1
|
Vaziri Alamdarloo F, Alipour M. Heterofission-induced room temperature phosphorescence from range-separated hybrids: in search of the qualified blending components. Phys Chem Chem Phys 2025; 27:9645-9658. [PMID: 40259888 DOI: 10.1039/d4cp04643a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Heterofission, as the conversion mechanism of a singlet excitation on one chromophore to two triplet excitations on two different chromophores, has been known to play imperative roles to boost the efficiency of photovoltaics. Most recently, the heterofission mechanism has been proposed to explain the room temperature phosphorescence (RTP) of organic materials in the form of host/guest (H/G) systems. Herein, the heterofission-induced RTP in the H/G systems is thoroughly investigated with the help of optimally tuned range-separated hybrid functionals (OT-RSHs). Several experimentally known ultralong RTP H/G systems have been considered as working models. For reliable prediction of the energy level matching criteria for the heterofission-induced RTP in these systems, we have proposed and validated variants of the OT-RSHs, their counterparts based on the linear-response and state-specific formalisms within the polarizable continuum model with both the equilibrium and nonequilibrium solvation regimes, and their screened versions accounting for the screening effects through the scalar dielectric constant. In this line, we scrutinize the role of the related ingredients including the underlying density functional approximations, short-range (α) and long-range Hartree-Fock (HF) exchange, and range-separation parameter. Perusing the results reveals that a particular compromise among the involved parameters is needed for well describing the heterofission-induced RTP. Accordingly, the full time-dependent density functional theory computations in the gas phase using the Perdew-Burke-Ernzerhof (PBE)-based OT-RSH (α = 0.0) with the correct asymptotic behavior in the long-range limit as the best performer are preferred. The proposed method also outperforms the standard RSHs with the default parameters, screened-exchange models, and conventional hybrids with both fixed and interelectronic distance-dependent HF exchange. Lastly, the applicability of our developed approximation is put into broader perspective, where it has been used for computational design of several H/G systems as promising candidates prone to be utilized in heterofission-induced RTP materials. We envisage that the recommended OT-RSH in this study can function as an affordable method for both computational modeling of heterofission-induced RTP and verifying the related experimental observations.
Collapse
Affiliation(s)
| | - Mojtaba Alipour
- Department of Chemistry, College of Science, Shiraz University, Shiraz 71946-84795, Iran.
| |
Collapse
|
2
|
Zeng W, Zhong C, Bronstein H, Plasser F. Understanding and Tuning Singlet-Triplet (S 1-T 1) Energy Gaps in Planar Organic Chromophores. Angew Chem Int Ed Engl 2025; 64:e202502485. [PMID: 40062484 PMCID: PMC12087868 DOI: 10.1002/anie.202502485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 04/08/2025]
Abstract
Molecules with large gaps between their first singlet and triplet excited states (ΔEST) are key components of various modern technologies, most prominently singlet fission photovoltaics and triplet-triplet annihilation upconversion (TTA-UC). The design of these molecules is hampered by the fact that only limited rules for maximizing ΔEST exist, other than increasing the overlap between the frontier molecular orbitals (FMO). Here we suggest a new strategy for tuning and maximizing ΔEST based on a detailed analysis of the underlying quantum mechanical energy terms. We present a model based on the transition density and derive three straightforward design rules: ΔEST values can be maximized by (i) minimizing the overall number of π-electrons, (ii) reducing delocalization, and (iii) optimizing specific geometric interactions. The validity of these rules is first exemplified for a set of 18 hydrocarbon backbones before proceeding to a varied set of dye molecules, highlighting their transferability to realistic settings. We believe that the developed rules will provide an enormous boost to the field, enabling rational design instead of trial-and-error screening. More generally, this work demonstrates the power of going beyond the FMO approximation in designing advanced molecular materials.
Collapse
Affiliation(s)
- Weixuan Zeng
- Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Cheng Zhong
- Hubei Key Lab on Organic and Polymeric Opto‐Electronic Materials, Sauvage Center for Molecular SciencesDepartment of ChemistryWuhan UniversityWuhan430072China
| | - Hugo Bronstein
- Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
- Cavendish LaboratoryUniversity of CambridgeCambridgeCB3 0HEUK
| | - Felix Plasser
- Department of ChemistryLoughborough UniversityLoughboroughLE11 3TUUK
| |
Collapse
|
3
|
Wu Y, Chang B, Li H, Wang L, Liu Z, Yin L. Low-Dimensional Hetero-Interlayer Enabling Sub-Bandgap Photovoltaic Conversion for Perovskite Solar Cells. Angew Chem Int Ed Engl 2025; 64:e202416284. [PMID: 39887847 DOI: 10.1002/anie.202416284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/17/2025] [Accepted: 01/29/2025] [Indexed: 02/01/2025]
Abstract
Actualizing sub-band gap photovoltaic conversion is effective in remitting energy loss and pushing theoretical efficiency limits for perovskite solar cells (PSCs). Herein, a zero-dimensional organic metal halide based on hydroxyquinoline (HQ) is developed to sensitize PSCs for near-infrared region gain to implement sub-band gap photovoltaic conversion for enhancing power-conversion-efficiency (PCE) of PSCs. [ZnI4]2- skeletons containing heavy atoms intensify the direct singlet-to-triplet state transition of organic chromophores HQ. Meanwhile, the triplet energy of HQ is close to resonance with perovskite band gap, favoring the energy transfer to perovskite and exciting the additional electron-hole pairs, which was observed by transient absorption spectroscopy, confirming the sensitization of perovskite to increase sub-band gap photocurrent. HQ2ZnI4 modifies electronic and crystal structure, optimizes energy-level arrangement, and acts as a protective layer, realizing considerable PCEs in small (6.25 mm2)-/larger-area (1 cm2) devices and excellent operational stability. This low-cost strategy brings vitality to the light management of PSCs and expands low-dimensional materials.
Collapse
Affiliation(s)
- Yutong Wu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Bohong Chang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Lian Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Zhen Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Longwei Yin
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
- Shandong Research Institute of Industrial Technology, Jinan, 250100, P. R. China
| |
Collapse
|
4
|
Li T, Xue L, Ma L, Wang X, Fan X, Cui B, Tang L, Yao W, Zhang T, Shen L, Liu H. Theoretical design of phosphorus-doped perylene derivatives as efficient singlet fission chromophores. Phys Chem Chem Phys 2024; 26:25848-25860. [PMID: 39356185 DOI: 10.1039/d4cp02048k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Singlet fission (SF) is considered as a promising strategy to overcome the Shockley-Queisser limit of single-junction solar cells. However, only a handful of chromophores were observed to undergo SF to date. To broaden the number of SF chromophores, we designed a series of phosphorus-doped perylenes based on the diradical character strategy and examined their SF feasibility using theoretical calculations. By analysis of frontier orbitals, diradical character and aromaticity, SF-capable candidates were prescreened. These analyses reveal that the diradical character of perylene is effectively enhanced by P-doping at bay- and peri-positions of perylene, making SF more thermodynamically feasible. However, the diradical character remains nearly unchanged when P atoms are doped at ortho-positions because the spin center cannot be stabilized, leading to a more endothermic SF. This study shows how SF-related energies and diradical character of SF chromophores are altered by P doping, and extends the SF-capable molecular library.
Collapse
Affiliation(s)
- Tianyu Li
- College of Chemistry and Chemical Engineering, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Lin Xue
- Jinan Ecology and Environment Monitoring Center of Shandong Province, Jinan 250101, China
| | - Lishuang Ma
- College of Chemistry and Chemical Engineering, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Xianyuan Wang
- College of Chemistry and Chemical Engineering, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Xiaonan Fan
- College of Chemistry and Chemical Engineering, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Boce Cui
- College of Chemistry and Chemical Engineering, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Linglong Tang
- College of Chemistry and Chemical Engineering, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Wen Yao
- College of Chemistry and Chemical Engineering, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Teng Zhang
- College of Chemistry and Chemical Engineering, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Li Shen
- College of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang, 261061, China.
| | - Heyuan Liu
- College of Chemistry and Chemical Engineering, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| |
Collapse
|
5
|
Fukumitsu M, Fukui T, Shoji Y, Kajitani T, Khan R, Tkachenko NV, Sakai H, Hasobe T, Fukushima T. Supramolecular scaffold-directed two-dimensional assembly of pentacene into a configuration to facilitate singlet fission. SCIENCE ADVANCES 2024; 10:eadn7763. [PMID: 39270030 PMCID: PMC11397492 DOI: 10.1126/sciadv.adn7763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 08/07/2024] [Indexed: 09/15/2024]
Abstract
Molecular assemblies featuring two-dimensionality have attracted increasing attention, whereas such structures are difficult to construct simply relying on spontaneous molecular assembly. Here, we present two-dimensional assemblies of acene chromophores achieved using a tripodal triptycene supramolecular scaffold, which have been shown to exhibit a strong ability to assemble molecular and polymer motifs two-dimensionally. We designed pentacene and anthracene derivatives sandwiched by two triptycene units. These compounds assemble into expected two-dimensional structures, with the pentacene chromophores having both sufficient overlap to cause singlet fission and space for conformational change to facilitate the dissociation of a triplet pair into free triplets, which is not the case for the anthracene analog. Detailed spectroscopic analysis revealed that the pentacene chromophore in the assembly undergoes singlet fission with a quantum yield of 88 ± 5%, giving rise to triplet pairs, from which free triplets are efficiently generated (ΦT = 130 ± 8.8%). This demonstrates the utility of the triptycene-based scaffold to design functional π-electronic molecular assemblies.
Collapse
Affiliation(s)
- Masato Fukumitsu
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Tomoya Fukui
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Takashi Kajitani
- Open Facility Development Office, Open Facility Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Ramsha Khan
- Chemistry and Advanced Material Group, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, FI33720 Tampere, Finland
| | - Nikolai V Tkachenko
- Chemistry and Advanced Material Group, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, FI33720 Tampere, Finland
| | - Hayato Sakai
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Taku Hasobe
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
6
|
Wang H, Yin B, Bai J, Wei X, Huang W, Chang Q, Jia H, Chen R, Zhai Y, Wu Y, Zhang C. Giant magneto-photoluminescence at ultralow field in organic microcrystal arrays for on-chip optical magnetometer. Nat Commun 2024; 15:3995. [PMID: 38734699 PMCID: PMC11088683 DOI: 10.1038/s41467-024-48464-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Optical detection of magnetic field is appealing for integrated photonics; however, the light-matter interaction is usually weak at low field. Here we observe that the photoluminescence (PL) decreases by > 40% at 10 mT in rubrene microcrystals (RMCs) prepared by a capillary-bridge assembly method. The giant magneto-PL (MPL) relies on the singlet-triplet conversion involving triplet-triplet pairs, through the processes of singlet fission (SF) and triplet fusion (TF) during radiative decay. Importantly, the size of RMCs is critical for maximizing MPL as it influences on the photophysical processes of spin state conversion. The SF/TF process is quantified by measuring the prompt/delayed PL with time-resolved spectroscopies, which shows that the geminate SF/TF associated with triplet-triplet pairs are responsible for the giant MPL. Furthermore, the RMC-based magnetometer is constructed on an optical chip, which takes advantages of remarkable low-field sensitivity over a broad range of frequencies, representing a prototype of emerging opto-spintronic molecular devices.
Collapse
Affiliation(s)
- Hong Wang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baipeng Yin
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Junli Bai
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Xiao Wei
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- Ji Hua Laboratory Foshan, Guangdong, China
| | - Wenjin Huang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, China
| | - Qingda Chang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Jia
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rui Chen
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaxin Zhai
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, China
| | - Yuchen Wu
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Chuang Zhang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Vong D, Maleki F, Novak EC, Daemen LL, Moulé AJ. Measuring Intermolecular Excited State Geometry for Favorable Singlet Fission in Tetracene. J Phys Chem Lett 2024; 15:1188-1194. [PMID: 38270396 DOI: 10.1021/acs.jpclett.3c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Singlet fission (SF) is the process of converting an excited singlet to a pair of excited triplets. Harvesting two charges from a single photon has the potential to increase photovoltaic device efficiencies. Acenes, such as tetracene and pentacene, are model molecules for studying SF. Despite SF being an endoergic process for tetracene and exoergic for pentacene, both acenes exhibit near unity SF quantum efficiencies, raising questions about how tetracene can overcome the energy barrier. Here, we use recently developed instrumentation to measure inelastic neutron scattering (INS) while optically exciting the model molecules using two different excitation energies. The spectroscopic results reveal intermolecular structural relaxation due to the presence of a triplet excited state. The structural dynamics of the combined excited state molecule and surrounding tetracene molecules are further studied using time-dependent density functional theory (TD-DFT), which shows that the singlet and triplet levels shift due to the excited state geometry, reducing the uphill energy barrier for SF to within kT.
Collapse
Affiliation(s)
- Daniel Vong
- Department of Materials Science and Engineering, University of California Davis, Davis, California 95616, United States
| | - Farahnaz Maleki
- Department of Chemical Engineering, University of California Davis, Davis, California 95616, United States
| | - Eric C Novak
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Luke L Daemen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Adam J Moulé
- Department of Chemical Engineering, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
8
|
Chakkamalayath J, Martin LE, Kamat PV. Extending Infrared Emission via Energy Transfer in a CsPbI 3-Cyanine Dye Hybrid. J Phys Chem Lett 2024; 15:401-407. [PMID: 38176062 DOI: 10.1021/acs.jpclett.3c03144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Directing energy flow in light harvesting assemblies of nanocrystal-chromophore hybrid systems requires a better understanding of factors that dictate excited-state processes. In this study, we explore excited-state interactions within the CsPbI3-cyanine dye (IR125) hybrid assembly through a comprehensive set of steady-state and time-resolved absorption and photoluminescence (PL) experiments. Our photoluminescence investigations reveal the quenching of CsPbI3 emission alongside the simultaneous enhancement of IR125 fluorescence, providing evidence for a singlet energy transfer. The evaluation of both photoluminescence (PL) quenching and PL decay measurements yield ∼94% energy transfer efficiency for the CsPbI3-IR125 hybrid assembly. Transient absorption spectroscopy further unveils that this singlet energy transfer process operates on an ultrafast time scale, occurring within 400 ps with a rate constant of energy transfer of 1.4 × 1010 s-1. Our findings highlight the potential of the CsPbI3-IR125 hybrid assembly to extend the emission of halide perovskites into the infrared region, paving the way for light energy harvesting and display applications.
Collapse
Affiliation(s)
- Jishnudas Chakkamalayath
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Lauren E Martin
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Prashant V Kamat
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
9
|
Blaskovits JT, Laplaza R, Vela S, Corminboeuf C. Data-Driven Discovery of Organic Electronic Materials Enabled by Hybrid Top-Down/Bottom-Up Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305602. [PMID: 37815223 DOI: 10.1002/adma.202305602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/05/2023] [Indexed: 10/11/2023]
Abstract
The high-throughput exploration and screening of molecules for organic electronics involves either a 'top-down' curation and mining of existing repositories, or a 'bottom-up' assembly of user-defined fragments based on known synthetic templates. Both are time-consuming approaches requiring significant resources to compute electronic properties accurately. Here, 'top-down' is combined with 'bottom-up' through automatic assembly and statistical models, thus providing a platform for the fragment-based discovery of organic electronic materials. This study generates a top-down set of 117K synthesized molecules containing structures, electronic and topological properties and chemical composition, and uses them as building blocks for bottom-up design. A tool is developed to automate the coupling of these building blocks at their C(sp2/sp)-H bonds, providing a fundamental link between the two dataset construction philosophies. Statistical models are trained on this dataset and a subset of resulting top-down/bottom-up compounds, enabling on-the-fly prediction of ground and excited state properties with high accuracy across organic compound space. With access to ab initio-quality optical properties, this bottom-up pipeline may be applied to any materials design campaign using existing compounds as building blocks. To illustrate this, over a million molecules are screened for singlet fission. tThe leading candidates provide insight into the features promoting this multiexciton-generating process.
Collapse
Affiliation(s)
- J Terence Blaskovits
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, École Polytechnique Fedéralé de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Ruben Laplaza
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, École Polytechnique Fedéralé de Lausanne (EPFL), Lausanne, 1015, Switzerland
- National Centre for Competence in Research "Sustainable chemical processes through catalysis (NCCR Catalysis)" École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Sergi Vela
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, École Polytechnique Fedéralé de Lausanne (EPFL), Lausanne, 1015, Switzerland
- National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL),Ecole Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Clémence Corminboeuf
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, École Polytechnique Fedéralé de Lausanne (EPFL), Lausanne, 1015, Switzerland
- National Centre for Competence in Research "Sustainable chemical processes through catalysis (NCCR Catalysis)" École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
- National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL),Ecole Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| |
Collapse
|
10
|
Sutherland G, Pidgeon JP, Lee HKH, Proctor MS, Hitchcock A, Wang S, Chekulaev D, Tsoi WC, Johnson MP, Hunter CN, Clark J. Twisted Carotenoids Do Not Support Efficient Intramolecular Singlet Fission in the Orange Carotenoid Protein. J Phys Chem Lett 2023; 14:6135-6142. [PMID: 37364284 PMCID: PMC10331831 DOI: 10.1021/acs.jpclett.3c01139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Singlet exciton fission is the spin-allowed generation of two triplet electronic excited states from a singlet state. Intramolecular singlet fission has been suggested to occur on individual carotenoid molecules within protein complexes provided that the conjugated backbone is twisted out of plane. However, this hypothesis has been forwarded only in protein complexes containing multiple carotenoids and bacteriochlorophylls in close contact. To test the hypothesis on twisted carotenoids in a "minimal" one-carotenoid system, we study the orange carotenoid protein (OCP). OCP exists in two forms: in its orange form (OCPo), the single bound carotenoid is twisted, whereas in its red form (OCPr), the carotenoid is planar. To enable room-temperature spectroscopy on canthaxanthin-binding OCPo and OCPr without laser-induced photoconversion, we trap them in a trehalose glass. Using transient absorption spectroscopy, we show that there is no evidence of long-lived triplet generation through intramolecular singlet fission despite the canthaxanthin twist in OCPo.
Collapse
Affiliation(s)
- George
A. Sutherland
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - James P. Pidgeon
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, U.K.
| | - Harrison Ka Hin Lee
- SPECIFIC,
Faculty of Science and Engineering, Swansea
University, Swansea SA1 8EN, U.K.
| | - Matthew S. Proctor
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - Andrew Hitchcock
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - Shuangqing Wang
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, U.K.
| | - Dimitri Chekulaev
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K.
| | - Wing Chung Tsoi
- SPECIFIC,
Faculty of Science and Engineering, Swansea
University, Swansea SA1 8EN, U.K.
| | - Matthew P. Johnson
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - C. Neil Hunter
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - Jenny Clark
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, U.K.
| |
Collapse
|
11
|
Matsuoka R, Kimura S, Miura T, Ikoma T, Kusamoto T. Single-Molecule Magnetoluminescence from a Spatially Confined Persistent Diradical Emitter. J Am Chem Soc 2023. [PMID: 37311307 DOI: 10.1021/jacs.3c01076] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Luminescent radicals are an emerging class of materials that exhibit unique photofunctions not found in closed-shell molecules due to their open-shell electronic structure. Particularly promising are photofunctions in which radical's spin and luminescence are correlated; for example, when a magnetic field can affect luminescence (i.e., magnetoluminescence, ML). These photofunctions could be useful in the new science of spin photonics. However, previous observations of ML in radicals have been limited to systems in which radicals are randomly doped in host crystals or polymerized through metal complexation. This study shows that a covalently linked luminescent radical dimer (diradical) can exhibit ML as a single-molecular property. This facilitates detailed elucidation of the requirements for and mechanisms of ML in radicals and can aid the rational design of ML-active radicals based on synthetic chemistry.
Collapse
Affiliation(s)
- Ryota Matsuoka
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Shojiro Kimura
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Tomoaki Miura
- Department of Chemistry, Faculty of Science, Niigata University, Niigata, 950-2181, Japan
| | - Tadaaki Ikoma
- Department of Chemistry, Faculty of Science, Niigata University, Niigata, 950-2181, Japan
| | - Tetsuro Kusamoto
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan
- JST-PRESTO, 4-1-8, Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
12
|
Wang JX, Yin J, Gutiérrez-Arzaluz L, Thomas S, Shao W, Alshareef HN, Eddaoudi M, Bakr OM, Mohammed OF. Singlet Fission-Based High-Resolution X-Ray Imaging Scintillation Screens. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2300406. [PMID: 37083237 DOI: 10.1002/advs.202300406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/02/2023] [Indexed: 05/03/2023]
Abstract
X-ray imaging technology is critical to numerous different walks of daily life, ranging from medical radiography and security screening all the way to high-energy physics. Although several organic chromophores are fabricated and tested as X-ray imaging scintillators, they generally show poor scintillation performance due to their weak X-ray absorption cross-section and inefficient exciton utilization efficiency. Here, a singlet fission-based high-performance organic X-ray imaging scintillator with near unity exciton utilization efficiency is presented. Interestingly, it is found that the X-ray sensitivity and imaging resolution of the singlet fission-based scintillator are dramatically improved by an efficient energy transfer from a thermally activated delayed fluorescence (TADF) sensitizer, in which both singlet and triplet excitons can be efficiently harnessed. The fabricated singlet fission-based scintillator exhibits a high X-ray imaging resolution of 27.5 line pairs per millimeter (lp mm-1 ), which exceeds that of most commercial scintillators, demonstrating its high potential use in medical radiography and security inspection.
Collapse
Affiliation(s)
- Jian-Xin Wang
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jun Yin
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Luis Gutiérrez-Arzaluz
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Simil Thomas
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Wenyi Shao
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Husam N Alshareef
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mohamed Eddaoudi
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Osman M Bakr
- KAUST Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
13
|
Li H, Liu X, Zhou D, Dong B, Xu L, Bai X, Song H. Realization of 1.54-µm Light-Emitting Diodes Based on Er 3+ /Yb 3+ Co-Doped CsPbCl 3 Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300118. [PMID: 36989311 DOI: 10.1002/adma.202300118] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Erbium ions (Er3+ , 1.54 µm) electric pumped light sources with excellent optical properties and a simple fabrication process are urgently desired to satisfy the development of silicon-based integration photonics. The previous Er-based electroluminescence devices are mainly based on Er-complexes or Er-doped oxide compounds, which usually suffer from low external quantum efficiency(EQE)or high applied voltage etc. In this work, a novel type of Er3+ /Yb3+ co-doped lead-halide perovskite films (Er3+ /Yb3+ :CsPbCl3 ) with the maximum photoluminescence quantum yield of 30.12% are prepared by a simple two-step solution-coating method and the corresponding light emitting diodes (Er-PeLEDs) are fabricated, which demonstrate an almost pure 1.54-µm emission and a peak EQE up to 0.366% at a low applied voltage of 1.4 V. Strong negative thermal quenching effect may help Er-PeLEDs suppress Joule heating quenching. These excellent LED properties benefit mainly from the outstanding regulatory performance of acetate to perovskite films, the excellent semiconductor behavior and strong ionic property of the perovskite, and the involvement of Yb3+ ions, which can directly and efficiently transfer the exciton energy to Er3+ through a quantum cutting process. Overall, the realization of 1.54-µm Er-PeLEDs offers new opportunities for silicon-based integrated light sources.
Collapse
Affiliation(s)
- Hongfei Li
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xiaoqi Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, National Demonstration Center for Experimental Physics Education, Jilin Normal University, Changchun 130103 and, Siping, 136000, P. R. China
| | - Donglei Zhou
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Lin Xu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xue Bai
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Hongwei Song
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
14
|
Tonami T, Miyamoto H, Nakano M, Kishi R, Kitagawa Y. Theoretical Study on Thermal Structural Fluctuation Effects of Intermolecular Configurations on Singlet Fission in Pentacene Crystal Models. J Phys Chem A 2023; 127:1883-1893. [PMID: 36799732 DOI: 10.1021/acs.jpca.2c08864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Singlet fission (SF) occurs as a result of complex excited state relaxation dynamics in molecular aggregates, where a singlet exciton (FE) state is converted into a double-triplet exciton (TT) state through the interactions with several other degrees of freedom, such as nuclear motions. In this study, we combined quantum dynamics simulation based on the quantum master equation approach with all-atom-based classical molecular mechanics/molecular dynamics to examine the thermal structural fluctuation (i.e., static disorder) effects of intermolecular configuration on SF in pentacene crystal models. In particular, we considered two types of static-disordered models, in which excited states are assumed to interact with nuclear motions of intermolecular modes in the classical mechanical/statistical manner. We found that the introduction of static disorder effects leads to a faster decay of coherence between the FE and charge transfer (CT) states in the early stage of SF, contributing to the accelerations of several FE → TT relaxation pathways. Such acceleration in these models is shown to be attributed to fluctuations in the energies and electronic coupling of the CT states based on relative relaxation factor analysis. The present study is expected to contribute to further development of bottom-up materials design for efficient SF in condensed phases where the exitonic system interacts with nuclear motions in various coupling strengths.
Collapse
Affiliation(s)
- Takayoshi Tonami
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hajime Miyamoto
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Masayoshi Nakano
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ryohei Kishi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.,Research Center for Solar Energy Chemistry (RCSEC), Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.,Center for Quantum Information and Quantum Biology (QIQB), Osaka University, Toyonaka, Osaka 560-8531, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasutaka Kitagawa
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.,Research Center for Solar Energy Chemistry (RCSEC), Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.,Center for Quantum Information and Quantum Biology (QIQB), Osaka University, Toyonaka, Osaka 560-8531, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan.,Spintronics Research Network Division, Institute for Open and Transdisciplinary Research Initiatives (SRN-OTRI), Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
15
|
Nakamura S, Sakai H, Fuki M, Ooie R, Ishiwari F, Saeki A, Tkachenko NV, Kobori Y, Hasobe T. Thermodynamic Control of Intramolecular Singlet Fission and Exciton Transport in Linear Tetracene Oligomers. Angew Chem Int Ed Engl 2023; 62:e202217704. [PMID: 36578175 DOI: 10.1002/anie.202217704] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
We newly synthesized a series of homo- and hetero-tetracene (Tc) oligomers to propose a molecular design strategy for the efficient exciton transport in linear oligomers by promoting correlated triplet pair (TT) dissociation and controlling sequential exciton trapping process of individual doubled triplet excitons (T+T) by intramolecular singlet fission. First, entropic gain effects on the number of Tc units are examined by comparing Tc-homo-oligomers [(Tc)n : n=2, 4, 6]. Then, a comparison of (Tc)n and Tc-hetero-oligomer [TcF3 -(Tc)4 -TcF3 ] reveals the vibronic coupling effect for entropic gain. Observed entropic effects on the T+T formation indicated that the exciton migration is rationalized by number of possible TT states increased both by increasing the number of Tc units and by the vibronic levels at the terminal TcF3 units. Finally, we successfully observed high-yield exciton trapping process (trapped triplet yield: ΦTrT =176 %).
Collapse
Affiliation(s)
- Shunta Nakamura
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Hayato Sakai
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Masaaki Fuki
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Rikuto Ooie
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Fumitaka Ishiwari
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Nikolai V Tkachenko
- Chemistry and Advanced Materials Group, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720, Tampere, Finland
| | - Yasuhiro Kobori
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Taku Hasobe
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
16
|
Shi Y, Bao XY. QSPR Modeling for the Prediction of the Triplet Yield of Singlet Fission Materials. JOURNAL OF SAUDI CHEMICAL SOCIETY 2023. [DOI: 10.1016/j.jscs.2023.101614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
Sun Q, Wu Y, Cui Y, Gao C, Ou Q, Hu D, Wang L, Wang Y, Dong H, Zhao J, Zhang C, Shuai Z, Fu H, Peng Q. Molecular design of DBA-type five-membered heterocyclic rings to achieve 200% exciton utilization for electroluminescence. MATERIALS HORIZONS 2022; 9:2518-2523. [PMID: 36125332 DOI: 10.1039/d2mh00919f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Achieving high exciton utilization is a long-cherished goal in the development of organic light-emitting diode materials. Herein, a three-step mechanism is proposed to achieve 200% exciton utilization: (i) hot triplet exciton (T2) conversion to singlet S1; (ii) singlet fission from S1 into two T1; (iii) and then a Dexter energy transfer to phosphors. The requirement is that S1 should lie slightly lower than or close to T2 and twice as high as T1 in energy. For this, a scenario is put forward to design a series of donor-bridge-acceptor (DBA) type molecules with 2E(T1) ≤ E(S1) < E(T2), in which the Baird-type aromatic pyrazoline ring is used as a bridge owing to its stabilized T1 (1.30-1.74 eV) and different kinds of donors and acceptors are linked to the bridge for regulating S1 (2.35-3.87 eV) and T2 (2.44-3.96 eV). The ultrafast spectroscopy and sensitization measurements for one compound (TPA-DBPrz) fully confirm the theoretical predictions.
Collapse
Affiliation(s)
- Qi Sun
- MOE Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
| | - Yishi Wu
- Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China
| | - Yuanyuan Cui
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Can Gao
- Institute of chemistry, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qi Ou
- MOE Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
| | - Deping Hu
- MOE Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
| | - Lu Wang
- MOE Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
| | - Yue Wang
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Huanli Dong
- Institute of chemistry, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianzhang Zhao
- School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Chunfeng Zhang
- School of Physics, Nanjing University, Nanjing, 210093, China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
| | - Hongbing Fu
- Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China
| | - Qian Peng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
- Institute of chemistry, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
18
|
Radiunas E, Dapkevičius M, Raišys S, Kazlauskas K. Triplet and singlet exciton diffusion in disordered rubrene films: implications for photon upconversion. Phys Chem Chem Phys 2022; 24:24345-24352. [PMID: 36177992 DOI: 10.1039/d2cp02798d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triplet and singlet exciton diffusion plays a decisive role in triplet-triplet annihilation (TTA) and singlet fission (SF) processes of rubrene (Rub) films at low excitation power, and therefore has an important implication for TTA-mediated photon upconversion (UC). Although triplet diffusion in crystalline Rub was studied before, there is no quantitative data on diffusion in disordered Rub films most widely employed for NIR-to-Vis UC. The lack of these data hinders the progress of TTA-UC applications relying on a Rub annihilator (emitter). Herein, a time-resolved PL bulk-quenching technique was employed to estimate the exciton diffusion coefficient (D) and diffusion length (LD) in the neat Rub films as well as Rub-doped PS films at 80 wt% doping concentration, previously reported to be optimal in terms of UC efficiency. The impact of commonly utilized singlet energy collector (sink) DBP on exciton diffusion was also assessed, highlighting its importance exclusively on the dynamics of singlets in Rub films. Our study revealed that triplet diffusion lengths (LTD) of 25-30 nm estimated for the disordered Rub films are sufficient for encountering triplets from the neighboring sensitizer molecules at a low sensitizer PdPc concentration (0.1 wt%), thereby enabling the desired TTA domination regime to be reached. Essentially, the performance of Rub-based UC systems was found to be limited by the modest maximal LTD (up to ∼55 nm) in disordered films resulting from a short maximum triplet lifetime τT (∼100 μs) inherent to this emitter. Thus, to enhance the NIR-to-Vis TTA-UC performance, new emitters with a longer triplet lifetime in the solid state are required.
Collapse
Affiliation(s)
- Edvinas Radiunas
- Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania.
| | - Manvydas Dapkevičius
- Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania.
| | - Steponas Raišys
- Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania.
| | - Karolis Kazlauskas
- Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
19
|
Baronas P, Kreiza G, Naimovičius L, Radiunas E, Kazlauskas K, Orentas E, Juršėnas S. Sweet Spot of Intermolecular Coupling in Crystalline Rubrene: Intermolecular Separation to Minimize Singlet Fission and Retain Triplet-Triplet Annihilation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:15327-15335. [PMID: 36147521 PMCID: PMC9484276 DOI: 10.1021/acs.jpcc.2c04572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Singlet fission is detrimental to NIR-to-vis photon upconversion in the solid rubrene (Rub) films, as it diminishes photoluminescence efficiency. Previous studies have shown that thermally activated triplet energy transport drives singlet fission with nearly 100% efficiency in closely packed Rub crystals. Here, we examine triplet separation and recombination as a function of intermolecular distance in the crystalline films of Rub and the t-butyl substituted rubrene (tBRub) derivative. The increased intermolecular distance and altered molecular packing in tBRub films cause suppressed singlet dissociation into free triplets due to slower triplet energy transport. It was found that the formation of correlated triplet pairs 1(TT) and partial triplet separation 1(T···T) occurs in both Rub and tBRub films despite differences in intermolecular coupling. Under weak intermolecular coupling as in tBRub, geminate triplet annihilation of 1(T···T) outcompetes dissociation into free triplets, resulting in emission from the 1(TT) state. Essentially, increasing intermolecular distance up to a certain point (a sweet spot) is a good strategy for suppressing singlet fission and retaining triplet-triplet annihilation properties.
Collapse
Affiliation(s)
- P. Baronas
- Institute
of Photonics and Nanotechnology, Vilnius
University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - G. Kreiza
- Institute
of Photonics and Nanotechnology, Vilnius
University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - L. Naimovičius
- Institute
of Photonics and Nanotechnology, Vilnius
University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - E. Radiunas
- Institute
of Photonics and Nanotechnology, Vilnius
University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - K. Kazlauskas
- Institute
of Photonics and Nanotechnology, Vilnius
University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - E. Orentas
- Institute
of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - S. Juršėnas
- Institute
of Photonics and Nanotechnology, Vilnius
University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
20
|
Li S, Zhou L, Zhang H. Investigation progresses of rare earth complexes as emitters or sensitizers in organic light-emitting diodes. LIGHT, SCIENCE & APPLICATIONS 2022; 11:177. [PMID: 35688822 PMCID: PMC9187687 DOI: 10.1038/s41377-022-00866-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/07/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Due to unique photo-physical characteristics, rare earth (RE) complexes play important roles in many fields, for example, telecommunications, life science, and organic light-emitting diodes (OLEDs). Especially, thanks to narrow emission bandwidth and 100% theoretical internal quantum efficiency (IQE), the study of RE complexes in the electroluminescence field has been a hot research topic in recent 30 years. As a leading technology in solid-state light source fields, OLEDs have attracted great interest from academic researchers and commercial endeavors. In the last decades, OLED-based products have trickled into the commercial market and developed quickly into portable display devices. Here, we briefly introduce the luminescent characteristics and electroluminescent (EL) study of RE complexes in material synthesis and device design. Moreover, we emphatically reveal the innovative application of RE complexes as sensitizers in OLEDs. Through experimental validation, the application of RE complexes as sensitizers can realize the complementary advantages of RE complexes and transition metal complexes, leading to significantly improved performances of OLEDs. The application of RE complexes as sensitizers provides a new strategy for designing and developing novel high performances OLEDs.
Collapse
Affiliation(s)
- Shuaibing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- University of Science and Technology of China, 230027, Hefei, China
| | - Liang Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.
- University of Science and Technology of China, 230027, Hefei, China.
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- University of Science and Technology of China, 230027, Hefei, China
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
21
|
|
22
|
Zhang J, Jia Q, Yue Z, Huo J, Chai J, Yu L, Nie R, Shao H, Zhao Y, Li P, Huang W. An Electroluminodynamic Flexible Device for Highly Efficient Eradication of Drug-Resistant Bacteria. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200334. [PMID: 35194842 DOI: 10.1002/adma.202200334] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) has attracted wide attention in antibacterial applications due to its advantages of spatial-temporal selectivity, noninvasiveness, and low incidence to develop drug resistance. To make it more convenient, universal, and manipulatable for clinical application, a conceptually antibacterial strategy, namely "electroluminodynamic therapy" (ELDT), is presented by nanoassembly of an electroluminescent (EL) material and a photosensitizer, which is capable of generating reactive oxygen species (ROS) in situ under an electric field, i.e., the fluorescence emitted by the EL molecules excites the photosensitizer to generate singlet oxygen (1 O2 ), for the oxidative damage of pathogens. Based on the scheme of ELDT, a flexible therapeutic device is fabricated through a hydrogel loading with ELDT nanoagents, followed by integration with a flexible battery, satisfying the requirements of being light and wearable for wound dressings. The ELDT-based flexible device presents potent ROS-induced killing efficacies against drug-resistant bacteria (>99.9%), so as to effectively inhibit the superficial infection and promote the wound healing. This research reveals a proof-of-concept ELDT strategy as a prospective alternative to PDT, which avoids the utilization of a physical light source, and achieves convenient and effective killing of drug-resistant bacteria through a hydrogel-based flexible therapeutic device.
Collapse
Affiliation(s)
- Jianhong Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Qingyan Jia
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zilin Yue
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Jingjing Huo
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Jin Chai
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Luofeng Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Renhao Nie
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Han Shao
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Yang Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
23
|
Grodzicki M, Sito J, Lewandków R, Mazur P, Ciszewski A. Interfacial Polarization of Thin Alq 3, Gaq 3, and Erq 3 Films on GaN(0001). MATERIALS 2022; 15:ma15051671. [PMID: 35268914 PMCID: PMC8910984 DOI: 10.3390/ma15051671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 02/04/2023]
Abstract
This report presents results of research on electronic structure of three interfaces composed of organic layers of Alq3, Gaq3, or Erq3 deposited on GaN semiconductor. The formation of the interfaces and their characterization have been performed in situ under ultrahigh vacuum conditions. Thin layers have been vapor-deposited onto p-type GaN(0001) surfaces. Ultraviolet photoelectron spectroscopy (UPS) assisted by X-ray photoelectron spectroscopy (XPS) has been employed to construct the band energy diagrams of the substrate and interfaces. The highest occupied molecular orbitals (HOMOs) are found to be at 1.2, 1.7, and 2.2 eV for Alq3, Gaq3, and Erq3 layers, respectively. Alq3 layer does not change the position of the vacuum level of the substrate, in contrast to the other layers, which lower it by 0.8 eV (Gaq3) and 1.3 eV (Erq3). Interface dipoles at the phase boundaries are found to be −0.2, −0.9, −1.2 eV, respectively, for Alq3, Gaq3, Erq3 layers on GaN(0001) surfaces.
Collapse
|
24
|
Rao VJ, Qi H, Berger FJ, Grieger S, Kaiser U, Backes C, Zaumseil J. Liquid Phase Exfoliation of Rubrene Single Crystals into Nanorods and Nanobelts. ACS NANO 2021; 15:20466-20477. [PMID: 34813291 DOI: 10.1021/acsnano.1c08965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liquid phase exfoliation (LPE) is a popular method to create dispersions of two-dimensional nanosheets from layered inorganic van der Waals crystals. Here, it is applied to orthorhombic and triclinic single crystals of the organic semiconductor rubrene with only noncovalent interactions (mainly π-π) between the molecules. Distinct nanorods and nanobelts of rubrene are formed, stabilized against aggregation in aqueous sodium cholate solution, and isolated by liquid cascade centrifugation. Selected-area electron diffraction and Raman spectroscopy confirm the crystallinity of the rubrene nanorods and nanobelts while the optical properties (absorbance, photoluminescence) of the dispersions are similar to rubrene solutions due to their randomized orientations. The formation of these stable crystalline rubrene nanostructures with only a few molecular layers by LPE confirms that noncovalent interactions in molecular crystals can be strong enough to enable mechanical exfoliation similar to inorganic layered materials.
Collapse
Affiliation(s)
- Vaishnavi J Rao
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Haoyuan Qi
- Central Facility of Materials Science Electron Microscopy, Universität Ulm, 89081 Ulm, Germany
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Felix J Berger
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Sebastian Grieger
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Ute Kaiser
- Central Facility of Materials Science Electron Microscopy, Universität Ulm, 89081 Ulm, Germany
| | - Claudia Backes
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jana Zaumseil
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
25
|
Krueger TD, Fang C. Elucidating Inner Workings of Naturally Sourced Organic Optoelectronic Materials with Ultrafast Spectroscopy. Chemistry 2021; 27:17736-17750. [PMID: 34545971 DOI: 10.1002/chem.202102766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 01/18/2023]
Abstract
Recent advances in sustainable optoelectronics including photovoltaics, light-emitting diodes, transistors, and semiconductors have been enabled by π-conjugated organic molecules. A fundamental understanding of light-matter interactions involving these materials can be realized by time-resolved electronic and vibrational spectroscopies. In this Minireview, the photoinduced mechanisms including charge/energy transfer, electronic (de)localization, and excited-state proton transfer are correlated with functional properties encompassing optical absorption, fluorescence quantum yield, conductivity, and photostability. Four naturally derived molecules (xylindein, dimethylxylindein, alizarin, indigo) with ultrafast spectral insights showcase efficient energy dissipation involving H-bonding networks and proton motions, which yield high photostability. Rational design principles derived from such investigations could increase the efficiency for light harvesting, triplet formation, and photosensitivity for improved and versatile optoelectronic performance.
Collapse
Affiliation(s)
- Taylor D Krueger
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331-4003, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331-4003, USA
| |
Collapse
|
26
|
Feng J, Mao X, Zhu H, Yang Z, Cui M, Ma Y, Zhang D, Bi S. How size, edge shape, functional groups and embeddedness influence the electronic structure and partial optical properties of graphene nanoribbons. Phys Chem Chem Phys 2021; 23:20695-20701. [PMID: 34516597 DOI: 10.1039/d1cp02689e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The armchair and zigzag edge shape makes graphene nanoribbons (GNRs) exhibit interest in different applications. However, the relationship between influencing factors and properties is not clear. Herein, the many-body Green's function theory and the TDDFT method are used to investigate the effect of size, edge shape and functional groups on the electronic and optical properties of GNRs and h-BN-embedded GNRs. We find that ZGNRs have a smaller band gap and absorption edge than AGNRs having the same size and functional groups. The relationship between S1 and T1 is mainly determined by the size and edge shape of GNRs, while the redox ability of water splitting mainly relies on the kind of the functional group. When h-BN is embedded in GNRs, the edge shape of GNRs and the contact part between two substances control the direction of electron transfer in both the ground state and the excited state. These results can provide theoretical support for further improvements and applications of GNRs.
Collapse
Affiliation(s)
- Jin Feng
- School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China.
| | - Xinlong Mao
- School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China.
| | - Hongxia Zhu
- School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Science), P. R. China
| | - Zhe Yang
- School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China.
| | - Mengdi Cui
- School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China.
| | - Yuchen Ma
- School of Chemistry and Chemical Engineering, Shandong University, P. R. China
| | - Dapeng Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China.
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China.
| |
Collapse
|
27
|
Kitagawa Y, Matsuda K, da Rosa PPF, Fushimi K, Hasegawa Y. Long-lived emission beyond 1000 nm: control of excited-state dynamics in a dinuclear Tb(III)-Nd(III) complex. Chem Commun (Camb) 2021; 57:8047-8050. [PMID: 34291781 DOI: 10.1039/d1cc03596g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A long-lived near-infrared Nd(iii) emission is demonstrated using a Tb(iii) donor. The observed emission lifetime of 290 μs at 1057 nm for a Tb(iii)-Nd(iii) dinuclear complex is attributed to the long-lived Tb(iii) donor and the appropriate spacing between the lanthanide ions. This design strategy leads to novel lanthanide photophysics.
Collapse
Affiliation(s)
- Yuichi Kitagawa
- Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Sapporo, Hokkaido 060-8628, Japan. and Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita-21, Nishi-10, Sapporo, Hokkaido 001-0021, Japan
| | - Kenji Matsuda
- Graduate School of Chemical Sciences and Engineering Hokkaido University, Kita-13, Nishi-8, Sapporo, Hokkaido 060-8628, Japan
| | - Pedro Paulo Ferreira da Rosa
- Graduate School of Chemical Sciences and Engineering Hokkaido University, Kita-13, Nishi-8, Sapporo, Hokkaido 060-8628, Japan
| | - Koji Fushimi
- Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Sapporo, Hokkaido 060-8628, Japan.
| | - Yasuchika Hasegawa
- Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Sapporo, Hokkaido 060-8628, Japan. and Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita-21, Nishi-10, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
28
|
Mamada M, Goushi K, Nakamura R, Kaji H, Adachi C. Synthesis and Characterization of 5,5′-Bitetracene. CHEM LETT 2021. [DOI: 10.1246/cl.200909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Masashi Mamada
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
- JST ERATO, Adachi Molecular Exciton Engineering Project c/o OPERA, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
- Academia-Industry Molecular Systems for Devices Research and Education Center (AIMS), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
| | - Kenichi Goushi
- JST ERATO, Adachi Molecular Exciton Engineering Project c/o OPERA, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
| | - Ryota Nakamura
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
- JST ERATO, Adachi Molecular Exciton Engineering Project c/o OPERA, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
| | - Hironori Kaji
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
- JST ERATO, Adachi Molecular Exciton Engineering Project c/o OPERA, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
- Academia-Industry Molecular Systems for Devices Research and Education Center (AIMS), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Nishi, Fukuoka 819-0395, Japan
| |
Collapse
|
29
|
Chen H, Huang W, Marks TJ, Facchetti A, Meng H. Recent Advances in Multi-Layer Light-Emitting Heterostructure Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007661. [PMID: 33660408 DOI: 10.1002/smll.202007661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Light-emitting transistors (LETs) have attracted tremendous academic and industrial interest due to their dual functions of electrical switching and light emission in a single device, which can considerably reduce system complexity and manufacturing costs, especially in the area of flat panel and flexible displays as well as lighting and lasers. In recent years, enhanced LET performance has been achieved by introducing multiple-layer heterostructures in the charge-carrying/light-emitting LET channel versus the best-reported performance in single active layer LETs, rendering multi-layer LETs promising candidates for next-generation display technologies. In this review, the fundamental structures and working principles of multi-layer heterostructure LETs are introduced. Next, developments in multi-layer LETs are discussed based on co-planar LETs, non-planar LETs, and vertical LETs including organic, quantum dot, and perovskite light emitters. Finally, this review concludes with a summary and a perspective on the future of this research field.
Collapse
Affiliation(s)
- Hongming Chen
- School of Advanced Materials, Peking University Shenzhen Graduate School, 2199 Lishui Road, Shenzhen, 518055, P. R. China
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Wei Huang
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Flexterra Corporation, 8025 Lamon Avenue, Skokie, IL, 60077, USA
| | - Hong Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, 2199 Lishui Road, Shenzhen, 518055, P. R. China
- School of Electronics and Information, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| |
Collapse
|
30
|
Shizu K, Adachi C, Kaji H. Correlated Triplet Pair Formation Activated by Geometry Relaxation in Directly Linked Tetracene Dimer (5,5'-Bitetracene). ACS OMEGA 2021; 6:2638-2643. [PMID: 33553881 PMCID: PMC7859935 DOI: 10.1021/acsomega.0c04809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Singlet fission (SF) materials have the potential to overcome the traditional external quantum efficiency limits of organic light-emitting diodes (OLEDs). In this study, we theoretically designed an intramolecular SF molecule, 5,5'-bitetracene (55BT), in which two tetracene units were directly connected through a C-C bond. Using quantum chemical calculation and the Fermi golden rule, we show that 55BT undergoes efficient SF induced by geometry relaxation in a locally excited singlet state, 1(S0S1). Compared with another high-performing SF system, the tetracene dimer in the crystalline state, 55BT has advantages when used in doped systems owing to covalent bonding of the two tetracene units. This feature makes 55BT a promising candidate triplet sensitizer for near-infrared OLEDs.
Collapse
Affiliation(s)
- Katsuyuki Shizu
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto]611-0011, Japan
| | - Chihaya Adachi
- Center
for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
- International
Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
- Japan
Science and Technology Agency (JST), ERATO, Adachi Molecular Exciton
Engineering Project, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
| | - Hironori Kaji
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto]611-0011, Japan
| |
Collapse
|
31
|
Abstract
Singlet fission (SF) is a photophysical downconversion pathway, in which a singlet excitation transforms into two triplet excited states. As such, it constitutes an exciton multiplication generation process, which is currently at the focal point for future integration into solar energy conversion devices. Beyond this, various other exciting applications were proposed, including quantum cryptography or organic light emitting diodes. Also, the mechanistic understanding evolved rapidly during the last year. Unfortunately, the number of suitable SF-chromophores is still limited. This is per se problematic, considering the wide range of envisaged applicability. With that in mind, we emphasize uncommon SF-scaffolds and outline requirements as well as strategies to expand the chromophore pool of SF-materials.
Collapse
Affiliation(s)
- Tobias Ullrich
- Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Department für Chemie und Pharmazie, Egerlandstr. 1-3, 91058 Erlangen, Germany.
| | | | | |
Collapse
|
32
|
Tonami T, Sugimori R, Sakai R, Tokuyama K, Miyamoto H, Nakano M. Theoretical study on the effect of applying an external static electric field on the singlet fission dynamics of pentacene dimer models. Phys Chem Chem Phys 2021; 23:11624-11634. [PMID: 33955433 DOI: 10.1039/d1cp00880c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigate the effect of applying an external static electric field on the singlet fission (SF) dynamics of pentacene dimer models using quantum chemical calculations and exciton dynamics simulations. It is found that the excitation energies of anion-cation (AC) and cation-anion (CA) pair exciton states in the SF process are significantly stabilized and destabilized, respectively, by applying an external static electric field (F) in the intermolecular direction. As a result, this change of excitation energies is found to accelerate the SF dynamics in pentacene dimer models. In particular, in the tilted- and parallel-type pentacene dimer models, SF rates at F = 0.001 a.u. are predicted to be about 2.3 and 3.0 times as large as those at F = 0.0 a.u. while keeping the TT yields large. The present result contributes to paving the way for novel physical and chemical controls, that is, an external static electric field application and donor/acceptor substitution on SF molecules, of SF dynamics.
Collapse
Affiliation(s)
- Takayoshi Tonami
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | - Ryota Sugimori
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | - Ryota Sakai
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | - Kazuaki Tokuyama
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | - Hajime Miyamoto
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | - Masayoshi Nakano
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan. and Center for Spintronics Research Network (CSRN), Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan and Center for Quantum Information and Quantum Biology (QIQB), International Advanced Research Institute (IARI), Osaka University, Toyonaka, Osaka 560-8531, Japan and Innovative Catalysis Science Division (ICS), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Toyonaka, Osaka 560-8531, Japan and Research Center for Solar Energy Chemistry (RCSEC), Division of Quantum Photochemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
33
|
Zhao T, Kloc C, Ni W, Sun L, Gurzadyan GG. Revealing ultrafast relaxation dynamics in six-thiophene thin film and single crystal. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
34
|
Yoshino K, Sakai H, Shoji Y, Kajitani T, Anetai H, Akutagawa T, Fukushima T, Tkachenko NV, Hasobe T. Room-Temperature Pentacene Fluids: Oligoethylene Glycol Substituent-Controlled Morphologies and Singlet Fission. J Phys Chem B 2020; 124:11910-11918. [PMID: 33336576 DOI: 10.1021/acs.jpcb.0c09754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We report the first synthesis of solvent-free pentacene fluids at room temperature together with observation of singlet fission (SF). Three pentacenes with different number of ethylene glycol (EG) side chains (n) were employed (denoted as (EG)n-Pc-(EG)n: n = 2, 3, and 4). The morphologies of these pentacenes largely depend on the lengths of EG chains (n). (EG)3-Pc-(EG)3 and (EG)4-Pc-(EG)4 indicate fluid compounds at room temperature, whereas (EG)2-Pc-(EG)2 is a solid compound. Microscopic clustering with short-range interactions between pentacene chromophores was confirmed in X-ray diffraction profiles of solvent-free fluids. Such a structural trend is an important origin of SF and consistent with the steady-state spectroscopic results. To one's surprise, femtosecond transient absorption spectroscopy demonstrated that SF occurred in thin films prepared from solvent-free fluids of (EG)3-Pc-(EG)3 and (EG)4-Pc-(EG)4 in spite of such excessive EG chains.
Collapse
Affiliation(s)
- Keisuke Yoshino
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Hayato Sakai
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Takashi Kajitani
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan.,Materials Analysis Division, Open Facility Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Hayato Anetai
- Graduate School of Engineering, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Tomoyuki Akutagawa
- Graduate School of Engineering, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.,Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Nikolai V Tkachenko
- Chemistry and Advanced Materials Group, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, Tampere FI33720, Finland
| | - Taku Hasobe
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| |
Collapse
|
35
|
Shizu K, Adachi C, Kaji H. Visual Understanding of Vibronic Coupling and Quantitative Rate Expression for Singlet Fission in Molecular Aggregates. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Katsuyuki Shizu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
- Japan Science and Technology Agency (JST), ERATO, Adachi Molecular Exciton Engineering Project, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
| | - Hironori Kaji
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
36
|
Mamada M, Nakamura R, Adachi C. Synthesis, crystal structure and charge transport characteristics of stable peri-tetracene analogues. Chem Sci 2020; 12:552-558. [PMID: 34163785 PMCID: PMC8178977 DOI: 10.1039/d0sc04699j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
peri-Acenes have shown great potential for use as functional materials because of their open-shell singlet biradical character. However, only a limited number of peri-acene derivatives larger than peri-tetracene have been synthesized to date, presumably owing to the low stability of the target compounds in addition to the complicated synthesis scheme. Here, a very simple synthesis route for the tetrabenzo[a,f,j,o]perylene (TBP) structure enables the development of highly stable peri-tetracene analogues. Despite a high degree of singlet biradical character, the compounds with four substituents at the zigzag edge show a remarkable stability in solution under ambient conditions, which is better than that of acene derivatives with a closed-shell electronic configuration. The crystal structures of the TBP derivatives were obtained for the first time; these are valuable to understand the relationship between the structure and biradical character of peri-acenes. The application of peri-acenes in electronic devices should also be investigated. Therefore, the semiconducting properties of the TBP derivative were investigated by fabricating the field-effect transistors. Highly stable peri-tetracene analogues with a high degree of singlet biradical character were synthesized in a very simple route, and their crystal structures and semiconducting properties were investigated.![]()
Collapse
Affiliation(s)
- Masashi Mamada
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University Fukuoka 819-0395 Japan .,JST, ERATO, Adachi Molecular Exciton Engineering Project c/o Center for Organic Photonics and Electronics Research (OPERA), Kyushu University Nishi Fukuoka 819-0395 Japan.,Academia-Industry Molecular Systems for Devices Research and Education Center (AIMS), Kyushu University Nishi Fukuoka 819-0395 Japan
| | - Ryota Nakamura
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University Fukuoka 819-0395 Japan .,JST, ERATO, Adachi Molecular Exciton Engineering Project c/o Center for Organic Photonics and Electronics Research (OPERA), Kyushu University Nishi Fukuoka 819-0395 Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University Fukuoka 819-0395 Japan .,JST, ERATO, Adachi Molecular Exciton Engineering Project c/o Center for Organic Photonics and Electronics Research (OPERA), Kyushu University Nishi Fukuoka 819-0395 Japan.,Academia-Industry Molecular Systems for Devices Research and Education Center (AIMS), Kyushu University Nishi Fukuoka 819-0395 Japan.,International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University Nishi Fukuoka 819-0395 Japan
| |
Collapse
|
37
|
Nagami T, Tonami T, Okada K, Yoshida W, Miyamoto H, Nakano M. Vibronic coupling density analysis and quantum dynamics simulation for singlet fission in pentacene and its halogenated derivatives. J Chem Phys 2020; 153:134302. [DOI: 10.1063/5.0024746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Takanori Nagami
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Takayoshi Tonami
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kenji Okada
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Wataru Yoshida
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hajime Miyamoto
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Masayoshi Nakano
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Center for Spintronics Research Network (CSRN), Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Quantum Information and Quantum Biology Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
38
|
Jhou YW, Chang CHT, Sie SY, Yang CK, Hsieh CY, Lin CM, Tsay JS. Comparisons of magnetic defects and coercive forces for Co/Si(100) and Co/rubrene/Si(100). Phys Chem Chem Phys 2020; 22:14900-14909. [PMID: 32584355 DOI: 10.1039/d0cp01805h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Spintronics can add new functionalities to electronic devices by utilizing the spin degree of freedom of electrons. Investigating magnetic defects is crucial for the performance of spintronics devices. However, the effects of magnetic defects that are introduced by the presence of organic materials on their magnetic properties remain unclear. Herein, we report on a novel method using rubrene combined with Kerr microscopy that enables quantitative and direct measurements of magnetic defect density. For Co/Si(100) at a magnetic field near the coercivity value, Kerr microscopy images show a dark image with some magnetic defects. Because of domain wall motion, small patches gradually change the contrast. These magnetic defects are immovable at different magnetic fields and serve as pinning sites for domain wall motion. Experimental evidence shows that coercive force can be reduced by controlling the magnetic defect density by introducing small amounts of rubrene into the films. Furthermore, direct quantitative measurements of magnetic defects show both a one-dimensional bowing of domain walls and strong defect-domain wall interactions in the films. Based on these findings, we propose a viable strategy for reducing the coercive force of Co/Si(100) by controlling the magnetic defect density and this new information promises to be valuable for future applications of spintronics devices.
Collapse
Affiliation(s)
- Yen-Wei Jhou
- Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan.
| | - Cheng-Hsun-Tony Chang
- Department of Electronic Engineering, Minghsin University of Science and Technology, Hsinchu 30401, Taiwan
| | - Siang-Yu Sie
- Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan.
| | - Chun-Kai Yang
- Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan.
| | - Chen-Yuan Hsieh
- Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan.
| | - Chih-Ming Lin
- Department of Applied Science, National Taitung University, Taitung 95092, Taiwan
| | - Jyh-Shen Tsay
- Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan.
| |
Collapse
|
39
|
Accomasso D, Granucci G, Wibowo M, Persico M. Delocalization effects in singlet fission: Comparing models with two and three interacting molecules. J Chem Phys 2020; 152:244125. [PMID: 32610952 DOI: 10.1063/5.0009914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present surface hopping simulations of singlet fission in 2,5-bis(fluorene-9-ylidene)-2,5-dihydrothiophene (ThBF). In particular, we performed simulations based on quantum mechanics/molecular mechanics (QM/MM) schemes in which either two or three ThBF molecules are inserted in the QM region and embedded in their MM crystal environment. Our aim was to investigate the changes in the photodynamics that are brought about by extending the delocalization of the excited states beyond the minimal model of a dimer. In the simulations based on the trimer model, compared to the dimer-based ones, we observed a faster time evolution of the state populations, with the largest differences associated with both the rise and decay times for the intermediate charge transfer states. Moreover, for the trimer, we predicted a singlet fission quantum yield of ∼204%, which is larger than both the one extracted for the dimer (∼179%) and the theoretical upper limit of 200% for the dimer-based model of singlet fission. Although our study cannot account for the effects of extending the delocalization beyond three molecules, our findings clearly indicate how and why the singlet fission dynamics can be affected.
Collapse
Affiliation(s)
- Davide Accomasso
- Università di Pisa, Dipartimento di Chimica e Chimica Industriale, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Giovanni Granucci
- Università di Pisa, Dipartimento di Chimica e Chimica Industriale, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Meilani Wibowo
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Maurizio Persico
- Università di Pisa, Dipartimento di Chimica e Chimica Industriale, via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
40
|
Li Q, Kan YH, Xu HL, Su ZM. Hydrogen Migration-Triggered Diradicaloid Singlet-Fission Switch. J Am Chem Soc 2020; 142:11791-11803. [DOI: 10.1021/jacs.0c02778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qing Li
- Institute of Functional Material Chemistry, National and Local United Engineering Laboratory for Power Batteries, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
- Jiangsu Province Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai’an 223300, P. R. China
- Department of Chemistry, Faculty of Science, Yanbian University, Yanji 133002, P. R. China
| | - Yu-He Kan
- Institute of Functional Material Chemistry, National and Local United Engineering Laboratory for Power Batteries, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
- Jiangsu Province Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai’an 223300, P. R. China
| | - Hong-Liang Xu
- Institute of Functional Material Chemistry, National and Local United Engineering Laboratory for Power Batteries, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Zhong-Min Su
- Institute of Functional Material Chemistry, National and Local United Engineering Laboratory for Power Batteries, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130024, P. R. China
| |
Collapse
|
41
|
Tang X, Pan R, Zhao X, Zhu H, Xiong Z. Achievement of High-Level Reverse Intersystem Crossing in Rubrene-Doped Organic Light-Emitting Diodes. J Phys Chem Lett 2020; 11:2804-2811. [PMID: 32191490 DOI: 10.1021/acs.jpclett.0c00451] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Using the fingerprint magneto-electroluminescence trace, we observe a fascinating high-level reverse intersystem crossing (HL-RISC) in rubrene-doped organic light-emitting diodes (OLEDs). This HL-RISC is achieved from high-lying triplet states (T2,rub) transferred from host triplet states by the Dexter energy transfer to the lowest singlet states (S1,rub) in rubrene. Although HL-RISC decreases with bias current, it increases with lowering temperature. This is contrary to the temperature-dependent RISC from conventional thermally activated delayed fluorescence, because HL-RISC is an exothermic process instead. Moreover, owing to the competition of exciton energy transfer with direct charge trap, HL-RISC changes nonmonotonically with the dopant concentration and increases luminous efficiency to a maximum at 10% of rubrene, which is about ten times greater than that from the pure-rubrene device. Additionally, the HL-RISC process is not observed in bare rubrene-doped films because of the absence of T2,rub. Our findings pave the way for designing highly efficient orange fluorescent OLEDs.
Collapse
Affiliation(s)
- Xiantong Tang
- School of Physical Science and Technology, MOE Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chongqing 400715, China
| | - Ruiheng Pan
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Xi Zhao
- School of Physical Science and Technology, MOE Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chongqing 400715, China
| | - Hongqiang Zhu
- Chongqing Key Laboratory of Photo-Electric Functional Materials, Chongqing Normal University, Chongqing 401331, China
| | - Zuhong Xiong
- School of Physical Science and Technology, MOE Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chongqing 400715, China
| |
Collapse
|
42
|
Shizu K, Adachi C, Kaji H. Effect of Vibronic Coupling on Correlated Triplet Pair Formation in the Singlet Fission Process of Linked Tetracene Dimers. J Phys Chem A 2020; 124:3641-3651. [PMID: 32275421 DOI: 10.1021/acs.jpca.0c03041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Katsuyuki Shizu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
- Japan Science and Technology Agency (JST), ERATO, Adachi Molecular Exciton Engineering Project, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
- Education Center for Global Leaders in Molecular System for Devices, Kyushu University, Nishi, Fukuoka 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
| | - Hironori Kaji
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
43
|
Li HF, Liu XQ, Lyu C, Gorbaciova J, Wen LL, Shan GG, Wyatt PB, Ye HQ, Gillin WP. Enhanced 1.54-μm photo- and electroluminescence based on a perfluorinated Er(III) complex utilizing an iridium(III) complex as a sensitizer. LIGHT, SCIENCE & APPLICATIONS 2020; 9:32. [PMID: 32194946 PMCID: PMC7054420 DOI: 10.1038/s41377-020-0266-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/31/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Advanced 1.5-µm emitting materials that can be used to fabricate electrically driven light-emitting devices have the potential for developing cost-effective light sources for integrated silicon photonics. Sensitized erbium (Er3+) in organic materials can give bright 1.5-µm luminescence and provide a route for realizing 1.5-µm organic light emitting diodes (OLEDs). However, the Er3+ electroluminescence (EL) intensity needs to be further improved for device applications. Herein, an efficient 1.5-µm OLED made from a sensitized organic Er3+ co-doped system is realized, where a "traditional" organic phosphorescent molecule with minimal triplet-triplet annihilation is used as a chromophore sensitizer. The chromophore provides efficient sensitization to a co-doped organic Er3+ complex with a perfluorinated-ligand shell. The large volume can protect the Er3+ 1.5-µm luminescence from vibrational quenching. The average lifetime of the sensitized Er3+ 1.5-µm luminescence reaches ~0.86 ms, with a lifetime component of 2.65 ms, which is by far the longest Er3+ lifetime in a hydrogen-abundant organic environment and can even compete with that obtained in the fully fluorinated organic Er3+ system. The optimal sensitization enhances the Er3+ luminescence by a factor of 1600 even with a high concentration of the phosphorescent molecule, and bright 1.5-µm OLEDs are obtained.
Collapse
Affiliation(s)
- Hong-Fei Li
- Materials Research Institute and School of Physics and Astronomy, Queen Mary University of London, Mile End Road, E1 4NS London, UK
| | - Xiao-Qi Liu
- Materials Research Institute and School of Physics and Astronomy, Queen Mary University of London, Mile End Road, E1 4NS London, UK
| | - Chen Lyu
- Materials Research Institute and School of Physics and Astronomy, Queen Mary University of London, Mile End Road, E1 4NS London, UK
| | - Jelena Gorbaciova
- Materials Research Institute and School of Physics and Astronomy, Queen Mary University of London, Mile End Road, E1 4NS London, UK
| | - Li-Li Wen
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 China
| | - Guo-Gang Shan
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 China
| | - Peter. B. Wyatt
- Materials Research Institute and School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, E1 4NS London, UK
| | - Huan-Qing Ye
- Materials Research Institute and School of Physics and Astronomy, Queen Mary University of London, Mile End Road, E1 4NS London, UK
- Chromosol Ltd, The Walbrook Building, 25 Walbrook, London, EC4N 8A UK
| | - William P. Gillin
- Materials Research Institute and School of Physics and Astronomy, Queen Mary University of London, Mile End Road, E1 4NS London, UK
| |
Collapse
|
44
|
Matsuda S, Oyama S, Kobori Y. Electron spin polarization generated by transport of singlet and quintet multiexcitons to spin-correlated triplet pairs during singlet fissions. Chem Sci 2020; 11:2934-2942. [PMID: 34122794 PMCID: PMC8157521 DOI: 10.1039/c9sc04949e] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Singlet fission (SF) is expected to exceed the Shockley–Queisser theoretical limit of efficiency of organic solar cells. Transport of spin-entanglement in the triplet–triplet pair state via one singlet exciton is a promising phenomenon for several energy conversion applications including quantum information science. However, direct observation of electron spin polarization by transport of entangled spin-states has not been presented. In this study, time-resolved electron paramagnetic resonance has been utilized to observe the transportation of singlet and quintet characters generating correlated triplet–triplet (T + T) exciton-pair states by probing the electron spin polarization (ESP) generated in thin films of 6,13-bis(triisopropylsilylethynyl)pentacene. We have clearly demonstrated that the ESP detected at the resonance field positions of individual triplet excitons is dependent on the morphology and on the detection delay time after laser flash to cause SF. ESP was clearly explained by quantum superposition of singlet–triplet–quintet wavefunctions via picosecond triplet-exciton dissociation as the electron spin polarization transfer from strongly exchange-coupled singlet and quintet TT states to weakly-coupled spin-correlated triplet pair states. Although the coherent superposition of spin eigenstates was not directly detected, the present interpretation of the spin correlation of the separated T + T exciton pair may pave new avenues not only for elucidating the vibronic role in the de-coupling between two excitons but also for scalable quantum information processing using quick T + T dissociation via one-photon excitation. Singlet fission (SF) is expected to exceed the Shockley–Queisser theoretical limit of efficiency of organic solar cells.![]()
Collapse
Affiliation(s)
- Saki Matsuda
- Department of Chemistry, Graduate School of Science, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
| | - Shinya Oyama
- Department of Chemistry, Graduate School of Science, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
| | - Yasuhiro Kobori
- Department of Chemistry, Graduate School of Science, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan .,Molecular Photoscience Research Center, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
| |
Collapse
|
45
|
Korovina NV, Pompetti NF, Johnson JC. Lessons from intramolecular singlet fission with covalently bound chromophores. J Chem Phys 2020; 152:040904. [PMID: 32007061 DOI: 10.1063/1.5135307] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Molecular dimers, oligomers, and polymers are versatile components in photophysical and optoelectronic architectures that could impact a variety of applications. We present a perspective on such systems in the field of singlet fission, which effectively multiplies excitons and produces a unique excited state species, the triplet pair. The choice of chromophore and the nature of the attachment between units, both geometrical and chemical, play a defining role in the dynamical scheme that evolves upon photoexcitation. Specific final outcomes (e.g., separated and uncorrelated triplet pairs) are being sought through rational design of covalently bound chromophore architectures built with guidance from recent fundamental studies that correlate structure with excited state population flow kinetics.
Collapse
Affiliation(s)
- Nadezhda V Korovina
- National Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, USA
| | - Nicholas F Pompetti
- National Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, USA
| | - Justin C Johnson
- National Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, USA
| |
Collapse
|
46
|
Bronstein H, Nielsen CB, Schroeder BC, McCulloch I. The role of chemical design in the performance of organic semiconductors. Nat Rev Chem 2020; 4:66-77. [PMID: 37128048 DOI: 10.1038/s41570-019-0152-9] [Citation(s) in RCA: 266] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2019] [Indexed: 12/15/2022]
Abstract
Organic semiconductors are solution-processable, lightweight and flexible and are increasingly being used as the active layer in a wide range of new technologies. The versatility of synthetic organic chemistry enables the materials to be tuned such that they can be incorporated into biological sensors, wearable electronics, photovoltaics and flexible displays. These devices can be improved by improving their material components, not only by developing the synthetic chemistry but also by improving the analytical and computational techniques that enable us to understand the factors that govern material properties. Judicious molecular design provides control of the semiconductor frontier molecular orbital energy distribution and guides the hierarchical assembly of organic semiconductors into functional films where we can manipulate the properties and motion of charges and excited states. This Review describes how molecular design plays an integral role in developing organic semiconductors for electronic devices in present and emerging technologies.
Collapse
Affiliation(s)
- Hugo Bronstein
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Christian B Nielsen
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Bob C Schroeder
- Department of Chemistry, University College London, London, UK
| | - Iain McCulloch
- Department of Chemistry, Imperial College London, London, UK.
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), Thuwal, Saudi Arabia.
| |
Collapse
|
47
|
Cook AR, Girimonti A, Sreearunothai P, Asaoka S, Miller JR. Dynamic broadening alters triplet extinction coefficients in fluorene oligomers and polymers. J Chem Phys 2020; 152:024901. [DOI: 10.1063/1.5132798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andrew R. Cook
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Anthony Girimonti
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | | | - Sadayuki Asaoka
- Department of Materials Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - John R. Miller
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
48
|
Radiunas E, Dapkevičius M, Raišys S, Juršėnas S, Jozeliūnaitė A, Javorskis T, Šinkevičiūtė U, Orentas E, Kazlauskas K. Impact of t-butyl substitution in a rubrene emitter for solid state NIR-to-visible photon upconversion. Phys Chem Chem Phys 2020; 22:7392-7403. [PMID: 32215384 DOI: 10.1039/d0cp00144a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Solid state NIR-to-visible photon upconversion (UC) mediated by triplet-triplet annihilation (TTA) is necessitated by numerous practical applications. Yet, efficient TTA-UC remains a highly challenging task. In this work palladium phthalocyanine-sensitized NIR-to-vis solid UC films based on a popular rubrene emitter are thoroughly studied with the primary focus on revealing the impact of t-butyl substitution in rubrene on the TTA-UC performance. The solution-processed UC films were additionally doped with a small amount of emissive singlet sink tetraphenyldibenzoperiflanthene (DBP) for collecting upconverted singlets from rubrene and in this way diminishing detrimental singlet fission. Irrespective of the excitation conditions used, t-butyl-substituted rubrene (TBR) was found to exhibit enhanced TTA-UC performance as compared to that of rubrene at an optimal emitter doping of 80 wt% in polystyrene films. Explicitly, in the TTA dominated regime attained at high excitation densities, 4-fold higher UC quantum yield (ΦUC) achieved in TBR-based films was caused by the reduced fluorescence concentration quenching mainly due to suppressed singlet fission. Under low light conditions, i.e. in the regime governed by spontaneous triplet decay, even though triplet exciton diffusion was obstructed in TBR films by t-butyl moieties, the subsequently reduced TTA rate was counterbalanced by both suppressed singlet fission and non-radiative triplet quenching, still ensuring higher ΦUC of these films as compared to those of unsubstituted rubrene films.
Collapse
Affiliation(s)
- Edvinas Radiunas
- Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania.
| | - Manvydas Dapkevičius
- Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania.
| | - Steponas Raišys
- Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania.
| | - Saulius Juršėnas
- Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania.
| | - Augustina Jozeliūnaitė
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Tomas Javorskis
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Ugnė Šinkevičiūtė
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Edvinas Orentas
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Karolis Kazlauskas
- Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
49
|
Steer RP. Photophysics of molecules containing multiples of the azulene carbon framework. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
50
|
Pal AK, Bhattacharyya K, Datta A. Remote Functionalization through Symmetric or Asymmetric Substitutions Control the Pathway of Intermolecular Singlet Fission. J Chem Theory Comput 2019; 15:5014-5023. [DOI: 10.1021/acs.jctc.9b00419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Arun K. Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, WB India
| | - Kalishankar Bhattacharyya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, WB India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, WB India
| |
Collapse
|