good capacity retention.
Collapse
Affiliation(s)
- Yaru Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Youdi Hu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuaiqi Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoze Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yi Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiao Xiao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Gang Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
33
|
Ono T, Okuda S, Ushiba S, Kanai Y, Matsumoto K. Challenges for Field-Effect-Transistor-Based Graphene Biosensors. MATERIALS (BASEL, SWITZERLAND) 2024; 17:333. [PMID: 38255502 PMCID: PMC10817696 DOI: 10.3390/ma17020333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024]
Abstract
Owing to its outstanding physical properties, graphene has attracted attention as a promising biosensor material. Field-effect-transistor (FET)-based biosensors are particularly promising because of their high sensitivity that is achieved through the high carrier mobility of graphene. However, graphene-FET biosensors have not yet reached widespread practical applications owing to several problems. In this review, the authors focus on graphene-FET biosensors and discuss their advantages, the challenges to their development, and the solutions to the challenges. The problem of Debye screening, in which the surface charges of the detection target are shielded and undetectable, can be solved by using small-molecule receptors and their deformations and by using enzyme reaction products. To address the complexity of sample components and the detection mechanisms of graphene-FET biosensors, the authors outline measures against nonspecific adsorption and the remaining problems related to the detection mechanism itself. The authors also introduce a solution with which the molecular species that can reach the sensor surfaces are limited. Finally, the authors present multifaceted approaches to the sensor surfaces that provide much information to corroborate the results of electrical measurements. The measures and solutions introduced bring us closer to the practical realization of stable biosensors utilizing the superior characteristics of graphene.
Collapse
Affiliation(s)
- Takao Ono
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Satoshi Okuda
- High Frequency & Optical Device Works, Mitsubishi Electric Corporation, 4-1 Mizuhara, Itami, Sendai 664-8641, Japan
| | - Shota Ushiba
- Murata Manufacturing Co., Ltd., 1-10-1 Higashikotari, Kyoto 617-8555, Japan
| | - Yasushi Kanai
- International Center for Synchrotron Radiation Innovation Smart, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | | |
Collapse
|
34
|
Yu L, Zhang R, Jia R, Jiang W, Dong X, Liu X, Cao H, Xu B. Consecutive engineering of anodic graphene supported cobalt monoxide composite and cathodic nanosized lithium cobalt oxide materials with improved lithium-ion storage performances. J Colloid Interface Sci 2023; 652:2017-2028. [PMID: 37696056 DOI: 10.1016/j.jcis.2023.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Downsizing the electrochemically active materials in both cathodic and anodic electrodes commonly brings about enhanced lithium-ion storage performances. It is particularly meaningful to explore simplified and effective strategies for exploiting nanosized electrode materials in the advanced lithium-ion batteries. In this work, the spontaneous reaction between few-layered graphene oxide (GO) and metallic cobalt (Co) foils in mild hydrothermal condition is for the first time employed to synthesize a reduced graphene oxide (RGO) supported nanosized cobalt monoxide (CoO) anode material (CoO@RGO). Furthermore, the CoO@RGO sample is converted to nanosized lithium cobalt oxide cathode material (LiCoO2, LCO) by taking the advantages of the self-templated effect. As a result, both the CoO@RGO anode and the LCO cathode exhibit inspiring lithium-ion storage properties. In half-cells, the CoO@RGO sample maintains a reversible capacity of 740.6 mAh·g-1 after 300 cycles at the current density of 1000 mA·g-1 while the LCO sample delivers a reversible capacity of 109.1 mAh·g-1 after 100 cycles at the current density of 100 mA·g-1. In the CoO@RGO//LCO full-cells, the CoO@RGO sample delivers a reversible capacity of 553.9 mAh·g-1 after 50 cycles at the current density of 200 mA·g-1. The reasons for superior electrochemical behaviors of the samples have been revealed, and the strategy in this work can be considered to be straightforward and effective for engineering both anode and cathode materials for lithium-ion batteries.
Collapse
Affiliation(s)
- Longbiao Yu
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Rui Zhang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Ruixin Jia
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Wenhao Jiang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiaoyu Dong
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xuehua Liu
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Haijie Cao
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Binghui Xu
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
35
|
Hou Y, Gao M, Gao J, Zhao L, Teo EHT, Wang D, Qi HJ, Zhou K. 3D Printed Conformal Strain and Humidity Sensors for Human Motion Prediction and Health Monitoring via Machine Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304132. [PMID: 37939292 PMCID: PMC10754119 DOI: 10.1002/advs.202304132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/19/2023] [Indexed: 11/10/2023]
Abstract
Wearable sensors have garnered considerable attention due to their flexibility and lightweight characteristics in the realm of healthcare applications. However, developing robust wearable sensors with facile fabrication and good conformity remains a challenge. In this study, a conductive graphene nanoplate-carbon nanotube (GC) ink is synthesized for multi jet fusion (MJF) printing. The layer-by-layer fabrication process of MJF not only improves the mechanical and flame-retardant properties of the printed GC sensor but also bolsters its robustness and sensitivity. The direction of sensor bending significantly impacts the relative resistance changes, allowing for precise investigations of joint motions in the human body, such as those of the fingers, wrists, elbows, necks, and knees. Furthermore, the data of resistance changes collected by the GC sensor are utilized to train a support vector machine with a 95.83% accuracy rate for predicting human motions. Due to its stable humidity sensitivity, the sensor also demonstrates excellent performance in monitoring human breath and predicting breath modes (normal, fast, and deep breath), thereby expanding its potential applications in healthcare. This work opens up new avenues for using MJF-printed wearable sensors for a variety of healthcare applications.
Collapse
Affiliation(s)
- Yanbei Hou
- HP‐NTU Digital Manufacturing Corporate LabSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
- Singapore Centre for 3D PrintingSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Ming Gao
- HP‐NTU Digital Manufacturing Corporate LabSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
- Singapore Centre for 3D PrintingSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Jingwen Gao
- Singapore Centre for 3D PrintingSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Lihua Zhao
- HP‐NTU Digital Manufacturing Corporate LabSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
- 3D LabHP LabsHP Inc.Palo AltoCA94304USA
| | - Edwin Hang Tong Teo
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Dong Wang
- School of Mechanical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - H. Jerry Qi
- The George Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Kun Zhou
- HP‐NTU Digital Manufacturing Corporate LabSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
- Singapore Centre for 3D PrintingSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
| |
Collapse
|
36
|
Kung CY, Chung SH. Electrolessly tin-plated sulfur nanocomposite for practical lean-electrolyte lithium-sulfur cells with a high-loading sulfur cathode. MATERIALS HORIZONS 2023; 10:4857-4867. [PMID: 37721718 DOI: 10.1039/d3mh00871a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Lithium-sulfur batteries are among the most promising low-cost, high-energy-density storage devices. The high-capacity sulfur active material undergoes electrochemical conversion between the solid and liquid states. Thus, the comprehensive design of a suitable synthesis method, substrate material, and cathode configuration is essential for developing advanced sulfur cathodes with practical cell design and cell performance parameters. Herein, an electroless plating method is employed to develop a tin-plated sulfur nanocomposite. The nanosized tin plating shell effectively encapsulates a large amount of sulfur; the nanocomposite exhibits excellent high sulfur loading and content (6-10 mg cm-2 and 65-85 wt%, respectively), and the cell based on the nanocomposite exhibits a superior low electrolyte-to-sulfur ratio of 7-4 μL mg-1. In addition to these critical cell design parameters, the tin-plated sulfur nanocomposite attains outstanding electrochemical utilization and stability for 200 cycles under a broad range of cycling rates of C/20-C/2, and additional outstanding cell performance properties in terms of a high areal capacity of 6.3-11.4 mA h cm-2, a high gravimetric capacity of 520-663 mA h g-1, a high energy density of 13-24 mW h cm-2, and a low electrolyte-to-capacity ratio of 3.75 μL mA h-1.
Collapse
Affiliation(s)
- Chui-Yi Kung
- Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 70101, Taiwan.
| | - Sheng-Heng Chung
- Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 70101, Taiwan.
- Hierarchical Green-Energy Materials Research Center, National Cheng Kung University, No. 1, University Road, Tainan City 70101, Taiwan
| |
Collapse
|
37
|
Zhou Y, Cai Y, Tu T, Zhang S, Li T, Fang L, Wang D, Liang Y, Wang Z, Jiang Y, Zhou C, Liang B. Expanded Carbon Nanotube Fiber at the Liquid-Air Interface for High-Performance Fiber-Based Supercapacitors and Electrochemical Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41839-41849. [PMID: 37590959 DOI: 10.1021/acsami.3c06815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Carbon nanotube fibers (CNTFs) are widely utilized in flexible and wearable electronics due to their outstanding electrical and mechanical properties. However, the spinning process of CNTFs has limited the CNTs from exposure, leading to an ultralow usage efficiency of individual CNTs. Here, we propose an electrochemical expansion strategy of a single CNTF at the liquid-air interface, forming a macroscopic spindle-shaped CNTF (SS-CNTF) with an enlarged volume of up to 5000-fold upon the spindle. The obtained spindle-shaped structure endows CNTF with a high specific surface area together with excellent conductivity and good mechanical properties. Therefore, the SS-CNTF-based devices exhibit outstanding performances both in energy storage (electrical double-layer supercapacitor, energy density: 11.22 Wh kg-1, power density: 203.9 kW kg-1) and electrochemical sensing (ascorbic acid: 1.26 μA μM-1 cm-2; dopamine: 103.91 μA μM-1 cm-2; uric acid: 11.53 μA μM-1 cm-2). The novel architecture of SS-CNTF prepared by one-step electrochemical expansion at the liquid-air interface enabled its high performance in multiple applications, providing new insight into the development of CNTF-based devices.
Collapse
Affiliation(s)
- Yue Zhou
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Yu Cai
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Tingting Tu
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Shanshan Zhang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Tianyu Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Lu Fang
- College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, P. R. China
| | - Dong Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Yitao Liang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Zhaoyang Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Yu Jiang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Congcong Zhou
- National Engineering Research Center for Innovation and Application of Minimally Invasive Devices, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P. R. China
| | - Bo Liang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
- Binjiang Institute of Zhejiang University, Hangzhou 310053, P. R. China
| |
Collapse
|
38
|
Deng Q, Zhou W, Wang H, Fu N, Wu X, Wu Y. Aspergillus Niger Derived Wrinkle-Like Carbon as Superior Electrode for Advanced Vanadium Redox Flow Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300640. [PMID: 37088735 PMCID: PMC10288236 DOI: 10.1002/advs.202300640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/24/2023] [Indexed: 05/03/2023]
Abstract
The scarcity of high electrocatalysis composite electrode materials has long been suppressing the redox reaction of V(II)/V(III) and V(IV)/V(V) couples in high performance vanadium redox flow batteries (VRFBs). Herein, through ingeniously regulating the growth of Aspergillus Niger, a wrinkle-like carbon (WLC) material that possesses edge-rich carbon, abundant heteroatoms, and nature wrinkle-like structure is obtained, which is subsequently successfully introduced and uniform dispersed on the surface of carbon fiber of graphite felt (GF). This composite electrode presents a lower overpotential and higher charge transfer ability, as the codoped multiheteroatoms increase the electrocatalysis activity and the wrinkled structure affords more abundant reaction area for vanadium ions in the electrolyte when compared with the pristine GF electrode, which is also supported by the density functional theory (DFT) calculations. Hence, the assembled battery using WLC electrodes achieves a high energy efficiency of 74.5% for 300 cycles at a high current density of 200 mA cm-2 , as well as the highest current density of 450 mA cm-2 . The WLC material not only uncovers huge potential in promoting the application of VRFBs, but also offers referential solution to synthesis microorganism-based high-performance electrode in other energy storage systems.
Collapse
Affiliation(s)
- Qi Deng
- CAS Key Laboratory of Molecular Nanostructure and NanotechnologyCAS Research/Education Center for Excellence in MolecularInstitute of Chemistry Chinese Academy of Sciences (CAS)Beijing100190P. R. China
- State Key Laboratory of Utilization of Woody Oil Resource of ChinaHunan Academy of ForestryChangshaHunan410018P. R. China
| | - Wei‐Bin Zhou
- State Key Laboratory of Utilization of Woody Oil Resource of ChinaHunan Academy of ForestryChangshaHunan410018P. R. China
| | - Hong‐Rui Wang
- School of Chemistry and Materials ScienceHunan Agricultural UniversityChangshaHunan410128P. R. China
| | - Na Fu
- Hunan Province Yinfeng New Energy Co., Ltd.ChangshaHunan410014P. R. China
| | - Xiong‐Wei Wu
- School of Chemistry and Materials ScienceHunan Agricultural UniversityChangshaHunan410128P. R. China
- Hunan Province Yinfeng New Energy Co., Ltd.ChangshaHunan410014P. R. China
- College of Electrical and Information EngineeringHunan UniversityChangshaHunan410082P. R. China
| | - Yu‐Ping Wu
- School of Energy and EnvironmentSoutheast UniversityNanjing211189P. R. China
| |
Collapse
|
39
|
Chen C, Lee CS, Tang Y. Fundamental Understanding and Optimization Strategies for Dual-Ion Batteries: A Review. NANO-MICRO LETTERS 2023; 15:121. [PMID: 37127729 PMCID: PMC10151449 DOI: 10.1007/s40820-023-01086-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
There has been increasing demand for high-energy density and long-cycle life rechargeable batteries to satisfy the ever-growing requirements for next-generation energy storage systems. Among all available candidates, dual-ion batteries (DIBs) have drawn tremendous attention in the past few years from both academic and industrial battery communities because of their fascinating advantages of high working voltage, excellent safety, and environmental friendliness. However, the dynamic imbalance between the electrodes and the mismatch of traditional electrolyte systems remain elusive. To fully employ the advantages of DIBs, the overall optimization of anode materials, cathode materials, and compatible electrolyte systems is urgently needed. Here, we review the development history and the reaction mechanisms involved in DIBs. Afterward, the optimization strategies toward DIB materials and electrolytes are highlighted. In addition, their energy-related applications are also provided. Lastly, the research challenges and possible development directions of DIBs are outlined.
Collapse
Affiliation(s)
- Chong Chen
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Film (COSDAF), City University of Hong Kong, Kowloon, 999077, Hong Kong, SAR, People's Republic of China
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
40
|
Kim K, Kim J, Moon JH. The Polysulfide-Cathode Binding Energy Landscape for Lithium Sulfide Growth in Lithium-Sulfur Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206057. [PMID: 36856270 PMCID: PMC10131804 DOI: 10.1002/advs.202206057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/26/2022] [Indexed: 06/18/2023]
Abstract
A cathode substrate with strong adsorption of lithium polysulfides (LiPSs) has been preferred for lithium-sulfur (Li-S) batteries. However, the recent finding that controlled growth of lithium sulfides (Li2 S) during discharge is crucial for S utilization stimulates improvement of this preference. Here, the Li2 S growth and cell capacity in the LiPS binding energy landscape of cathode substrates are investigated. Specifically, Co-based ternary oxides are employed to obtain binding energies in the range of 4.0-7.4 eV. Of these substrates, only the MnCo2 O4 substrate with moderate LiPS affinity exhibits 3D Li2 S growth. The MnCo2 O4 cells achieve high sulfur utilization up to 84% at 0.2 C and excellent performance even under high sulfur loading/lean electrolyte conditions. In contrast, weak affinity substrates such as ZnCo2 O4 and strong affinity substrates such as NiCo2 O4 and CuCo2 O4 exhibit low discharge capacity with 2D Li2 S growth. For optimal LiPS affinity driving 3D growth, a balance between promoting LiPS adsorption and diffusion limitation in the LiPS adsorption layer is suggested.
Collapse
Affiliation(s)
- Kiwon Kim
- Department of Chemical and Biomolecular EngineeringInstitute of Emergent MaterialsSogang UniversityBaekbeom‐ro 35, Mapo‐guSeoul04107Republic of Korea
| | - Jaehyun Kim
- Department of Chemical and Biomolecular EngineeringInstitute of Emergent MaterialsSogang UniversityBaekbeom‐ro 35, Mapo‐guSeoul04107Republic of Korea
| | - Jun Hyuk Moon
- Department of Chemical and Biomolecular EngineeringInstitute of Emergent MaterialsSogang UniversityBaekbeom‐ro 35, Mapo‐guSeoul04107Republic of Korea
| |
Collapse
|
41
|
Tomer VK, Malik R, Tjong J, Sain M. State and future implementation perspectives of porous carbon-based hybridized matrices for lithium sulfur battery. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
42
|
Huang Y, Lin L, Zhang Y, Liu L, Sa B, Lin J, Wang L, Peng DL, Xie Q. Dual-Functional Lithiophilic/Sulfiphilic Binary-Metal Selenide Quantum Dots Toward High-Performance Li-S Full Batteries. NANO-MICRO LETTERS 2023; 15:67. [PMID: 36918481 PMCID: PMC10014643 DOI: 10.1007/s40820-023-01037-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The commercial viability of lithium-sulfur batteries is still challenged by the notorious lithium polysulfides (LiPSs) shuttle effect on the sulfur cathode and uncontrollable Li dendrites growth on the Li anode. Herein, a bi-service host with Co-Fe binary-metal selenide quantum dots embedded in three-dimensional inverse opal structured nitrogen-doped carbon skeleton (3DIO FCSe-QDs@NC) is elaborately designed for both sulfur cathode and Li metal anode. The highly dispersed FCSe-QDs with superb adsorptive-catalytic properties can effectively immobilize the soluble LiPSs and improve diffusion-conversion kinetics to mitigate the polysulfide-shutting behaviors. Simultaneously, the 3D-ordered porous networks integrated with abundant lithophilic sites can accomplish uniform Li deposition and homogeneous Li-ion flux for suppressing the growth of dendrites. Taking advantage of these merits, the assembled Li-S full batteries with 3DIO FCSe-QDs@NC host exhibit excellent rate performance and stable cycling ability (a low decay rate of 0.014% over 2,000 cycles at 2C). Remarkably, a promising areal capacity of 8.41 mAh cm-2 can be achieved at the sulfur loading up to 8.50 mg cm-2 with an ultra-low electrolyte/sulfur ratio of 4.1 μL mg-1. This work paves the bi-serve host design from systematic experimental and theoretical analysis, which provides a viable avenue to solve the challenges of both sulfur and Li electrodes for practical Li-S full batteries.
Collapse
Affiliation(s)
- Youzhang Huang
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Liang Lin
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yinggan Zhang
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Lie Liu
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Baisheng Sa
- College of Materials Science and Engineering, Multiscale Computational Materials Facility, Fuzhou University, Fuzhou, 350100, People's Republic of China
| | - Jie Lin
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Laisen Wang
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Dong-Liang Peng
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Qingshui Xie
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, People's Republic of China.
| |
Collapse
|
43
|
Highly selective lanthanide-doped ion sieves for lithium recovery from aqueous solutions. JOURNAL OF CHEMICAL RESEARCH 2023. [DOI: 10.1177/17475198231159051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The increased global demand for lithium is rapidly depleting the lithium ore reserves. Therefore, attention has turned to the recovery of lithium from aqueous solutions, such as lithium-containing brine. Compared with other methods of lithium recovery, adsorption is energy efficient and simple to implement, increasing demand for selective lithium adsorbents. In this study, a selective lithium-ion adsorbent, H4Ti5– xLa xO12, was synthesized via the sol–gel method, followed by heat treatment and acid washing. The effects of the temperature and degree of lanthanum doping ( x) on the crystalline phase, morphology, lithium-ion adsorption capacity, and lithium-ion selectivity of the ion sieve were investigated, and the optimal synthetic conditions were determined. We found that doping with La3+ cations ( x = 0.01) increased the lithium-ion adsorption capacity (23.96 mg g−1 at 25 °C at pH = 12; 8.2% higher than before doping), rate, and selectivity. In addition, the ion sieve could be used over multiple adsorption–desorption cycles with only a minor reduction in the lithium-ion adsorption capacity (22.88 mg g−1). Overall, these results suggest that doping with La3+ cations stabilized the H4Ti5– xLa xO12 crystal structure, alleviated particle agglomeration, expanded the lithium-ion channels, and decreased the resistance to lithium-ion migration, thus improving adsorption performance. The findings suggest that the proposed ion sieve has practical applications in the selective recovery of lithium from aqueous solutions containing a mixture of metal ions.
Collapse
|
44
|
Chen C, Zhang M, Chen Q, Duan H, Liu S. Recent Progress in Framework Materials for High-Performance Lithium-Sulfur Batteries. CHEM REC 2023:e202200278. [PMID: 36807712 DOI: 10.1002/tcr.202200278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/26/2023] [Indexed: 02/23/2023]
Abstract
Lithium-Sulfur batteries (LSBs) have been considered as a promising candidate for the next generation of energy storage systems due to their high theoretical capacity. However, there are still lots of pending scientific and technological issues to be solved. Framework materials show great potential to address the above-mentioned issues due to the highly ordered distribution of pore sizes, effective catalytic activity, and periodically arranged aperture. In addition, good tunability gives framework materials unlimited possibilities to achieve satisfying performance for LSBs. In this review, the recent advances in pristine framework materials, their derivatives, and composites have been summarized. And a short conclusion and outlook regard to future prospects for guiding the development of framework materials and LSBs.
Collapse
Affiliation(s)
- Changyun Chen
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, Jiangsu, PRC
| | - Mengfei Zhang
- High School Affiliated to Nanjing Normal University Qinhuai Campus, Nanjing, 211126, Jiangsu, PRC
| | - Quanzhan Chen
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, Jiangsu, PRC
| | - Haibao Duan
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, Jiangsu, PRC
| | - Suli Liu
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, Jiangsu, PRC
| |
Collapse
|
45
|
Xu M, Wang T, Wang H, Wang Y, Li S, Sun J, Sha J. ZIF-67 on Sulfur-Functionalized Graphene Oxide for Lithium-Sulfur Batteries. Inorg Chem 2023; 62:3134-3140. [PMID: 36753423 DOI: 10.1021/acs.inorgchem.2c03998] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
How to overcome the problem of fast capacity fading and low sulfur utilization is the key to promote the practical applications of lithium-sulfur (Li-S) batteries. Based on the fact that sulfur-functionalized graphene oxide (GO-S) can avoid the loss of sulfur/polysulfides through the strong C-S interaction, and the zeolitic imidazolate framework (ZIF-67) can capture sulfur and catalyze lithium polysulfide (Li2Sx, 4 ≤ x ≤ 8), the combination of ZIF-S (ZIF-67 after combining with sulfur) with GO-S can be expected to be an excellent electrode material for Li-S batteries due to the synergistic effect. Herein, ZIF-S@GO-S (n) nanocomposites (n = 1, 2, and 3 for the mass ratio of ZIF-67/GO of 4:1, 6:1, and 8:1, respectively) as the cathode materials in Li-S batteries were successfully fabricated, and ZIF-S@GO-S (2) showed better electrochemical performances and cycle stability with a high specific capacity of 1529.5 mA h g-1 at the initial cycle and 792 mA h g-1 after 500 cycles at 0.1 C (1 C = 1675 mA h g-1). The fact that ZIF-S@GO-S (n) can simultaneously improve the conductivity and utilization of S (C-S···S8 and C-S···SxLi2) and the conversion kinetics of Li2Sx (4 ≤ x ≤ 8) provides a new avenue for designing and fabricating promising cathodes for high-performance Li-S batteries.
Collapse
Affiliation(s)
- Mingqi Xu
- Key Laboratory of Inorganic Chemistry, Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China.,College of Materials Science and Engineering, and School of Pharmacy, Jiamusi University, Jiamusi 154007, P. R. China
| | - Tong Wang
- Key Laboratory of Inorganic Chemistry, Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China
| | - Haijun Wang
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, P. R. China
| | - Yunliang Wang
- College of Materials Science and Engineering, and School of Pharmacy, Jiamusi University, Jiamusi 154007, P. R. China
| | - Shuxian Li
- College of Materials Science and Engineering, and School of Pharmacy, Jiamusi University, Jiamusi 154007, P. R. China
| | - Jingwen Sun
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, P. R. China
| | - Jingquan Sha
- Key Laboratory of Inorganic Chemistry, Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China
| |
Collapse
|
46
|
Kim A, Dash JK, Patel R. Recent Development in Novel Lithium-Sulfur Nanofiber Separators: A Review of the Latest Fabrication and Performance Optimizations. MEMBRANES 2023; 13:183. [PMID: 36837686 PMCID: PMC9962122 DOI: 10.3390/membranes13020183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Lithium-Sulfur batteries (LSBs) are one of the most promising next-generation batteries to replace Li-ion batteries that power everything from small portable devices to large electric vehicles. LSBs boast a nearly five times higher theoretical capacity than Li-ion batteries due to sulfur's high theoretical capacity, and LSBs use abundant sulfur instead of rare metals as their cathodes. In order to make LSBs commercially viable, an LSB's separator must permit fast Li-ion diffusion while suppressing the migration of soluble lithium polysulfides (LiPSs). Polyolefin separators (commonly used in Li-ion batteries) fail to block LiPSs, have low thermal stability, poor mechanical strength, and weak electrolyte affinity. Novel nanofiber (NF) separators address the aforementioned shortcomings of polyolefin separators with intrinsically superior properties. Moreover, NF separators can easily be produced in large volumes, fine-tuned via facile electrospinning techniques, and modified with various additives. This review discusses the design principles and performance of LSBs with exemplary NF separators. The benefits of using various polymers and the effects of different polymer modifications are analyzed. We also discuss the conversion of polymer NFs into carbon NFs (CNFs) and their effects on rate capability and thermal stability. Finally, common and promising modifiers for NF separators, including carbon, metal oxide, and metal-organic framework (MOF), are examined. We highlight the underlying properties of the composite NF separators that enhance the capacity, cyclability, and resilience of LSBs.
Collapse
Affiliation(s)
- Andrew Kim
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, New York, NY 10003, USA
| | - Jatis Kumar Dash
- Department of Physics, SRM University-AP, Amaravati 522502, India
| | - Rajkumar Patel
- Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| |
Collapse
|
47
|
Zhou QY, Tan L, Lv TB, Li MC, Zhang JJ, Zhao ZQ, Jin XJ, Liu Z, Hou PP, Zeng Z, Deng S, Dai GP. Nickel Foam Coated by Ni Nanoparticle-Decorated 3D Nanocarbons as a Freestanding Host for High-Performance Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3037-3046. [PMID: 36622847 DOI: 10.1021/acsami.2c19987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanocarbons (NCs) consisting of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) were coated on the surface of nickel foam (NF) via a chemical vapor deposition method. The CNFs formed conductive networks on NF, while the CNTs grew perpendicular to the surface of the CNFs, accompanied with the formation of Ni nanoparticles (Ni NPs) at the end of CNTs. The unique Ni-NCs-coated NF with a porous structure was applied as the three-dimensional (3D) current collector of lithium-sulfur (Li-S) batteries, which provided enough space to accommodate the electrode materials inside itself. Therefore, the 3D interconnected conductive framework of the coated NF collector merged in the electrode materials shortened the path of electron transport, and the generated Ni NPs could adsorb lithium polysulfides (LiPSs) and effectively accelerated the conversion kinetics of LiPSs as well, thereby suppressing the "shuttle effect". Moreover, the rigid framework of NF would also constrain the movement of the electrode compositions, which benefited the stability of the Li-S batteries. As a matter of fact, the Li-S battery based on the Ni-NCs-coated NF collector delivered an initial discharge capacity as high as 1472 mAh g-1 at 0.1C and outstanding high rate capability at 3C (802 mAh g-1). Additionally, low decay rates of 0.067 and 0.08% at 0.2C (300 cycles) and 0.5C (500 cycles) have been obtained, respectively. Overall, our prepared Ni-NCs-coated NF collector is promising for the application in high-performance Li-S batteries.
Collapse
Affiliation(s)
- Qun-Yi Zhou
- Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Nanchang University, Nanchang330031, China
| | - Long Tan
- School of Physics and Materials Science, Nanchang University, Nanchang330031, China
| | - Tong-Bao Lv
- Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Nanchang University, Nanchang330031, China
| | - Meng-Chao Li
- Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Nanchang University, Nanchang330031, China
| | - Jing-Jian Zhang
- Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Nanchang University, Nanchang330031, China
| | - Zhi-Qing Zhao
- Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Nanchang University, Nanchang330031, China
| | - Xin-Jian Jin
- Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Nanchang University, Nanchang330031, China
| | - Zhi Liu
- Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Nanchang University, Nanchang330031, China
| | - Pei-Pei Hou
- Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Nanchang University, Nanchang330031, China
| | - Zheling Zeng
- Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Nanchang University, Nanchang330031, China
| | - Shuguang Deng
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona85287, United States
| | - Gui-Ping Dai
- Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Nanchang University, Nanchang330031, China
| |
Collapse
|
48
|
Wang D, Du G, Wang Y, Fan Y, Han D, Su Q, Ding S, Zhao W, Zhang M, Xu B. Sulfur-deficient MoS2-carbon hollow nanospheres for synergistic trapping and electrocatalytic conversion of polysulfides. J Colloid Interface Sci 2023; 630:535-543. [DOI: 10.1016/j.jcis.2022.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
|
49
|
Kumar Nema P, Mohanty K, Thangavel R. Bio-mass Derived Hierarchically Porous and High Surface Area Carbon as an Efficient Sulfur Host for Lithium-Sulfur Batteries. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
50
|
Yang X, Deng H, Liang J, Liang J, Zeng R, Zhao R, Chen Q, Chen M, Luo Y, Chou S. Facile Synthesis of a LiC 15H 7O 4/Graphene Nanocomposite as a High-Property Organic Cathode for Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56808-56816. [PMID: 36516879 DOI: 10.1021/acsami.2c17104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Organic electrode materials face two outstanding issues in the practical applications in lithium-ion batteries (LIBs), dissolution and poor electronic conductivity. Herein, we fabricate a nanocomposite of an anthraquinone carboxylate lithium salt (LiAQC) and graphene to address the two issues. LiAQC is synthesized via a green and facile one-pot reaction and then ball-milled with graphene to obtain a nanocomposite (nr-LiAQC/G). For comparison, single LiAQC is also ball-milled to form a nanorod (nr-LiAQC). Together with pristine LiAQC, the three samples are used as cathodes for LIBs. Results show that good cycling performance can be obtained by introducing the -CO2Li hydrophilic group on anthraquinone. Furthermore, the nr-LiAQC/G demonstrates not only a high initial discharge capacity of 187 mAh g-1 at 0.1 C but also good cycling stability (reversible capacity: ∼165 mAh g-1 at 0.1 C after 200 cycles) and good rate capability (the average discharge capacity of 149 mAh g-1 at 2 C). The superior electrochemical properties of the nr-LiAQC/G profit from graphene with high electronic conductivity, the nanorod structure of LiAQC shortening the transport distance for lithium ions and electrons, and the introduction of the -CO2Li hydrophilic group decreasing the dissolution of LiAQC in the electrolyte. Meanwhile, density functional theory calculations support the roles of graphene and -CO2Li groups. The fabrication is general and facile, ready to be extended to other organic electrode materials.
Collapse
Affiliation(s)
- Xiaoyun Yang
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Laboratory of ETESPG (GHEI), South China Normal University, Guangzhou, Guangdong 510006, China
| | - Huan Deng
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Laboratory of ETESPG (GHEI), South China Normal University, Guangzhou, Guangdong 510006, China
| | - Junfeng Liang
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Laboratory of ETESPG (GHEI), South China Normal University, Guangzhou, Guangdong 510006, China
| | - Jiaying Liang
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Laboratory of ETESPG (GHEI), South China Normal University, Guangzhou, Guangdong 510006, China
| | - Ronghua Zeng
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Laboratory of ETESPG (GHEI), South China Normal University, Guangzhou, Guangdong 510006, China
| | - Ruirui Zhao
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Laboratory of ETESPG (GHEI), South China Normal University, Guangzhou, Guangdong 510006, China
| | - Qing Chen
- Department of Mechanical and Aerospace Engineering and Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Mingzhe Chen
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Yifan Luo
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Laboratory of ETESPG (GHEI), South China Normal University, Guangzhou, Guangdong 510006, China
| | - Shulei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|