1
|
Chen Y, Li K, Du H, Yao Y, Xie D, Zhou Z. Breaking Barriers in Oncology: Harnessing Sonodynamic Therapy for Enhanced Tumor Metabolism Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502323. [PMID: 40317653 DOI: 10.1002/smll.202502323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/01/2025] [Indexed: 05/07/2025]
Abstract
The recent booming development of sonometabolism regulation in controlling the tumor microenvironment (TME) has opened a new research area to identify innovative approaches against cancer. The aim of this review is to highlight the potentials and advantages of sonodynamic therapy (SDT) in antitumor nanotherapies, specifically, delineating the progress made in SDT concerning the regulation of TME metabolism which encompasses factors such as hypoxia, redox balance, autophagy, immunosuppression, ion homeostasis, and other metabolic processes. By focusing on both tumor cell metabolism and TME dynamics, a wide range of SDT strategies that have demonstrated great therapeutic effectiveness by targeting the metabolic functions inherent to TME are summarized. In conclusion, this review offers valuable insights for researchers involved in SDT-based antitumor therapeutic strategies, with the aim of advancing the development of antitumor SDT methodologies in future research.
Collapse
Affiliation(s)
- Yangmengfan Chen
- Department of Orthopedics and Research Institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kun Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Hao Du
- Department of Orthopedics and Research Institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yangcheng Yao
- Center for Reproductive Medicine, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Zongke Zhou
- Department of Orthopedics and Research Institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Cui D, Kong N, Yang W, Yan F. Recent advances in nanoarchitectonics of two-dimensional nanomaterials for dental biosensing and drug delivery. Adv Colloid Interface Sci 2025; 337:103388. [PMID: 39754906 DOI: 10.1016/j.cis.2024.103388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
Two-dimensional (2D) nanoarchitectonics involve the creation of functional material assemblies and structures at the nanoscopic level by combining and organizing nanoscale components through various strategies, such as chemical and physical reforming, atomic and molecular manipulation, and self-assembly. Significant advancements have been made in the field, with the goal of producing functional materials from these nanoscale components. 2D nanomaterials, in particular, have gained substantial attention due to their large surface areas which are ideal for numerous surface-active applications. In this review article, nanoarchitectonics of 2D nanomaterials based biomedical applications are discussed. We aim to provide a concise overview of how nanoarchitectonics using 2D nanomaterials can be applied to dental healthcare, with an emphasis on biosensing and drug delivery. By offering a deeper understanding of nanoarchitectonics with programmable structures and predictable properties, we hope to inspire new innovations in the dental bioapplications of 2D nanomaterials.
Collapse
Affiliation(s)
- Di Cui
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008, China; School of Life and Environmental Sciences, Centre for Sustainable Bioproducts, Deakin University Waurn Ponds, Victoria, 3216, Australia
| | - Na Kong
- School of Life and Environmental Sciences, Centre for Sustainable Bioproducts, Deakin University Waurn Ponds, Victoria, 3216, Australia
| | - Wenrong Yang
- School of Life and Environmental Sciences, Centre for Sustainable Bioproducts, Deakin University Waurn Ponds, Victoria, 3216, Australia.
| | - Fuhua Yan
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
3
|
Vranic S, Kurapati R, Kostarelos K, Bianco A. Biological and environmental degradation of two-dimensional materials. Nat Rev Chem 2025; 9:173-184. [PMID: 39794485 DOI: 10.1038/s41570-024-00680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2024] [Indexed: 01/13/2025]
Abstract
As the use of two-dimensional materials continues to grow, so too does the need to understand the environmental and biological impact of such materials. Degradation is a critical step in the life cycle of any material, but the majority of such knowledge is obtained from test tube and in vitro studies. Therefore, there remains a gap in understanding the degradability of two-dimensional materials in complex systems (in vivo) and in different ambient environments. In this Review, we highlight the need for more data-driven studies on the degradation of two-dimensional materials, including their kinetics, by-products, stability and possible downstream effects. Although challenging, building an understanding of the degradation profiles of different advanced materials in various environments at the chemical and molecular level is essential.
Collapse
Affiliation(s)
- Sandra Vranic
- Nano-Cell Biology Lab, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Centre for Nanotechnology in Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Rajendra Kurapati
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India
| | - Kostas Kostarelos
- Centre for Nanotechnology in Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Nanomedicine Lab, Catalan Institute of Nanoscience and Nanotechnology (ICN2) Campus UAB Bellaterra, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France.
| |
Collapse
|
4
|
Sarma N, Das H, Saikia P. Borophene: The Frontier of Next-Generation Sensor Applications. ACS Sens 2025; 10:622-641. [PMID: 39932539 DOI: 10.1021/acssensors.4c03289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Two-dimensional (2D) materials have captivated scientific imagination, and among this proliferating cadre of 2D compounds, borophene; a single layer of boron atoms emerges as a nonpareil substance owing to its distinctive structural, electronic, and mechanical properties. This review investigates the extraordinary properties that borophene possesses, notably in its χ3 and β12 phases, which add directional metallic behavior, along with quite a lot of mechanical plasticity and high carrier mobility. The synthesis of borophene has made significant strides thanks to cutting-edge techniques like molecular beam epitaxy (MBE), atomic layer deposition (ALD), and chemical vapor deposition (CVD) and physical vapor deposition (PVD), with recent innovations breaking through the scalability no-go areas that, in the past, hindered the material's widespread use. Borophene's superior electronic, thermal, and mechanical properties, in contrast to other 2D materials like graphene, accentuate its potential for diverse applications, particularly in the realm of next-generation sensors. It places particular emphasis on borophene's appositeness for sensor technology, detailing the structural intricacies and unique topological characteristics that make borophene an exceptional candidate. By focusing on the mechanisms that enable its high sensitivity and flexibility, the discussion brings to light the transformative potential of this interesting 2D material while concurrently addressing the state-of-the-art advancements in borophene research, thereby providing a forward-looking perspective on future opportunities and challenges. Ultimately, this work pinpoints how borophene, with its unprecedented properties and technological promise, is poised to reshape sensor technology and opens new avenues for exploration in the broader field of advanced functional materials.
Collapse
Affiliation(s)
- Nilpawan Sarma
- Department of Applied Sciences (Chemical Science Division), Gauhati University, Guwahati-14, Assam-781014, India
| | - Hirendra Das
- Department of Electronics and Communication Technology, Gauhati University, Guwahati-14, Assam-781014, India
| | - Pranjal Saikia
- Department of Applied Sciences (Chemical Science Division), Gauhati University, Guwahati-14, Assam-781014, India
| |
Collapse
|
5
|
Rafieerad A, Saleth LR, Khanahmadi S, Amiri A, Alagarsamy KN, Dhingra S. Periodic Table of Immunomodulatory Elements and Derived Two-Dimensional Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406324. [PMID: 39754328 PMCID: PMC11809427 DOI: 10.1002/advs.202406324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Indexed: 01/06/2025]
Abstract
Periodic table of chemical elements serves as the foundation of material chemistry, impacting human health in many different ways. It contributes to the creation, growth, and manipulation of functional metallic, ceramic, metalloid, polymeric, and carbon-based materials on and near an atomic scale. Recent nanotechnology advancements have revolutionized the field of biomedical engineering to tackle longstanding clinical challenges. The use of nano-biomaterials has gained traction in medicine, specifically in the areas of nano-immunoengineering to treat inflammatory and infectious diseases. Two-dimensional (2D) nanomaterials have been found to possess high bioactive surface area and compatibility with human and mammalian cells at controlled doses. Furthermore, these biomaterials have intrinsic immunomodulatory properties, which is crucial for their application in immuno-nanomedicine. While significant progress has been made in understanding their bioactivity and biocompatibility, the exact immunomodulatory responses and mechanisms of these materials are still being explored. Current work outlines an innovative "immunomodulatory periodic table of elements" beyond the periodic table of life, medicine, and microbial genomics and comprehensively reviews the role of each element in designing immunoengineered 2D biomaterials in a group-wise manner. It recapitulates the most recent advances in immunomodulatory nanomaterials, paving the way for the development of new mono, hybrid, composite, and hetero-structured biomaterials.
Collapse
Affiliation(s)
- Alireza Rafieerad
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Leena Regi Saleth
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Soofia Khanahmadi
- Institute for Molecular BiosciencesJohann Wolfgang Goethe Universität60438Frankfurt am MainGermany
| | - Ahmad Amiri
- Russell School of Chemical EngineeringThe University of TulsaTulsaOK74104USA
| | - Keshav Narayan Alagarsamy
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| |
Collapse
|
6
|
Wu Y, Zhao Y, Yuan Q, Sun H, Wang A, Sun K, Waterhouse GIN, Wang Z, Wu J, Jiang J, Fan M. Electrochemically synthesized H 2O 2 at industrial-level current densities enabled by in situ fabricated few-layer boron nanosheets. Nat Commun 2024; 15:10843. [PMID: 39737981 DOI: 10.1038/s41467-024-55071-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Carbon nanomaterials show outstanding promise as electrocatalysts for hydrogen peroxide (H2O2) synthesis via the two-electron oxygen reduction reaction. However, carbon-based electrocatalysts that are capable of generating H2O2 at industrial-level current densities (>300 mA cm-2) with high selectivity and long-term stability remain to be discovered. Herein, few-layer boron nanosheets are in-situ introduced into a porous carbon matrix, creating a metal-free electrocatalyst (Bn-C) with H2O2 production rates of industrial relevance in neutral or alkaline media. Bn-C maintained > 95% Faradaic efficiency during a 140-hour test at 300 mA cm-2 and 0.1 V vs. RHE, and delivered a mass activity of 25.1 mol gcatalyst-1 h-1 in 1.0 M Na2SO4 using a flow cell. Theoretical simulations and experimental studies demonstrate that the superior catalytic performance originates from B atoms with adsorbed O atoms in the boron nanosheets. Bn-C outperforms all metal-based and metal-free carbon catalysts reported to date for H2O2 synthesis at industrial-level current densities.
Collapse
Affiliation(s)
- Yuhan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuying Zhao
- Key Lab of Biomass Energy and Material, Jiangsu Province; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, 210042, China
- School of Chemical Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - Qixin Yuan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Hao Sun
- Key Lab of Biomass Energy and Material, Jiangsu Province; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, 210042, China
| | - Ao Wang
- Key Lab of Biomass Energy and Material, Jiangsu Province; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, 210042, China
| | - Kang Sun
- Key Lab of Biomass Energy and Material, Jiangsu Province; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, 210042, China
| | | | - Ziyun Wang
- School of Chemical Sciences, The University of Auckland, Auckland, 1010, New Zealand.
| | - Jingjie Wu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA.
| | - Jianchun Jiang
- Key Lab of Biomass Energy and Material, Jiangsu Province; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, 210042, China.
| | - Mengmeng Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.
- Key Lab of Biomass Energy and Material, Jiangsu Province; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, 210042, China.
| |
Collapse
|
7
|
Pal P, Nandi M. Recent advances in the syntheses and emerging applications of 2D borophene-based nanomaterials with a focus on supercapacitors. Dalton Trans 2024; 54:38-58. [PMID: 39587980 DOI: 10.1039/d4dt02573c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Two-dimensional (2D) nanosheets of boron, i.e. borophene, have triggered interest in progressive research as a result of the vast field of opportunities to explore, from its innovative synthetic techniques to novel properties and potential applications. It possesses exceptional tuneable properties such as mechanical flexibility, electronic and thermal conductivity, optical transparency, metallicity, anisotropy and polymorphism. This has sparked significant curiosity in the application of borophene-based materials in energy storage systems such as supercapacitors, which display high-power density with reliable energy density, fast charge/discharge kinetics and long cycle life. This review comprehensively discusses the recent progress in the different techniques for borophene synthesis (chemical vapor deposition, molecular beam epitaxy, segregation-enhanced epitaxy, van der Waals epitaxy, ultrasound-assisted liquid phase exfoliation, mechanical exfoliation, electrochemical exfoliation and modified Hummers' method) including the resultant phases, its properties (mechanical, thermal, electronic and magnetic) and potential applications of borophene/borophene composites in supercapacitors with their charge storage mechanisms. This article mainly focuses on the literature published since 2015 when the first laboratory synthesis of borophene was accomplished. Featuring over 50 articles, the present contribution offers insightful information, suggestions and discussions on the issues and challenges involved in future research in this direction.
Collapse
Affiliation(s)
- Prashanta Pal
- Integrated Science Education and Research Centre, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, India.
| | - Mahasweta Nandi
- Integrated Science Education and Research Centre, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, India.
| |
Collapse
|
8
|
Zhang R, Yan Z, Gao M, Zheng B, Yue B, Qiu M. Recent advances in two-dimensional materials for drug delivery. J Mater Chem B 2024; 12:12437-12469. [PMID: 39533870 DOI: 10.1039/d4tb01787k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Two-dimensional (2D) materials exhibit significant potential in biomedical applications, particularly as drug carriers. Thus, 2D materials, including graphene, black phosphorus, transition metal dichalcogenides, transition metal carbides/nitrides, and hexagonal boron nitride, have been extensively studied. Their large specific surface area, abundant surface active sites, and excellent biocompatibility and biodegradability make them ideal platforms for drug loading and delivery. By optimizing the physicochemical properties and methods for the surface modification of 2D materials, improved drug release mechanisms and enhanced combination therapy effects can be achieved, providing a reliable foundation for efficient cancer treatment. This review provides a comprehensive analysis of the recent advances in the utilization of 2D materials for drug delivery. It systematically categorizes and summarizes the preparation methodologies, surface modification strategies, application domains, primary advantages and potential drawbacks of various 2D materials in the biomedical field. Furthermore, it provides an extensive overview of current challenges in this field and outlines potential future research directions for 2D materials in drug delivery based on existing issues.
Collapse
Affiliation(s)
- Ranran Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China.
| | - Zichao Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China.
| | - Ming Gao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China.
| | - Bingxin Zheng
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, P. R. China.
| | - Bin Yue
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, P. R. China.
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China.
- Shenzhen International Institute for Biomedical Research, Shenzhen, 518060, P. R. China
| |
Collapse
|
9
|
Xiong G, Chen Q, Wang Q, Wang X, Xiao Y, Jin L, Yan K, Zhang X, Hu F. Multifaceted role of nanocomposite hydrogels in diabetic wound healing: enhanced biomedical applications and detailed molecular mechanisms. Biomater Sci 2024; 12:6196-6223. [PMID: 39494707 DOI: 10.1039/d4bm01088d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The complex microenvironment of diabetic wounds, which is characterized by persistent hyperglycemia, excessive inflammatory responses, and hypoxic conditions, significantly impedes the efficacy of traditional hydrogels. Nanocomposite hydrogels, which combine the high-water content and biocompatibility of hydrogels with the unique functionalities of nanomaterials, offer a promising solution. These hydrogels exhibit enhanced antibacterial, antioxidant, and drug-release properties. Incorporating nanomaterials increases the mechanical strength and bioactivity of hydrogels, allowing for dynamic regulation of the wound microenvironment and promoting cell migration, proliferation, and angiogenesis, thereby accelerating wound healing. This review provides a comprehensive overview of the latest advances in nanocomposite hydrogels for diabetic wound treatment and discusses their advantages and molecular mechanisms at various healing stages. The study aims to provide a theoretical foundation and practical guidance for future research and clinical applications. Furthermore, it highlights the challenges related to the mechanical durability, antimicrobial performance, resistance issues, and interactions with the cellular environments of these hydrogels. Future directions include optimizing smart drug delivery systems and personalized medical approaches to enhance the clinical applicability of nanocomposite hydrogels.
Collapse
Affiliation(s)
- Gege Xiong
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China.
| | - Qiwei Chen
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Qiuyu Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China.
| | - Xiaoxue Wang
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan 528000, PR China.
| | - Yaomu Xiao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China.
| | - Liuli Jin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China.
| | - Kaichong Yan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China.
| | - Xueyang Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China.
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan 528000, PR China.
| | - Fei Hu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China.
| |
Collapse
|
10
|
Wang K, Choyal S, Schultz JF, McKenzie J, Li L, Liu X, Jiang N. Borophene: Synthesis, Chemistry, and Electronic Properties. Chempluschem 2024; 89:e202400333. [PMID: 39031807 DOI: 10.1002/cplu.202400333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/22/2024]
Abstract
As a neighbor of carbon in the periodic table, boron exhibits versatile structural and electronic configurations, with its allotropes predicted to possess intriguing structures and properties. Since the experimental realization of two-dimensional (2D) boron sheets (borophene) on Ag(111) substrates in 2015, the experimental study of the realization and characteristics of borophene has drawn increasing interest. In this review, we summarize the synthesis and properties of borophene, which are mainly based on experimental results. First, the synthesis of borophene on different substrates, as well as borophane and bilayer borophene, featuring unique phases and properties, are discussed. Next, the chemistry of borophene, such as oxidation, hydrogenation, and its integration into heterostructures with other materials, is summarized. We also mention a few works focused on the physical properties of borophene, specifically its electronic properties. Lastly, the brief outlook addresses challenges toward practical applications of borophene and possible solutions.
Collapse
Affiliation(s)
- Kai Wang
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Shilpa Choyal
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Jeremy F Schultz
- Nanoscale Device Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - James McKenzie
- Department of Physics & Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA
- Stavropoulos Center for Complex Quantum Matter, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Linfei Li
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Xiaolong Liu
- Department of Physics & Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA
- Stavropoulos Center for Complex Quantum Matter, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Nan Jiang
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
- Department of Physics, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
11
|
Tao J, Arshad N, Maqsood G, Asghar MS, Zhu F, Lin L, Irshad MS, Wang X. The Quest for Two-Dimensional MBenes: From Structural Evolution to Solar-Driven Hybrid Systems for Water-Fuel-Energy Generation and Phototherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401603. [PMID: 38751070 DOI: 10.1002/smll.202401603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/24/2024] [Indexed: 10/01/2024]
Abstract
The field of 2D materials has advanced significantly with the emergence of MBenes, a new material derived from the MAX phases family, a novel class of materials that originates from the MAX phases family. Herein, this article explores the unique characteristics and morphological variations of MBenes, offering a comprehensive overview of their structural evolution. First, the discussion explores the evolutionary period of 2D MBenes associated with the several techniques for synthesizing, modifying, and characterizing MBenes to tailor their structure and enhance their functionality. The focus then shifts to the defect chemistry of MBenes, electronic, catalytic, and photothermal properties which play a crucial role in designing multifunctional solar-driven hybrid systems. Second, the recent advancements and potentials of 2D MBenes in solar-driven hybrid systems e.g. photo-electro catalysis, hybrid solar evaporators for freshwater and thermoelectric generators, and phototherapy, emphasizing their crucial significance in tackling energy and environmental issues, are explored. The study further explores the fundamental principles that regulate the improved photocatalytic and photothermal characteristics of MBenes, highlighting their promise for effective utilization of solar energy and remediation of the environment. The study also thoroughly assesses MBenes' scalability, stability, and cost effectiveness in solar-driven systems. Current insights and future directions allow researchers to utilize MBenes for sustainable and varied applications. This review regarding MBenes will be valuable to early researchers intrigued with synthesizing and utilizing 2D materials for solar-powered water-energy-fuel and phototherapy systems.
Collapse
Affiliation(s)
- Junyang Tao
- Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Naila Arshad
- Collaborative Innovation Centre for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ghazala Maqsood
- Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Muhammad Sohail Asghar
- Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Fengshuai Zhu
- Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Liangyou Lin
- Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Muhammad Sultan Irshad
- Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
- Collaborative Innovation Centre for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xianbao Wang
- Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| |
Collapse
|
12
|
Zhao J, Li T, Yue Y, Li X, Xie Z, Zhang H, Tian X. Advancements in employing two-dimensional nanomaterials for enhancing skin wound healing: a review of current practice. J Nanobiotechnology 2024; 22:520. [PMID: 39210430 PMCID: PMC11363430 DOI: 10.1186/s12951-024-02803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
The two-dimensional nanomaterials are characterized by their ultra-thin structure, diverse chemical functional groups, and remarkable anisotropic properties. Since its discovery in 2004, graphene has attracted significant scientific interest due to its potential applications in various fields, including electronics, energy systems, and biomedicine. In medicine, graphene is used for designing smart drug delivery systems, especially for antibiotics, and biosensing. Skin trauma is a prevalent dermatological condition that increasingly contributes to morbidities and mortalities, thus representing a significant health burden. During tissue damage, rapid skin repair is crucial to prevent blood loss and infection. Therefore, drugs used for skin trauma must possess antimicrobial and anti-inflammatory properties. Two-dimensional (2D) nanomaterials possess remarkable physical, chemical, optical, and biological characteristics due to their uniform shape, increased surface area, and surface charge. Graphene and its derivatives, transition-metal dichalcogenides (TMDs), black phosphorous (BP), hexagonal boron nitride (h-BN), MXene, and metal-organic frameworks (MOFs) are among the commonly used 2D nanomaterials. Moreover, they exhibit antibacterial and anti-inflammatory properties. This review presents a comprehensive discussion of the clinical approaches employed for wound healing treatment and explores the applications of commonly used 2D nanomaterials to enhance wound healing outcomes.
Collapse
Affiliation(s)
- Jiaqi Zhao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Tianjiao Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Yajuan Yue
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Xina Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Zhongjian Xie
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518000, China
| | - Han Zhang
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518000, China.
| | - Xing Tian
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China.
| |
Collapse
|
13
|
Guo J, Wang P, Li Y, Liu Y, Ye Y, Chen Y, Kankala RK, Tong F. Advances in hybridized nanoarchitectures for improved oro-dental health. J Nanobiotechnology 2024; 22:469. [PMID: 39113060 PMCID: PMC11305065 DOI: 10.1186/s12951-024-02680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 08/11/2024] Open
Abstract
On a global note, oral health plays a critical role in improving the overall human health. In this vein, dental-related issues with dentin exposure often facilitate the risk of developing various oral-related diseases in gums and teeth. Several oral-based ailments include gums-associated (gingivitis or periodontitis), tooth-based (dental caries, root infection, enamel erosion, and edentulous or total tooth loss), as well as miscellaneous diseases in the buccal or oral cavity (bad breath, mouth sores, and oral cancer). Although established conventional treatment modalities have been available to improve oral health, these therapeutic options suffer from several limitations, such as fail to eradicate bacterial biofilms, deprived regeneration of dental pulp cells, and poor remineralization of teeth, resulting in dental emergencies. To this end, the advent of nanotechnology has resulted in the development of various innovative nanoarchitectured composites from diverse sources. This review presents a comprehensive overview of different nanoarchitectured composites for improving overall oral health. Initially, we emphasize various oral-related diseases, providing detailed pathological circumstances and their effects on human health along with deficiencies of the conventional therapeutic modalities. Further, the importance of various nanostructured components is emphasized, highlighting their predominant actions in solving crucial dental issues, such as anti-bacterial, remineralization, and tissue regeneration abilities. In addition to an emphasis on the synthesis of different nanostructures, various nano-therapeutic solutions from diverse sources are discussed, including natural (plant, animal, and marine)-based components and other synthetic (organic- and inorganic-) architectures, as well as their composites for improving oral health. Finally, we summarize the article with an interesting outlook on overcoming the challenges of translating these innovative platforms to clinics.
Collapse
Affiliation(s)
- Jun Guo
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China.
| | - Pei Wang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yuyao Li
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yifan Liu
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yingtong Ye
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Yi Chen
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China.
| | - Fei Tong
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
14
|
Chung JY, Yuan Y, Mishra TP, Joseph C, Canepa P, Ranjan P, Sadki EHS, Gradečak S, Garaj S. Structure and exfoliation mechanism of two-dimensional boron nanosheets. Nat Commun 2024; 15:6122. [PMID: 39033164 PMCID: PMC11271264 DOI: 10.1038/s41467-024-49974-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/26/2024] [Indexed: 07/23/2024] Open
Abstract
Exfoliation of two-dimensional (2D) nanosheets from three-dimensional (3D) non-layered, non-van der Waals crystals represents an emerging strategy for materials engineering that could significantly increase the library of 2D materials. Yet, the exfoliation mechanism in which nanosheets are derived from crystals that are not intrinsically layered remains unclear. Here, we show that planar defects in the starting 3D boron material promote the exfoliation of 2D boron sheets-by combining liquid-phase exfoliation, aberration-corrected scanning transmission electron microscopy, Raman spectroscopy, and density functional theory calculations. We demonstrate that 2D boron nanosheets consist of a planar arrangement of icosahedral sub-units cleaved along the {001} planes of β-rhombohedral boron. Correspondingly, intrinsic stacking faults in 3D boron form parallel layers of faulted planes in the same orientation as the exfoliated nanosheets, reducing the {001} cleavage energy. Planar defects represent a potential engineerable pathway for exfoliating 2D sheets from 3D boron and, more broadly, the other covalently bonded materials.
Collapse
Affiliation(s)
- Jing-Yang Chung
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
- Applied Materials - NUS Advanced Materials Corporate Lab, National University of Singapore, Singapore, Singapore
| | - Yanwen Yuan
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
- Applied Materials - NUS Advanced Materials Corporate Lab, National University of Singapore, Singapore, Singapore
| | - Tara P Mishra
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Chithralekha Joseph
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Pieremanuele Canepa
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Pranay Ranjan
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - El Hadi S Sadki
- Department of Physics, College of Science, United Arab Emirates University, Al-Ain, UAE
| | - Silvija Gradečak
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore.
- Applied Materials - NUS Advanced Materials Corporate Lab, National University of Singapore, Singapore, Singapore.
| | - Slaven Garaj
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore.
- Department of Physics, Centre for Advanced 2D Materials, National University of Singapore, Singapore, Singapore.
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
15
|
Tyagi D, Laxmi V, Basu N, Reddy L, Tian Y, Ouyang Z, Nayak PK. Recent advances in two-dimensional perovskite materials for light-emitting diodes. DISCOVER NANO 2024; 19:109. [PMID: 38954158 PMCID: PMC11219672 DOI: 10.1186/s11671-024-04044-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024]
Abstract
Light-emitting diodes (LEDs) are an indispensable part of our daily life. After being studied for a few decades, this field still has some room for improvement. In this regard, perovskite materials may take the leading role. In recent years, LEDs have become a most explored topic, owing to their various applications in photodetectors, solar cells, lasers, and so on. Noticeably, they exhibit significant characteristics in developing LEDs. The luminous efficiency of LEDs can be significantly enhanced by the combination of a poor illumination LED with low-dimensional perovskite. In 2014, the first perovskite-based LED was illuminated at room temperature. Furthermore, two-dimensional (2D) perovskites have enriched this field because of their optical and electronic properties and comparatively high stability in ambient conditions. Recent and relevant advancements in LEDs using low-dimensional perovskites including zero-dimensional to three-dimensional materials is reported. The major focus of this article is based on the 2D perovskites and their heterostructures (i.e., a combination of 2D perovskites with transition metal dichalcogenides, graphene, and hexagonal boron nitride). In comparison to 2D perovskites, heterostructures exhibit more potential for application in LEDs. State-of-the-art perovskite-based LEDs, current challenges, and prospects are also discussed.
Collapse
Affiliation(s)
- Deepika Tyagi
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education and Guangdong Province, College of Electronic Science and Technology of Shenzhen University, THz Technical Research Center of Shenzhen University, Shenzhen University, Shenzhen, 518060, China
| | - Vijay Laxmi
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education and Guangdong Province, College of Electronic Science and Technology of Shenzhen University, THz Technical Research Center of Shenzhen University, Shenzhen University, Shenzhen, 518060, China
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Nilanjan Basu
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Leelakrishna Reddy
- Department of Physics, University of Johannesburg, Johannesburg, 2006, South Africa
| | - Yibin Tian
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhengbiao Ouyang
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education and Guangdong Province, College of Electronic Science and Technology of Shenzhen University, THz Technical Research Center of Shenzhen University, Shenzhen University, Shenzhen, 518060, China.
| | - Pramoda K Nayak
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India.
- 2D Materials Research and Innovation Group, Indian Institute of Technology Madras, Chennai, 600036, India.
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, , Bangalore, Karnataka, 562112, India.
| |
Collapse
|
16
|
Liu X, Huang K, Zhang F, Huang G, Wang L, Wu G, Ren H, Yang G, Lin Z. Multifunctional nano-in-micro delivery systems for targeted therapy in fundus neovascularization diseases. J Nanobiotechnology 2024; 22:354. [PMID: 38902775 PMCID: PMC11191225 DOI: 10.1186/s12951-024-02614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
Fundus neovascularization diseases are a series of blinding eye diseases that seriously impair vision worldwide. Currently, the means of treating these diseases in clinical practice are continuously evolving and have rapidly revolutionized treatment opinions. However, key issues such as inadequate treatment effectiveness, high rates of recurrence, and poor patient compliance still need to be urgently addressed. Multifunctional nanomedicine can specifically respond to both endogenous and exogenous microenvironments, effectively deliver drugs to specific targets and participate in activities such as biological imaging and the detection of small molecules. Nano-in-micro (NIM) delivery systems such as metal, metal oxide and up-conversion nanoparticles (NPs), quantum dots, and carbon materials, have shown certain advantages in overcoming the presence of physiological barriers within the eyeball and are widely used in the treatment of ophthalmic diseases. Few studies, however, have evaluated the efficacy of NIM delivery systems in treating fundus neovascular diseases (FNDs). The present study describes the main clinical treatment strategies and the adverse events associated with the treatment of FNDs with NIM delivery systems and summarizes the anatomical obstacles that must be overcome. In this review, we wish to highlight the principle of intraocular microenvironment normalization, aiming to provide a more rational approach for designing new NIM delivery systems to treat specific FNDs.
Collapse
Affiliation(s)
- Xin Liu
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Keke Huang
- Department of Ophthalmology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Fuxiao Zhang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Ge Huang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Lu Wang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Guiyu Wu
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Hui Ren
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China.
| | - Guang Yang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China.
| | - Zhiqing Lin
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China.
| |
Collapse
|
17
|
Lei Y, Zhao Q, Huang Z, Huang Y, Wang M, Hu L, Tang Q, Xia Z. Boron nanosheets as a phosphatase mimicking nanozyme with ultrahigh catalytic activity for prodrug-based cancer therapy. Chem Commun (Camb) 2024; 60:3523-3526. [PMID: 38446177 DOI: 10.1039/d3cc05616c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Boron nanosheets (BNSs) are reported as a new phosphatase mimicking nanozyme. Surprisingly, the catalytic rate of BNSs is up to 17 times those of known phosphatase mimicking nanozymes. By adding polyols and Lewis bases, the catalytic activity of BNSs was attributed to the Lewis acidity of the B centers of the BNSs. Theoretical investigation shows that the B centers are responsible for the catalytic hydrolysis of phosphoesters. Moreover, the biomimetic activity of the BNSs was further explored for enhancing anticancer therapy through nanozyme-catalyzed prodrug conversion.
Collapse
Affiliation(s)
- Yao Lei
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Qianghong Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Zhou Huang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China.
| | - Yusha Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Min Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Lianzhe Hu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, China.
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China.
| | - Zhining Xia
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
18
|
Borah P, Baruah DJ, Mridha P, Baishya R, Bora HK, Das MR. Photoenhanced intrinsic peroxidase-like activity of a metal-free biocompatible borophene photonanozyme for colorimetric sensor assay of dopamine biomolecule. Chem Commun (Camb) 2024; 60:2417-2420. [PMID: 38323809 DOI: 10.1039/d3cc06326g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Photonanozymes are novel enzyme-mimicking nanomaterials with light-harvesting capacity and have widespread applications in many areas including biosensing, biomedicine, environmental applications, energy, etc. Herein, we introduce freestanding metal-free biocompitable borophene nanosheets (BNSs) exhibiting excellent photoresponsive peroxidase-like activity for biosensing applications. The photo-enhanced peroxidase-like activity of BNSs photonanozyme was indicated to be due to its band gap energy being comparable to the energy of visible light.
Collapse
Affiliation(s)
- Pulakesh Borah
- Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India.
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Diksha J Baruah
- Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India.
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Prosenjit Mridha
- Centre for Preclinical Studies, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Rinku Baishya
- Centre for Preclinical Studies, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Himangsu K Bora
- Centre for Preclinical Studies, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Manash R Das
- Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India.
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
19
|
Wang Y, Zhang X, Yue H. Two-dimensional nanomaterials induced nano-bio interfacial effects and biomedical applications in cancer treatment. J Nanobiotechnology 2024; 22:67. [PMID: 38369468 PMCID: PMC10874567 DOI: 10.1186/s12951-024-02319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/26/2024] [Indexed: 02/20/2024] Open
Abstract
Two-dimensional nanomaterials (2D NMs), characterized by a large number of atoms or molecules arranged in one dimension (typically thickness) while having tiny dimensions in the other two dimensions, have emerged as a pivotal class of materials with unique properties. Their flat and sheet-like structure imparts distinctive physical, chemical, and electronic attributes, which offers several advantages in biomedical applications, including enhanced surface area for efficient drug loading, surface-exposed atoms allowing precise chemical modifications, and the ability to form hierarchical multilayer structures for synergistic functionality. Exploring their nano-bio interfacial interactions with biological components holds significant importance in comprehensively and systematically guiding safe applications. However, the current lack of in-depth analysis and comprehensive understanding of interfacial effects on cancer treatment motivates our ongoing efforts in this field. This study provides a comprehensive survey of recent advances in utilizing 2D NMs for cancer treatment. It offers insights into the structural characteristics, synthesis methods, and surface modifications of diverse 2D NMs. The investigation further delves into the formation of nano-bio interfaces during their in vivo utilization. Notably, the study discusses a wide array of biomedical applications in cancer treatment. With their potential to revolutionize therapeutic strategies and outcomes, 2D NMs are poised at the forefront of cancer treatment, holding the promise of transformative advancements.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
20
|
Xie H, Yang M, He X, Zhan Z, Jiang H, Ma Y, Hu C. Polydopamine-Modified 2D Iron (II) Immobilized MnPS 3 Nanosheets for Multimodal Imaging-Guided Cancer Synergistic Photothermal-Chemodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306494. [PMID: 38083977 PMCID: PMC10870060 DOI: 10.1002/advs.202306494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/23/2023] [Indexed: 02/17/2024]
Abstract
Manganese phosphosulphide (MnPS3 ), a newly emerged and promising member of the 2D metal phosphorus trichalcogenides (MPX3 ) family, has aroused abundant interest due to its unique physicochemical properties and applications in energy storage and conversion. However, its potential in the field of biomedicine, particularly as a nanotherapeutic platform for cancer therapy, has remained largely unexplored. Herein, a 2D "all-in-one" theranostic nanoplatform based on MnPS3 is designed and applied for imaging-guided synergistic photothermal-chemodynamic therapy. (Iron) Fe (II) ions are immobilized on the surface of MnPS3 nanosheets to facilitate effective chemodynamic therapy (CDT). Upon surface modification with polydopamine (PDA) and polyethylene glycol (PEG), the obtained Fe-MnPS3 /PDA-PEG nanosheets exhibit exceptional photothermal conversion efficiency (η = 40.7%) and proficient pH/NIR-responsive Fenton catalytic activity, enabling efficient photothermal therapy (PTT) and CDT. Importantly, such nanoplatform can also serve as an efficient theranostic agent for multimodal imaging, facilitating real-time monitoring and guidance of the therapeutic process. After fulfilling the therapeutic functions, the Fe-MnPS3 /PDA-PEG nanosheets can be efficiently excreted from the body, alleviating the concerns of long-term retention and potential toxicity. This work presents an effective, precise, and safe 2D "all-in-one" theranostic nanoplatform based on MnPS3 for high-efficiency tumor-specific theranostics.
Collapse
Affiliation(s)
- Hanhan Xie
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent SystemsDepartment of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provincial Key Laboratory of Human‐Augmentation and Rehabilitation Robotics in UniversitiesSouthern University of Science and TechnologyShenzhen518055China
| | - Ming Yang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent SystemsDepartment of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provincial Key Laboratory of Human‐Augmentation and Rehabilitation Robotics in UniversitiesSouthern University of Science and TechnologyShenzhen518055China
| | - Xiaoli He
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent SystemsDepartment of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provincial Key Laboratory of Human‐Augmentation and Rehabilitation Robotics in UniversitiesSouthern University of Science and TechnologyShenzhen518055China
| | - Zhen Zhan
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent SystemsDepartment of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provincial Key Laboratory of Human‐Augmentation and Rehabilitation Robotics in UniversitiesSouthern University of Science and TechnologyShenzhen518055China
| | - Huaide Jiang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent SystemsDepartment of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provincial Key Laboratory of Human‐Augmentation and Rehabilitation Robotics in UniversitiesSouthern University of Science and TechnologyShenzhen518055China
| | - Yanmei Ma
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent SystemsDepartment of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provincial Key Laboratory of Human‐Augmentation and Rehabilitation Robotics in UniversitiesSouthern University of Science and TechnologyShenzhen518055China
| | - Chengzhi Hu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent SystemsDepartment of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provincial Key Laboratory of Human‐Augmentation and Rehabilitation Robotics in UniversitiesSouthern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
21
|
Kuang F, Hui T, Chen Y, Qiu M, Gao X. Post-Graphene 2D Materials: Structures, Properties, and Cancer Therapy Applications. Adv Healthc Mater 2024; 13:e2302604. [PMID: 37955406 DOI: 10.1002/adhm.202302604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Indexed: 11/14/2023]
Abstract
Cancer is one of the most serious diseases challenging human health and life span. Cancer has claimed millions of lives worldwide. Early diagnosis and effective treatment of cancer are very important for the survival of patients. In recent years, 2D nanomaterials have shown great potential in the development of anticancer treatment by combining their inherent physicochemical properties after surface modification. 2D nanomaterials have attracted great interest due to their unique nanosheet structure, large surface area, and extraordinary physicochemical properties. This article reviews the advantages and application status of emerging 2D nanomaterials for targeted tumor synergistic therapy compared with traditional therapeutic strategies. In order to investigate novel potential anticancer strategies, this paper focuses on the surface modification, cargo delivery capability, and unique optical properties of emerging 2D nanomaterials. Finally, the current problems and challenges in cancer treatment are summarized and prospected.
Collapse
Affiliation(s)
- Fei Kuang
- College of Life Sciences, Qingdao University, No.308 Ningxia Road, Qingdao, Shandong, 266071, China
| | - Tiankun Hui
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China
| | - Yingjie Chen
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China
| | - Xiang Gao
- College of Life Sciences, Qingdao University, No.308 Ningxia Road, Qingdao, Shandong, 266071, China
| |
Collapse
|
22
|
Wang M, Hu Y, Pu J, Zi Y, Huang W. Emerging Xene-Based Single-Atom Catalysts: Theory, Synthesis, and Catalytic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303492. [PMID: 37328779 DOI: 10.1002/adma.202303492] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/07/2023] [Indexed: 06/18/2023]
Abstract
In recent years, the emergence of novel 2D monoelemental materials (Xenes), e.g., graphdiyne, borophene, phosphorene, antimonene, bismuthene, and stanene, has exhibited unprecedented potentials for their versatile applications as well as addressing new discoveries in fundamental science. Owing to their unique physicochemical, optical, and electronic properties, emerging Xenes have been regarded as promising candidates in the community of single-atom catalysts (SACs) as single-atom active sites or support matrixes for significant improvement in intrinsic activity and selectivity. In order to comprehensively understand the relationships between the structure and property of Xene-based SACs, this review represents a comprehensive summary from theoretical predictions to experimental investigations. Firstly, theoretical calculations regarding both the anchoring of Xene-based single-atom active sites on versatile support matrixes and doping/substituting heteroatoms at Xene-based support matrixes are briefly summarized. Secondly, controlled synthesis and precise characterization are presented for Xene-based SACs. Finally, current challenges and future opportunities for the development of Xene-based SACs are highlighted.
Collapse
Affiliation(s)
- Mengke Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Yi Hu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Junmei Pu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - You Zi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Weichun Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| |
Collapse
|
23
|
Sukeri A, Panigrahi S, Ramanujam K. Sonochemically synthesized hydride-stabilized boron nanosheets via radical-assisted oxidative exfoliation for energy storage applications. Chem Commun (Camb) 2023; 60:176-179. [PMID: 37965951 DOI: 10.1039/d3cc04342h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Metal-free hydride stabilized boron nanosheets (H-BNS) were prepared in an aqueous medium without using noble metal growth substrates via sonochemistry. The reducing ability of H-BNS was demonstrated with Au3+(aq) reduction, and its layered morphology is exploited for Li-ion battery (LIB) applications.
Collapse
Affiliation(s)
- Anandhakumar Sukeri
- Clean Energy Laboratory, Department of Chemistry, Indian Institute of Technology (IIT) Madras, Chennai - 600036, Tamil Nadu, India
| | - Swati Panigrahi
- Clean Energy Laboratory, Department of Chemistry, Indian Institute of Technology (IIT) Madras, Chennai - 600036, Tamil Nadu, India
| | - Kothandaraman Ramanujam
- Clean Energy Laboratory, Department of Chemistry, Indian Institute of Technology (IIT) Madras, Chennai - 600036, Tamil Nadu, India
- Advanced Centre for Energy Storage and Conversion-The Energy Consortium, IIT Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
24
|
Kang MS, Jang HJ, Jo HJ, Raja IS, Han DW. MXene and Xene: promising frontier beyond graphene in tissue engineering and regenerative medicine. NANOSCALE HORIZONS 2023; 9:93-117. [PMID: 38032647 DOI: 10.1039/d3nh00428g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The emergence of 2D nanomaterials (2D NMs), which was initiated by the isolation of graphene (G) in 2004, revolutionized various biomedical applications, including bioimaging and -sensing, drug delivery, and tissue engineering, owing to their unique physicochemical and biological properties. Building on the success of G, a novel class of monoelemental 2D NMs, known as Xenes, has recently emerged, offering distinct advantages in the fields of tissue engineering and regenerative medicine. In this review, we focus on the comparison of G and Xene materials for use in fabricating tissue engineering scaffolds. After a brief introduction to the basic physicochemical properties of these materials, recent representative studies are classified in terms of the engineered tissue, i.e., bone, cartilage, neural, muscle, and skin tissues. We analyze several methods of improving the clinical potential of Xene-laden scaffolds using state-of-the-art fabrication technologies and innovative biomaterials. Despite the considerable advantages of Xene materials, critical concerns, such as biocompatibility, biodistribution and regulatory challenges, should be considered. This review and collaborative efforts should advance the field of Xene-based tissue engineering and enable innovative, effective solutions for use in future tissue regeneration.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| | - Hee Jeong Jang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| | - Hyo Jung Jo
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| | | | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
- BIO-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
25
|
Ding Y, Zhang S, Zang X, Ding M, Ding C. Ratiometric antifouling electrochemical biosensors based on designed Y-shaped peptide and MXene loaded with Au@ZIF-67 and methylene blue. Mikrochim Acta 2023; 191:5. [PMID: 38051447 DOI: 10.1007/s00604-023-06079-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023]
Abstract
Based on the designed inverted Y-shaped peptide and MXene nanocomposite (MXene-Au@ZIF-67), a ratiometric anti-pollution electrochemical biosensor was designed and applied to the detection of biomarkers in serum. Au@ZIF-67 inserted into the interior of MXene can not only prevent the accumulation of MXene but also provide a large amounts of binding sites for capturing biomolecules. A designed multifunctional Y-shaped peptide containing anchoring, antifouling, and recognition sequences was anchored onto MXene-Au@ZIF-67 through Au-S bonds. Electrochemical signal molecules, ferrocenecarboxylic acid (Fc) and methylene blue (MB), were modified to another end of multifunctional peptide and interior of MXene-Au@ZIF-67, respectively, to produce a ratiometric electrochemical signal. We selected prostate specific antigen (PSA) as the model compound. PSA specifically recognizes and cleaves the recognition segment in the Y-shaped peptide, and the signal of Fc is reduced, while the signal of MB remains unchanged. The ratiometric strategy endows the present biosensor high accuracy and sensitivity with a detection limit of 0.85 pg/mL. In addition, the sensing surface has good antifouling ability due to the antifouling sequence of the two branching parts of the Y-shaped peptide. More importantly, by replacing the recognition segment of peptides also other targets are accessible, indicating the potential application of the universal detection strategy to the detection of various biomarkers in clinical diagnosis.
Collapse
Affiliation(s)
- Yan Ding
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Qingdao, 266042, People's Republic of China
- Shandong Key Laboratory of Biochemical Analysis, Qingdao, 266042, People's Republic of China
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao, 266042, People's Republic of China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Shulei Zhang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Qingdao, 266042, People's Republic of China
- Shandong Key Laboratory of Biochemical Analysis, Qingdao, 266042, People's Republic of China
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao, 266042, People's Republic of China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Xiuhui Zang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Qingdao, 266042, People's Republic of China
- Shandong Key Laboratory of Biochemical Analysis, Qingdao, 266042, People's Republic of China
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao, 266042, People's Republic of China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Mengli Ding
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Qingdao, 266042, People's Republic of China
- Shandong Key Laboratory of Biochemical Analysis, Qingdao, 266042, People's Republic of China
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao, 266042, People's Republic of China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Caifeng Ding
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Qingdao, 266042, People's Republic of China.
- Shandong Key Laboratory of Biochemical Analysis, Qingdao, 266042, People's Republic of China.
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao, 266042, People's Republic of China.
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| |
Collapse
|
26
|
Self A, Farell M, Samineni L, Kumar M, Gomez EW. 2D Materials for Combination Therapy to Address Challenges in the Treatment of Cancer. ADVANCED NANOBIOMED RESEARCH 2023; 3. [DOI: 10.1002/anbr.202300070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
2D materials exhibit a variety of characteristics that make them appealing platforms for cancer treatment such as high drug loading capacity and photothermal and photodynamic properties. A key advantage of 2D material platforms for oncological applications is the ability to harness multiple modalities including drug delivery, photothermal therapy, photodynamic therapy, chemodynamic therapy, gene delivery, and immunotherapy approaches for improved efficacy. In this review, a comparison of the unique properties of different classes of 2D materials that enable their usage as platforms for multimodal therapy is provided. Further, the benefits and drawbacks of different platforms are also highlighted. Finally, current challenges and emerging opportunities for future development of 2D materials to further enable combination therapy and translation from the bench to clinical oncology applications are discussed.
Collapse
Affiliation(s)
- Ava Self
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Megan Farell
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Laximicharan Samineni
- Department of Civil, Architectural, and Environmental Engineering The University of Texas at Austin Austin TX 78712 USA
- McKetta Department of Chemical Engineering The University of Texas at Austin Austin TX 78712 USA
| | - Manish Kumar
- Department of Civil, Architectural, and Environmental Engineering The University of Texas at Austin Austin TX 78712 USA
- McKetta Department of Chemical Engineering The University of Texas at Austin Austin TX 78712 USA
| | - Esther W. Gomez
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
- Department of Biomedical Engineering The Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
27
|
Qian Y, Lu S, Meng J, Chen W, Li J. Thermo-Responsive Hydrogels Coupled with Photothermal Agents for Biomedical Applications. Macromol Biosci 2023; 23:e2300214. [PMID: 37526220 DOI: 10.1002/mabi.202300214] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/04/2023] [Indexed: 08/02/2023]
Abstract
Intelligent hydrogels are materials with abilities to change their chemical nature or physical structure in response to external stimuli showing promising potential in multitudinous applications. Especially, photo-thermo coupled responsive hydrogels that are prepared by encapsulating photothermal agents into thermo-responsive hydrogel matrix exhibit more attractive advantages in biomedical applications owing to their spatiotemporal control and precise therapy. This work summarizes the latest progress of the photo-thermo coupled responsive hydrogel in biomedical applications. Three major elements of the photo-thermo coupled responsive hydrogel, i.e., thermo-responsive hydrogel matrix, photothermal agents, and construction methods are introduced. Furthermore, the recent developments of these hydrogels for biomedical applications are described with some selected examples. Finally, the challenges and future perspectives for photo-thermo coupled responsive hydrogels are outlined.
Collapse
Affiliation(s)
- Yafei Qian
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410008, China
| | - Sha Lu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410008, China
| | - Jianqiang Meng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410008, China
| | - Wansong Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410008, China
| | - Juan Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410008, China
| |
Collapse
|
28
|
Bigham A, Raucci MG, Zheng K, Boccaccini AR, Ambrosio L. Oxygen-Deficient Bioceramics: Combination of Diagnosis, Therapy, and Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302858. [PMID: 37259776 DOI: 10.1002/adma.202302858] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Indexed: 06/02/2023]
Abstract
The journey of ceramics in medicine has been synchronized with an evolution from the first generation-alumina, zirconia, etc.-to the third -3D scaffolds. There is an up-and-coming member called oxygen-deficient or colored bioceramics, which have recently found their way through biomedical applications. The oxygen vacancy steers the light absorption toward visible and near infrared regions, making the colored bioceramics multifunctional-therapeutic, diagnostic, and regenerative. Oxygen-deficient bioceramics are capable of turning light into heat and reactive oxygen species for photothermal and photodynamic therapies, respectively, and concomitantly yield infrared and photoacoustic images. Different types of oxygen-deficient bioceramics have been recently developed through various synthesis routes. Some of them like TiO2- x , MoO3- x , and WOx have been more investigated for biomedical applications, whereas the rest have yet to be scrutinized. The most prominent advantage of these bioceramics over the other biomaterials is their multifunctionality endowed with a change in the microstructure. There are some challenges ahead of this category discussed at the end of the present review. By shedding light on this recently born bioceramics subcategory, it is believed that the field will undergo a big step further as these platforms are naturally multifunctional.
Collapse
Affiliation(s)
- Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J. F. Kennedy 54-Mostra d'Oltremare pad. 20, Naples, 80125, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, Naples, 80125, Italy
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J. F. Kennedy 54-Mostra d'Oltremare pad. 20, Naples, 80125, Italy
| | - Kai Zheng
- Jiangsu Key Laboratory of Oral Diseases and Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Aldo R Boccaccini
- Institute for Biomaterials, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J. F. Kennedy 54-Mostra d'Oltremare pad. 20, Naples, 80125, Italy
| |
Collapse
|
29
|
Wang X, Qin S, Zheng G, Wei W, Li F, Luo Y, Tang J, Zhou K. Two-dimensional boron nanosheets for selective enrichment and detection of cis-diol compounds by surface-assisted laser desorption/ionization time-of-flight mass spectrometry. J Chromatogr A 2023; 1705:464142. [PMID: 37329652 DOI: 10.1016/j.chroma.2023.464142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
Surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-TOF MS) is an effective method for detecting of low-mass molecules. In this study, two-dimensional boron nanosheets (2DBs) were fabricated through thermal oxidation etching and coupling liquid exfoliation technologies, and applied as a matrix and selective sorbent for detecting cis-diol compounds by SALDI-TOF MS. The outstanding nanostructure and boric acid active sites of 2DBs endow them with sensitivity for cis-diol compound detection, excellent selectivity, and low background interference for complex samples. The specific in-situ enrichment faculty of the 2DBs as a matrix was investigated by SALDI-TOF MS using glucose, arabinose, and lactose as model analytes. In the presence of 100 -fold more interfering substances, the 2DBs showed high selectivity against cis-diol compounds, and exhibited a better sensitivity and a reduced limit of detection through enrichment treatment than graphene oxide matrices. The linearity, limit of detection (LOD), reproducibility, and accuracy of the method were evaluated under optimized conditions. The results showed that the linear relationships of six saccharides remained in the range of 0.05-0.6 mM with a correlation coefficient r ≥0.98. The LODs of six saccharides were 1 nM (glucose, lactose, mannose, fructose) and 10 nM (galactose, arabinose). Sample-to-sample (n = 6) with relative standard deviations (RSDs) of 3.2% to 8.1% were observed. Recoveries (n = 5) of 87.9-104.6% were obtained at three spiked levels in the milk samples. The proposed strategy promoted the development of a matrix for use with SALDI-TOF MS detection, in which the UV absorption properties and enrichment capabilities of 2DBs were combined.
Collapse
Affiliation(s)
- Xian Wang
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China; School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - ShiJiang Qin
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China
| | - Guocan Zheng
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China; School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Weili Wei
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Fang Li
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China
| | - Yao Luo
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China
| | - JinJing Tang
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China; School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Kai Zhou
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China
| |
Collapse
|
30
|
Sun R, Chen J, Zhang W, Huang Y, Zheng J, Chi Y. Facile Synthesis of Oxidized Boron Nanosheets for Chemo- and Biosensing. Anal Chem 2023. [PMID: 37471238 DOI: 10.1021/acs.analchem.3c01979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
As recently emerging nanomaterials, boron nanosheets (BNSs) have attracted more and more attention in various fields such as supercapacitors, photodetectors, bioimaging, and electrocatalysis due to their advantages of good biological compatibility, environmental friendliness, and good electro-optical properties. However, the study and application of BNSs in chemical and biological sensing are still in the infant stage, mainly due to the requirement of complicated, high-cost, and time-consuming preparation strategies. In this work, a new class of BNSs, namely oxidized-BNSs (i.e., ox-BNSs), were easily and rapidly synthesized by chemically treating boron powder with diluted HNO3 in a very short time (less than 15 min). The composition, morphology, optical property, and peroxidase mimetic activity of obtained ox-BNSs were investigated in detail. The prepared ox-BNSs were several-layered nanosheets with abundant oxygen-containing groups, emitted blue fluorescence, and possessed good intrinsic peroxidase mimetic activity, based on which a sensitive and selective colorimetric sensor was developed for detection of H2O2 and glucose. The new easy preparation strategy and good sensing performances of the prepared ox-BNSs would greatly stimulate the study and application of BNSs in chemo- and biosensing.
Collapse
Affiliation(s)
- Ruifen Sun
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jie Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Weiwei Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yun Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jingcheng Zheng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yuwu Chi
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
31
|
Srivastava A, Dkhar DS, Singh N, Azad UP, Chandra P. Exploring the Potential Applications of Engineered Borophene in Nanobiosensing and Theranostics. BIOSENSORS 2023; 13:740. [PMID: 37504138 PMCID: PMC10377427 DOI: 10.3390/bios13070740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
A monolayer of boron known as borophene has emerged as a novel and fascinating two-dimensional (2D) material with exceptional features, such as anisotropic metallic behavior and supple mechanical and optical capabilities. The engineering of smart functionalized opto-electric 2D materials is essential to obtain biosensors or biodevices of desired performance. Borophene is one of the most emerging 2D materials, and owing to its excellent electroactive surface area, high electron transport, anisotropic behavior, controllable optical and electrochemical properties, ability to be deposited on thin films, and potential to create surface functionalities, it has recently become one of the sophisticated platforms. Despite the difficulty of production, borophene may be immobilized utilizing chemistries, be functionalized on a flexible substrate, and be controlled over electro-optical properties to create a highly sensitive biosensor system that could be used for point-of-care diagnostics. Its electrochemical properties can be tailored by using appropriate nanomaterials, redox mediators, conducting polymers, etc., which will be quite useful for the detection of biomolecules at even trace levels with a high sensitivity and less detection time. This will be quite helpful in developing biosensing devices with a very high sensitivity and with less response time. So, this review will be a crucial foundation as we have discussed the basic properties, synthesis, and potential applications of borophene in nanobiosensing, as well as therapeutic applications.
Collapse
Affiliation(s)
- Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Daphika S Dkhar
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Nandita Singh
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, India
| | - Uday Pratap Azad
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
32
|
Yang M, Jin H, Gui R. Ag +-doped boron quantum dots with enhanced stability and fluorescence enabling versatile practicality in visual detection, sensing, imaging and photocatalytic degradation. J Colloid Interface Sci 2023; 639:49-58. [PMID: 36804792 DOI: 10.1016/j.jcis.2023.02.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
In this work, a metal-doping strategy was put forward to construct metal-doped borophene and the corresponding zero-dimensional boron. Through theoretical calculations, Ag+ acts as the optimal metal ions to prepare Ag+-doped borophene derived boron quantum dots (Ag-BQDs). As predicted theoretically, doping of Ag+ endows borophene with enhanced stability of electronic structures. The newly emerging Ag-BQDs were experimentally acquired from ultrasonic-assisted liquid-phase exfoliation of bulk boron and solvothermal treatments. According to theoretical and experimental studies, the improved stability and fluorescence (FL) of Ag-BQDs are due to the formation of strong B-Ag bonding to competitively suppress B-O bonding. The function enables the maximal protection of borophene electronic structures from oxidization, destruction and reconfiguration. Because of Ag-BQDs with relatively higher colloidal and FL stability over BQDs, potential applications of Ag-BQDs were further explored in promising fields toward FL visualization in aqueous solutions and on filter paper, employed as a chemosensor of Fe3+ for FL sensing and visual detection at the solid/liquid phases, utilized for multiple FL bio-imaging at the levels of fresh plants, live animals and live cells of fresh plants, and applied to photocatalytic degradation of organic dyes and anticancer drug. Experimental results demonstrate excellent performances of Ag-BQDs in multiple applications, including versatile FL sensing and visual detection, unique multi-channel FL bio-imaging and visible-light-driven photodegradation of organic pollutants, toxic and harmful substances. This work can promote the development of metal-ion-doped low- dimensional nanomaterials with improved stability and FL properties for significant applications.
Collapse
Affiliation(s)
- Meng Yang
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, PR China
| | - Hui Jin
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, PR China
| | - Rijun Gui
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, PR China.
| |
Collapse
|
33
|
Wang M, Chen G, Hou X, Luo Y, Jin B, Li X. Assembly of Supramolecular Nanoplatelets with Tailorable Geometrical Shapes and Dimensions. Polymers (Basel) 2023; 15:polym15112547. [PMID: 37299347 DOI: 10.3390/polym15112547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
The craving for controllable assembly of geometrical nanostructures from artificial building motifs, which is routinely achieved in naturally occurring systems, has been a perpetual and outstanding challenge in the field of chemistry and materials science. In particular, the assembly of nanostructures with different geometries and controllable dimensions is crucial for their functionalities and is usually achieved with distinct assembling subunits via convoluted assembly strategies. Herein, we report that with the same building subunits of α-cyclodextrin (α-CD)/block copolymer inclusion complex (IC), geometrical nanoplatelets with hexagonal, square, and circular shapes could be produced by simply controlling the solvent conditions via one-step assembly procedure, driven by the crystallization of IC. Interestingly, these nanoplatelets with different shapes shared the same crystalline lattice and could therefore be interconverted to each other by merely tuning the solvent compositions. Moreover, the dimensions of these platelets could be decently controlled by tuning the overall concentrations.
Collapse
Affiliation(s)
- Moyan Wang
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No.5 Zhongguancun South St., Beijing 100081, China
| | - Gangfeng Chen
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No.5 Zhongguancun South St., Beijing 100081, China
| | - Xiaojian Hou
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No.5 Zhongguancun South St., Beijing 100081, China
| | - Yunjun Luo
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No.5 Zhongguancun South St., Beijing 100081, China
- Key Laboratory of High Energy Density Materials, MOE, Beijing Institute of Technology, No.5 Zhongguancun South St., Beijing 100081, China
| | - Bixin Jin
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No.5 Zhongguancun South St., Beijing 100081, China
| | - Xiaoyu Li
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No.5 Zhongguancun South St., Beijing 100081, China
- Key Laboratory of High Energy Density Materials, MOE, Beijing Institute of Technology, No.5 Zhongguancun South St., Beijing 100081, China
| |
Collapse
|
34
|
Zhang H, Liu R, Wan P, You X, Li S, Liu Z, Wang Y, Han F, Hao J, Li Y. Targeting tumor energy metabolism via simultaneous inhibition of mitochondrial respiration and glycolysis using biodegradable hydroxyapatite nanorods. Colloids Surf B Biointerfaces 2023; 226:113330. [PMID: 37141772 DOI: 10.1016/j.colsurfb.2023.113330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Tumor cells obtain energy supply from the unique metabolic pathways of mitochondrial respiration and glycolysis, which can be used interchangeably to produce adenosine triphosphate (ATP) for survival. To simultaneously block the two metabolic pathways and sharply cut off ATP supply, a multifunctional "nanoenabled energy interrupter" (called as HNHA-GC) was prepared by attaching glucose oxidase (GOx), hyaluronic acid (HA), and 10-hydroxycamptothecin (CPT) on the surface of degradable hydroxyapatite (NHA) nanorods. After targeted delivery of HNHA-GC to the tumor site by HA, the tumor-selective acid degradation of HNHA-GC as well as the subsequent deliveries of Ca2+, drug CPT, and GOx take place. The released Ca2+ and CPT induce mitochondrial dysfunction by Ca2+ overload and chemotherapy respectively, while the GOx-triggered glucose oxidation inhibits glycolysis by starvation therapy (exogenous effect). The generated H2O2 and released CPT increase the intracellular reactive oxygen (ROS) level. Moreover, the generated H+ and enhanced ROS promote Ca2+ overload by accelerating the degradation of HNHA-GC and preventing intracellular Ca2+ efflux, respectively (endogenous effect). As a result, the HNHA-GC displays a promising therapeutic modality for simultaneously cutting off mitochondrial and glycolytic ATP production through a combination of Ca2+ overload, chemotherapy, and starvation therapy.
Collapse
Affiliation(s)
- Hui Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ruihan Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Peng Wan
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xuelin You
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Shanshan Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Zongjun Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - You Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Fang Han
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Juanyuan Hao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
35
|
Setyawan D, Amrillah T, Abdullah CAC, Ilhami FB, Dewi DMM, Mumtazah Z, Oktafiani A, Adila FP, Putra MFH. Crafting two-dimensional materials for contrast agents, drug, and heat delivery applications through green technologies. J Drug Target 2023; 31:369-389. [PMID: 36721905 DOI: 10.1080/1061186x.2023.2175833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The development of two-dimensional (2D) materials for biomedical applications has accelerated exponentially. Contrary to their bulk counterparts, the exceptional properties of 2D materials make them highly prospective for contrast agents for bioimage, drug, and heat delivery in biomedical treatment. Nevertheless, empty space in the integration and utilisation of 2D materials in living biological systems, potential toxicity, as well as required complicated synthesis and high-cost production limit the real application of 2D materials in those advance medical treatments. On the other hand, green technology appears to be one of strategy to shed a light on the blurred employment of 2D in medical applications, thus, with the increasing reports of green technology that promote advanced technologies, here, we compile, summarise, and synthesise information on the biomedical technology of 2D materials through green technology point of view. Beginning with a fundamental understanding, of crystal structures, the working mechanism, and novel properties, this article examines the recent development of 2D materials. As well as 2D materials made from natural and biogenic resources, a recent development in green-related synthesis was also discussed. The biotechnology and biomedical-related application constraints are also discussed. The challenges, solutions, and prospects of the so-called green 2D materials are outlined.
Collapse
Affiliation(s)
- Dwi Setyawan
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
- Green Nanotechnology Laboratory Center, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Tahta Amrillah
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
- Green Nanotechnology Laboratory Center, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Che Azurahanim Che Abdullah
- Department of Physics, Faculty of Science, University Putra Malaysia, Serdang, Selangor, Malaysia
- Nanomaterial Synthesis and Characterization Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Fasih Bintang Ilhami
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Diva Meisya Maulina Dewi
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Zuhra Mumtazah
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Agustina Oktafiani
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Fayza Putri Adila
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Moch Falah Hani Putra
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
36
|
Liu S, Wei W, Wang J, Chen T. Theranostic applications of selenium nanomedicines against lung cancer. J Nanobiotechnology 2023; 21:96. [PMID: 36935493 PMCID: PMC10026460 DOI: 10.1186/s12951-023-01825-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/18/2023] [Indexed: 03/21/2023] Open
Abstract
The incidence and mortality rates of lung cancer are among the highest in the world. Traditional treatment methods include surgery, chemotherapy, and radiotherapy. Although rapid progress has been achieved in the past decade, treatment limitations remain. It is therefore imperative to identify safer and more effective therapeutic methods, and research is currently being conducted to identify more efficient and less harmful drugs. In recent years, the discovery of antitumor drugs based on the essential trace element selenium (Se) has provided good prospects for lung cancer treatments. In particular, compared to inorganic Se (Inorg-Se) and organic Se (Org-Se), Se nanomedicine (Se nanoparticles; SeNPs) shows much higher bioavailability and antioxidant activity and lower toxicity. SeNPs can also be used as a drug delivery carrier to better regulate protein and DNA biosynthesis and protein kinase C activity, thus playing a role in inhibiting cancer cell proliferation. SeNPs can also effectively activate antigen-presenting cells to stimulate cell immunity, exert regulatory effects on innate and regulatory immunity, and enhance lung cancer immunotherapy. This review summarizes the application of Se-based species and materials in lung cancer diagnosis, including fluorescence, MR, CT, photoacoustic imaging and other diagnostic methods, as well as treatments, including direct killing, radiosensitization, chemotherapeutic sensitization, photothermodynamics, and enhanced immunotherapy. In addition, the application prospects and challenges of Se-based drugs in lung cancer are examined, as well as their forecasted future clinical applications and sustainable development.
Collapse
Affiliation(s)
- Shaowei Liu
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Weifeng Wei
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jinlin Wang
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Tianfeng Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
37
|
He L, Zhao J, Li H, Xie B, Xu L, Huang G, Liu T, Gu Z, Chen T. Metabolic Reprogramming of NK Cells by Black Phosphorus Quantum Dots Potentiates Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2202519. [PMID: 36683155 PMCID: PMC10015887 DOI: 10.1002/advs.202202519] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Low persistence, metabolic dysfunction in microenvironment, and tumor-derived immunosuppression of Natural killer (NK) cells in patients are greatly limited the successful clinical application of NK cell-based cancer immunotherapy. Interestingly, herein that human serum albumin-encapsulated black phosphorus quantum dots (BPQDs@HSA) can effectively augment antitumor efficacy of clinical patients-derived NK cell immunotherapy is found. As the donor of phosphate group, BPQDs@HSA binds with the protein of phosphatidylinositol 4-phosphate 5-kinase type-1 gamma (PIP5K1A) and activates the downstream PI3K-Akt and mTOR signaling pathways to reprogram cell metabolism of glycolysis and further promote the oxidative phosphorylation, sequentially maintains the cell viability and immunity of NK cells. And multiomics analysis is therefore conducted to reveal the underlying immunoregulation mechanisms, and that BPQDs@HSA can interact with the Toll-like receptor (TLR) on the NK cell surface and increase the expression level of mTOR, and thus activate downstream NF-κB signalling pathways to regulate cytokine secretion and enhance immune tumoricidal is found. BPQDs@HSA can also enhance immune surveillance, relieve immune suppression, and inhibit tumor immune escape. Collectively, this study not only demonstrates a successful strategy for nanomedicine-potentiated immune-cancer therapy, but also sheds light on the understanding of interface between nanomedicine and immune cells activation.
Collapse
Affiliation(s)
- Lizhen He
- Department of OncologyThe First Affiliated HospitalJinan UniversityGuangzhou510632P. R. China
| | - Jianfu Zhao
- Department of OncologyThe First Affiliated HospitalJinan UniversityGuangzhou510632P. R. China
| | - Hongjun Li
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical SciencesZhejiang UniversityZhejiang310000P. R. China
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhou311121China
| | - Bin Xie
- Department of OncologyThe First Affiliated HospitalJinan UniversityGuangzhou510632P. R. China
| | - Ligeng Xu
- Department of OncologyThe First Affiliated HospitalJinan UniversityGuangzhou510632P. R. China
| | - Guanning Huang
- Department of OncologyThe First Affiliated HospitalJinan UniversityGuangzhou510632P. R. China
| | - Ting Liu
- Department of OncologyThe First Affiliated HospitalJinan UniversityGuangzhou510632P. R. China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical SciencesZhejiang UniversityZhejiang310000P. R. China
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhou311121China
| | - Tianfeng Chen
- Department of OncologyThe First Affiliated HospitalJinan UniversityGuangzhou510632P. R. China
| |
Collapse
|
38
|
Yan X, Zhao Y, Cao G, Li X, Gao C, Liu L, Ahmed S, Altaf F, Tan H, Ma X, Xie Z, Zhang H. 2D Organic Materials: Status and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203889. [PMID: 36683257 PMCID: PMC9982583 DOI: 10.1002/advs.202203889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/31/2022] [Indexed: 06/17/2023]
Abstract
In the past few decades, 2D layer materials have gradually become a central focus in materials science owing to their uniquely layered structural qualities and good optoelectronic properties. However, in the development of 2D materials, several disadvantages, such as limited types of materials and the inability to synthesize large-scale materials, severely confine their application. Therefore, further exploration of new materials and preparation methods is necessary to meet technological developmental needs. Organic molecular materials have the advantage of being customizable. Therefore, if organic molecular and 2D materials are combined, the resulting 2D organic materials would have excellent optical and electrical properties. In addition, through this combination, the free design and large-scale synthesis of 2D materials can be realized in principle. Furthermore, 2D organic materials exhibit excellent properties and unique functionalities along with great potential for developing sensors, biomedicine, and electronics. In this review, 2D organic materials are divided into five categories. The preparation methods and material properties of each class of materials are also described in detail. Notably, to comprehensively understand each material's advantages, the latest research applications for each material are presented in detail and summarized. Finally, the future development and application prospects of 2D organic materials are briefly discussed.
Collapse
Affiliation(s)
- Xiaobing Yan
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Ying Zhao
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Gang Cao
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Xiaoyu Li
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Chao Gao
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Luan Liu
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Shakeel Ahmed
- Collaborative Innovation Center for Optoelectronic Science and TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Faizah Altaf
- Department of ChemistryWomen University Bagh Azad KashmirBagh Azad KashmirBagh12500Pakistan
- School of Materials Science and EngineeringGeorgia Institute of Technology North AvenueAtlantaGA30332USA
| | - Hui Tan
- Department of RespiratoryShenzhen Children's HospitalShenzhen518036P. R. China
| | - Xiaopeng Ma
- Department of RespiratoryShenzhen Children's HospitalShenzhen518036P. R. China
| | - Zhongjian Xie
- Institute of PediatricsShenzhen Children's HospitalShenzhenGuangdong518038P. R. China
- Shenzhen International Institute for Biomedical ResearchShenzhenGuangdong518116China
| | - Han Zhang
- Collaborative Innovation Center for Optoelectronic Science and TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| |
Collapse
|
39
|
Su Y, Jin G, Zhou H, Yang Z, Wang L, Mei Z, Jin Q, Lv S, Chen X. Development of stimuli responsive polymeric nanomedicines modulating tumor microenvironment for improved cancer therapy. MEDICAL REVIEW (2021) 2023; 3:4-30. [PMID: 37724108 PMCID: PMC10471091 DOI: 10.1515/mr-2022-0048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/16/2023] [Indexed: 09/20/2023]
Abstract
The complexity of the tumor microenvironment (TME) severely hinders the therapeutic effects of various cancer treatment modalities. The TME differs from normal tissues owing to the presence of hypoxia, low pH, and immune-suppressive characteristics. Modulation of the TME to reverse tumor growth equilibrium is considered an effective way to treat tumors. Recently, polymeric nanomedicines have been widely used in cancer therapy, because their synthesis can be controlled and they are highly modifiable, and have demonstrated great potential to remodel the TME. In this review, we outline the application of various stimuli responsive polymeric nanomedicines to modulate the TME, aiming to provide insights for the design of the next generation of polymeric nanomedicines and promote the development of polymeric nanomedicines for cancer therapy.
Collapse
Affiliation(s)
- Yuanzhen Su
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Materials Science and Engineering, Peking University, Beijing, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Guanyu Jin
- School of Materials Science and Engineering, Peking University, Beijing, China
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Huicong Zhou
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Zhaofan Yang
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Lanqing Wang
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Zi Mei
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Qionghua Jin
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Materials Science and Engineering, Peking University, Beijing, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui Province, China
| |
Collapse
|
40
|
Shen H, Wang L, Zhang Y, Huang G, Liu B. Knowledge mapping of image-guided tumor ablation and immunity: A bibliometric analysis. Front Immunol 2023; 14:1073681. [PMID: 36875115 PMCID: PMC9975509 DOI: 10.3389/fimmu.2023.1073681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Background Various ablation techniques have been successfully applied in tumor therapy by locally destroying tumor. In the process of tumor ablation, a large number of tumor cell debris is released, which can be used as a source of tumor antigens and trigger a series of immune responses. With the deepening of the research on the immune microenvironment and immunotherapy, researches exploring tumor ablation and immunity are continuously published. However, no research has systematically analyzed the intellectual landscape and emerging trends for tumor ablation and immunity using scientometric analysis. Therefore, this study aimed to conduct a bibliometric analysis to quantify and identify the status quo and trend of tumor ablation and immunity. Methods Data of publications were downloaded from the Web of Science Core Collection database. CiteSpace and VOSviewer were used to conduct bibliometric analysis to evaluate the contribution and co-occurrence relationship of different countries/regions, institutions and authors in the field, and to determine the research hotspots in this field. Results By searching in the database, a total of 3531 English articles published between 2012 and 2021 were obtained. We observed rapid growth in the number of publications since 2012. The two most active countries were China and the United States, with more than 1,000 articles. Chinese Academy of Sciences contributed the most publications (n = 153). Jibing Chen and Xianzheng Zhang might have a keen interest in tumor ablation and immunity, with more publications (n = 14; n = 13). Among the top 10 co-cited authors, Castano AP (284 citations) was ranked first, followed by Agostinis P (270 citations) and Chen Qian (246 citations). According to the co-occurrence and cluster analysis, the results indicated that the focus of research was "photothermal therapy" and "immune checkpoint blockade". Conclusions In the past decade, the neighborhood of tumor ablation domain immunity has been paid more and more attention. Nowadays, the research hotspots in this field are mainly focused on exploring the immunological mechanism in photothermal therapy to improve its efficacy, and the combination of ablation therapy and immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Hui Shen
- Department of Medical Ultrasonics, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lin Wang
- Department of Medical Ultrasonics, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Zhang
- Department of Medical Ultrasonics, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guangliang Huang
- Department of Medical Ultrasonics, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Baoxian Liu
- Department of Medical Ultrasonics, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
41
|
Zhu H, Li B, Yu Chan C, Low Qian Ling B, Tor J, Yi Oh X, Jiang W, Ye E, Li Z, Jun Loh X. Advances in Single-component inorganic nanostructures for photoacoustic imaging guided photothermal therapy. Adv Drug Deliv Rev 2023; 192:114644. [PMID: 36493906 DOI: 10.1016/j.addr.2022.114644] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/02/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Phototheranostic based on photothermal therapy (PTT) and photoacoustic imaging (PAI), as one of avant-garde medical techniques, have sparked growing attention because it allows noninvasive, deeply penetrative, and highly selective and effective therapy. Among a variety of phototheranostic nanoagents, single-component inorganic nanostructures are found to be novel and attractive PAI and PTT combined nanotheranostic agents and received tremendous attention, which not only exhibit structural controllability, high tunability in physiochemical properties, size-dependent optical properties, high reproducibility, simple composition, easy functionalization, and simple synthesis process, but also can be endowed with multiple therapeutic and imaging functions, realizing the superior therapy result along with bringing less foreign materials into body, reducing systemic side effects and improving the bioavailability. In this review, according to their synthetic components, conventional single-component inorganic nanostructures are divided into metallic nanostructures, metal dichalcogenides, metal oxides, carbon based nanostructures, upconversion nanoparticles (UCNPs), metal organic frameworks (MOFs), MXenes, graphdiyne and other nanostructures. On the basis of this category, their detailed applications in PAI guide PTT of tumor treatment are systematically reviewed, including synthesis strategies, corresponding performances, and cancer diagnosis and therapeutic efficacy. Before these, the factors to influence on photothermal effect and the principle of in vivo PAI are briefly presented. Finally, we also comprehensively and thoroughly discussed the limitation, potential barriers, future perspectives for research and clinical translation of this single-component inorganic nanoagent in biomedical therapeutics.
Collapse
Affiliation(s)
- Houjuan Zhu
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Bofan Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) A*STAR (Agency for Science, Technology and Research) Singapore 138634, Singapore
| | - Chui Yu Chan
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Beverly Low Qian Ling
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Jiaqian Tor
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Xin Yi Oh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Wenbin Jiang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) A*STAR (Agency for Science, Technology and Research) Singapore 138634, Singapore.
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) A*STAR (Agency for Science, Technology and Research) Singapore 138634, Singapore.
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore.
| |
Collapse
|
42
|
Yang M, Jin H, Gui R. Metal-Doped Boron Quantum Dots for Versatile Detection of Lactate and Fluorescence Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56986-56997. [PMID: 36519898 DOI: 10.1021/acsami.2c17321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To improve the stability and fluorescence (FL) of monoelemental boron nanomaterials, this work put forward a metal-coordination strategy to explore emerging metal-doped boron quantum dots, Co@BQDs. Through theoretical calculations, B-Co bonding as predicted can suppress the B-O reaction and protect the electronic structures of exfoliated two-dimensional (2D) boron from oxidation and decomposition upon exposure to oxygen. In experimental studies, Co2+ was added into a dispersion liquid of bulk boron and subjected to probe sonication to promote Co2+ adsorption on the surface of exfoliated 2D boron, followed by Co2+ coordination with exposed boron atoms. Solvothermal treatment of exfoliated 2D boron resulted in the generation of Co2+-doped 0D boron Co@BQDs. Experimental results confirm that Co@BQDs have higher colloidal and FL stability than BQDs as a reference. B-Co bonding formation to suppress the B-O reaction ensures the high stability of exfoliated boron structures. A dispersion liquid of Co@BQDs with stable and bright FL was used for visual FL imaging of solutions and solid substrates. Based on enzymatic and cascade oxidation-induced FL quenching of Co@BQDs, a novel FL bio-probe of lactate was explored. This bio-probe, with a broad detection range of 0.01-10 mM and a low detection limit of 3.1 μM, enables FL sensing of lactate in biosamples and shows high detection recoveries of 98.0-102.8%. Moreover, this bio-probe realized versatile FL imaging and visual detection of lactate in liquid/solid-phase systems. These results demonstrate great prospects of Co@BQDs as emerging and efficient imaging reagents for long-term tracking and bioimaging applications.
Collapse
Affiliation(s)
- Meng Yang
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Hui Jin
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Rijun Gui
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
43
|
Huang J, Santos AC, Tan Q, Bai H, Hu X, Mamidi N, Wu Z. Black phosphorous-based biomaterials for bone defect regeneration: a systematic review and meta-analysis. J Nanobiotechnology 2022; 20:522. [PMID: 36496422 PMCID: PMC9741806 DOI: 10.1186/s12951-022-01735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Critical-sized bone defects are always difficult to treat, and they are associated with a significant burden of disease in clinical practice. In recent decades, due to the fast development of biomaterials and tissue engineering, many bioinspired materials have been developed to treat large bone defects. Due to the excellent osteoblastic ability of black phosphorous (BP), many BP-based biomaterials have been developed to treat bone defects. Therefore, there are abundant studies as well as a tremendous amount of research data. It is urgent to conduct evidence-based research to translate these research data and results into validated scientific evidence. Therefore, in our present study, a qualitative systematic review and a quantitative meta-analysis were performed. Eighteen studies were included in a systematic review, while twelve studies were included in the meta-analysis. Our results showed that the overall quality of experimental methods and reports of biomaterials studies was still low, which needs to be improved in future studies. Besides, we also proved the excellent osteoblastic ability of BP-based biomaterials. But we did not find a significant effect of near-infrared (NIR) laser in BP-based biomaterials for treating bone defects. However, the quality of the evidence presented by included studies was very low. Therefore, to accelerate the clinical translation of BP-based biomaterials, it is urgent to improve the quality of the study method and reporting in future animal studies. More evidence-based studies should be conducted to enhance the quality and clinical translation of BP-based biomaterials.
Collapse
Affiliation(s)
- Jinfeng Huang
- grid.233520.50000 0004 1761 4404Department of Orthopaedics, Xijing Hospital, The Air Force Medical University, Xi’an, 710032 Shaanxi People’s Republic of China
| | - Ana Cláudia Santos
- grid.8051.c0000 0000 9511 4342Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Quanchang Tan
- grid.233520.50000 0004 1761 4404Department of Orthopaedics, Xijing Hospital, The Air Force Medical University, Xi’an, 710032 Shaanxi People’s Republic of China
| | - Hao Bai
- grid.233520.50000 0004 1761 4404Department of Orthopaedics, Xijing Hospital, The Air Force Medical University, Xi’an, 710032 Shaanxi People’s Republic of China
| | - Xiaofan Hu
- grid.233520.50000 0004 1761 4404Department of Orthopaedics, Xijing Hospital, The Air Force Medical University, Xi’an, 710032 Shaanxi People’s Republic of China
| | - Narsimha Mamidi
- grid.419886.a0000 0001 2203 4701Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnologico de Monterrey, 64849 Monterrey, NL Mexico
| | - Zixiang Wu
- grid.233520.50000 0004 1761 4404Department of Orthopaedics, Xijing Hospital, The Air Force Medical University, Xi’an, 710032 Shaanxi People’s Republic of China
| |
Collapse
|
44
|
Liu H, Xing X, Tan Y, Dong H. Two-dimensional transition metal carbides and nitrides (MXenes) based biosensing and molecular imaging. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:4977-4993. [PMID: 39634292 PMCID: PMC11501147 DOI: 10.1515/nanoph-2022-0550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/28/2022] [Indexed: 12/07/2024]
Abstract
As a "star material", 2D transition metal carbides and/or nitrides (MXenes) have tremendous potential applications in biosensor development and molecular imaging. MXenes have a lot of advantages due to their large specific surface, excellent electrical conductivity, adjustable band gap, and easy modification. MXenes that immobilized with DNA strands, proteins, enzymes, or other bioluminescent materials on the surface, have been used to measure small molecules with extraordinary sensitivity and remarkable limit of detection. This review provides an overview of most recent development in the synthesis, fundamental properties, biosensing, and molecular imaging applications of MXenes. We focused on molecular detection through MXene-based electrochemical properties their challenges and novel opportunities of MXenes in biological applications. This article will provide a guide for researchers who are interested in the application of MXenes biosensors.
Collapse
Affiliation(s)
- Huiyu Liu
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen518060, China
| | - Xiaotong Xing
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen518060, China
| | - Yan Tan
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen518060, China
| | - Haifeng Dong
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen518060, China
| |
Collapse
|
45
|
Glioma diagnosis and therapy: Current challenges and nanomaterial-based solutions. J Control Release 2022; 352:338-370. [PMID: 36206948 DOI: 10.1016/j.jconrel.2022.09.065] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
Glioma is often referred to as one of the most dreadful central nervous system (CNS)-specific tumors with rapidly-proliferating cancerous glial cells, accounting for nearly half of the brain tumors at an annual incidence rate of 30-80 per a million population. Although glioma treatment remains a significant challenge for researchers and clinicians, the rapid development of nanomedicine provides tremendous opportunities for long-term glioma therapy. However, several obstacles impede the development of novel therapeutics, such as the very tight blood-brain barrier (BBB), undesirable hypoxia, and complex tumor microenvironment (TME). Several efforts have been dedicated to exploring various nanoformulations for improving BBB permeation and precise tumor ablation to address these challenges. Initially, this article briefly introduces glioma classification and various pathogenic factors. Further, currently available therapeutic approaches are illustrated in detail, including traditional chemotherapy, radiotherapy, and surgical practices. Then, different innovative treatment strategies, such as tumor-treating fields, gene therapy, immunotherapy, and phototherapy, are emphasized. In conclusion, we summarize the article with interesting perspectives, providing suggestions for future glioma diagnosis and therapy improvement.
Collapse
|
46
|
Wen S, Xiong Y, Cai S, Li H, Zhang X, Sun Q, Yang R. Plasmon-enhanced photothermal properties of Au@Ti 3C 2T x nanosheets for antibacterial applications. NANOSCALE 2022; 14:16572-16580. [PMID: 36314771 DOI: 10.1039/d2nr05115j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Antibiotic-resistant bacterial strains have become an ever-increasing public concern due to their significant threats to health safety. Nanomaterial-based photothermal treatment has shown potential in antibacterial applications, but many nanomaterials exhibited limited photothermal activity that may compromise their antibacterial efficacies. Herein, we report a novel strategy based on efficient photothermal ablation and physical contact over a supported nanostructure by loading Au nanoparticles (NPs) on few-layered Ti3C2Tx nanosheets (NSs) for antibacterial treatment. Ti3C2Tx NSs are delaminated via etching and sonication, and act as a reductant for the in situ reduction of HAuCl4·xH2O, producing "naked" Au NPs without any stabilizers. Meanwhile, by adjusting the Au/Ti ratio, the size and loading of the Au NPs are finely regulated, thereby providing an ideal model of a surface-clean Au@Ti3C2Tx heterostructure for probing the composition-performance relationship. Upon irradiation with visible light, it exhibits synergistically enhanced photothermal conversion efficiency and stability, owing to the localized surface plasmonic resonance effect of Au NP and Au-NS interactions. Moreover, under visible light irradiation for 10 min, the Au@ Ti3C2Tx heterostructure exhibits excellent antibacterial activity for Gram-positive S. aureus and Gram-negative E. coli, and kills over 99% bacteria with a low dose of the nanomedicine suspension (50 μg mL-1). The work demonstrates that the incorporation of transition metal carbides with plasmonic metal nanostructures is an effective strategy to enhance the photothermal antibacterial efficacy.
Collapse
Affiliation(s)
- Shiqi Wen
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS centre for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China.
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Youlin Xiong
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS centre for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Shuangfei Cai
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS centre for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Haolin Li
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS centre for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China.
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xining Zhang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS centre for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China.
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Qian Sun
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS centre for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Rong Yang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS centre for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China.
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
47
|
Xie Z, Duo Y, Fan T, Zhu Y, Feng S, Li C, Guo H, Ge Y, Ahmed S, Huang W, Liu H, Qi L, Guo R, Li D, Prasad PN, Zhang H. Light-induced tumor theranostics based on chemical-exfoliated borophene. LIGHT, SCIENCE & APPLICATIONS 2022; 11:324. [PMID: 36369148 PMCID: PMC9652458 DOI: 10.1038/s41377-022-00980-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/23/2022] [Accepted: 09/09/2022] [Indexed: 06/03/2023]
Abstract
Among 2D materials (Xenes) which are at the forefront of research activities, borophene, is an exciting new entry due to its uniquely varied optical, electronic, and chemical properties in many polymorphic forms with widely varying band gaps including the lightest 2D metallic phase. In this paper, we used a simple selective chemical etching to prepare borophene with a strong near IR light-induced photothermal effect. The photothermal efficiency is similar to plasmonic Au nanoparticles, with the added benefit of borophene being degradable due to electron deficiency of boron. We introduce this selective chemical etching process to obtain ultrathin and large borophene nanosheets (thickness of ~4 nm and lateral size up to ~600 nm) from the precursor of AlB2. We also report first-time observation of a selective Acid etching behavior showing HCl etching of Al to form a residual B lattice, while HF selectively etches B to yield an Al lattice. We demonstrate that through surface modification with polydopamine (PDA), a biocompatible smart delivery nanoplatform of B@PDA can respond to a tumor environment, exhibiting an enhanced cellular uptake efficiency. We demonstrate that borophene can be more suitable for safe photothermal theranostic of thick tumor using deep penetrating near IR light compared to gold nanoparticles which are not degradable, thus posing long-term toxicity concerns. With about 40 kinds of borides, we hope that our work will open door to more discoveries of this top-down selective etching approach for generating borophene structures with rich unexplored thermal, electronic, and optical properties for many other technological applications.
Collapse
Affiliation(s)
- Zhongjian Xie
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
- Shenzhen Engineering Laboratory of phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, China
| | - Yanhong Duo
- Shenzhen Engineering Laboratory of phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, China
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| | - Taojian Fan
- Shenzhen Engineering Laboratory of phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, China
| | - Yao Zhu
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, 518020, Shenzhen, China
| | - Shuai Feng
- Optoelectronics Research Center, School of Science, Minzu University of China, 100081, Beijing, PR China
| | - Chuanbo Li
- Optoelectronics Research Center, School of Science, Minzu University of China, 100081, Beijing, PR China
| | - Honglian Guo
- Optoelectronics Research Center, School of Science, Minzu University of China, 100081, Beijing, PR China
| | - Yanqi Ge
- Shenzhen Engineering Laboratory of phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, China
| | - Shakeel Ahmed
- Shenzhen Engineering Laboratory of phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, China
| | - Weichun Huang
- Nantong Key Lab of Intelligent and New Energy Materials, College of Chemistry and Chemical Engineering, Nantong University, 226019, Nantong, Jiangsu, China
| | - Huiling Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, 510632, Guangzhou, China
| | - Ling Qi
- Department of Core Medical Laboratory, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guang Dong Province, China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, 510632, Guangzhou, China
| | - Defa Li
- Department of Laboratory Medicine, Shenzhen Children's Hospital, Shenzhen, Guangdong, China.
| | - Paras N Prasad
- Institute for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Han Zhang
- Shenzhen Engineering Laboratory of phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, China.
| |
Collapse
|
48
|
Kang Y, Zhang H, Chen L, Dong J, Yao B, Yuan X, Qin D, Yaremenko AV, Liu C, Feng C, Ji X, Tao W. The marriage of Xenes and hydrogels: Fundamentals, applications, and outlook. Innovation (N Y) 2022; 3:100327. [PMID: 36263399 PMCID: PMC9573930 DOI: 10.1016/j.xinn.2022.100327] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/19/2022] [Indexed: 12/04/2022] Open
Abstract
Hydrogels have blossomed as superstars in various fields, owing to their prospective applications in tissue engineering, soft electronics and sensors, flexible energy storage, and biomedicines. Two-dimensional (2D) nanomaterials, especially 2D mono-elemental nanosheets (Xenes) exhibit high aspect ratio morphology, good biocompatibility, metallic conductivity, and tunable electrochemical properties. These fascinating characteristics endow numerous tunable application-specific properties for the construction of Xene-based hydrogels. Hierarchical multifunctional hydrogels can be prepared according to the application requirements and can be effectively tuned by different stimulation to complete specific tasks in a spatiotemporal sequence. In this review, the synthesis mechanism, properties, and emerging applications of Xene hydrogels are summarized, followed by a discussion on expanding the performance and application range of both hydrogels and Xenes.
Collapse
Affiliation(s)
- Yong Kang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Hanjie Zhang
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Jinrui Dong
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Bin Yao
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Xue Yuan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Duotian Qin
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alexey V. Yaremenko
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chuang Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chan Feng
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Respiratory Medicine, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
49
|
Wang X, Cheng Y, Han X, Yan J, Wu Y, Song P, Wang Y, Li X, Zhang H. Functional 2D Iron-Based Nanosheets for Synergistic Immunotherapy, Phototherapy, and Chemotherapy of Tumor. Adv Healthc Mater 2022; 11:e2200776. [PMID: 35912918 DOI: 10.1002/adhm.202200776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/30/2022] [Indexed: 01/27/2023]
Abstract
Immunotherapy efficacy has been limited by tumor-associated macrophages (TAMs), which are the most abundant immune regulatory cells infiltrating around tumor tissues. The repolarization of pro-tumor M2 TAMs to anti-tumor M1 TAMs is a very promising immunotherapeutic strategy for cancer therapy. In this manuscript, multifunctional 2D iron-based nanosheets (FeNSs) are synthesized via a simple hydrothermal method for the first time, which not only possess photothermal and photodynamic properties, but also can repolarize TAMs from M2 to M1. After modifying with polyethylene glycol and loading with bioreductive prodrug banoxantrone (AQ4N), abbreviated as AP FeNSs, it can effectively repolarize TAMs from M2 to M1 and deliver AQ4N to tumor microenvironment (TME). Moreover, the repolarized M1 TAMs overexpress inducible nitric oxide synthase, which can convert nontoxic AQ4N to cytotoxic AQ4 under hypoxic TME, enabling immunomodulation-activated chemotherapy. A series of in vitro and in vivo results corroborate that AP FeNSs effectively exert photothermal and photodynamic effects and repolarize M2 TAMs to M1 TAMs, releasing inflammatory factors and activating the chemotherapeutic effect, thereby realizing synergistic tumor therapy.
Collapse
Affiliation(s)
- Xingbo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yan Cheng
- College of Life Science, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, P. R. China
| | - Xiaoqing Han
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Jiao Yan
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Yunyun Wu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin, 130012, P. R. China
| | - Panpan Song
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yanjing Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xi Li
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin, 130012, P. R. China
| | - Haiyuan Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
50
|
Liang X, Hao J, Zhang P, Hou C, Tai G. Freestanding α-rhombohedral borophene nanosheets: preparation and memory device application. NANOTECHNOLOGY 2022; 33:505601. [PMID: 36067735 DOI: 10.1088/1361-6528/ac8f9a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Borophene has attracted extensive interests owing to its distinct structural, electronic and optical properties for promising potential applications. However, the structural instability and need of metal substrate for deposition of borophene seriously restrict the exploration of its exceptional physical and chemical properties and further hamper its extensive applications towards high-performance electronic and optoelectronic devices. Here, we reported the synthesis of high-quality freestandingα-rhombohedral borophene nanosheets by a facile probe ultrasonic approach in different organic solvents. The results show that the nanosheets have high-quality in ethanol solution and have an average lateral size of 0.54μm and a thickness of around 1.2 nm. Photoluminescence spectra indicate that a strong quantum confinement effect occurs in the nanosheets, which caused the increase of the band gap from 1.80 eV for boron powders and 2.52 eV for the nanosheets s. A nonvolatile memory device based on the nanosheets mixed with polyvinylpyrrolidone was fabricated, which exhibited a good rewriteable nonvolatile memory behavior and good stability.
Collapse
Affiliation(s)
- Xinchao Liang
- The State Key Laboratory of Mechanics and Control of Mechanical Structures, Laboratory of Intelligent Nano Materials and Devices of Ministry of Education, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Jinqian Hao
- The State Key Laboratory of Mechanics and Control of Mechanical Structures, Laboratory of Intelligent Nano Materials and Devices of Ministry of Education, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Pengyu Zhang
- The State Key Laboratory of Mechanics and Control of Mechanical Structures, Laboratory of Intelligent Nano Materials and Devices of Ministry of Education, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Chuang Hou
- The State Key Laboratory of Mechanics and Control of Mechanical Structures, Laboratory of Intelligent Nano Materials and Devices of Ministry of Education, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Guoan Tai
- The State Key Laboratory of Mechanics and Control of Mechanical Structures, Laboratory of Intelligent Nano Materials and Devices of Ministry of Education, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| |
Collapse
|