1
|
Alves RF, L. Lima KA, da Silva DA, Mendonça FLL, Ribeiro Junior LA, Pereira Junior ML. Computational Design of 2D Nanoporous Graphene via Carbon-Bridged Lateral Heterojunctions in Armchair Graphene Nanoribbons. ACS OMEGA 2025; 10:17159-17169. [PMID: 40352498 PMCID: PMC12059925 DOI: 10.1021/acsomega.4c07524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 05/14/2025]
Abstract
The interest in two-dimensional (2D) carbon allotropes arises from their ability to alter their properties based on the atomic topology employed, which can significantly affect their electronic properties and benefit advancements in new technologies. This work presents a new nanoporous graphene (NPG) allotrope obtained through lateral heterojunctions via pairs of trivalent sp2 carbon atoms of armchair graphene nanoribbons (AGNRs). These pairs were used as linkers between AGNRs to achieve this structure, forming connections that enhance the porous architecture. This novel planar and porous 2D carbon allotrope integrates some structural and electronic advantages of AGNRs into a 2D framework. Composed of 3-, 6-, and 12-membered carbon rings, the NPG was investigated using density functional theory (DFT) calculations and ab initio (AIMD) and classical molecular dynamics (CMD) simulations to explore its structural, electronic, and mechanical properties. Among the results presented, we show that the material demonstrates high dynamical and thermal stability at 1000 K. Furthermore, the NPG exhibits metallic and nonmagnetic behavior and is achieved by transitioning from the semiconducting nature of some AGNRs to a metallic 2D carbon system. The elastic properties reveal the material's distinct response to applied strain, with fractures occurring in the nanoribbon segment along the x-direction. However, fractures are observed in the C-C bonds involved in the heterojunction region in the y-direction. The calculated Young's modulus ranges from 394 to 690 GPa, which is lower but comparable to graphene. The formation energy of NPG decreases with increasing width of the AGNRs used to compose the 2D material, indicating enhanced stability for wider nanoribbons. These findings highlight the potential of NPG for applications in nanoelectronics and advanced new technologies.
Collapse
Affiliation(s)
- Rodrigo
A. F. Alves
- Institute
of Physics, University of Brasília, Brasília 70910900, Federal District, Brazil
- Computational
Materials Laboratory, LCCMat, Institute of Physics, University of Brasília, Brasília 70910900, Federal District, Brazil
| | - Kleuton A. L. Lima
- Institute
of Physics, University of Brasília, Brasília 70910900, Federal District, Brazil
- Computational
Materials Laboratory, LCCMat, Institute of Physics, University of Brasília, Brasília 70910900, Federal District, Brazil
| | - Daniel A. da Silva
- Professional
Postgraduate Program in Electrical Engineering (PPEE), Department
of Electrical Engineering, College of Technology, University of Brasília, Brasília 70910900, Federal District, Brazil
| | - Fábio L. L. Mendonça
- Professional
Postgraduate Program in Electrical Engineering (PPEE), Department
of Electrical Engineering, College of Technology, University of Brasília, Brasília 70910900, Federal District, Brazil
- College
of Technology, Department of Electrical Engineering, University of Brasília, Brasília 70910900, Federal District, Brazil
| | - Luiz A. Ribeiro Junior
- Institute
of Physics, University of Brasília, Brasília 70910900, Federal District, Brazil
- Computational
Materials Laboratory, LCCMat, Institute of Physics, University of Brasília, Brasília 70910900, Federal District, Brazil
| | - Marcelo L. Pereira Junior
- College
of Technology, Department of Electrical Engineering, University of Brasília, Brasília 70910900, Federal District, Brazil
- Materials
Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
2
|
Xie C, Hou Q, Qian H, Tang Y, Lai R, Bai X, Yu G, Lv S, Xia T, Liu Z, Huang X, Shen X, Ju M. Tailoring the Porous Structure of Carbon for Enhanced Oxidative Cleavage and Esterification of C(CO)-C Bonds. CHEMSUSCHEM 2025; 18:e202402553. [PMID: 39792471 DOI: 10.1002/cssc.202402553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/26/2024] [Indexed: 01/12/2025]
Abstract
The cleavage and functionalization of carbon-carbon bonds are crucial for the reconstruction and upgrading of organic matrices, particularly in the valorization of biomass, plastics, and fossil resources. However, the inherent kinetic inertness and thermodynamic stability of C-C σ bonds make this process challenging. Herein, we fabricated a glucose-derived defect-rich hierarchical porous carbon as a heterogeneous catalyst for the oxidative cleavage and esterification of C(CO)-C bonds. Systematic investigations revealed that the hierarchical porous structure enhances the adsorption of O2 and ketones, thereby boosting the catalytic efficiency of defects. This catalyst exhibits performance comparable to that of the reported nitrogen-doped or metal nanoparticle-supported carbon materials, as well as transition metal-based homogeneous catalytic systems. This work deepens our understanding of the reaction process underlying this transformation and provides insights for designing efficient carbon-based materials for oxidative transformations.
Collapse
Affiliation(s)
- Chao Xie
- National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Qidong Hou
- National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Hengli Qian
- National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Yao Tang
- National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Ruite Lai
- National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Xinyu Bai
- National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Guanjie Yu
- National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Shuai Lv
- National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Tianliang Xia
- National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Zejun Liu
- National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Xin Huang
- School of Science, China University of Geosciences, Beijing, 100083, China
| | - Xiaojun Shen
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
| | - Meiting Ju
- National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
3
|
Wang H, Chen K, Lu Z, Lin S, Yuan Y, Liu X, Zhang Y, Chen J, Wen Z. Nonmetallic High-Entropy-Engineered Nanocarbons for Advanced ORR Electrocatalysis. Angew Chem Int Ed Engl 2025; 64:e202501290. [PMID: 40022477 DOI: 10.1002/anie.202501290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/03/2025]
Abstract
High-entropy materials are poised to revolutionize materials science and industrial applications due to their design flexibility, peculiar performance, and broad applicability. In this study, we present a proof-of-concept high-entropy engineered nanocarbon (HENC) co-doped with five nonmetal elements (B, F, P, S, and N), synthesized via in situ polymerization modification of ZIF-8 followed by pyrolysis. The HENC exhibits outstanding performance as a nonmetal electrocatalyst for the oxygen reduction reaction (ORR), with activity on par with benchmark Pt/C electrocatalysts and superior cyclic stability. Simulations and all-site calculations reveal that the synergistic effects of abundant heteroatoms and increased system entropy facilitate the formation of *O2 species, with N, P, and S acting as the key active elements, while co-doping with B and F further enhances stability. Notably, HENCs have been validated as cathode catalysts in zinc-air batteries, achieving an impressive peak power density of 604 mW cm-2 and demonstrating long-term stability over a 16-day period, outpacing the commercial Pt/C catalyst (542 mW cm-2). This work not only enriches the concept of high entropy and advances the understanding of high-entropy materials but also opens a new avenue for the development of high-performance low-cost catalysts.
Collapse
Affiliation(s)
- Huibing Wang
- State Key Laboratory of Structural Chemistry and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Chen
- State Key Laboratory of Structural Chemistry and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiwen Lu
- State Key Laboratory of Structural Chemistry and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengjian Lin
- State Key Laboratory of Structural Chemistry and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Yalong Yuan
- State Key Laboratory of Structural Chemistry and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Xi Liu
- State Key Laboratory of Structural Chemistry and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Yu Zhang
- State Key Laboratory of Structural Chemistry and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan, 464000, China
| | - Junxiang Chen
- State Key Laboratory of Structural Chemistry and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Zhenhai Wen
- State Key Laboratory of Structural Chemistry and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| |
Collapse
|
4
|
Lu X, Yue Z, Chen H, Liu S, Wei S, Wang Z. Synergistic interactions between g-C 3N 4 and Cu-Zn-MOFs via electrostatic assembly for enhanced electrocatalytic CO 2 reduction. Dalton Trans 2025; 54:4956-4964. [PMID: 39981756 DOI: 10.1039/d4dt03554b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Electrocatalytic carbon dioxide reduction (eCO2R) represents a sustainable technique for converting CO2 into valuable chemicals and fuels. Metal-organic frameworks (MOFs) are recognized as promising candidates in eCO2R due to their favorable adsorption of CO2. However, the insufficiency of adequate active sites restricts their in-depth investigation. Herein, inspired by the interfacial electronic effects, the layered g-C3N4 with unpaired electron characteristics is integrated into Cu-Zn-MOFs with nucleophilic imidazolate ligands via electrostatic assembly. The resultant g-C3N4@Cu-Zn-MOFs-1 : 1 exhibits excellent CO2 reduction performance for CO in a wide potential range, where the peak faradaic efficiency reaches 85% at -1.3 V. g-C3N4 with a graphitic carbon backbone significantly stabilizes the Cu-Zn-MOF structure and enhances the exposure of active sites. The excellent performance stems from the significant activation of active sites by the efficient electron transfer induced by π-π stacking interactions between g-C3N4 and Cu-Zn-MOFs-1 : 1. This work proposes an innovative approach to stabilizing MOFs and activating the active sites in MOFs through interfacial electron engineering for CO2 reduction.
Collapse
Affiliation(s)
- Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Zhaolong Yue
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Hongyu Chen
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Siyuan Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Shuxian Wei
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Zhaojie Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
5
|
Lou H, Ma C. Metallic PtC monolayer as a promising hydrogen evolution electrocatalyst. Phys Chem Chem Phys 2025; 27:2749-2757. [PMID: 39815816 DOI: 10.1039/d4cp04355c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Reasonable design of hydrogen evolution reaction (HER) electrocatalysts with low Pt loading and excellent catalytic performance is a key challenge in finding efficient and cost attractive catalysts. Pt with its unique d-electrons provides new opportunities for the development of HER catalysts when it forms compounds with highly earth-abundant C. Herein, we focused on designing highly efficient catalysts composed of Pt and C elements using first-principles structure search simulations, identifying four stability PtCx monolayers. The novel PtC monolayer with a zigzag C chain not only possesses lower Pt loading but also shows inherent metallicity. Meanwhile, its H2O adsorption and dissociation abilities are efficient and facile. The HER activity of the PtC monolayer is comparable to that of commercial Pt, with desirable ΔGH* values and larger exchange current density, which are mainly attributed to lower charge donation of Pt, larger occupation of Pt PDOS at the Fermi level, and paired electrons of the zigzag C chain. Moreover, its excellent HER activity can be maintained even at high H coverage under strain and solvent effect. All these attractive properties render the PtC monolayer an appropriate HER catalyst.
Collapse
Affiliation(s)
- Huan Lou
- Department of Applied Physics, School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| | - Chi Ma
- Department of Optoelectronic Information of Science and Engineering, School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
6
|
Lu Y, Li W, Fan Y, Cheng L, Tang Y, Sun H. Recent Advances in Bonding Regulation of Metalloporphyrin-Modified Carbon-Based Catalysts for Accelerating Energy Electrocatalytic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406180. [PMID: 39385633 DOI: 10.1002/smll.202406180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/20/2024] [Indexed: 10/12/2024]
Abstract
Metalloporphyrins modified carbon-based materials, owing to the excellent acid-base resistance, optimal electron transfer rates, and superior catalytic performance, have shown great potential in energy electrocatalysis. Recently, numerous efforts have concentrated on employing carbon-based substrates as platforms to anchor metalloporphyrins, thereby fabricating a diverse array of composite catalysts tailored for assorted electrocatalytic processes. However, the interplay through bonding regulation of metalloporphyrins with carbon materials and the resultant enhancement in catalyst performance remains inadequately elucidated. Gaining an in-depth comprehension of the synergistic interactions between metalloporphyrins and carbon-based materials within the realm of electrocatalysis is imperative for advancing the development of innovative composite catalysts. Herein, the review systematically classifies the binding modes (i.e., covalent grafting and non-covalent interactions) between carbon-based materials and metalloporphyrins, followed by a discussion on the structural characteristics and applications of metalloporphyrins supported on various carbon-based substrates, categorized according to their binding modes. Additionally, this review underscores the principal challenges and emerging opportunities for carbon-supported metalloporphyrin composite catalysts, offering both inspiration and methodological insights for researchers involved in the design and application of these advanced catalytic systems.
Collapse
Affiliation(s)
- Yang Lu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Wenyan Li
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yiyi Fan
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Lei Cheng
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yawen Tang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hanjun Sun
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| |
Collapse
|
7
|
Cao S, Sun T, Peng Y, Yu X, Li Q, Meng FL, Yang F, Wang H, Xie Y, Hou CC, Xu Q. Simultaneously Producing H 2 and H 2O 2 by Photocatalytic Water Splitting: Recent Progress and Future. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404285. [PMID: 39073246 DOI: 10.1002/smll.202404285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/08/2024] [Indexed: 07/30/2024]
Abstract
The solar-driven overall water splitting (2H2O→2H2 + O2) is considered as one of the most promising strategies for reducing carbon emissions and meeting energy demands. However, due to the sluggish performance and high H2 cost, there is still a big gap for the current photocatalytic systems to meet the requirements for practical sustainable H2 production. Economic feasibility can be attained through simultaneously generating products of greater value than O2, such as hydrogen peroxide (H2O2, 2H2O→H2 + H2O2). Compared with overall water splitting, this approach is more kinetically feasible and generates more high-value products of H2 and H2O2. In several years, there has been an increasing surge in exploring the possibility and substantial progress has been achieved. In this review, a concise overview of the importance and underlying principles of PIWS is first provided. Next, the reported typical photocatalysts for PIWS are discussed, including commonly used semiconductors and cocatalysts, essential design features of these photocatalysts, and connections between their structures and activities, as well as the selected approaches for enhancing their stability. Then, the techniques used to quantify H2O2 and the operando characterization techniques that can be employed to gain a thorough understanding of the reaction mechanisms are summarized. Finally, the current existing challenges and the direction needing improvement are presented. This review aims to provide a thorough summary of the most recent research developments in PIWS and sets the stage for future advancements and discoveries in this emerging area.
Collapse
Affiliation(s)
- Shuang Cao
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Tong Sun
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Yong Peng
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Xianghui Yu
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Qinzhu Li
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Fan Lu Meng
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Fan Yang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Han Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Yunhui Xie
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Chun-Chao Hou
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
8
|
Zhou L, Li X, Chen H, Zheng H, Zhang T, Ning J, Wang H, Hu Y. Thermodynamically and Dynamically Boosted Electrocatalytic Iodine Conversion with Hydroxyl Groups for High-Efficiency Zinc-Iodine Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53881-53893. [PMID: 39340424 DOI: 10.1021/acsami.4c11550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Rechargeable zinc-iodine (Zn-I2) batteries have shown immense potential for grid-scale energy storage applications, but there remain challenges of improving efficiency and cycling stability due to the sluggish iodine reduction reaction (IRR) kinetics and serious shuttle problem of polyiodides. We herein demonstrate an efficient metal-free hydroxyl (-OH)-functionalized carbon catalyst that effectively boosts the performance of Zn-I2 batteries. It has been found that the obtained electrocatalytic performance is strongly correlated with the surface oxygen chemical environment in the carbon matrix. Both theoretical calculations and experimental measurements have uncovered that the -OH group, rather than carbonyl (-C═O) and carboxyl (-COOH), provides the active electrocatalytic site for IRR, improves the iodine redox kinetics and the electrochemical reversibility, and facilitates I2 nucleation. As confirmed by a series of in situ and ex situ spectroscopy techniques, due to the favorable reaction thermodynamics and the lowered energy barrier for I3- dissociation, the O-H···I channels can effectively trigger the direct transformation of I2/I- and avoid the formation of stable polyiodides. As a result, the as-assembled battery of I2/oxygen-functionalized carbon cloth (I2/OCC-2)//Zn exhibits a high capacity of 2.27 mA h cm-2 at 1 mA cm-2, outstanding rate capability with 89.0% capacity retention at 20 mA cm-2, and long-term stability of 10,000 cycles.
Collapse
Affiliation(s)
- Le Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Xiang Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Hui Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Hangwen Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Tianyu Zhang
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China
| | - Jiqiang Ning
- Department of Optical Science and Engineering, Fudan University, Shanghai 200438, China
| | - Haiyan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Yong Hu
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China
| |
Collapse
|
9
|
Guo H, Wu C, Shu C, Hu Z, Gebert F, Gu QF, Konstantinov K, Sharma SK, Marshall AT, Yang W, Chou SL, Liu HK, Wang JZ. Phosphorous and Nitrogen Dual-Doped Carbon as a Highly Efficient Electrocatalyst for Sodium-Oxygen Batteries. Chemistry 2024; 30:e202304106. [PMID: 39083260 DOI: 10.1002/chem.202304106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Indexed: 10/02/2024]
Abstract
Sodium-oxygen batteries have been regarded as promising energy storage devices due to their low overpotential and high energy density. Its applications, however, still face formidable challenges due to the lack of understanding about the influence of electrocatalysts on the discharge products. Here, a phosphorous and nitrogen dual-doped carbon (PNDC) based cathode is synthesized to increase the electrocatalytic activity and to stabilize the NaO2 superoxide nanoparticle discharge products, leading to enhanced cycling stability when compared to the nitrogen-doped carbon (NDC). The PNDC air cathode exhibits a low overpotential (0.36 V) and long cycling stability (120 cycles). The reversible formation/decomposition and stabilization of the NaO2 discharge products are clearly proven by in-situ synchrotron X-ray diffraction and ex-situ X-ray diffraction. Based on the density functional theory calculation, the PNDC has much stronger adsorption (-2.85 eV) for NaO2 than that of NDC (-1.80 eV), which could efficiently stabilize the NaO2 discharge products.
Collapse
Affiliation(s)
- Haipeng Guo
- Institute for Superconducting & Electronic Materials (ISEM), University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
| | - Chang Wu
- Chemical and Process Engineering, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, 8041, New Zealand
| | - Chaozhu Shu
- Institute for Superconducting & Electronic Materials (ISEM), University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, PR China
| | - Zhe Hu
- Institute for Superconducting & Electronic Materials (ISEM), University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
| | - Florian Gebert
- Institute for Superconducting & Electronic Materials (ISEM), University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
| | - Qin-Fen Gu
- Australian Synchrotron, 800 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Konstantin Konstantinov
- Institute for Superconducting & Electronic Materials (ISEM), University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
| | - Shailendra Kumar Sharma
- Chemical and Process Engineering, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, 8041, New Zealand
| | - Aaron T Marshall
- Chemical and Process Engineering, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, 8041, New Zealand
| | - Weishen Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 19 A Yuquan Road, Dalian, 116023, China
| | - Shu-Lei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P.R. China
| | - Hua-Kun Liu
- Institute for Superconducting & Electronic Materials (ISEM), University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
| | - Jia-Zhao Wang
- Institute for Superconducting & Electronic Materials (ISEM), University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P.R. China
| |
Collapse
|
10
|
Wang G, Yin Y, Lin C, Min S, Ma J. ZnO-templated hollow amorphous carbon: oxygen adsorption and doping synergy for enhanced ORR catalysis. Dalton Trans 2024; 53:13837-13846. [PMID: 39120500 DOI: 10.1039/d4dt01696c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
In pursuit of highly active zinc-air battery (ZAB) catalysts, nitrogen doping has proven key to enhancing carbon-based non-metallic catalysts' performance in the oxygen reduction reaction (ORR). This study employed a novel method to synthesize variously sized ZnO materials coated with ZIF-8. Notably, smaller particle sizes correlated with reduced activation energy. ZnO-12, the smallest variant, fully carbonized at 800 °C, resulting in zinc ion evaporation and the formation of an amorphous carbon nano-hollow structure, ZIF8/ZnO-12. This material showcased remarkable ORR properties, with an onset potential of 0.9 V (vs. RHE) and a Tafel slope of 71.4 mV dec-1, surpassing the benchmark Pt/C catalyst and exhibiting excellent stability. Moreover, in ZAB tests, ZIF8/ZnO-12 achieved a specific capacity of 816 mA h g-1, outperforming Pt/C. DFT calculations indicate that under alkaline conditions, nitrogen-doped carbon materials containing adsorbed oxygen and doped oxygen exhibit lower catalytic activation energy for the ORR, which is beneficial for accelerating the ORR. This research provides valuable insights into designing more efficient carbon-based non-metallic catalysts for ZABs.
Collapse
Affiliation(s)
- Guandong Wang
- School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China.
| | - Yizhi Yin
- School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China.
| | - Chenfeng Lin
- School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China.
| | - Shixiong Min
- School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China.
| | - Jinfu Ma
- School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China.
- Research Center of Silicon Target and Silicon-Carbon Negative Material Engineering Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| |
Collapse
|
11
|
Ahmed MA, Mahmoud SA, Mohamed AA. Unveiling the photocatalytic potential of graphitic carbon nitride (g-C 3N 4): a state-of-the-art review. RSC Adv 2024; 14:25629-25662. [PMID: 39148759 PMCID: PMC11325859 DOI: 10.1039/d4ra04234d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
Graphitic carbon nitride (g-C3N4)-based materials have emerged as promising photocatalysts due to their unique band structure, excellent stability, and environmental friendliness. This review provides a comprehensive and in-depth analysis of the current state of research on g-C3N4-based photocatalysts. The review summarizes several strategies to improve the photocatalytic performance of pristine g-C3N4, e.g., by creating heterojunctions, doping with non-metallic and metallic materials, co-catalyst loading, tuning catalyst morphology, metal deposition, and nitrogen-defect engineering. The review also highlights the various characterization techniques employed to elucidate the structural and physicochemical features of g-C3N4-based catalysts, as well as their applications of in photocatalytic degradation and hydrogen production, emphasizing their remarkable performance in pollutants' removal and clean energy generation. Furthermore, this review article investigates the effect of operational parameters on the catalytic activity and efficiency of g-C3N4-based catalysts, shedding light on the key factors that influence their performance. The review also provides insights into the photocatalytic pathways and reaction mechanisms involving g-C3N4 based photocatalysts. The review also identifies the research gaps and challenges in the field and presents prospects for the development and utilization of g-C3N4-based photocatalysts. Overall, this comprehensive review provides valuable insights into the synthesis, characterization, applications, and prospects of g-C3N4-based photocatalysts, offering guidance for future research and technological advancements in this rapidly growing field.
Collapse
Affiliation(s)
- Mahmoud A Ahmed
- Chemistry Department, Faculty of Science, Ain Shams University Cairo-11566 Egypt
| | - Safwat A Mahmoud
- Physics Department, Faculty of Science, Northern Border University Arar 13211 Saudi Arabia
| | - Ashraf A Mohamed
- Chemistry Department, Faculty of Science, Ain Shams University Cairo-11566 Egypt
| |
Collapse
|
12
|
Zheng Q, Xu H, Yao Y, Dai J, Wang J, Hou W, Zhao L, Zou X, Zhan G, Wang R, Wang K, Zhang L. Cobalt Single-Atom Reverse Hydrogen Spillover for Efficient Electrochemical Water Dissociation and Dechlorination. Angew Chem Int Ed Engl 2024; 63:e202401386. [PMID: 38488840 DOI: 10.1002/anie.202401386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Indexed: 04/05/2024]
Abstract
Efficient water dissociation to atomic hydrogen (H*) with restrained recombination of H* is crucial for improving the H* utilization for electrochemical dechlorination, but is currently limited by the lack of feasible electrodes. Herein, we developed a monolithic single-atom electrode with Co single atoms anchored on the inherent oxide layer of titanium foam (Co1-TiOx/Ti), which can efficiently dissociate water into H* and simultaneously inhibit the recombination of H*, by taking advantage of the single-atom reverse hydrogen spillover effect. Experimental and theoretical calculations demonstrated that H* could be rapidly generated on the oxide layer of titanium foam, and then overflowed to the adjacent Co single atom for the reductive dechlorination. Using chloramphenicol as a proof-of-concept verification, the resulting Co1-TiOx/Ti monolithic electrode exhibited an unprecedented performance with almost 100 % dechlorination at -1.0 V, far superior to that of traditional indirect reduction-driven commercial Pd/C (52 %) and direct reduction-driven Co1-N-C (44 %). Moreover, its dechlorination rate constant of 1.64 h-1 was 4.3 and 8.6 times more active than those of Pd/C (0.38 h-1) and Co1-N-C (0.19 h-1), respectively. Our research sheds light on the rational design of hydrogen spillover-related electrocatalysts to simultaneously improve the H* generation, transfer, and utilization for environmental and energy applications.
Collapse
Affiliation(s)
- Qian Zheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, R. P., China
| | - Hengyue Xu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, R. P., China
| | - Yancai Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, R. P., China
| | - Jie Dai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, R. P., China
| | - Jiaxian Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, R. P., China
| | - Wei Hou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, R. P., China
| | - Long Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, R. P., China
| | - Xingyue Zou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, R. P., China
| | - Guangming Zhan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, R. P., China
| | - Ruizhao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, R. P., China
| | - Kaiyuan Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, R. P., China
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, R. P., China
| |
Collapse
|
13
|
Ingavale S, Gopalakrishnan M, Enoch CM, Pornrungroj C, Rittiruam M, Praserthdam S, Somwangthanaroj A, Nootong K, Pornprasertsuk R, Kheawhom S. Strategic Design and Insights into Lanthanum and Strontium Perovskite Oxides for Oxygen Reduction and Oxygen Evolution Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308443. [PMID: 38258405 DOI: 10.1002/smll.202308443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/25/2023] [Indexed: 01/24/2024]
Abstract
Perovskite oxides exhibit bifunctional activity for both oxygen reduction (ORR) and oxygen evolution reactions (OER), making them prime candidates for energy conversion in applications like fuel cells and metal-air batteries. Their intrinsic catalytic prowess, combined with low-cost, abundance, and diversity, positions them as compelling alternatives to noble metal and metal oxides catalysts. This review encapsulates the nuances of perovskite oxide structures and synthesis techniques, providing insight into pivotal active sites that underscore their bifunctional behavior. The focus centers on the breakthroughs surrounding lanthanum (La) and strontium (Sr)-based perovskite oxides, specifically their roles in zinc-air batteries (ZABs). An introduction to the mechanisms of ORR and OER is provided. Moreover, the light is shed on strategies and determinants central to optimizing the bifunctional performance of La and Sr-based perovskite oxides.
Collapse
Affiliation(s)
- Sagar Ingavale
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Mohan Gopalakrishnan
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Carolin Mercy Enoch
- Department of Chemistry, SRM Institute of Science & Technology, Kattankulathur, Chennai, 603203, India
| | - Chanon Pornrungroj
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Meena Rittiruam
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
- High-Performance Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supareak Praserthdam
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
- High-Performance Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
- Bio-Circular-Green-economy Technology & Engineering Center (BCGeTEC), Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Anongnat Somwangthanaroj
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Bio-Circular-Green-economy Technology & Engineering Center (BCGeTEC), Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kasadit Nootong
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Bio-Circular-Green-economy Technology & Engineering Center (BCGeTEC), Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rojana Pornprasertsuk
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Petrochemical and Materials Technology, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Niigata, 940-2188, Japan
- Center of Excellence on Advanced Materials for Energy Storage, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Soorathep Kheawhom
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Bio-Circular-Green-economy Technology & Engineering Center (BCGeTEC), Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence on Advanced Materials for Energy Storage, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
14
|
Xiong Y, Wang Y, Zhou J, Liu F, Hao F, Fan Z. Electrochemical Nitrate Reduction: Ammonia Synthesis and the Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304021. [PMID: 37294062 DOI: 10.1002/adma.202304021] [Citation(s) in RCA: 88] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/29/2023] [Indexed: 06/10/2023]
Abstract
Natural nitrogen cycle has been severely disrupted by anthropogenic activities. The overuse of N-containing fertilizers induces the increase of nitrate level in surface and ground waters, and substantial emission of nitrogen oxides causes heavy air pollution. Nitrogen gas, as the main component of air, has been used for mass ammonia production for over a century, providing enough nutrition for agriculture to support world population increase. In the last decade, researchers have made great efforts to develop ammonia processes under ambient conditions to combat the intensive energy consumption and high carbon emission associated with the Haber-Bosch process. Among different techniques, electrochemical nitrate reduction reaction (NO3RR) can achieve nitrate removal and ammonia generation simultaneously using renewable electricity as the power, and there is an exponential growth of studies in this research direction. Here, a timely and comprehensive review on the important progresses of electrochemical NO3RR, covering the rational design of electrocatalysts, emerging CN coupling reactions, and advanced energy conversion and storage systems is provided. Moreover, future perspectives are proposed to accelerate the industrialized NH3 production and green synthesis of chemicals, leading to a sustainable nitrogen cycle via prosperous N-based electrochemistry.
Collapse
Affiliation(s)
- Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
15
|
Gao W, Gao Y, Liu B, Kang J, Zhang Z, Zhang M, Zou Y. Nitrogen-doped carbon material NCM- T heterogeneously catalyzed liquid-phase hydrogenation of nitrobenzene to aniline. RSC Adv 2024; 14:5055-5060. [PMID: 38332788 PMCID: PMC10849082 DOI: 10.1039/d4ra00078a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
As an important chemical intermediate, aniline is primarily produced industrially through catalytic hydrogenation of nitrobenzene. Herein, a series of nitrogen-doped carbon materials (referred to as NCM-T, with T denoting the roasting temperature (°C)) were prepared through high-temperature roasting of sucrose and melamine for the heterogeneous catalytic liquid-phase hydrogenation of nitrobenzene to aniline. A preliminary study of the involved reaction mechanism was performed by combining the results of material characterisation and catalyst evaluation. Experimental results showed that the graphitic N content and the defective sites simultaneously affected the performance of NCM-T in catalysing the hydrazine hydrate reduction in the nitrobenzene hydrogenation reaction. The catalyst NCM-800 was reacted in an ethanol solution with hydrazine hydrate as the reducing agent at 80 °C for 5 h. Notably, the nitrobenzene conversion rate was up to 94%, and the aniline selectivity was 100%. The turnover frequency (TOF) could reach up to 7.9 mol g-1 h-1, and after five recycling cycles, only a small loss of catalytic activity was observed. This shows that the prepared catalyst is a recyclable catalyst that can be used for reducing the nitrobenzene from hydrazine hydrate to aniline.
Collapse
Affiliation(s)
- Wenxiu Gao
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology Jilin 132000 China
| | - Yongping Gao
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology Jilin 132000 China
| | - Bai Liu
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology Jilin 132000 China
| | - Jianing Kang
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology Jilin 132000 China
| | - Zhihui Zhang
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology Jilin 132000 China
| | - Min Zhang
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology Jilin 132000 China
| | - Yongcun Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 China
| |
Collapse
|
16
|
Feng X, Chen G, Cui Z, Qin R, Jiao W, Huang Z, Shang Z, Ma C, Zheng X, Han Y, Huang W. Engineering Electronic Structure of Nitrogen-Carbon Sites by sp 3 -Hybridized Carbon and Incorporating Chlorine to Boost Oxygen Reduction Activity. Angew Chem Int Ed Engl 2024; 63:e202316314. [PMID: 38032121 DOI: 10.1002/anie.202316314] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Development of efficient and easy-to-prepare low-cost oxygen reaction electrocatalysts is essential for widespread application of rechargeable Zn-air batteries (ZABs). Herein, we mixed NaCl and ZIF-8 by simple physical milling and pyrolysis to obtain a metal-free porous electrocatalyst doped with Cl (mf-pClNC). The mf-pClNC electrocatalyst exhibits a good oxygen reduction reaction (ORR) activity (E1/2 =0.91 V vs. RHE) and high stability in alkaline electrolyte, exceeding most of the reported transition metal carbon-based electrocatalysts and being comparable to commercial Pt/C electrocatalysts. Likewise, the mf-pClNC electrocatalyst also shows state-of-the-art ORR activity and stability in acidic electrolyte. From experimental and theoretical calculations, the better ORR activity is most likely originated from the fact that the introduced Cl promotes the increase of sp3 -hybridized carbon, while the sp3 -hybridized carbon and Cl together modify the electronic structure of the N-adjacent carbons, as the active sites, while NaCl molten-salt etching provides abundant paths for the transport of electrons/protons. Furthermore, the liquid rechargeable ZAB using the mf-pClNC electrocatalyst as the cathode shows a fulfilling performance with a peak power density of 276.88 mW cm-2 . Flexible quasi-solid-state rechargeable ZAB constructed with the mf-pClNC electrocatalyst as the cathode exhibits an exciting performance both at low, high and room temperatures.
Collapse
Affiliation(s)
- Xueting Feng
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Guanzhen Chen
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhibo Cui
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Rong Qin
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wensheng Jiao
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zeyi Huang
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ziang Shang
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chao Ma
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Yunhu Han
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Huang
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
17
|
Tian H, Yao Z, Li Z, Guo J, Liu L. Unlocking More Potentials in Two-Dimensional Space: Disorder Engineering in Two-Dimensional Amorphous Carbon. ACS NANO 2023; 17:24468-24478. [PMID: 38015075 DOI: 10.1021/acsnano.3c09593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The theory of the nature of glass has been described as the deepest but unsolved problem in solid state theory. The fundamental understanding of the structural characteristics of glassy materials and disorder-property correspondence remains incomplete due to difficulties in fully characterizing disordered structures in three-dimensional materials. Recently, two-dimensional amorphous materials were treated as an atomic-level playground to uncover previously unknown structure-property relationships in vitreous materials. Here, we summarize recent research on one prototypical material, two-dimensional amorphous carbon, including atomic structural characterizations, controllable synthesis, exotic properties, and application potentials. Fundamental discrepancies only induced by the amorphous nature, when compared with crystalline materials, will be highlighted. Finally, we discuss the restricted definition of two-dimensional amorphous carbon, existing challenges, and future research directions.
Collapse
Affiliation(s)
- Huifeng Tian
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Zhixin Yao
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Zhenjiang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Junjie Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Lei Liu
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
18
|
Qin S, Liu P, Wang J, Liu C, Wang Q, Chen X, Zhang S, Tian Y, Zhang F, Wang L, Wei Z, Cao L, Zhang J, Zhang S. In situ N, O co-doped porous carbon derived from antibiotic fermentation residues as electrode material for high-performance supercapacitors. RSC Adv 2023; 13:24140-24149. [PMID: 37577085 PMCID: PMC10415863 DOI: 10.1039/d3ra04164f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/30/2023] [Indexed: 08/15/2023] Open
Abstract
With the widespread use of antibiotics, the safe utilization of waste antibiotic fermentation residues has become an urgent issue to be resolved. In this study, in situ N, O co-doped porous carbon was prepared using fresh oxytetracycline fermentation residue under the mild activation of the green activator K2CO3. The optimal sample exhibited a 3D grid carbon skeleton structure, excellent specific surface area (SBET = 948 m2 g-1), and high nitrogen and oxygen content (N = 3.42 wt%, O = 14.86 wt%). Benefiting from its developed morphology, this sample demonstrated excellent electrochemical performance with a high specific capacitance of 310 F g-1 at a current density of 0.5 A g-1 in the three-electrode system. Moreover, it exhibited superior cycling stability with only a 5.32% loss of capacity after 10 000 cycles in 6 M KOH aqueous electrolyte. Furthermore, the symmetric supercapacitor prepared from it exhibited a maximum energy density of 7.2 W h kg-1 at a power density of 124.9 W kg-1, demonstrating its promising application prospects. This study provided a green and facile process for the sustainable and harmless treatment of antibiotic fermentation residues.
Collapse
Affiliation(s)
- Shumeng Qin
- Miami College, Henan University Kaifeng 475004 China
| | - Peiliang Liu
- Miami College, Henan University Kaifeng 475004 China
| | - Jieni Wang
- College of Chemistry and Molecular Sciences, Henan University Kaifeng 475004 China
- Miami College, Henan University Kaifeng 475004 China
| | - Chenxiao Liu
- College of Chemistry and Molecular Sciences, Henan University Kaifeng 475004 China
- Miami College, Henan University Kaifeng 475004 China
| | - Qizhao Wang
- Miami College, Henan University Kaifeng 475004 China
| | - Xuanyu Chen
- Miami College, Henan University Kaifeng 475004 China
| | - Shuqin Zhang
- College of Chemistry and Molecular Sciences, Henan University Kaifeng 475004 China
- Miami College, Henan University Kaifeng 475004 China
| | - Yijun Tian
- College of Chemistry and Molecular Sciences, Henan University Kaifeng 475004 China
- Miami College, Henan University Kaifeng 475004 China
| | - Fangfang Zhang
- College of Chemistry and Molecular Sciences, Henan University Kaifeng 475004 China
- Miami College, Henan University Kaifeng 475004 China
| | - Lin Wang
- Miami College, Henan University Kaifeng 475004 China
| | - Zhangdong Wei
- Miami College, Henan University Kaifeng 475004 China
| | - Leichang Cao
- College of Chemistry and Molecular Sciences, Henan University Kaifeng 475004 China
- Miami College, Henan University Kaifeng 475004 China
| | - Jinglai Zhang
- College of Chemistry and Molecular Sciences, Henan University Kaifeng 475004 China
| | - Shicheng Zhang
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University Shanghai 200433 China
| |
Collapse
|
19
|
Yang L, Shao L, Wu Z, Zhan P, Zhang L. Design and Synthesis of Porous Organic Polymers: Promising Catalysts for Lignocellulose Conversion to 5-Hydroxymethylfurfural and Derivates. Polymers (Basel) 2023; 15:2630. [PMID: 37376276 DOI: 10.3390/polym15122630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
In the face of the current energy and environmental problems, the full use of biomass resources instead of fossil energy to produce a series of high-value chemicals has great application prospects. 5-hydroxymethylfurfural (HMF), which can be synthesized from lignocellulose as a raw material, is an important biological platform molecule. Its preparation and the catalytic oxidation of subsequent products have important research significance and practical value. In the actual production process, porous organic polymer (POP) catalysts are highly suitable for biomass catalytic conversion due to their high efficiency, low cost, good designability, and environmentally friendly features. Here, we briefly describe the application of various types of POPs (including COFs, PAFs, HCPs, and CMPs) in the preparation and catalytic conversion of HMF from lignocellulosic biomass and analyze the influence of the structural properties of catalysts on the catalytic performance. Finally, we summarize some challenges that POPs catalysts face in biomass catalytic conversion and prospect the important research directions in the future. This review provides valuable references for the efficient conversion of biomass resources into high-value chemicals in practical applications.
Collapse
Affiliation(s)
- Lei Yang
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lishu Shao
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhiping Wu
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Peng Zhan
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lin Zhang
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
20
|
Zou J, Liang G, Zhang F, Zhang S, Davey K, Guo Z. Revisiting the Role of Discharge Products in Li-CO 2 Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2210671. [PMID: 37171977 DOI: 10.1002/adma.202210671] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/27/2023] [Indexed: 05/14/2023]
Abstract
Rechargeable lithium-carbon dioxide (Li-CO2 ) batteries are promising devices for CO2 recycling and energy storage. However, thermodynamically stable and electrically insulating discharge products (DPs) (e.g., Li2 CO3 ) deposited at cathodes require rigorous conditions for completed decomposition, resulting in large recharge polarization and poor battery reversibility. Although progress has been achieved in cathode design and electrolyte optimization, the significance of DPs is generally underestimated. Therefore, it is necessary to revisit the role of DPs in Li-CO2 batteries to boost overall battery performance. Here, a critical and systematic review of DPs in Li-CO2 batteries is reported for the first time. Fundamentals of reactions for formation and decomposition of DPs are appraised; impacts on battery performance including overpotential, capacity, and stability are demonstrated; and the necessity of discharge product management is highlighted. Practical in situ/operando technologies are assessed to characterize reaction intermediates and the corresponding DPs for mechanism investigation. Additionally, achievable control measures to boost the decomposition of DPs are evidenced to provide battery design principles and improve the battery performance. Findings from this work will deepen the understanding of electrochemistry of Li-CO2 batteries and promote practical applications.
Collapse
Affiliation(s)
- Jinshuo Zou
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Gemeng Liang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Fangli Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
- Institute for Superconducting & Electronic Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Shilin Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Kenneth Davey
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Zaiping Guo
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
21
|
Zhu HL, Zhang L, Shui M, Li ZY, Ma JJ, Zheng YQ. A Novel Manner of Anchoring Cobalt Phthalocyanine on Edge-Defected Carbon for Highly Electrocatalytic CO 2 Reduction. J Phys Chem Lett 2023; 14:3844-3852. [PMID: 37067200 DOI: 10.1021/acs.jpclett.3c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cobalt phthalocyanine anchored on carbon material has attracted an enormous amount of attention due to its superior performance in electrocatalytic CO2 reduction. However, the interaction between cobalt phthalocyanine and the carbon substrate remains problematic, and the role of intrinsic carbon defects is unfortunately ignored in the anchoring of cobalt phthalocyanine on carbon. Herein, new interactions between the bridging N atoms of cobalt phthalocyanine and the edge defects of carbon have been discovered, which result in a novel model of anchoring of cobalt phthalocyanine on ketjen black carbon. Such anchored cobalt phthalocyanine has been found to be responsible for superior catalysis for electrochemical reduction of CO2 to CO with high selectivity and low overpotential.
Collapse
Affiliation(s)
- Hong-Lin Zhu
- Chemistry Institute for Synthesis and Green Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Li Zhang
- Chemistry Institute for Synthesis and Green Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Miao Shui
- Chemistry Institute for Synthesis and Green Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Zhong-Yi Li
- Chemistry Institute for Synthesis and Green Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Jing-Jing Ma
- Chemistry Institute for Synthesis and Green Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yue-Qing Zheng
- Chemistry Institute for Synthesis and Green Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| |
Collapse
|
22
|
Qu H, Li B, Ma Y, Xiao Z, Lv Z, Li Z, Li W, Wang L. Defect-Enriched Hollow Porous Carbon Nanocages Enable Highly Efficient Chlorine Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2301359. [PMID: 37029536 DOI: 10.1002/adma.202301359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/21/2023] [Indexed: 05/30/2023]
Abstract
Metal-free carbon-based catalysts are crucial for the electrocatalytic chlorine evolution reaction (CER) to reduce the usage of noble metals and industrial cost. However, the corresponding catalytic activity of high overpotential and low durability hinders their wide application. Here, a hollow porous carbon (HPC) nanocage with a controlled oxygen electronic state around designed carbon defects for CER activity is reported. Alkali etching can bring defects in zeolite with a hollow structure. In a hard template strategy, the type of carbon defects is directly related to etching degree of the zeolite template. More importantly, the oxygen atoms can be "borrowed" from the zeolite framework by the defective carbon. The electron density around unsaturated O atoms can be decreased on the minor defects in carbon compared with that on large defects which is favorable for the adsorption of Cl- . Consequently, the as-synthesized HPC nanocages with minor defects show excellent electrocatalytic performance for CER with a low overpotential of 94 mV at current density of 10 mA cm-2 with good stability, which is superior to the commercial precious metal catalyst of dimensionally stable anode (DSA), and the best in the reported carbon materials. The designed carbon materials provide an option for metal-free industrial catalysts with significant CER activities.
Collapse
Affiliation(s)
- Huiqi Qu
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Bin Li
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yiru Ma
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zhenyu Xiao
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zhiguo Lv
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zhenjiang Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Wei Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai, Shanghai, 200433, P. R. China
| | - Lei Wang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
23
|
Han GH, Bang J, Park G, Choe S, Jang YJ, Jang HW, Kim SY, Ahn SH. Recent Advances in Electrochemical, Photochemical, and Photoelectrochemical Reduction of CO 2 to C 2+ Products. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205765. [PMID: 36592422 DOI: 10.1002/smll.202205765] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Environmental problems such as global warming are one of the most prominent global challenges. Researchers are investigating various methods for decreasing CO2 emissions. The CO2 reduction reaction via electrochemical, photochemical, and photoelectrochemical processes has been a popular research topic because the energy it requires can be sourced from renewable sources. The CO2 reduction reaction converts stable CO2 molecules into useful products such as CO, CH4 , C2 H4 , and C2 H5 OH. To obtain economic benefits from these products, it is important to convert them into hydrocarbons above C2 . Numerous investigations have demonstrated the uniqueness of the CC coupling reaction of Cu-based catalysts for the conversion of CO2 into useful hydrocarbons above C2 for electrocatalysis. Herein, the principle of semiconductors for photocatalysis is briefly introduced, followed by a description of the obstacles for C2+ production. This review presents an overview of the mechanism of hydrocarbon formation above C2 , along with advances in the improvement, direction, and comprehension of the CO2 reduction reaction via electrochemical, photochemical, and photoelectrochemical processes.
Collapse
Affiliation(s)
- Gyeong Ho Han
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Junbeom Bang
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Gaeun Park
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Seonghyun Choe
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Youn Jeong Jang
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sang Hyun Ahn
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| |
Collapse
|
24
|
Das R, Choudhury D, Maurya R, Sharma S, Neergat M. Influence of Nitrogen Doping into Carbon on the Activation Barrier of ORR in Alkaline Medium: An Investigation Based on Eyring Analysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4351-4361. [PMID: 36933231 DOI: 10.1021/acs.langmuir.2c03359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The oxygen reduction reaction (ORR) is investigated on metal-free carbon (Vulcan XC-72) and nitrogen-doped (∼≤1%) carbon (N/C-900) in 0.1 M KOH. The product distribution (O2 to OH- and HO2-) as a function of overpotential (η) in the temperature range of 293-323 K is analyzed using a rotating ring-disk electrode (RRDE) assembly. The kinetic current due to reduction of O2 to HO2- is estimated and used in the Eyring analysis to determine the change in enthalpy of activation (ΔH#). It is shown that doping of carbon with nitrogen (even with ≤1 wt %) causes substantial increase in the number of active sites (almost 2-fold) and reduction in ΔH# at any η. Moreover, ΔH# is a stronger function of η on N/C-900 as compared to that on the carbon surface.
Collapse
Affiliation(s)
- Rubul Das
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debittree Choudhury
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rajan Maurya
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Shreya Sharma
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Manoj Neergat
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
25
|
Zhao K, Han S, Ke L, Wu X, Yan X, Cao X, Li L, Jiang X, Wang Z, Liu H, Yan N. Operando Studies of Electrochemical Denitrogenation and Its Mitigation of N-Doped Carbon Catalysts in Alkaline Media. ACS Catal 2023; 13:2813-2821. [PMID: 36910874 PMCID: PMC9990068 DOI: 10.1021/acscatal.2c05590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/17/2023] [Indexed: 02/11/2023]
Abstract
N-doped carbons (NCs) have excellent electrocatalytic performance in oxygen reduction reaction, particularly in alkaline conditions, showing great promise of replacing commercial Pt/C catalysts in fuel cells and metal-air batteries. However, NCs are vulnerable when biased at high potentials, which suffer from denitrogenation and carbon corrosion. Such material degradation drastically undermines the activity, yet its dynamic evolution in response to the applied potentials is challenging to examine experimentally. In this work, we used differential electrochemical mass spectroscopy coupled with an optimized cell and observed the dynamic behaviors of NCs under operando conditions in KOH electrolyte. The corrosion of carbon occurred at ca. 1.2 V vs RHE, which was >0.3 V below the measured onset potential of water oxidation. Denitrogenation proceeded in parallel with carbon corrosion, releasing both NO and NO2. Combined with the ex situ characterizations and density-functional theory calculations, we identified that the pyridinic nitrogen moieties were particularly in peril. Three denitrogenation pathways were also proposed. Finally, we demonstrated that transferring the oxidation reaction sites to the well-deposited metal hydroxide with optimized loading was effective in suppressing the N leaching. This work showed the dynamic evolution of NC under potential bias and might cast light on understanding and mitigating NC deactivation for practical applications.
Collapse
Affiliation(s)
- Kai Zhao
- School
of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Shihao Han
- School
of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Le Ke
- School
of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xiaoyu Wu
- School
of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xiaoyu Yan
- School
of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xiaojuan Cao
- School
of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Lingjiao Li
- School
of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xiaoyi Jiang
- School
of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Zhiping Wang
- School
of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Huijun Liu
- School
of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ning Yan
- School
of Physics and Technology, Wuhan University, Wuhan 430072, China
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Amsterdam 1098XH, The Netherlands
| |
Collapse
|
26
|
Wu H, Luan Y. Achieving near-Pt hydrogen production on defect nanocarbon via the synergy between carbon defects and heteroatoms. Chem Commun (Camb) 2023; 59:1995-1998. [PMID: 36723089 DOI: 10.1039/d2cc06895h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The effect of the synergy between vacancy defects and a phosphorus dopant on the hydrogen evolution reaction (HER) of nanocarbon was revealed for the first time both experimentally and theoretically, and the as-prepared catalysts show near-Pt HER activities, which are the best among metal-free catalysts.
Collapse
Affiliation(s)
- Hao Wu
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education of China), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| | - Yuting Luan
- School of Food Engineering, Harbin University, Harbin 150080, China
| |
Collapse
|
27
|
Li C, Yan L, Wang M, Kong J, Bao W, Chang L. Synthesis Strategies and Applications for Pitch-Based Anode: From Industrial By-Products to Power Sources. CHEM REC 2023; 23:e202200216. [PMID: 36344434 DOI: 10.1002/tcr.202200216] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/14/2022] [Indexed: 11/09/2022]
Abstract
It is significant for saving energy to manufacture superb-property batteries. Carbon is one of the most competitive anode materials in batteries, but it is hard for commercial graphite anodes to meet the increasingly higher energy-storage requirements. Moreover, the price of other better-performing carbon materials (such as graphene) is much higher than graphite, which is not conducive to massive production. Pitch, the cheap by-product in the petroleum and coal industries, has high carbon content and yield, making it possible for commercialization. Developing pitch-based anodes can not only lower raw material costs but also realize the pitch's high value-added utilization. We comprehensively reviewed the latest synthesis strategies of pitch-derived materials and then introduced their application and research progress in lithium, sodium, and potassium ion batteries (LIBs, SIBs, and PIBs). Finally, we summarize and suggest the pitch's development trend for anodes and in other fields.
Collapse
Affiliation(s)
- Cen Li
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, China.,Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Lunjing Yan
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, China.,Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Meijun Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, China.,Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jiao Kong
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, China.,Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Weiren Bao
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, China.,Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Liping Chang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, China.,Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
28
|
Nickel phthalocyanine modified fruit-peel-derived carbon framework selectively electro-catalyzes CO2-to-CO conversion. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
29
|
Savić M, Janošević Ležaić A, Gavrilov N, Pašti I, Nedić Vasiljević B, Krstić J, Ćirić-Marjanović G. Carbonization of MOF-5/Polyaniline Composites to N,O-Doped Carbon/ZnO/ZnS and N,O-Doped Carbon/ZnO Composites with High Specific Capacitance, Specific Surface Area and Electrical Conductivity. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1018. [PMID: 36770026 PMCID: PMC9919207 DOI: 10.3390/ma16031018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Composites of carbons with metal oxides and metal sulfides have attracted a lot of interest as materials for energy conversion and storage applications. Herein, we report on novel N,O-doped carbon/ZnO/ZnS and N,O-doped carbon/ZnO composites (generally named C-(MOF-5/PANI)), synthesized by the carbonization of metal-organic framework MOF-5/polyaniline (PANI) composites. The produced C-(MOF-5/PANI)s are comprehensively characterized in terms of composition, molecular and crystalline structure, morphology, electrical conductivity, surface area, and electrochemical behavior. The composition and properties of C-(MOF-5/PANI) composites are dictated by the composition of MOF-5/PANI precursors and the form of PANI (conducting emeraldine salt (ES) or nonconducting emeraldine base). The ZnS phase is formed only with the PANI-ES form due to S-containing counter-ions. XRPD revealed that ZnO and ZnS existed as pure wurtzite crystalline phases. PANI and MOF-5 acted synergistically to produce C-(MOF-5/PANI)s with high SBET (up to 609 m2 g-1), electrical conductivity (up to 0.24 S cm-1), and specific capacitance, Cspec, (up to 238.2 F g-1 at 10 mV s-1). Values of Cspec commensurated with N content in C-(MOF-5/PANI) composites (1-10 wt.%) and overcame Cspec of carbonized individual components PANI and MOF-5. By acid etching treatment of C-(MOF-5/PANI), SBET and Cspec increased to 1148 m2 g-1 and 341 F g-1, respectively. The developed composites represent promising electrode materials for supercapacitors.
Collapse
Affiliation(s)
- Marjetka Savić
- Vinča Institute of Nuclear Science, University of Belgrade, National Institute of the Republic of Serbia, P.O. Box 522, 11001 Belgrade, Serbia
| | | | - Nemanja Gavrilov
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Igor Pašti
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Bojana Nedić Vasiljević
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Jugoslav Krstić
- Department of Catalysis and Chemical Engineering, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Gordana Ćirić-Marjanović
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| |
Collapse
|
30
|
He S, Wu M, Li S, Jiang Z, Hong H, Cloutier SG, Yang H, Omanovic S, Sun S, Zhang G. Research Progress on Graphite-Derived Materials for Electrocatalysis in Energy Conversion and Storage. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248644. [PMID: 36557778 PMCID: PMC9782663 DOI: 10.3390/molecules27248644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
High-performance electrocatalysts are critical to support emerging electrochemical energy storage and conversion technologies. Graphite-derived materials, including fullerenes, carbon nanotubes, and graphene, have been recognized as promising electrocatalysts and electrocatalyst supports for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and carbon dioxide reduction reaction (CO2RR). Effective modification/functionalization of graphite-derived materials can promote higher electrocatalytic activity, stability, and durability. In this review, the mechanisms and evaluation parameters for the above-outlined electrochemical reactions are introduced first. Then, we emphasize the preparation methods for graphite-derived materials and modification strategies. We further highlight the importance of the structural changes of modified graphite-derived materials on electrocatalytic activity and stability. Finally, future directions and perspectives towards new and better graphite-derived materials are presented.
Collapse
Affiliation(s)
- Shuaijie He
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Mingjie Wu
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC H3A 0C5, Canada
- Institut National de la Recherche Scientifique (INRS), Centre Énergie Matériaux Télécommunications, Varennes, QC J3X 1P7, Canada
- Correspondence: (M.W.); (H.Y.); (S.O.); (G.Z.)
| | - Song Li
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhiyi Jiang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hanlie Hong
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Sylvain G. Cloutier
- Department of Electrical Engineering, École de Technologie Supérieure (ÉTS), Montreal, QC H3C 1K3, Canada
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Correspondence: (M.W.); (H.Y.); (S.O.); (G.Z.)
| | - Sasha Omanovic
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC H3A 0C5, Canada
- Correspondence: (M.W.); (H.Y.); (S.O.); (G.Z.)
| | - Shuhui Sun
- Institut National de la Recherche Scientifique (INRS), Centre Énergie Matériaux Télécommunications, Varennes, QC J3X 1P7, Canada
| | - Gaixia Zhang
- Department of Electrical Engineering, École de Technologie Supérieure (ÉTS), Montreal, QC H3C 1K3, Canada
- Correspondence: (M.W.); (H.Y.); (S.O.); (G.Z.)
| |
Collapse
|
31
|
Massaglia G, Quaglio M. 3D Composite PDMS/MWCNTs Aerogel as High-Performing Anodes in Microbial Fuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4335. [PMID: 36500961 PMCID: PMC9736451 DOI: 10.3390/nano12234335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Porous 3D composite materials are interesting anode electrodes for single chamber microbial fuel cells (SCMFCs) since they exploit a surface layer that is able to achieve the correct biocompatibility for the proliferation of electroactive bacteria and have an inner charge transfer element that favors electron transfer and improves the electrochemical activity of microorganisms. The crucial step is to fine-tune the continuous porosity inside the anode electrode, thus enhancing the bacterial growth, adhesion, and proliferation, and the substrate's transport and waste products removal, avoiding pore clogging. To this purpose, a novel approach to synthetize a 3D composite aerogel is proposed in the present work. A 3D composite aerogel, based on polydimethylsiloxane (PDMS) and multi-wall carbon nanotubes (MWCNTs) as a conductive filler, was obtained by pouring this mixture over the commercial sugar, used as removable template to induce and tune the hierarchical continuous porosity into final nanostructures. In this scenario, the granularity of the sugar directly affects the porosities distribution inside the 3D composite aerogel, as confirmed by the morphological characterizations implemented. We demonstrated the capability to realize a high-performance bioelectrode, which showed a 3D porous structure characterized by a high surface area typical of aerogel materials, the required biocompatibility for bacterial proliferations, and an improved electron pathway inside it. Indeed, SCMFCs with 3D composite aerogel achieved current densities of (691.7 ± 9.5) mA m-2, three orders of magnitude higher than commercial carbon paper, (287.8 ± 16.1) mA m-2.
Collapse
Affiliation(s)
- Giulia Massaglia
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
- Center for Sustainable Future Technologies@ POLITO, Istituto Italiano di Tecnologia, 10100 Torino, Italy
| | - Marzia Quaglio
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
- Center for Sustainable Future Technologies@ POLITO, Istituto Italiano di Tecnologia, 10100 Torino, Italy
| |
Collapse
|
32
|
Feng S, Zhao C, Zhao T, Tian Y, Yan L. Efficient reduction of nitrobenzene to aniline by metal-free B-doped graphdiyne. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Meng F, Yan H, Zhou X, Zeng J, Zhou X, Liu Y, Feng X, Chen D, Yang C. Carbon-Based Metal-Free Catalysts for Selective Oxidation of Glycerol to Glycolic Acid. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Chen F, Huang GY, Wang KA, Zhu HB. Metal–Organic-Framework-Derived Atomically Dispersed Mn–N–C Electrocatalysts Boosting Oxygen Reduction Modulated by Anion Exchange of Permanganate. Inorg Chem 2022; 61:18759-18768. [DOI: 10.1021/acs.inorgchem.2c03295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Feng Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Gao-Yuan Huang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ke-An Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Hai-Bin Zhu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
35
|
Fan M, Cui L, He X, Zou X. Emerging Heterogeneous Supports for Efficient Electrocatalysis. SMALL METHODS 2022; 6:e2200855. [PMID: 36070422 DOI: 10.1002/smtd.202200855] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Electrocatalysis plays a fundamental role in many fields, such as metallurgy, medicine, chemical industry, and energy conversion. Anchoring active electrocatalysts with controllable loading and uniform dispersion onto suitable supports has become an attractive topic. This is because the supports can not only have the potential to improve catalytic activity and stability through the interaction between support and catalytic center, but also can reduce precious metal consumption by improving atomic utilization. Herein, recent theoretical and experimental progresses concerning the development of supports to anchor electrocatalytic materials are first reviewed. Next, their controllable syntheses, characterization techniques, metal-support electronic interactions, and structure-performance relationships are presented. Some representative carbon supports and non-carbonaceous supports, as well as recently reported star supports such as 2D supports, single atom catalysts, and self-supported catalysts are also summarized. In addition, the significant role of support in stabilizing and regulating catalytic active sites is particularly emphasized. Finally, challenges, opportunities, key problems, and further promising solutions for supported catalysts are proposed.
Collapse
Affiliation(s)
- Meihong Fan
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Lili Cui
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Xingquan He
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
36
|
Ling LL, Jiao L, Liu X, Dong Y, Yang W, Zhang H, Ye B, Chen J, Jiang HL. Potassium-Assisted Fabrication of Intrinsic Defects in Porous Carbons for Electrocatalytic CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205933. [PMID: 35948462 DOI: 10.1002/adma.202205933] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/24/2022] [Indexed: 06/15/2023]
Abstract
The fabrication of intrinsic carbon defects is usually tangled with doping effects, and the identification of their unique roles in catalysis remains a tough task. Herein, a K+ -assisted synthetic strategy is developed to afford porous carbon (K-defect-C) with abundant intrinsic defects and complete elimination of heteroatom via direct pyrolysis of K+ -confined metal-organic frameworks (MOFs). Positron-annihilation lifetime spectroscopy, X-ray absorption fine structure measurement, and scanning transmission electron microscopy jointly illustrate the existence of abundant 12-vacancy-type carbon defects (V12 ) in K-defect-C. Remarkably, the K-defect-C achieves ultrahigh CO Faradaic efficiency (99%) at -0.45 V in CO2 electroreduction, far surpassing MOF-derived carbon without K+ etching. Theoretical calculations reveal that the V12 defects in K-defect-C favor CO2 adsorption and significantly accelerate the formation of the rate-determining COOH* intermediate, thereby promoting CO2 reduction. This work develops a novel strategy to generate intrinsic carbon defects and provides new insights into their critical role in catalysis.
Collapse
Affiliation(s)
- Li-Li Ling
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Long Jiao
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaoshuo Liu
- School of Energy and Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, P. R. China
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, P. R. China
| | - Yun Dong
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Weijie Yang
- School of Energy and Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, P. R. China
| | - Hongjun Zhang
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Bangjiao Ye
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jun Chen
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Innovation Campus, Wollongong, NSW, 2522, Australia
| | - Hai-Long Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
37
|
Chandrakala K, Giddaerappa, Venugopala Reddy K, Shivaprasad K. Investigational undertaking descriptors for reduced graphene oxide-phthalocyanine composite based catalyst for electrochemical oxygen evolution reaction. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Wu Q, Jia Y, Liu Q, Mao X, Guo Q, Yan X, Zhao J, Liu F, Du A, Yao X. Ultra-dense carbon defects as highly active sites for oxygen reduction catalysis. Chem 2022. [DOI: 10.1016/j.chempr.2022.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
39
|
Gao Y, Zhao J, Lian J, Chen X, Zhu Q, Wang X. Co‐N as a Promoter towards Modulation Surface Chemistry of PtCo Alloy on 2D Thin Layer Hierarchical Porous Nitrogen‐Carbon for the Efficient Oxygen Reduction Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202201212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yu Gao
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 PR China
| | - Jinyu Zhao
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 PR China
| | - Jie Lian
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 PR China
| | - Xu Chen
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 PR China
| | - Qijia Zhu
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 PR China
| | - Xiaomin Wang
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 PR China
| |
Collapse
|
40
|
|
41
|
Zhan X, Tong X, Gu M, Tian J, Gao Z, Ma L, Xie Y, Chen Z, Ranganathan H, Zhang G, Sun S. Phosphorus-Doped Graphene Electrocatalysts for Oxygen Reduction Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1141. [PMID: 35407259 PMCID: PMC9000525 DOI: 10.3390/nano12071141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 12/12/2022]
Abstract
Developing cheap and earth-abundant electrocatalysts with high activity and stability for oxygen reduction reactions (ORRs) is highly desired for the commercial implementation of fuel cells and metal-air batteries. Tremendous efforts have been made on doped-graphene catalysts. However, the progress of phosphorus-doped graphene (P-graphene) for ORRs has rarely been summarized until now. This review focuses on the recent development of P-graphene-based materials, including the various synthesis methods, ORR performance, and ORR mechanism. The applications of single phosphorus atom-doped graphene, phosphorus, nitrogen-codoped graphene (P, N-graphene), as well as phosphorus, multi-atoms codoped graphene (P, X-graphene) as catalysts, supporting materials, and coating materials for ORR are discussed thoroughly. Additionally, the current issues and perspectives for the development of P-graphene materials are proposed.
Collapse
Affiliation(s)
- Xinxing Zhan
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China; (X.Z.); (M.G.); (J.T.); (Z.G.); (L.M.)
| | - Xin Tong
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China; (X.Z.); (M.G.); (J.T.); (Z.G.); (L.M.)
- Key Laboratory of Low-Dimensional Materials and Big data, Guizhou Minzu University, Guiyang 550025, China;
| | - Manqi Gu
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China; (X.Z.); (M.G.); (J.T.); (Z.G.); (L.M.)
| | - Juan Tian
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China; (X.Z.); (M.G.); (J.T.); (Z.G.); (L.M.)
| | - Zijian Gao
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China; (X.Z.); (M.G.); (J.T.); (Z.G.); (L.M.)
| | - Liying Ma
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China; (X.Z.); (M.G.); (J.T.); (Z.G.); (L.M.)
| | - Yadian Xie
- Key Laboratory of Low-Dimensional Materials and Big data, Guizhou Minzu University, Guiyang 550025, China;
| | - Zhangsen Chen
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique (INRS), 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada; (Z.C.); (H.R.); (G.Z.)
| | - Hariprasad Ranganathan
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique (INRS), 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada; (Z.C.); (H.R.); (G.Z.)
| | - Gaixia Zhang
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique (INRS), 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada; (Z.C.); (H.R.); (G.Z.)
| | - Shuhui Sun
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique (INRS), 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada; (Z.C.); (H.R.); (G.Z.)
| |
Collapse
|
42
|
Das BK, Sen D, Chattopadhyay KK. Mechanism of Oxygen Reduction Reaction in Alkaline Medium on Nitrogen-Doped Graphyne and Graphdiyne Families: A First Principles Study. Chemphyschem 2022; 23:e202100900. [PMID: 35322523 DOI: 10.1002/cphc.202100900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/14/2022] [Indexed: 11/08/2022]
Abstract
Using extensive first principles protocols, a systematic investigation is performed to probe the oxygen reduction reaction (ORR) mechanism on nitrogen (N) doped graphynes (Gys, e. g. αGy, βGy, γGy and 6,6,12Gy) and graphdiyne (Gdy) in alkaline medium. We considered both associative and dissociative pathways, as well as two distinct intermediate forks for each of them depending on the first protonation site(s). Following the dissociative approach, the activation energy to form an O2 dissociated configuration is found as a function of the distances migrated by the O atoms over the catalyst surface and the amount of charge transferred from the C atoms linked to N. N doped αGy and 6,6,12Gy emerged as the best electrocatalyst comparing both pathways having lowest overpotentials of 0.88 and 0.82 V, respectively. The rate-limiting steps for the two different intermediate routes are observed to be dependent on the first protonation site(s) and related to the desorption of the OH radical from the sp hybridized C atom site(s) linked to N. Hence, the OH adsorption energy is identified as a descriptor for the efficiency of the ORR for the considered systems. The stabilities of the ORR intermediates are further elaborated in terms of pH and electrode potential.
Collapse
Affiliation(s)
- Bikram Kumar Das
- Thin Film and NanoScience Laboratory, Department of Physics, Jadavpur University, Kolkata, 700032, India
| | - Dipayan Sen
- Thin Film and NanoScience Laboratory, Department of Physics, Jadavpur University, Kolkata, 700032, India.,Current Address: Department of Physics, University of Calcutta, Kolkata, 700009, India
| | - K K Chattopadhyay
- Thin Film and NanoScience Laboratory, Department of Physics, Jadavpur University, Kolkata, 700032, India.,School of Materials Science & Nanotechnology, Jadavpur University, Kolkata, 700032, India
| |
Collapse
|
43
|
Zaera F. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts? Chem Rev 2022; 122:8594-8757. [PMID: 35240777 DOI: 10.1021/acs.chemrev.1c00905] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A critical review of different prominent nanotechnologies adapted to catalysis is provided, with focus on how they contribute to the improvement of selectivity in heterogeneous catalysis. Ways to modify catalytic sites range from the use of the reversible or irreversible adsorption of molecular modifiers to the immobilization or tethering of homogeneous catalysts and the development of well-defined catalytic sites on solid surfaces. The latter covers methods for the dispersion of single-atom sites within solid supports as well as the use of complex nanostructures, and it includes the post-modification of materials via processes such as silylation and atomic layer deposition. All these methodologies exhibit both advantages and limitations, but all offer new avenues for the design of catalysts for specific applications. Because of the high cost of most nanotechnologies and the fact that the resulting materials may exhibit limited thermal or chemical stability, they may be best aimed at improving the selective synthesis of high value-added chemicals, to be incorporated in organic synthesis schemes, but other applications are being explored as well to address problems in energy production, for instance, and to design greener chemical processes. The details of each of these approaches are discussed, and representative examples are provided. We conclude with some general remarks on the future of this field.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
44
|
Liu L, Li W, He X, Yang J, Liu N. In Situ/Operando Insights into the Stability and Degradation Mechanisms of Heterogeneous Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104205. [PMID: 34741400 DOI: 10.1002/smll.202104205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/11/2021] [Indexed: 06/13/2023]
Abstract
The further commercialization of renewable energy conversion and storage technologies requires heterogeneous electrocatalysts that meet the exacting durability target. Studies of the stability and degradation mechanisms of electrocatalysts are expected to provide important breakthroughs in stability issues. Accessible in situ/operando techniques performed under realistic reaction conditions are therefore urgently needed to reveal the nature of active center structures and establish links between the structural motifs in a catalyst and its stability properties. This review highlights recent research advances regarding in situ/operando techniques and improves the understanding of the stabilities of advanced heterogeneous electrocatalysts used in a diverse range of electrochemical reactions; it also proposes some degradation mechanisms. The review concludes by offering suggestions for future research.
Collapse
Affiliation(s)
- Lindong Liu
- College of Resources and Environment, College of Sericulture,Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Zhejiang, 312000, China
| | - Wanting Li
- College of Resources and Environment, College of Sericulture,Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Xianbo He
- College of Resources and Environment, College of Sericulture,Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Jiao Yang
- College of Resources and Environment, College of Sericulture,Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Nian Liu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
45
|
Riaño A, Strutyński K, Liu M, Stoppiello CT, Lerma‐Berlanga B, Saeki A, Martí‐Gastaldo C, Khlobystov AN, Valenti G, Paolucci F, Melle‐Franco M, Mateo‐Alonso A. An Expanded 2D Fused Aromatic Network with 90‐Ring Hexagons. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Alberto Riaño
- POLYMAT University of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastián Spain
| | - Karol Strutyński
- CICECO-Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - Meng Liu
- Dipartimento di Chimica “Giacomo Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Craig T. Stoppiello
- School of Chemistry University of Nottingham University Park Nottingham UK
- Nanoscale and Microscale Research Centre University of Nottingham University Park Nottingham UK
| | - Belén Lerma‐Berlanga
- Instituto de Ciencia Molecular (ICMol) Universitat de València Paterna 46980 València Spain
| | - Akinori Saeki
- Department of Applied Chemistry Graduate School of Engineering Osaka University Suita Osaka 565-0871 Japan
| | - Carlos Martí‐Gastaldo
- Instituto de Ciencia Molecular (ICMol) Universitat de València Paterna 46980 València Spain
| | | | - Giovanni Valenti
- Dipartimento di Chimica “Giacomo Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Francesco Paolucci
- Dipartimento di Chimica “Giacomo Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Manuel Melle‐Franco
- CICECO-Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - Aurelio Mateo‐Alonso
- POLYMAT University of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastián Spain
- Ikerbasque Basque Foundation for Science 48009 Bilbao Spain
| |
Collapse
|
46
|
Riaño A, Strutyński K, Liu M, Stoppiello CT, Lerma‐Berlanga B, Saeki A, Martí‐Gastaldo C, Khlobystov AN, Valenti G, Paolucci F, Melle‐Franco M, Mateo‐Alonso A. An Expanded 2D Fused Aromatic Network with 90-Ring Hexagons. Angew Chem Int Ed Engl 2022; 61:e202113657. [PMID: 34748268 PMCID: PMC9300145 DOI: 10.1002/anie.202113657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Indexed: 11/07/2022]
Abstract
Two-dimensional fused aromatic networks (2D FANs) have emerged as a highly versatile alternative to holey graphene. The synthesis of 2D FANs with increasingly larger lattice dimensions will enable new application perspectives. However, the synthesis of larger analogues is mostly limited by lack of appropriate monomers and methods. Herein, we describe the synthesis, characterisation and properties of an expanded 2D FAN with 90-ring hexagons, which exceed the largest 2D FAN lattices reported to date.
Collapse
Affiliation(s)
- Alberto Riaño
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastiánSpain
| | - Karol Strutyński
- CICECO-Aveiro Institute of MaterialsDepartment of ChemistryUniversity of Aveiro3810-193AveiroPortugal
| | - Meng Liu
- Dipartimento di Chimica “Giacomo Ciamician”Via Selmi 240126BolognaItaly
| | - Craig T. Stoppiello
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamUK
- Nanoscale and Microscale Research CentreUniversity of NottinghamUniversity ParkNottinghamUK
| | - Belén Lerma‐Berlanga
- Instituto de Ciencia Molecular (ICMol)Universitat de ValènciaPaterna46980ValènciaSpain
| | - Akinori Saeki
- Department of Applied ChemistryGraduate School of EngineeringOsaka UniversitySuitaOsaka565-0871Japan
| | - Carlos Martí‐Gastaldo
- Instituto de Ciencia Molecular (ICMol)Universitat de ValènciaPaterna46980ValènciaSpain
| | | | - Giovanni Valenti
- Dipartimento di Chimica “Giacomo Ciamician”Via Selmi 240126BolognaItaly
| | | | - Manuel Melle‐Franco
- CICECO-Aveiro Institute of MaterialsDepartment of ChemistryUniversity of Aveiro3810-193AveiroPortugal
| | - Aurelio Mateo‐Alonso
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastiánSpain
- IkerbasqueBasque Foundation for Science48009BilbaoSpain
| |
Collapse
|
47
|
Zhao Y, Sun Q, Liu X, Li D, Xing S. Cu/Co/CoS2 embedded in S,N doped carbon as highly-efficient oxygen reduction and evolution electrocatalyst for rechargeable zinc-air batteries. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01605a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to improve the retarded oxygen reduction and evolution reaction (ORR/OER) in rechargeable metal-air cells in electrochemical energy conversion systems, constructing multiphase nanostructured catalysts is an alternative strategy, where...
Collapse
|
48
|
Xu Z, Wang T, Li J, Zhang F, Lou H, Zhang J, Zhang W, Zhang W, Zhou B. Nanosized porous artificial enzyme as a pH-sensitive doxorubicin delivery system for joint enzymatic and chemotherapy towards tumor treatment. NEW J CHEM 2022. [DOI: 10.1039/d2nj02031a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A porous spherical artificial nanozyme (HF-900) prepared via pyrolysis of a porous organic polymer was used as drug carrier for efficient loading and highly selective pH-responsive delivery of doxorubicin (DOX) for the tumor joint nanotherapy.
Collapse
Affiliation(s)
- Zhilu Xu
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Ting Wang
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Jing Li
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Fang Zhang
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Han Lou
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Jian Zhang
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Wenhua Zhang
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Weifen Zhang
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Baolong Zhou
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| |
Collapse
|
49
|
Chen Y, Yin Z, Huang D, Lei L, Chen S, Yan M, Du L, Xiao R, Cheng M. Uniform polypyrrole electrodeposition triggered by phytic acid-guided interface engineering for high energy density flexible supercapacitor. J Colloid Interface Sci 2021; 611:356-365. [PMID: 34959009 DOI: 10.1016/j.jcis.2021.12.090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/19/2022]
Abstract
Unevenly distributed polypyrrole (PPy) films/coatings with extensive "dead volumes" via electrodeposition have emerged as a main challenge for high energy density flexible supercapacitor. In this work, we have fabricated a phytic acid-guided graphite carbon felt/polypyrrole (GF@PA@PPy) 3D porous composite with less "dead volumes" via electrodeposition. After the activation of phytic acid (PA), the quantity and content of defects and oxygen-containing groups on the surface of carbon felt (GF) have increased. First, these functional groups improve the hydrophilicity of the surface of GF, resulting in the preferential uniform distribution of pyrrole monomer (Py). While significantly, the synergistic effects between the defects and oxygen-containing groups boost the attraction of pyrrole ring, and thus promotes the formation of perfect PPy films with less "dead volume" on GF. Finally, the supercapacitor assembled from the GF@PA@PPy-40 displays a high areal energy density of 0.0732 mWh cm-2, exceeding the previously reported PPy-based electrodes values. The deeper understanding of the role for the defects and oxygen-containing groups in the synthesis of PPy/carbon materials offers a new strategy to construct advanced PPy-based supercapacitors.
Collapse
Affiliation(s)
- Yashi Chen
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zhuo Yin
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China.
| | - Danlian Huang
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| | - Lei Lei
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Sha Chen
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Ming Yan
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Li Du
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Ruihao Xiao
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Min Cheng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| |
Collapse
|
50
|
Wu Y, Yang J, Tu T, Li W, Zhang P, Zhou Y, Li J, Li J, Sun S. Evolution of Cationic Vacancy Defects: A Motif for Surface Restructuration of OER Precatalyst. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yi‐jin Wu
- College of Energy Xiamen University Xiamen 361005 China
- Hunan Engineering Research Center for monitoring and treatment of heavy metals pollution in the upper reaches of XiangJiang River Key Laboratory of Functional Metal-Organic Compounds of Hunan Province College of Chemistry and Material Science Hengyang Normal University Hengyang 421001 China
| | - Jian Yang
- State Key Lab of Physical Chemistry of Solid Surface College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Teng‐xiu Tu
- College of Energy Xiamen University Xiamen 361005 China
- Hunan Engineering Research Center for monitoring and treatment of heavy metals pollution in the upper reaches of XiangJiang River Key Laboratory of Functional Metal-Organic Compounds of Hunan Province College of Chemistry and Material Science Hengyang Normal University Hengyang 421001 China
| | - Wei‐qiong Li
- State Key Lab of Physical Chemistry of Solid Surface College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Peng‐fang Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology School of Chemistry and Chemical Engineering Liaocheng University Liaocheng 252000 P. R. China
| | - Yao Zhou
- College of Energy Xiamen University Xiamen 361005 China
| | - Jian‐feng Li
- State Key Lab of Physical Chemistry of Solid Surface College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Jun‐tao Li
- College of Energy Xiamen University Xiamen 361005 China
| | - Shi‐Gang Sun
- State Key Lab of Physical Chemistry of Solid Surface College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|