1
|
Liu X, Long L, Meng L, Zhang K, Zhang G, Su Y, Duan F, Hu Y, Xu FJ. One hydrophobic coating enables macro- and micro-scale blood contact activation. Biomaterials 2025; 318:123155. [PMID: 39892014 DOI: 10.1016/j.biomaterials.2025.123155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Efforts to develop hemostatic materials/devices have focused solely on enhanced liquid adsorption for concentrating blood components and/or new material forms for covering/sealing injured blood vessels. Considering the increasing coagulopathy conditions and versatile material forms, it is assumed to be valuable but inaccessible for creating universal hemostatic surfaces regardless of liquid-absorption property and coagulation component deficiency. Herein, we illustrate a facile polyphenol/alkyl (ATA) coating for macro-to-micro scale hemostatic materials that can integrate the virtues of contact-activation hemostatic property, low liquid-absorption property and applicability for healthy/coagulopathy conditions. Medical gauze with adequate ATA content, of highly hydrophobic surface that can reduce unnecessary blood absorption and bacterial adhesion at wounds, possesses the significantly higher hemostatic property than the pristine gauze. Macro-scale dressings/sheets and micro-scale particles are further modified with ATA for enhancing hemostatic properties, which verifies the valuable substrate compatibility and reveals the contact-activation hemostatic mechanism as the regulated blood (component)-material interactions. Not limited to the hemorrhage control in healthy rats/rabbits, these ATA-modified materials achieve potent hemostatic performance for intravascular hemostasis and coagulopathy condition. Our work thereby pioneers not only one potent hydrophobic coating for promising hemostatic materials, but also the appealing polyphenol/alkyl system for regulating protein/cell-material interactions.
Collapse
Affiliation(s)
- Xiaoli Liu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China; Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, PR China
| | - Li Long
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Limin Meng
- Department of Interventional Radiology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, PR China; Department of Medical Imaging, Air Force Medical Center, PLA, Beijing, 100142, PR China
| | - Kai Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China; Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, PR China
| | - Guochao Zhang
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Yang Su
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Feng Duan
- Department of Interventional Radiology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, PR China.
| | - Yang Hu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China; Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, PR China.
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
2
|
Wang Y, Jiang N, Wu S, Lin G, Lu W, Shang B, Zhu X, Han W, Li J, Chen Y. An injectable hydrogel for hemostasis and tumor suppression in intraoperative breast cancer. BIOMATERIALS ADVANCES 2025; 172:214219. [PMID: 39987716 DOI: 10.1016/j.bioadv.2025.214219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/14/2025] [Accepted: 02/02/2025] [Indexed: 02/25/2025]
Abstract
In the period between surgery and systemic therapy for breast cancer, residual tumor cells may proliferate, leading to tumor recurrence. Additionally, intraoperative wound bleeding may cause surgical failure or the spread of tumor cells. This study introduces an innovative injectable hydrogel composed of oxidized hyaluronic acid (OHA) loaded 5-fluorouracil (5-FU) and N-carboxyethyl chitosan (CEC), designed for intraoperative hemostasis and tumor suppression in intraoperative breast cancer. The CEC/OHA injectable hydrogel was synthesized through a Schiff base reaction between the aldehyde group of OHA and the amino group of CEC, incorporating 5-FU during hydrogel formation. This CEC/OHA injectable hydrogel demonstrated hemostatic effects comparable to gelatin sponges in both an in vivo rat liver hemorrhage model and an in vitro rat tail amputation model. When loaded with 5-FU, the injectable hydrogel effectively inhibited the proliferation of MDA-MB-231 breast cancer cells in vitro, significantly inhibited tumor growth and recurrence in vivo, and did not induce significant damage or inflammatory response in any major organ. This CEC/OHA & 5-FU injectable hydrogel is envisioned as a complementary therapeutic regimen during the intraoperative period in breast cancer surgery to prevent hemostasis and tumor recurrence.
Collapse
Affiliation(s)
- Yue Wang
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China; Department of Surgical Oncology, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China
| | - Nan Jiang
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China; Department of Surgical Oncology, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China
| | - Shuhan Wu
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China; Department of Surgical Oncology, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China
| | - Guangshuai Lin
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China; Department of Surgical Oncology, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China
| | - Wudang Lu
- Xi'an Libang Pharmaceutical Co., Ltd, Xi'an, Shaanxi 710075, China
| | - Bin Shang
- Xi'an Libang Pharmaceutical Co., Ltd, Xi'an, Shaanxi 710075, China
| | - Xulong Zhu
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China; Department of Surgical Oncology, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China
| | - Wei Han
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China; Department of Surgical Oncology, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China
| | - Jianhui Li
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China; Department of Surgical Oncology, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China.
| | - Yongmei Chen
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
3
|
Gong Y, Cheng Y, Zeng F, Liu X, Yang Y, Zhang F, Wen C, Yang F, Li H, He Y, Ni B, Xu Y, Xiao L, Zhang Q, Zhou L, Zheng J, Chen W. A self-gelling hemostatic powder boosting radiotherapy-elicited NK cell immunity to combat postoperative hepatocellular carcinoma relapse. Biomaterials 2025; 317:123068. [PMID: 39813968 DOI: 10.1016/j.biomaterials.2024.123068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/06/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025]
Abstract
Liver resection represents a main curative treatment for patients with early-stage hepatocellular carcinoma (HCC), but there is a rather high incidence of postoperative HCC relapse, which severely shortens long-term survival time. Currently, no standard adjuvant strategies are available for preventing HCC relapse in clinical practice. Impaired natural killer (NK) cell anti-tumor immunity has been disclosed as a crucial root of HCC relapse, indicating that reinstating NK cell anti-tumor immunity may show promise to curb HCC relapse. Coincidently, mounting evidence shows that radiotherapy (RT) can trigger NK cell anti-tumor immunity, though its mechanisms have never been completely elucidated. Herein, we uncover that RT can induce immunogenic cell death and activate cGAS-STING pathway in HCC cells to elicit NK cell anti-tumor immunity. However, RT is also revealed to enhance autophagy and CD73 expression in HCC cells, as well as neutrophil extracellular traps (NETs) formation, which largely limits RT-induced activation of NK cell anti-tumor immunity. Therefore, a cocktail of autophagy inhibitor 3-methyladenine, CD73 inhibitor ARL 67156 trisodium and NETs lyase DNase I may sensitize RT to reinvigorate NK cell anti-tumor immunity and thus prevent HCC relapse postresection. To minimize therapy-related side effects, a nanocomposite powder encapsulating such a triple-drug cocktail is developed. This powder can rapidly form adhesive hydrogel in situ after applied to surgical margin, consequently fulfilling liver-localized sustained drug delivery. Importantly, it can sensitize RT to reinstate NK cell anti-tumor immunity to combat postoperative HCC relapse in Heap1-6-HCC murine model. Besides, this powder can also generate rapid hemostasis in rat and porcine models. Altogether, this work provides an innovative strategy to thwart postoperative HCC relapse and bleeding.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/radiotherapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/surgery
- Carcinoma, Hepatocellular/therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/radiotherapy
- Liver Neoplasms/pathology
- Liver Neoplasms/surgery
- Liver Neoplasms/therapy
- Killer Cells, Natural/immunology
- Killer Cells, Natural/drug effects
- Animals
- Humans
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/prevention & control
- Hemostatics/pharmacology
- Hemostatics/therapeutic use
- Hemostatics/chemistry
- Cell Line, Tumor
- Powders
- Mice
- Male
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Yihang Gong
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yusheng Cheng
- Department of General Surgery, The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Fanxin Zeng
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaoquan Liu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Feng Zhang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chaoyao Wen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Fan Yang
- Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Hua Li
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yizhan He
- Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Beibei Ni
- Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yan Xu
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Lan Xiao
- Department of Gynecology Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Qi Zhang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| | - Lei Zhou
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Wenjie Chen
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
4
|
Cheng Y, Gong Y, Li X, Zeng F, Liu B, Chen W, Zhang F, Chen H, Zhu W, Li H, Zhou L, Wu T, Zhou W. A spreadable self-gelling hemostatic powder sensitizes CAR-NK cell therapy to prevent hepatocellular carcinoma recurrence postresection. J Nanobiotechnology 2025; 23:353. [PMID: 40380326 PMCID: PMC12082949 DOI: 10.1186/s12951-025-03424-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 04/30/2025] [Indexed: 05/19/2025] Open
Abstract
Adoptive natural killer cell therapy (ANKCT) harbors great potential for combating postsurgical hepatocellular carcinoma (HCC) recurrence, but its efficacy is limited by tumor microenvironment (TME)-meditated repression on NK cell function and insufficient NK cell homing to tumor sites. Therefore, herein we develop a nanocomposite sprayable self-gelling powder enabling liver-localized codelivery of three FDA-approved drugs including calcitriol (Cal), gemcitabine (Gem), and tazemetostat (Taz) to address these challenges. This powder can be laparoscopically spread to liver wound sites, where it rapidly absorbs interfacial liquid to form a bulk adhesive pressure-resistant hydrogel in situ, implying its application potential in minimally surgery. Moreover, its application to liver resection bed significantly sensitizes allogenic NK and EpCAM chimeric antigen receptor modified-NK-92 (EpCAM-CAR-NK) cell infusion to prevent HCC recurrence in orthotopic Heap1-6 tumor-bearing and patient-derived tumor xenograft (PDX) HCC murine models. Additionally, this powder can allow for an effective hemostatic effect in rat and porcine models due to its powerful tissue adhesion-seal and erythrocyte-aggregating effects. Altogether, our newly developed hemostatic self-gelling powder can significantly sensitize ANKCT to combat HCC recurrence in a manner compatible with surgical treatment of HCC.
Collapse
Affiliation(s)
- Yusheng Cheng
- The Second Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
- Department of General Surgery, Department of Biotherapy, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Gansu Province Precision Diagnosis and Treatment Engineering Research Center of Hepatobiliary Pancreatic Diseases, Gansu Province Key Laboratory of Environmental Oncology, Lanzhou, 730000, China
| | - Yihang Gong
- Department of Hepatic Surgery and Liver Transplantation Center, Organ Transplantation Institute, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xin Li
- The Second Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
- Department of General Surgery, Department of Biotherapy, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Gansu Province Precision Diagnosis and Treatment Engineering Research Center of Hepatobiliary Pancreatic Diseases, Gansu Province Key Laboratory of Environmental Oncology, Lanzhou, 730000, China
| | - Fanxin Zeng
- Department of Hepatic Surgery and Liver Transplantation Center, Organ Transplantation Institute, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Bo Liu
- The Second Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
- Department of General Surgery, Department of Biotherapy, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Gansu Province Precision Diagnosis and Treatment Engineering Research Center of Hepatobiliary Pancreatic Diseases, Gansu Province Key Laboratory of Environmental Oncology, Lanzhou, 730000, China
| | - Wenjie Chen
- Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Feng Zhang
- Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Haofei Chen
- Gansu Province Precision Diagnosis and Treatment Engineering Research Center of Hepatobiliary Pancreatic Diseases, Gansu Province Key Laboratory of Environmental Oncology, Lanzhou, 730000, China
| | - Weixiong Zhu
- The Second Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
| | - Hui Li
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Lei Zhou
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| | - Tiangen Wu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, PR China.
- Hubei Provincial Clinical Research Center for Minimally Invasive Diagnosis and Treatment of Hepatobiliary and Pancreatic Diseases, Wuhan, Hubei, 430071, PR China.
| | - Wence Zhou
- The Second Clinical Medical School of Lanzhou University, Lanzhou, 730000, China.
- Department of General Surgery, Department of Biotherapy, Lanzhou University Second Hospital, Lanzhou, 730000, China.
- Gansu Province Precision Diagnosis and Treatment Engineering Research Center of Hepatobiliary Pancreatic Diseases, Gansu Province Key Laboratory of Environmental Oncology, Lanzhou, 730000, China.
| |
Collapse
|
5
|
Meng ZN, Chen JY, Yu C, Zheng AH, Reddy OS, Liu KY, Su YR, Zhang ST, Wang YS, Gu HY, Wang FW, Xu SC, Sun LT, Chen BC, Lai WF, Wu GQ, Zhang DH. A gelable polymer loaded with curcumin and apatinib absorbed in gelatin sponge delays postoperative residual tumor growth. Sci Rep 2025; 15:16375. [PMID: 40350449 PMCID: PMC12066724 DOI: 10.1038/s41598-025-97732-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/07/2025] [Indexed: 05/14/2025] Open
Abstract
Surgical resection of the tumor remains the preferred treatment for most solid tumors at an early stage, however, residual tumor cells after surgical resection poses a considerable obstacle in cancer treatment. Here, we developed a gel carrier using a cellulose-based gel-forming polymer (CT) combined with gelatin sponge (GS) to fill the resection cavity and delay postoperative residual tumor growth. The fabricated gel exhibited a porous nature along with gradual swelling and erosion over time. Curcumin (Cur) and apatinib (Apa) were loaded into CT gel (CT-CA), and a sustained release behavior was observed at pH 7.4 and 6.4 at 37 °C. The preclinical studies indicated that the mouse weight and tissue exhibited no apparent change after administration of the GS-CT compared with the control. The in vivo fluorescence images showed that GS-CT has the capability to regulate the release of Cur and Apa, facilitating the accumulation of these two agents at the surgical tumor site. Moreover, GS-CT loaded Cur and Apa (GS-CT-CA) delayed postoperative residual tumor growth in intraperitoneal and subcutaneous postoperative mouse models. These findings demonstrated that our gel carrier system significantly prevents postoperative residual tumor growth because of enhanced drug accumulation and sustained drug release at the tumor site.
Collapse
Affiliation(s)
- Zhuo-Nan Meng
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jian-Yuan Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chong Yu
- Department of Urology, Urology & Nephrology Center, Zhejiang Provincial People'sHospital, Affiliated People's Hospital, Hangzhou Medical College, No. 138 ShangTang Road, Hangzhou, 310014, China
| | - Ai-Hong Zheng
- Department of Medical Oncology, Cancer Center, Zhejiang Provincial People's Hospital(Affiliated People's Hospital, Hangzhou Medical College), No. 138 ShangTang Road, Hangzhou, 310014, China
| | - O Sreekanth Reddy
- Department of Urology, Urology & Nephrology Center, Zhejiang Provincial People'sHospital, Affiliated People's Hospital, Hangzhou Medical College, No. 138 ShangTang Road, Hangzhou, 310014, China
| | - Kai-Yan Liu
- Department of Urology, Urology & Nephrology Center, Zhejiang Provincial People'sHospital, Affiliated People's Hospital, Hangzhou Medical College, No. 138 ShangTang Road, Hangzhou, 310014, China
| | - Yong-Rui Su
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shi-Tai Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yin-Shuang Wang
- Department of Ultrasound Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang Province, China
| | - Hang-Yu Gu
- Department of Oncology and Hematology, Beilun District People's Hospital, Ningbo, China
| | - Fu-Wei Wang
- Department of Medical Oncology, Cancer Center, Zhejiang Provincial People's Hospital(Affiliated People's Hospital, Hangzhou Medical College), No. 138 ShangTang Road, Hangzhou, 310014, China
| | - Song-Cheng Xu
- Department of Ultrasound, Zhejiang Provincial People's Hospital (Affiliated People'sHospital, Hangzhou Medical College), No. 138 ShangTang Road, Hangzhou, 310014, China
| | - Li-Tao Sun
- Department of Ultrasound, Zhejiang Provincial People's Hospital (Affiliated People'sHospital, Hangzhou Medical College), No. 138 ShangTang Road, Hangzhou, 310014, China
| | - Bing-Chen Chen
- Department of Anal Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Wing-Fu Lai
- Department of Urology, Urology & Nephrology Center, Zhejiang Provincial People'sHospital, Affiliated People's Hospital, Hangzhou Medical College, No. 138 ShangTang Road, Hangzhou, 310014, China.
- School of Food Science and Nutrition, University of Leeds, Leeds, LS29JT, UK.
| | - Guo-Qing Wu
- Department of Medical Oncology, Cancer Center, Zhejiang Provincial People's Hospital(Affiliated People's Hospital, Hangzhou Medical College), No. 138 ShangTang Road, Hangzhou, 310014, China.
| | - Da-Hong Zhang
- Department of Urology, Urology & Nephrology Center, Zhejiang Provincial People'sHospital, Affiliated People's Hospital, Hangzhou Medical College, No. 138 ShangTang Road, Hangzhou, 310014, China.
| |
Collapse
|
6
|
Zhou X, Ma W, Jiang J, Dang J, Lv R, Wang H, Ma M, Sun D, Zhang M. Non-antibiotic dependent photothermal antibacterial hemostatic MXene hydrogel for infectious wounds healing. BIOMATERIALS ADVANCES 2025; 169:214157. [PMID: 39721572 DOI: 10.1016/j.bioadv.2024.214157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
On account of the existence of antibiotic resistance, the wound healing of pathogenic infection is still a challenge in modern society. A desirable wound dressing should own the abilities of adhesiveness, hemostasis and good mechanical property, meanwhile the property of eliminating bacteria without side effects is also highly needed. In this work, we established a kind of hydrogel based on carboxymethyl cellulose-graft-tyramine (CMC-Ty) and MXene (Ti3C2Tx) through employing H2O2/HRP (horseradish peroxidase) as the initiator, then the as-prepared hydrogel (named CMC-Ty/MXene) was immersed in tannic acid (TA) solution, and this TA-treated hydrogel was called CMC-Ty/MXene+TA. By employing TA as the multi-functional H-bond provider, the adhesiveness, hemostatic ability, mechanical property and bactericidal performance of the hydrogel was enhanced. And MXene in this system exerted benign photothermal antimicrobial performance, it was able to transform near-infrared (NIR) light into heat, then the bacteria would be physically damaged (thermal destruction) due to the hyperthermy, hence the antibacterial effect of which will not be restricted by antibiotic resistance. The temperature of the hydrogel in the experimental group can be increased by 25 °C after irradiation by 808 nm NIR light for 10 min, and the bactericidal efficiency against both E. coli and S. aureus reached >99 %. In vivo tests demonstrated that with the assistance of NIR irradiation, the hydrogel can distinctly accelerate the S. aureus infected wound closure. We envisage that this non-antibiotic dependent multifunctional photothermal hydrogel can provide a promise for bacteria-invaded wound healing.
Collapse
Affiliation(s)
- Xingyu Zhou
- National and Local Joint Engineering Laboratory for Synthetic Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Wendi Ma
- Chongqing Polycomp International Co., Ltd, Chongqing 400082, China
| | - Junhui Jiang
- National and Local Joint Engineering Laboratory for Synthetic Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Junbo Dang
- National and Local Joint Engineering Laboratory for Synthetic Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ruifu Lv
- National and Local Joint Engineering Laboratory for Synthetic Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Hongbo Wang
- National and Local Joint Engineering Laboratory for Synthetic Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Minna Ma
- National and Local Joint Engineering Laboratory for Synthetic Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Dahui Sun
- The First Hospital of Jilin University, Changchun 130021, China.
| | - Mei Zhang
- National and Local Joint Engineering Laboratory for Synthetic Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
7
|
Shahriar SMS, Andrabi SM, Al-Gahmi AM, Yan Z, McCarthy AD, Wang C, Yusuf ZA, Sharma NS, Busquets ME, Nilles MI, Jara CP, Yang K, Carlson MA, Xie J. Bicomponent nano- and microfiber aerogels for effective management of junctional hemorrhage. Nat Commun 2025; 16:2403. [PMID: 40064972 PMCID: PMC11893793 DOI: 10.1038/s41467-025-57836-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Managing junctional hemorrhage is challenging due to ineffective existing techniques, with the groin being the most common site, accounting for approximately 19.2% of potentially survivable field deaths. Here, we report a bicomponent nano- and microfiber aerogel (NMA) for injection into deep, narrow junctional wounds to effectively halt bleeding. The aerogel comprises intertwined poly(lactic acid) nanofibers and poly(ε-caprolactone) microfibers, with mechanical properties tunable through crosslinking. Optimized aerogels demonstrate improved resilience, toughness, and elasticity, enabling rapid re-expansion upon blood contact. They demonstrate superior blood absorption and clotting efficacy compared to commercial products (i.e., QuikClot® Combat Gauze and XStat®). Most importantly, in a lethal swine junctional wound model (Yorkshire swine, both male and female, n = 5), aerogel treatment achieved immediate hemostasis, a 100% survival rate, no rebleeding, hemodynamic stability, and stable coagulation, hematologic, and arterial blood gas testing.
Collapse
Affiliation(s)
- S M Shatil Shahriar
- Department of Surgery - Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Eppley Institute for Research in Cancer and Allied Diseases, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Syed Muntazir Andrabi
- Department of Surgery - Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Al-Murtadha Al-Gahmi
- Department of Surgery - General Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Zishuo Yan
- Department of Surgery - Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alec D McCarthy
- Department of Surgery - Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Chenlong Wang
- Department of Surgery - Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Zakariya A Yusuf
- Department of Surgery - Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Navatha Shree Sharma
- Department of Surgery - Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Milton E Busquets
- Department of Surgery - Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Pancreatic Cancer Center of Excellence, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mallory I Nilles
- Department of Surgery - Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Carlos Poblete Jara
- Department of Surgery - Vascular Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kai Yang
- Department of Surgery - Plastic & Reconstructive Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mark A Carlson
- Department of Surgery - General Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Jingwei Xie
- Department of Surgery - Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Mechanical and Materials Engineering, University of Nebraska Lincoln, Lincoln, NE, USA.
| |
Collapse
|
8
|
Zou CY, Han C, Xing F, Jiang YL, Xiong M, Li-Ling J, Xie HQ. Smart design in biopolymer-based hemostatic sponges: From hemostasis to multiple functions. Bioact Mater 2025; 45:459-478. [PMID: 39697242 PMCID: PMC11653154 DOI: 10.1016/j.bioactmat.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
Uncontrolled hemorrhage remains the leading cause of death in clinical and emergency care, posing a major threat to human life. To achieve effective bleeding control, many hemostatic materials have emerged. Among them, nature-derived biopolymers occupy an important position due to the excellent inherent biocompatibility, biodegradability and bioactivity. Additionally, sponges have been widely used in clinical and daily life because of their rapid blood absorption. Therefore, we provide the overview focusing on the latest advances and smart designs of biopolymer-based hemostatic sponge. Starting from the component, the applications of polysaccharide and polypeptide in hemostasis are systematically introduced, and the unique bioactivities such as antibacterial, antioxidant and immunomodulation are also concerned. From the perspective of sponge structure, different preparation processes can obtain unique physical properties and structures, which will affect the material properties such as hemostasis, antibacterial and tissue repair. Notably, as development frontier, the multi-functions of hemostatic materials is summarized, mainly including enhanced coagulation, antibacterial, avoiding tumor recurrence, promoting tissue repair, and hemorrhage monitoring. Finally, the challenges facing the development of biopolymer-based hemostatic sponges are emphasized, and future directions for in vivo biosafety, emerging materials, multiple application scenarios and translational research are proposed.
Collapse
Affiliation(s)
- Chen-Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Frontier Medical Center, Tianfu Jincheng Laboratory, 610212, Chengdu, Sichuan, PR China
| | - Chen Han
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Frontier Medical Center, Tianfu Jincheng Laboratory, 610212, Chengdu, Sichuan, PR China
| | - Fei Xing
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Department of Pediatric Surgery, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
| | - Yan-Lin Jiang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Frontier Medical Center, Tianfu Jincheng Laboratory, 610212, Chengdu, Sichuan, PR China
| | - Ming Xiong
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
| | - Jesse Li-Ling
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Department of Medical Genetics, West China Second Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Frontier Medical Center, Tianfu Jincheng Laboratory, 610212, Chengdu, Sichuan, PR China
| |
Collapse
|
9
|
Li K, Yu X, Xu Y, Wang H, Liu Z, Wu C, Luo X, Xu J, Fang Y, Ju E, Lv S, Chan HF, Lao YH, He W, Tao Y, Li M. Cascaded immunotherapy with implantable dual-drug depots sequentially releasing STING agonists and apoptosis inducers. Nat Commun 2025; 16:1629. [PMID: 39952937 PMCID: PMC11828882 DOI: 10.1038/s41467-025-56407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/17/2025] [Indexed: 02/17/2025] Open
Abstract
Non-nucleotide stimulators of interferon gene (STING) agonists hold promise as immunotherapeutic agents for postsurgical adjuvant treatment of tumors. However, their limited effect duration hampers therapeutic effectiveness, necessitating prolonged administration of multiple doses that heightens infection risk and impacts patient compliance. Here, we develop an implantable dual-drug depot in a sandwich-like configuration, with a non-nucleotide STING agonist (MSA-2) in the outer layers of 3D-printed scaffolds and an immunogenic apoptosis inducer (doxorubicin, DOX) in the inner layer of electrospun fibers. We discover that MSA-2 can elicit endoplasmic reticulum stress-mediated and general immunogenic apoptosis of cancer cells. The stimulations with tumor-associated antigens and damage-associated molecular patterns from cancer cells, along with proinflammatory factors secreted by matured dendritic cells and M1-polarized macrophages, can depolymerize intracellular microtubules guiding activated STING trafficking towards lysosomes for degradation. Collectively, the dual-drug depots can initiate a long-lasting cascaded immunotherapy and chemotherapy, suppressing postsurgical tumor recurrence and metastasis.
Collapse
Affiliation(s)
- Kai Li
- Laboratory of Biomaterials and Translational Medicine, Department of Ultrasound, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Xuan Yu
- Laboratory of Biomaterials and Translational Medicine, Department of Ultrasound, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational Medicine, Department of Ultrasound, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Department of Ultrasound, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Zheng Liu
- Laboratory of Biomaterials and Translational Medicine, Department of Ultrasound, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chong Wu
- Department of Gastrointestinal Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xing Luo
- Laboratory of Biomaterials and Translational Medicine, Department of Ultrasound, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Jiancheng Xu
- Laboratory of Biomaterials and Translational Medicine, Department of Ultrasound, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Youqiang Fang
- Laboratory of Biomaterials and Translational Medicine, Department of Ultrasound, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Enguo Ju
- Laboratory of Biomaterials and Translational Medicine, Department of Ultrasound, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yeh-Hsing Lao
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Weiling He
- Department of Gastrointestinal Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Department of Ultrasound, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Department of Ultrasound, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China.
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
10
|
Perelló-Trias MT, Rodríguez-Fernández A, Serrano-Muñoz AJ, Segura-Sampedro JJ, Tauler P, Ramis JM, Monjo M. Evaluation of Different Commercial Sealing Hemostatic Patches for Their Selection as Reservoirs for Localized Intraperitoneal Chemotherapy. ACS Pharmacol Transl Sci 2025; 8:499-509. [PMID: 39974645 PMCID: PMC11834274 DOI: 10.1021/acsptsci.4c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 02/21/2025]
Abstract
Peritoneal carcinomatosis (PC) is typically treated by cytoreductive surgery (CRS) and subsequent chemotherapy. Sealing hemostatic patches (HP) are often used during these surgeries to prevent complications such as uncontrolled bleeding. These HP are made of biomaterials like oxidized cellulose or collagen with a binding agent, and beyond their usual function, they could also be used as drug delivery systems (DDS) for localized intraperitoneal chemotherapy in the tissue attached. Our first aim was to characterize and compare three different commercial HP (TachoSil®, Hemopatch®, and VerisetTM). Hemopatch® emerged as the most suitable candidate due to its combination of properties, including slow degradation, high hydrophilicity, excellent biological fluid absorption capacity, and moderate adhesive capacity alongside hemostasis. Utilizing Hemopatch® as a scaffold, we developed a new device incorporating a hyaluronic acid hydrogel loaded with cisplatin or olaparib. This approach facilitated sustained drug release for over 6 days, maintaining the anticancer efficacy of these agents on OVCAR-3 cells. In conclusion, integrating a DDS into HP shows potential for precisely delivering chemotherapeutic agents to any residual microscopic disease in PC following CRS.
Collapse
Affiliation(s)
- M. Teresa Perelló-Trias
- Cell Therapy and Tissue Engineering Group (TERCIT),
Research Institute on Health Sciences (IUNICS), University of the Balearic
Islands (UIB), 07122 Palma, Mallorca, Spain
- Health Research Institute of the Balearic
Islands (IdISBa), 07010 Palma, Mallorca, Spain
- Department of Fundamental Biology and Health Sciences,
University of the Balearic Islands (UIB), 07122 Palma,
Mallorca, Spain
| | - Ana Rodríguez-Fernández
- Cell Therapy and Tissue Engineering Group (TERCIT),
Research Institute on Health Sciences (IUNICS), University of the Balearic
Islands (UIB), 07122 Palma, Mallorca, Spain
- Health Research Institute of the Balearic
Islands (IdISBa), 07010 Palma, Mallorca, Spain
- Department of Fundamental Biology and Health Sciences,
University of the Balearic Islands (UIB), 07122 Palma,
Mallorca, Spain
| | - Antonio Jose Serrano-Muñoz
- Cell Therapy and Tissue Engineering Group (TERCIT),
Research Institute on Health Sciences (IUNICS), University of the Balearic
Islands (UIB), 07122 Palma, Mallorca, Spain
- Health Research Institute of the Balearic
Islands (IdISBa), 07010 Palma, Mallorca, Spain
- Department of Fundamental Biology and Health Sciences,
University of the Balearic Islands (UIB), 07122 Palma,
Mallorca, Spain
| | - Juan J. Segura-Sampedro
- Cell Therapy and Tissue Engineering Group (TERCIT),
Research Institute on Health Sciences (IUNICS), University of the Balearic
Islands (UIB), 07122 Palma, Mallorca, Spain
- Health Research Institute of the Balearic
Islands (IdISBa), 07010 Palma, Mallorca, Spain
- General & Digestive Surgery Service,
Hospital Universitario la Paz, 28046 Madrid,
Spain
- Faculty of Medicine, University of the
Balearic Islands (UIB), 07122 Palma, Mallorca,
Spain
| | - Pedro Tauler
- Cell Therapy and Tissue Engineering Group (TERCIT),
Research Institute on Health Sciences (IUNICS), University of the Balearic
Islands (UIB), 07122 Palma, Mallorca, Spain
- Health Research Institute of the Balearic
Islands (IdISBa), 07010 Palma, Mallorca, Spain
- Department of Fundamental Biology and Health Sciences,
University of the Balearic Islands (UIB), 07122 Palma,
Mallorca, Spain
- Research Group on Evidence, Lifestyles and Health, Research
Institute of Health Sciences (IUNICS), University of the Balearic Islands
(UIB), 07122 Palma, Mallorca, Spain
| | - Joana M. Ramis
- Cell Therapy and Tissue Engineering Group (TERCIT),
Research Institute on Health Sciences (IUNICS), University of the Balearic
Islands (UIB), 07122 Palma, Mallorca, Spain
- Health Research Institute of the Balearic
Islands (IdISBa), 07010 Palma, Mallorca, Spain
- Department of Fundamental Biology and Health Sciences,
University of the Balearic Islands (UIB), 07122 Palma,
Mallorca, Spain
| | - Marta Monjo
- Cell Therapy and Tissue Engineering Group (TERCIT),
Research Institute on Health Sciences (IUNICS), University of the Balearic
Islands (UIB), 07122 Palma, Mallorca, Spain
- Health Research Institute of the Balearic
Islands (IdISBa), 07010 Palma, Mallorca, Spain
- Department of Fundamental Biology and Health Sciences,
University of the Balearic Islands (UIB), 07122 Palma,
Mallorca, Spain
| |
Collapse
|
11
|
Hou Q, He X, Guo M, Li X, Zhang Z, Xu X, Xu Y, Shi Q, Han Y. Enhanced hemostatic efficacy of cryogel with copper ion-loaded mesoporous bioactive glasses for acute and persistent bleeding. J Nanobiotechnology 2025; 23:102. [PMID: 39939976 PMCID: PMC11823261 DOI: 10.1186/s12951-025-03142-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/19/2025] [Indexed: 02/14/2025] Open
Abstract
Uncontrolled acute and persistent bleeding, as well as with infection, is a great challenge because of the high mortality during treating the patients with injuries, complex surgery or bone marrow failure. Here, we develop an external form of natural components which is based on phosphorylated methacrylated gelatin (GelMA, G) cryogel (GP) loaded with tannic acid (TA)-mixed copper ion (Cu2+) mesoporous bioactive glasses (MBG), named after GP@MBG-Cu-TA cryogel, to address the goals of reduce persistent bleeding and enhance antibacterial activity. Structurally, GP@MBG-Cu-TA cryogel is based on GP, MBG loaded with TA and Cu2+ adheres to GP via hydrogen bonding. In vitro, GP@MBG-Cu-TA cryogel displays a good biocompatibility, hemostatic and antimicrobial capability. In vivo studies, GP@MBG-Cu-TA cryogel can enhance the hemostatic effect in the liver injury in SD rats for the acute bleeding, as well as in the aplastic anemia and hemophilia A mice with tail amputation for the persistent bleeding. In addition, GP@MBG-Cu-TA cryogel accelerates the skin wound repair in the mice with the bacterial contamination at the injury site. In sum, GP@MBG-Cu-TA cryogel is not only endowed with dual function of hemostatic and antimicrobial capability, but also can stop bleeding of the objects with either normal or abnormal coagulation function. Thus, GP@MBG-Cu-TA cryogel provides a promising candidate dressing for managing bleeding and bacterial complications in clinic.
Collapse
Affiliation(s)
- Qixiu Hou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215500, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, 215000, China
| | - Xu He
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Suzhou, 215031, China
| | - Mengting Guo
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215500, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, 215000, China
| | - Xueqian Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215500, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, 215000, China
| | - Ziyan Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215500, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, 215000, China
| | - Xiaoyan Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215500, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, 215000, China
| | - Yong Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Suzhou, 215031, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215000, China.
| | - Qin Shi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Suzhou, 215031, China.
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215500, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China.
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, 215000, China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
12
|
Fang R, Yu N, Wang F, Xu X, Zhang J. Hemoadhican Fiber Composite with Carbon Dots for Treating Severe Hemorrhage and Infected Wounds. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9087-9102. [PMID: 39882714 DOI: 10.1021/acsami.4c20176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Uncontrolled bleeding and infection following trauma continue to pose significant clinical challenges. This study employs hemoadhican (HD) polysaccharide, known for its superior hemostatic properties, as the foundational material to synthesize antibacterial carbon dots (H-CDs) through a hydrothermal method at various temperatures. The H-CDs exhibiting optimal antimicrobial properties were identified via in vitro antimicrobial characterization. The selected H-CDs possess nanoscale dimensions and a positive surface charge. They contain aldehyde groups and generate reactive oxygen species, which effectively eliminate bacteria. Subsequently, H-CDs were integrated into HD fibers (CDs-HD fibers) using a wet-spinning technique. The water vapor transmission rate, blood contact angle, and in vitro antimicrobial efficacy were evaluated. In a rat model of severe femoral artery hemorrhage and a noncompressible hepatic hemorrhage model, CDs-HD fibers demonstrated superior hemostatic performance compared to the commercially available QuikClot Combat Gauze. Furthermore, in a rat model of mixed bacterial wound infection, CDs-HD fibers significantly enhanced epithelial tissue remodeling and collagen deposition. In vivo studies confirmed the excellent biocompatibility of CDs-HD fibers. These findings suggest that CDs-HD fibers hold promise as a potential dressing for managing severe bleeding and preventing wound infections.
Collapse
Affiliation(s)
- Rui Fang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, Jiangsu 210094, China
| | - Ning Yu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, Jiangsu 210094, China
| | - Fa Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, Jiangsu 210094, China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, Jiangsu 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, Jiangsu 210094, China
| |
Collapse
|
13
|
Xiang L, Hu J, Yan X, Yang H, Ji C, Xu Y, Lu H, Lu C, Hou Q, Song Y, Liu D, Cao B, Lu Y. In Situ Fabrication of Electrospun Magnetic Film under Laparoscopic Guidance for Preventing Postoperative Recurrence of Hepatocellular Carcinoma. Adv Healthc Mater 2025; 14:e2401708. [PMID: 38875524 DOI: 10.1002/adhm.202401708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/12/2024] [Indexed: 06/16/2024]
Abstract
Despite laparoscopic-guided minimally invasive hepatectomy emerging as the primary approach for resecting hepatocellular carcinoma (HCC), there is still a significant gap in suitable biomaterials that seamlessly integrate with these techniques to achieve effective hemostasis and suppress residual tumors at the surgical margin. Electrospun films are increasingly used for wound closure, yet the employment of prefabricated electrospun films for hemostasis during minimally invasive HCC resection is hindered by prolonged operation times, complexity in implementation, limited visibility during surgery, and inadequate postoperative prevention of HCC recurrence. In this study, montmorillonite-iron oxide sheets are integrated into the polyvinylpyrrolidone (PVP) polymer framework, enhancing the resulting electrospun PVP/montmorillonite-iron oxide (MI) film (abbreviated as PMI) with robustness, hemostatic capability, and magnetocaloric properties. In contrast to the in vitro prefabricated electrospun films, the electrospun PMI film is designed to be formed in situ on liver wounds under laparoscopic guidance during hepatectomy. This design affords superior wound adaptability, facilitating meticulous wound closure and expeditious hemostasis, thereby simplifying the operative process and ultimately alleviating the workload of healthcare professionals. Moreover, when exposed to an alternating magnetic field, the film can efficiently ablate residual tumors, significantly augmenting the treatment efficacy of HCC.
Collapse
Affiliation(s)
- Luyao Xiang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Jinlong Hu
- Department of General Surgery, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, P. R. China
| | - Xu Yan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Huai Yang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Chaofei Ji
- Department of General Surgery, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, P. R. China
| | - Yunjun Xu
- Department of Radiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230036, P. R. China
| | - Haojie Lu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Chaowei Lu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Qingbing Hou
- Department of General Surgery, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, P. R. China
| | - Yonghong Song
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Dongquan Liu
- Department of General Surgery, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, P. R. China
| | - Baoqiang Cao
- Department of General Surgery, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, P. R. China
| | - Yang Lu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| |
Collapse
|
14
|
Yang L, Sun Q, Chen S, Ma D, Qi Y, Liu H, Tan S, Yue Q, Cai L. pH-responsive hydrogel with gambogic acid and calcium nanowires for promoting mitochondrial apoptosis in osteosarcoma. J Control Release 2025; 377:563-577. [PMID: 39603540 DOI: 10.1016/j.jconrel.2024.11.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Calcium (Ca2+) overload therapy gained significant attention in oncology. However, its therapeutic efficacy remained limited due to insufficient Ca2+ accumulation at the tumor site and suboptimal intracellular Ca2+ influx. In this study, gambogic acid (GA), a natural phenolic compound known to promote Ca2+ influx, was encapsulated within an enzyme-triggered, pH-responsive hydrogel (GM@Lip@CHP-Gel) containing Ca2+ hydrogen phosphate nanowires (CHP) to achieve a synergistic approach for bone tumor therapy. GM@Lip@CHP-Gel selectively responded to the slightly acidic tumor microenvironment, triggering degradation of its 3D network structure and sustaining the release of GA and Ca2+ into tumor cells. GA subsequently stimulated Ca2+ influx in tumor cells, effectively disrupting Ca2+ homeostasis. CHP nanowires served as a continuous Ca2+ source, enhancing GA-mediated Ca2+ overload and promoting mitochondrial apoptosis in tumor cells. The combined strategy resulted in an in vivo tumor suppression rate of 79 % and a lung metastasis inhibition rate of 89.4 %, with a protective effect on bone tissue. The naturally derived, Ca2+-mediated treatment demonstrated physiochemical stability in physiological environments and minimized side effects on healthy organs, positioning it as a promising approach for clinical bone cancer therapy.
Collapse
Affiliation(s)
- Lei Yang
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Department of Pharmacy, People's Hospital of Jianyang, Jianyang 641400, China
| | - Qiang Sun
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Shiyin Chen
- Department of Orthopedics of Chinese Medicine, Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Dongshen Ma
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yao Qi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Hongmei Liu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Sumin Tan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Qin Yue
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Lulu Cai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
15
|
Li L, Xing Y, Chen Y, Li K, Wu Y, Cai K, Wang L, Zhang J. Flower-Like Nanosensors for Photoacoustic-Enhanced Lysosomal Escape and Cytoplasmic Marker-Activated Fluorescence: Enabling High-Contrast Identification and Photothermal Ablation of Minimal Residual Disease in Breast Cancer. Adv Healthc Mater 2025; 14:e2403042. [PMID: 39580677 DOI: 10.1002/adhm.202403042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/31/2024] [Indexed: 11/26/2024]
Abstract
The clearance of minimal residual disease (MRD) after breast cancer surgery is crucial for inhibiting metastasis and recurrence. However, the most promising biomarker-activated fluorescence imaging strategies encounter accessibility issues of the delivered sensors to cytoplasmic targets. Herein, a flower-like composite nanosensor with photoacoustic (PA) effect-enhanced lysosomal escape and cytoplasmic marker-activated fluorescence is developed to address this challenge. Specifically, the incorporation of Co2+ into the synthesis of 2D Zn2+-derived metal-organic frameworks enabled rapid dopamine polymerization and deposition. Subsequently, the composite nanoflower (FHN), characterized by an average size of ≈80 nm and petal thickness of ≈6 nm, is formed through the sealing of micropores and simultaneous cross-linking of nanosheets. The pronounced reduction in thermal conductivity of FHN, and superposition of interpetal thermal fields under a pulsed laser (PL), lead to enhanced PA effect and membrane permeability. Thereby, nanosensors efficiently escape from lysosomes resulting in synergistic fluorescence activation by dual-factors (ATP, miRNA-21) and DNA probes installed on FHN. A subsequently high tumor-to-normal tissue signal ratio (TNR) of 17.4 lead to precise guidance of NIR irradiation for efficient MRD eradication and recurrence inhibition. This study provides a new approach for high-contrast identification and precise ablation of MRD based on the synergistic response of endogenous and exogenous factors.
Collapse
Affiliation(s)
- Lin Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Yuxin Xing
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Yuhua Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Kunlin Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Yunyun Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Lu Wang
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), No.158 Shangtang Road, Hangzhou, Zhejiang, 310014, China
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, No.8 Yikang Road, Hangzhou, Zhejiang, 311399, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| |
Collapse
|
16
|
Lu G, Zhang L, Zhang Y, Wang J, Zhou X, Fang X, Ma Z. Preparation of accelerated-wound-healing lignin/dopamine-based nano-Fe 3O 4 hydrogels in sensing. Int J Biol Macromol 2024; 280:135942. [PMID: 39322138 DOI: 10.1016/j.ijbiomac.2024.135942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/26/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Flexible conductive hydrogels hold great promise for applications in motion and medical detection. It is difficult to produce conductive hydrogel epidermal sensors in wearable hydrogels with dependable adhesion, sensing, and wound-healing properties. Nano-Fe3O4 was used as physical cross-linking points in the polyacrylamide/polyvinyl alcohol double network (PP) to increase the strain capacity of the hydrogel. The conductive lignin-dopamine (LD) was immobilized on the surface of Fe3O4 particles, and the LD-coated Fe3O4 was then incorporated into the double network hydrogel to create the PP/LD/Fe3O4 hydrogel. This work was done to look into the possibility of using Fe3O4 hydrogels as flexible strain sensors. The addition of LD/Fe3O4 caused the composite hydrogel to strain up to 124 %, with a modulus of elasticity of 21,308 Pa and electrical conductivity as high as 2.3 S•m-1 following the introduction of LD/Fe3O4. Moreover, the PP/LD/Fe3O4 hydrogel's adhesive qualities offered adequate antimicrobial properties and promoted wound healing. These results indicate that the developed electricity-responsive and tissue-adhesive hydrogel dressing offers a candidate to serve as a tissue sealant for wound healing.
Collapse
Affiliation(s)
- Geng Lu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Emergency Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lisha Zhang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yue Zhang
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jun Wang
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xin Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiang Fang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Emergency Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
17
|
Li Z, Qin B, Liu H, Du S, Liu Y, He L, Xu B, Du L. Mesoporous silica thin film as effective coating for enhancing osteogenesis through selective protein adsorption and blood clotting. Biomed Mater 2024; 19:055040. [PMID: 39094621 DOI: 10.1088/1748-605x/ad6ac2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/02/2024] [Indexed: 08/04/2024]
Abstract
The role of blood clots in tissue repair has been identified for a long time; however, its participation in the integration between implants and host tissues has attracted attention only in recent years. In this work, a mesoporous silica thin film (MSTF) with either vertical or parallel orientation was deposited on titania nanotubes surface, resulting in superhydrophilic nanoporous surfaces. A proteomic analysis of blood plasma adsorption revealed that the MSTF coating could significantly increase the abundance of acidic proteins and the adsorption of coagulation factors (XII and XI), with the help of cations (Na+, Ca2+) binding. As a result, both the activation of platelets and the formation of blood clots were significantly enhanced on the MSTF surface with more condensed fibrin networks. The two classical growth factors of platelets-derived growth factors-AB and transformed growth factors-βwere enriched in blood clots from the MSTF surface, which accounted for robust osteogenesis bothin vitroandin vivo. This study demonstrates that MSTF may be a promising coating to enhance osteogenesis by modulating blood clot formation.
Collapse
Affiliation(s)
- Zhe Li
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
- Department of Digital Oral Implantology and Prothodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Bowen Qin
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Huan Liu
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
- Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Shimin Du
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
- Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Yunxian Liu
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
- Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Lixing He
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
- Department of Digital Oral Implantology and Prothodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Boya Xu
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
- Department of Digital Oral Implantology and Prothodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Liangzhi Du
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
- Department of Digital Oral Implantology and Prothodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| |
Collapse
|
18
|
Xiao M, Wang L, Tang Q, Yang Q, Yang X, Zhu G, Lei L, Li S. Postoperative tumor treatment strategies: From basic research to clinical therapy. VIEW 2024; 5. [DOI: 10.1002/viw.20230117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/15/2024] [Indexed: 07/04/2024] Open
Abstract
AbstractDespite progression in advanced treatments for malignant tumors, surgery remains the primary treatment intervention, which removes a large portion of firm tumor tissues; however, the postoperative phase poses a possible risk for provincial tumor recurrence and metastasis. Consequently, the prevention of tumor recurrence and metastasis has attracted research attention. In this review, we summarized the postoperative treatment strategies for various tumors from both basic research and clinical perspectives. We delineated the underlying factors contributing to the recurrence of malignant tumors with a substantial prevalence rate, related molecular mechanisms of tumor recurrence post‐surgery, and related means of monitoring recurrence and metastasis after surgery. Furthermore, we described relevant therapeutic approaches for postoperative tumor recurrence, including chemotherapy, radiation therapy, immunotherapy, targeted therapy, and photodynamic therapy. This review focused on the emerging technologies used for postoperative tumor treatment in recent years in terms of functional classification, including the prevention of postoperative tumor recurrence, functional reconstruction, and monitoring of recurrence. Finally, we discussed the future development and deficiencies of postoperative tumor therapy. To understand postoperative treatment strategies for tumors from clinical treatment and basic research and further guide the research directions for postoperative tumors.
Collapse
Affiliation(s)
- Minna Xiao
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Lin Wang
- Department of Otorhinolaryngology Head and Neck Surgery Binzhou People's Hospital Binzhou China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Gangcai Zhu
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Lanjie Lei
- Institute of Translational Medicine Zhejiang Shuren University Hangzhou China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| |
Collapse
|
19
|
Diao Z, Li L, Zhou H, Yang L. Tannic acid and silicate-functionalized polyvinyl alcohol-hyaluronic acid hydrogel for infected diabetic wound healing. Regen Biomater 2024; 11:rbae053. [PMID: 38883183 PMCID: PMC11176089 DOI: 10.1093/rb/rbae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 06/18/2024] Open
Abstract
Healing of chronic diabetic wounds is challenging due to complications of severe inflammatory microenvironment, bacterial infection and poor vascular formation. Herein, a novel injectable polyvinyl alcohol-hyaluronic acid-based composite hydrogel was developed, with tannic acid (TA) and silicate functionalization to fabricate an 'all-in-one' hydrogel PTKH. On one hand, after being locally injected into the wound site, the hydrogel underwent a gradual sol-gel transition in situ, forming an adhesive and protective dressing for the wound. Manipulations of rheological characteristics, mechanical properties and swelling ability of PTKH could be performed via regulating TA and silicate content in hydrogel. On the other hand, PTKH was capable of eliminating reactive oxygen species overexpression, combating infection and generating a cell-favored microenvironment for wound healing acceleration in vitro. Subsequent animal studies demonstrated that PTKH could greatly stimulate angiogenesis and epithelization, accompanied with inflammation and infection risk reduction. Therefore, in consideration of its impressive in vitro and in vivo outcomes, this 'all-in-one' multifunctional hydrogel may hold promise for chronic diabetic wound treatment.
Collapse
Affiliation(s)
- Zhentian Diao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300131, China
| | - Longkang Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300131, China
| | - Huan Zhou
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300131, China
| | - Lei Yang
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300131, China
| |
Collapse
|
20
|
Zhou M, Lin X, Wang L, Yang C, Yu Y, Zhang Q. Preparation and Application of Hemostatic Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309485. [PMID: 38102098 DOI: 10.1002/smll.202309485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Hemorrhage remains a critical challenge in various medical settings, necessitating the development of advanced hemostatic materials. Hemostatic hydrogels have emerged as promising solutions to address uncontrolled bleeding due to their unique properties, including biocompatibility, tunable physical characteristics, and exceptional hemostatic capabilities. In this review, a comprehensive overview of the preparation and biomedical applications of hemostatic hydrogels is provided. Particularly, hemostatic hydrogels with various materials and forms are introduced. Additionally, the applications of hemostatic hydrogels in trauma management, surgical procedures, wound care, etc. are summarized. Finally, the limitations and future prospects of hemostatic hydrogels are discussed and evaluated. This review aims to highlight the biomedical applications of hydrogels in hemorrhage management and offer insights into the development of clinically relevant hemostatic materials.
Collapse
Affiliation(s)
- Minyu Zhou
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiang Lin
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Li Wang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Chaoyu Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yunru Yu
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Qingfei Zhang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| |
Collapse
|
21
|
Cao H, Wang J, Hao Z, Zhao D. Gelatin-based biomaterials and gelatin as an additive for chronic wound repair. Front Pharmacol 2024; 15:1398939. [PMID: 38751781 PMCID: PMC11094280 DOI: 10.3389/fphar.2024.1398939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Disturbing or disrupting the regular healing process of a skin wound may result in its progression to a chronic state. Chronic wounds often lead to increased infection because of their long healing time, malnutrition, and insufficient oxygen flow, subsequently affecting wound progression. Gelatin-the main structure of natural collagen-is widely used in biomedical fields because of its low cost, wide availability, biocompatibility, and degradability. However, gelatin may exhibit diverse tailored physical properties and poor antibacterial activity. Research on gelatin-based biomaterials has identified the challenges of improving gelatin's poor antibacterial properties and low mechanical properties. In chronic wounds, gelatin-based biomaterials can promote wound hemostasis, enhance peri-wound antibacterial and anti-inflammatory properties, and promote vascular and epithelial cell regeneration. In this article, we first introduce the natural process of wound healing. Second, we present the role of gelatin-based biomaterials and gelatin as an additive in wound healing. Finally, we present the future implications of gelatin-based biomaterials.
Collapse
Affiliation(s)
- Hongwei Cao
- Department of Otorhinolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jingren Wang
- Department of Prosthodontics, Affiliated Stomatological Hospital of China Medical University, Shenyang, China
| | - Zhanying Hao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Danyang Zhao
- Department of emergency Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
22
|
Li L, Li H, Diao Z, Zhou H, Bai Y, Yang L. Development of a tannic acid- and silicate ion-functionalized PVA-starch composite hydrogel for in situ skeletal muscle repairing. J Mater Chem B 2024; 12:3917-3926. [PMID: 38536012 DOI: 10.1039/d3tb03006g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The repair capacity of skeletal muscle is severely diminished in massive skeletal muscle injuries accompanied by inflammation, resulting in muscle function loss and scar tissue formation. In the current work, we developed a tannic acid (TA)- and silicate ion-functionalized tissue adhesive poly(vinyl alcohol) (PVA)-starch composite hydrogel, referred to as PSTS (PVA-starch-TA-SiO32-). It was formed based on the hydrogen bonding of TA to organic polymers, as well as silicate-TA ligand interaction. PSTS could be gelatinized in minutes at room temperature with crosslinked network formation, making it applicable for injection. Further investigations revealed that PSTS had skeletal muscle-comparable conductivity and modulus to act as a temporary platform for muscle repairing. Moreover, PSTS could release TA and silicate ions in situ to inhibit bacterial growth, induce vascularization, and reduce oxidation, paving the way to the possibility of creating a favorable microenvironment for skeletal muscle regeneration and tissue fibrosis control. The in vivo model confirmed that PSTS could enhance muscle fiber regeneration and myotube formation, as well as reduce infection and inflammation risk. These findings thereby implied the great potential of PSTS in the treatment of formidable skeletal muscle injuries.
Collapse
Affiliation(s)
- Longkang Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Huipeng Li
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Zhentian Diao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Huan Zhou
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Yanjie Bai
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China.
- Department of Chemical Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Lei Yang
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China.
| |
Collapse
|
23
|
Jiang F, Li L, Tian Y, Su Y, Zhao T, Ren R, Chi Z, Liu C. Enteromorpha Prolifera Polysaccharide-Derived Injectable Hydrogel for Fast Intraoperative Hemostasis and Accelerated Postsurgical Wound Healing Following Tumor Resection. Adv Healthc Mater 2024; 13:e2303456. [PMID: 38142288 DOI: 10.1002/adhm.202303456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/21/2023] [Indexed: 12/25/2023]
Abstract
Intraoperative bleeding and delayed postsurgical wound healing caused by persistent inflammation can increase the risk of tumor recurrence after surgical resection. To address these issues, Enteromorpha prolifera polysaccharide (PEP) with intrinsic potentials for hemostasis and wound healing, is chemically modified into aldehyde-PEP and hydrazine-PEP. Thereby, an injectable double-network hydrogel (OPAB) is developed via forming dual dynamic bonding of acylhydrazone bonds between the decorated aldehyde and hydrazine groups and hydrogen bonds between hydroxyl groups between boric acid and PEP skeletons. The OPAB exhibits controllable shape-adaptive gelation (35.0 s), suitable mechanical properties, nonstimulating self-healing (60 s), good wet tissue adhesion (30.9 kPa), and pH-responsive biodegradability. For in vivo models, owing to these properties, OPAB can achieve rapid hemostasis within 30 s for the liver hemorrhage, and readily loading of curcumin nanoparticles to remarkably accelerate surgical wound closure by alleviating inflammation, re-epithelialization, granulation tissue formation, and collagen deposition. Overall, this multifunctional injectable hydrogel is a promising material that facilitates simultaneous intraoperative hemorrhage and postsurgical wound repair, holding significant potential in the clinical managements of bleeding and surgical wounds for tumor resection.
Collapse
Affiliation(s)
- Fei Jiang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Luxi Li
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Yu Tian
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Yun Su
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Tiange Zhao
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Ruyi Ren
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Chenguang Liu
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| |
Collapse
|
24
|
Li Y, Mu X, Feng W, Gao M, Wang Z, Bai X, Ren X, Lu Y, Zhou X. Supramolecular prodrug-like nanotheranostics with dynamic and activatable nature for synergistic photothermal immunotherapy of metastatic cancer. J Control Release 2024; 367:354-365. [PMID: 38286337 DOI: 10.1016/j.jconrel.2024.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
Synergistic photothermal immunotherapy has attracted widespread attention due to the mutually reinforcing therapeutic effects on primary and metastatic tumors. However, the lack of clinical approval nanomedicines for spatial, temporal, and dosage control of drug co-administration underscores the challenges facing this field. Here, a photothermal agent (Cy7-TCF) and an immune checkpoint blocker (NLG919) are conjugated via disulfide bond to construct a tumor-specific small molecule prodrug (Cy7-TCF-SS-NLG), which self-assembles into prodrug-like nano-assemblies (PNAs) that are self-delivering and self-formulating. In tumor cells, over-produced GSH cleaves disulfide bonds to release Cy7-TCF-OH, which re-assembles into nanoparticles to enhance photothermal conversion while generate reactive oxygen species (ROSs) upon laser irradiation, and then binds to endogenous albumin to activate near-infrared fluorescence, enabling multimodal imaging-guided phototherapy for primary tumor ablation and subsequent release of tumor-associated antigens (TAAs). These TAAs, in combination with the co-released NLG919, effectively activated effector T cells and suppressed Tregs, thereby boosting antitumor immunity to prevent tumor metastasis. This work provides a simple yet effective strategy that integrates the supramolecular dynamics and reversibility with stimuli-responsive covalent bonding to design a simple small molecule with synergistic multimodal imaging-guided phototherapy and immunotherapy cascades for cancer treatment with high clinical value.
Collapse
Affiliation(s)
- Yajie Li
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xueluer Mu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Wenbi Feng
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Min Gao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zigeng Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xue Bai
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiangru Ren
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yingxi Lu
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Xianfeng Zhou
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
25
|
Yang Y, Ye G, Qiu X. 3D sponge loaded with cisplatin-CS-calcium alginate MPs utilized as a void-filling prosthesis for the efficient postoperative prevention of tumor recurrence and metastasis. RSC Adv 2024; 14:7517-7527. [PMID: 38440275 PMCID: PMC10910265 DOI: 10.1039/d3ra07516h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
Intraoperative bleeding is a pivotal factor in the initiation of early recurrence and tumor metastasis following breast cancer excision. Distinct advantages are conferred upon postoperative breast cancer treatment through the utilization of locally administered implant therapies. This study devised a novel 3D sponge implant containing cisplatin-loaded chitosan-calcium alginate MPs capable of exerting combined chemotherapy and hemostasis effects. This innovative local drug-delivery implant absorbed blood and residual tumor cells post-tumor resection. Furthermore, the cisplatin-loaded chitosan-calcium alginate MPs sustainably targeted and eliminated cancer cells, thereby diminishing the risk of local recurrence and distant metastasis. This hydrogel material can also contribute to breast reconstruction, indicating the potential application of the 3D sponge in drug delivery for breast cancer treatment.
Collapse
Affiliation(s)
- Yihong Yang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University Guangzhou Guangdong 510515 P. R. China
| | - Genlan Ye
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University Guangzhou Guangdong 510515 P. R. China
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University Guangzhou Guangdong 510515 P. R. China
| |
Collapse
|
26
|
Liu Y, He J, Li M, Ren K, Zhao Z. Inflammation-Driven Nanohitchhiker Enhances Postoperative Immunotherapy by Alleviating Prostaglandin E2-Mediated Immunosuppression. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6879-6893. [PMID: 38300288 DOI: 10.1021/acsami.3c17357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Inflammation contributes to the immunosuppressive microenvironment and leads to the recurrence of surgically resected tumors. The COX-2/PGE2 axis is considered a key player in shaping the immunosuppression microenvironment. However, targeted modulation of the postoperative tumor microenvironment is challenging. To specifically curb the inflammation and alleviate immunosuppression, here, we developed a PGE2 inhibitor celecoxib (CXB)-loaded bionic nanoparticle (CP@CM) coated with activated murine vascular endothelial cell (C166 cells) membrane to target postoperative melanoma and inhibit its recurrence. CP@CM adhered to inflammatory white blood cells (WBCs) through the adhesion molecules, including ICAM-1, VCAM-1, E-selectin, and P-selection, expressed on the surface of C166 cells. Leveraging the natural tropism of the WBC to the inflammatory postoperative tumor site, CP@CM efficiently targeted postoperative tumors. In melanoma postoperative recurrence models, CXB significantly reduced PGE2 secretion and the recruitment of immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Treg) by inhibiting the activity of COX-2. This was followed by an increase in the infiltration of CD8+ T cells and CD4+ T cells in tumor tissues. Additionally, the immune responses were further enhanced by combining a PD-L1 monoclonal antibody. Ultimately, this immunotherapeutic strategy reversed the tumor immunosuppressive microenvironment and inhibited tumor recurrence, demonstrating a promising potential for postoperative immunotherapy for melanoma.
Collapse
Affiliation(s)
- Yingke Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan China
| | - Jiao He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Kebai Ren
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan China
| |
Collapse
|
27
|
Ebrahimnia M, Alavi S, Vaezi H, Karamat Iradmousa M, Haeri A. Exploring the vast potentials and probable limitations of novel and nanostructured implantable drug delivery systems for cancer treatment. EXCLI JOURNAL 2024; 23:143-179. [PMID: 38487087 PMCID: PMC10938236 DOI: 10.17179/excli2023-6747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/08/2024] [Indexed: 03/17/2024]
Abstract
Conventional cancer chemotherapy regimens, albeit successful to some extent, suffer from some significant drawbacks, such as high-dose requirements, limited bioavailability, low therapeutic indices, emergence of multiple drug resistance, off-target distribution, and adverse effects. The main goal of developing implantable drug delivery systems (IDDS) is to address these challenges and maintain anti-cancer drugs directly at the intended sites of therapeutic action while minimizing inevitable side effects. IDDS possess numerous advantages over conventional drug delivery, including controlled drug release patterns, one-time drug administration, as well as loading and stabilizing poorly water-soluble chemotherapy drugs. Here, we summarized conventional and novel (three-dimensional (3D) printing and microfluidic) preparation techniques of different IDDS, including nanofibers, films, hydrogels, wafers, sponges, and osmotic pumps. These systems could be designed with high biocompatibility and biodegradability features using a wide variety of natural and synthetic polymers. We also reviewed the published data on these systems in cancer therapy with a particular focus on their release behavior. Various release profiles could be attained in IDDS, which enable predictable, adjustable, and sustained drug releases. Furthermore, multi-step or stimuli-responsive drug release could be obtained in these systems. The studies mentioned in this article have proven the effectiveness of IDDS for treating different cancer types with high prevalence, including breast cancer, and aggressive cancer types, such as glioblastoma and liver cancer. Additionally, the challenges in applying IDDS for efficacious cancer therapy and their potential future developments are also discussed. Considering the high potential of IDDS for further advancements, such as programmable release and degradation features, further clinical trials are needed to ensure their efficiency. The overall goal of this review is to expand our understanding of the behavior of commonly investigated IDDS and to identify the barriers that should be addressed in the pursuit of more efficient therapies for cancer. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Maryam Ebrahimnia
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sonia Alavi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Hamed Vaezi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdieh Karamat Iradmousa
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Hu Y, Wang H, Liu Y. NETosis: Sculpting tumor metastasis and immunotherapy. Immunol Rev 2024; 321:263-279. [PMID: 37712361 DOI: 10.1111/imr.13277] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
The process of neutrophil extracellular traps (NETs) formation, called NETosis, is a peculiar death modality of neutrophils, which was first observed as an immune response against bacterial infection. However, recent work has revealed the unique biology of NETosis in facilitating tumor metastatic process. Neutrophil extracellular traps released by the tumor microenvironment (TME) shield tumor cells from cytotoxic immunity, leading to impaired tumor clearance. Besides, tumor cells tapped by NETs enable to travel through vessels and subsequently seed distant organs. Targeted ablation of NETosis has been proven to be beneficial in potentiating the efficacy of cancer immunotherapy in the metastatic settings. This review outlines the impact of NETosis at almost all stages of tumor metastasis. Furthermore, understanding the multifaceted interplay between NETosis and the TME components is crucial for supporting the rational development of highly effective combination immunotherapeutic strategies with anti-NETosis for patients with metastatic disease.
Collapse
Affiliation(s)
- Yanyan Hu
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Houhong Wang
- Department of General Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, China
| | - Yang Liu
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
29
|
Wang X, Yuan K, Su Y, Li X, Meng L, Zhao N, Hu Y, Duan F, Xu FJ. Tuning Blood-Material Interactions to Generate Versatile Hemostatic Powders and Gels. Adv Healthc Mater 2024; 13:e2301945. [PMID: 37897223 DOI: 10.1002/adhm.202301945] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/05/2023] [Indexed: 10/29/2023]
Abstract
Polymer-based hemostatic materials/devices have been increasingly exploited for versatile clinical scenarios, while there is an urgent need to reveal the rational design/facile approach for procoagulant surfaces through regulating blood-material interactions. In this work, degradable powders (PLPS) and thermoresponsive gels (F127-PLPS) are readily developed as promising hemostatic materials for versatile clinical applications, through tuning blood-material interactions with optimized grafting of cationic polylysine: the former is facilely prepared by conjugating polylysine onto porous starch particle, while F127-PLPS is prepared by the simple mixture of PLPS and commercial thermosensitive polymer. In vitro and in vivo results demonstrate that PLPS2 with the optimal-/medium content of polylysine grafts achieve the superior hemostatic performance. The underlying procoagulant mechanism of PLPS2 surface is revealed as the selective fibrinogen adsorption among the competitive plasma-protein-adsorption process, which is the foundation of other blood-material interactions. Moreover, in vitro results confirm the achieved procoagulant surface of F127-PLPS through optimal PLPS2 loading. Together with the tunable thermoresponsiveness, F127-PLPS exhibits outstanding hemostatic utilization in both femoral-artery-injury and renal-artery-embolization models. The work thereby pioneers an appealing approach for generating versatile polymer-based hemostatic materials/devices.
Collapse
Affiliation(s)
- Xueru Wang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Material, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kai Yuan
- Department of Interventional Radiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yang Su
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Material, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoyue Li
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Material, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Limin Meng
- Department of Medical Imaging, Air Force Medical Center, PLA, Beijing, 100142, China
| | - Nana Zhao
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Material, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yang Hu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Material, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Feng Duan
- Department of Interventional Radiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Material, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
30
|
Luo Y, Tao F, Wang J, Chai Y, Ren C, Wang Y, Wu T, Chen Z. Development and evaluation of tilapia skin-derived gelatin, collagen, and acellular dermal matrix for potential use as hemostatic sponges. Int J Biol Macromol 2023; 253:127014. [PMID: 37742900 DOI: 10.1016/j.ijbiomac.2023.127014] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Hemostasis plays a critical role in the early stage of wound healing, especially in acute wounds which can significantly improve the survival of patients. Based on the excellent biocompatibility of natural biomaterials, in this study, we prepared a series of novel hemostatic sponges by using tilapia skin, a marine biological resource, and extracting tilapia skin-derived gelatin, collagen, and acellular dermal matrix through five different methods. Using in vitro sheep blood and in vivo rat liver hemorrhage models, we found that tilapia skin sponges had excellent coagulation and hemostatic abilities. Among them, the collagen sponge exhibited optimal hemostasis performance because it could accelerate clotting by binding to the specific sites of blood cells and platelets. Furthermore, the sponges' porous structure enhanced the capability to absorb blood, thus effectively promoting hemostasis. In summary, we reported an efficient and convenient method to prepare marine biological resources into sponges, which provided a novel class of alternatives for hemostasis in acute wounds with broad application prospects.
Collapse
Affiliation(s)
- Yanan Luo
- Department of Cosmetic and Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Fulin Tao
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Jing Wang
- Shandong Key Laboratory of Medical and Health Textile Materials, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, College of Textile & Clothing, Qingdao University, Qingdao 266071, China
| | - Yandong Chai
- Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Chaohua Ren
- Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Yuanfei Wang
- Qingdao Medical College, Qingdao University, Qingdao 266071, China; Shandong Key Laboratory of Medical and Health Textile Materials, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, College of Textile & Clothing, Qingdao University, Qingdao 266071, China.
| | - Tong Wu
- Department of Cosmetic and Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266071, China; Qingdao Medical College, Qingdao University, Qingdao 266071, China; Shandong Key Laboratory of Medical and Health Textile Materials, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, College of Textile & Clothing, Qingdao University, Qingdao 266071, China.
| | - Zhenyu Chen
- Department of Cosmetic and Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266071, China.
| |
Collapse
|
31
|
Sang F, Pan L, Ji Z, Zhang B, Meng Z, Cao L, Zhang J, Li X, Yang X, Shi C. Polydopamine functionalized polyurethane shape memory sponge with controllable expansion performance triggered by near-infrared light for incompressible hemorrhage control. Colloids Surf B Biointerfaces 2023; 232:113590. [PMID: 37862950 DOI: 10.1016/j.colsurfb.2023.113590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
Uncontrolled expansion of shape memory sponges face a significant challenge in the treatment of lethal incompressible hemorrhage, which can lead to blood overflow or damage to the surrounding tissue. Herein, we developed a polydopamine functionalized polyurethane shape memory sponge (PDA-TPI-PU) with a controllable degree of expansion by near-infrared (NIR) light-triggered stimulation for the treatment of incompressible hemorrhage. The sponge has excellent liquid absorption performance and robust mechanical strength as well as good photothermal conversion ability. Under NIR light of 0.32 W/cm2, the maximum recovery rate of the fixed-shape compression sponge was 91% within 25 s in air and 80% within 25 s in blood. In the SD rat liver penetrating injury model, compared with commercial medical gelatin sponge and PVA sponge, the PDA-TPI-PU sponge could effectively control the bleeding under the NIR light irradiation and did not cause excessive compression of the wound. The sponge with these characteristics shows potential application prospects as a hemostatic material.
Collapse
Affiliation(s)
- Feng Sang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Luqi Pan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Zhixiao Ji
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Bingxu Zhang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Zhizhen Meng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China; The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Lina Cao
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Jing Zhang
- College of Materials Science and Engineering, Donghua University, Shanghai 200051, China
| | - Xujian Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
| | - Xiao Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
| | - Changcan Shi
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China; The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
32
|
Li N, Zhang G, Liu Y, Sun L, Zhao X, Ding L, Liu Y, Wang M, Ren X. A Natural Self-Assembled Gel-Sponge with Hierarchical Porous Structure for Rapid Hemostasis and Antibacterial. Adv Healthc Mater 2023; 12:e2301465. [PMID: 37449760 DOI: 10.1002/adhm.202301465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Developing hemostatic agents with reliable biosafety and high efficiency has paramount clinical significance for saving lives. Herein, inspired from traditional Chinese medicine, a sponge (BC-S) with hierarchical porous structure is proposed for the treatment of bleeding. The BC-S is prepared by a simple self-assembly method employing Bletilla Striata polysaccharide and quaternary amine alkaloids (QA) from Bletilla Striata and Coptidis Rhizoma. The ideal cation donor encapsulated in the helical structure of BSP enlarges the inter-layer space of sponge by the action of electrostatic repulsion, forming wider channels which can accelerate the diversion speed of absorbed blood. Then, platelets and erythrocytes are trapped tightly in the reticular structure and extruded to deformation, activation. Subsequently, fibrin network forms and reinforces the internal multilayer mesh, blocks the outflow of blood. QA is released from the sponge skeleton mainly driven by a combination of surface erosion and potentially solution diffusion among pore to provide long-term antibacterial activity. Benefiting from the well-designed structure and the effective hemostatic mechanism, the BC-S displays more excellent hemostatic performance in different models in vivo and in vitro compared with typical gelatin hemostatic sponge. This work is expected to boost the development of emerging hemostatic agents.
Collapse
Affiliation(s)
- Na Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Guoqin Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yi Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Lili Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xin Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Liqin Ding
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanan Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Meng Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| |
Collapse
|
33
|
Liu H, Zhu X, Nie L, Guo L, Jiang C, Wang G, Huang W, Hou L, Hu T, Yakovlev AN, Xu X, Yu X, Wang T. Multimode-Responsive Luminescence of Er 3+ Single-Activated CaF 2 Phosphor for Advanced Information Encryption. Inorg Chem 2023; 62:16485-16492. [PMID: 37738045 DOI: 10.1021/acs.inorgchem.3c02215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The current optical anticounterfeit strategies that rely on multimode luminescence in response to the photon or thermal stimuli have significant importance in the field of anticounterfeiting and information encryption. However, the dependence on light and heat sources might limit their flexibility in practical applications. In this work, Er3+ single-doped CaF2 phosphors that show multistimuli-responsive luminescence have been successfully prepared. The as-obtained CaF2:Er3+ phosphor exhibits green photoluminescence (PL) and color-tunable up-conversation (UC) luminescence from red to green due to the cross-relaxation of Er3+ ions. Additionally, as-obtained CaF2:Er3+ phosphors also display green mechano-luminescence behavior, which is induced by the contact electrification between the CaF2 particles and PDMS polymers, enabling the phosphor to flexibly respond to mechanical stimuli. Moreover, feasible anticounterfeiting schemes with the capability of multistimuli-responsive and flexible decryption have been constructed, further expanding the application of optical materials in the field of advanced anticounterfeiting and information encryption.
Collapse
Affiliation(s)
- Haozhe Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Xuanyu Zhu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Lin Nie
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Longchao Guo
- School of Mechanical Engineering, Institute for Advanced Materials, Chengdu University, Chengdu 610106, China
| | - Chaoxin Jiang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Guohao Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Wenlong Huang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Lihui Hou
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Tingting Hu
- T.F. Gorbachev Kuzbass State Technical University, 28, Vesennyaya Street, Kemerovo 650000, Russia
| | | | - Xuhui Xu
- Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
| | - Xue Yu
- School of Mechanical Engineering, Institute for Advanced Materials, Chengdu University, Chengdu 610106, China
| | - Ting Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| |
Collapse
|
34
|
Kuang G, Zhang Q, Yu Y, Shang L, Zhao Y. Cryo-shocked cancer cell microgels for tumor postoperative combination immunotherapy and tissue regeneration. Bioact Mater 2023; 28:326-336. [PMID: 37346097 PMCID: PMC10279695 DOI: 10.1016/j.bioactmat.2023.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/08/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
Prevention of recurrence/metastasis and tissue regeneration are critical for post-surgery treatment of malignant tumors. Here, to address these needs, a novel type of microgel co-loading cryo-shocked cancer cells, immunoadjuvant, and immune checkpoint inhibitor is presented by microfluidic electrospray technology and liquid nitrogen treatment. Owing to the encapsulation of cryo-shocked cancer cells and immunoadjuvant, the microgels can recruit dendritic cells and activate them in situ, and evoke a robust immune response. Moreover, with the combination of the immune checkpoint inhibitor, the antitumor immune response is further enhanced by inhibiting the interaction of PD1 and PDL1. With this, the excellent anti-recurrence and anti-metastasis efficacy of the microgels are demonstrated in an orthotopic breast cancer mouse model. Besides, because of the excellent biocompatibility and appropriate degradation performance, the microgels can provide support for normal cell adhesion and growth, which is beneficial to tissue reconstruction. These properties indicate the great value of the cryo-shocked cancer cell microgels for efficient tumor postoperative combination immunotherapy and tissue regeneration.
Collapse
Affiliation(s)
- Gaizhen Kuang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Qingfei Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yunru Yu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Luoran Shang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| |
Collapse
|
35
|
Wang P, Yang Y, Wen H, Li D, Zhang H, Wang Y. Progress in construction and release of natural polysaccharide-platinum nanomedicines: A review. Int J Biol Macromol 2023; 250:126143. [PMID: 37544564 DOI: 10.1016/j.ijbiomac.2023.126143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Natural polysaccharides are natural biomaterials that have become candidate materials for nano-drug delivery systems due to their excellent biodegradability and biocompatibility. Platinum (Pt) drugs have been widely used in the clinical therapy for various solid tumors. However, their extensive systemic toxicity and the drug resistance acquired by cancer cells limit the applications of platinum drugs. Modern nanobiotechnology provides the possibility for targeted delivery of platinum drugs to the tumor site, thereby minimizing toxicity and optimizing the efficacies of the drugs. In recent years, numerous natural polysaccharide-platinum nanomedicine delivery carriers have been developed, such as nanomicelles, nanospheres, nanogels, etc. Herein, we provide an overview on the construction and drug release of natural polysaccharide-Pt nanomedicines in recent years. Current challenges and future prospectives in this field are also put forward. In general, combining with irradiation and tumor microenvironment provides a significant research direction for the construction of natural polysaccharide-platinum nanomedicines and the release of responsive drugs in the future.
Collapse
Affiliation(s)
- Pengge Wang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China; College of Biological and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing City, Jiangsu Province 211816, China
| | - Yunxia Yang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China; Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource, Yancheng Teachers University, Yancheng 224007, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng 224007, China.
| | - Haoyu Wen
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Dongqing Li
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Hongmei Zhang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Yanqing Wang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China.
| |
Collapse
|
36
|
Chen XJ, Lei ZY, Liu P, Lei MJ, Xu H, Yu LJ, Ao MZ. An aminocaproic acid-grafted chitosan derivative with superior antibacterial and hemostatic properties for the prevention of secondary bleeding. Carbohydr Polym 2023; 316:120988. [PMID: 37321717 DOI: 10.1016/j.carbpol.2023.120988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
Uncontrolled bleeding is one of the leading causes of human mortality. Existing hemostatic materials or techniques cannot meet the clinical requirements for safe and effective hemostasis. The development of novel hemostatic materials has always been of great interest. Chitosan hydrochloride (CSH), a derivative of chitin, is extensively used on wounds as an antibacterial and hemostatic agent. However, the formation of intra- or intermolecular hydrogen bonds between hydroxyl and amino groups limits its water solubility and dissolution rate and affects its effectiveness in promoting coagulation. Herein, we covalently grafted aminocaproic acid (AA) to the hydroxyl and amino groups of CSH via ester and amide bonds, respectively. The solubility of CSH in water (25 °C) was 11.39 ± 0.98 % (w/v), whereas the AA-grafted CSH (CSH-AA) reached 32.34 ± 1.23 % (w/v). Moreover, the dissolution rate of CSH-AA in water was 6.46 times higher than that of CSH. Subsequent studies proved that CSH-AA is non-toxic, biodegradable, and has superior antibacterial and hemostatic properties to CSH. Additionally, anti-plasmin activity can be exerted by the dissociated AA from the CSH-AA backbone, which can help to lessen secondary bleeding.
Collapse
Affiliation(s)
- Xiao-Juan Chen
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhi-Yong Lei
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Pan Liu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Meng-Jie Lei
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hang Xu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Long-Jiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China.
| | - Ming-Zhang Ao
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China.
| |
Collapse
|
37
|
Xu X, Wu Q, Tan L, Men X, Huang Y, Li H. Biomimetic Metal-Chalcogenide Agents Enable Synergistic Cancer Therapy via Microwave Thermal-Dynamic Therapy and Immune Cell Activation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42182-42195. [PMID: 37651685 DOI: 10.1021/acsami.3c05728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Microwave thermal dynamic therapy (MTDT), which combines thermal effects and reactive oxygen species (ROS) by microwave activation, seems to be a promising anticancer therapeutic method. A multifunctional agent for achieving synergistic localized cancer treatment is the key to exploit the strategy to inhibit tumor cell recurrence and metastasis. In the study, a ZIF-67 based theranostic agent loaded with metal-chalcogenide open framework 3 (MCOF3) and heat shock protein 70 (HSP70) as the inner component was studied, coupled with targeting cancer cell membrane (TCM) as the biomimetic outer shell. We found that metal ions in MCOF3 enabled the composite agents to show peroxide-like activity to produce •OH and destroy cancer cells. And then, the microwave (MW) thermal sensitizer of ZIF-67 was used to specifically convert the MW energy into thermal energy and selectively heat the tumor via the cell's targeting. Additionally, the effect of continuous MW thermal therapy has been shown to promote the expression of HSP70, and further activate the effector of CD4 T cell and CD8α T cell. As such, the agents effectively inhibit the tumor cell growth under MW irradiation in vitro and in vivo due to the synergistic effects of MTDT and immune cell activation. The study provides an emerging strategy to ablation cancer effectively.
Collapse
Affiliation(s)
- Xiaomu Xu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xianwei Men
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yue Huang
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Hong Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| |
Collapse
|
38
|
Zhong T, Yu J, Pan Y, Zhang N, Qi Y, Huang Y. Recent Advances of Platinum-Based Anticancer Complexes in Combinational Multimodal Therapy. Adv Healthc Mater 2023; 12:e2300253. [PMID: 37097737 DOI: 10.1002/adhm.202300253] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/19/2023] [Indexed: 04/26/2023]
Abstract
Platinum drugs with manifest therapeutic effects are widely used, but their systemic toxicity and the drug resistance acquired by cancer cells limit their clinical applications. Thus, the exploration on appropriate methods and strategies to overcome the limitations of traditional platinum drugs becomes extremely necessary. Combination therapy of platinum drugs can inhibit tumor growth and metastasis in an additive or synergistic manner, and can potentially reduce the systemic toxicity of platinum drugs and overcome platinum-resistance. This review summarizes the various modalities and current progress in platinum-based combination therapy. The synthetic strategies and therapeutic effects of some platinum-based anticancer complexes in the combination of platinum drugs with gene editing, ROS-based therapy, thermal therapy, immunotherapy, biological modelling, photoactivation, supramolecular self-assembly and imaging modality are briefly described. Their potential challenges and prospects are also discussed. It is hoped that this review will inspire researchers to have more ideas for the future development of highly effective platinum-based anti-cancer complexes.
Collapse
Affiliation(s)
- Tianyuan Zhong
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| | - Jie Yu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| | - Yong Pan
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| | - Ning Zhang
- The Second Affiliated Hospital of Harbin Medical University, Department of Orthopedics, Harbin, 150000, China
| | - Yanxin Qi
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| | - Yubin Huang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
39
|
Chen Y, Guo J, Wu X, Xu Y, Wang J, Ren H, Zhao Y. Microfluidic spinning of natural origin microfibers for breast tumor postsurgical treatment. CHEMICAL ENGINEERING JOURNAL 2023; 472:144901. [DOI: 10.1016/j.cej.2023.144901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
|
40
|
Lan JS, Zeng RF, Li Z, Wu Y, Liu L, Chen LX, Liu Y, He YT, Zhang T, Ding Y. CD44-Targeted Photoactivatable Polymeric Nanosystem with On-Demand Drug Release as a "Photoactivatable Bomb" for Combined Photodynamic Therapy-Chemotherapy of Cancer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:34554-34569. [PMID: 37462246 DOI: 10.1021/acsami.3c05645] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Nowadays, the combined use of chemotherapy and photodynamic therapy (PDT) remains the most popular strategy for cancer treatment with high theraprutic efficacy. However, targeted therapy with the on-demand release of drugs is what most clinical treatments lack, leading to heavy side effects. Herein, a new CD44-targeted and red-light-activatable nanosystem, Ru-HA@DOX nanoparticles (NPs), was developed by conjugating hydrophilic biodegradable hyaluronic acid (HA) and hydrophobic photoresponsive ruthenium (Ru) complexes, which could encapsulate the chemotherapeutic drug doxrubicin (DOX). Ru-HA@DOX NPs can selectively accumulate at the tumor through the enhanced permeability and retention (EPR) effect and CD44-mediated endocytosis, thus avoiding off-target toxicity during circulation. After 660 nm of irradiation at the tumor site, Ru-HA@DOX NPs, as a "photoactivatable bomb", was split via the photocleavable Ru-N coordination bond to fast release DOX and produce singlet oxygen (1O2) for PDT. In general, Ru-HA@DOX NPs retained its integrity before irradiation and possessed minimal cytotoxicity, while under red-light irradiation, Ru-HA@DOX NPs showed significant cytotoxicity due to the release of DOX and production of 1O2 at the tumor. Chemotherapy-PDT of Ru-HA@DOX NPs resulted in a significant inhibition of tumor growth in A549-tumor-bearing mice and reduced the cardiotoxicity of DOX. Therefore, this study offers a novel CD44-targeted drug-delivery system with on-demand drug release for synergistic chemotherapy-PDT.
Collapse
Affiliation(s)
- Jin-Shuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui-Feng Zeng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ya Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li-Xia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yun Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Tian He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
41
|
Zhang M, Xu W, Li X, Ling G, Zhang P. Tunicate-mimetic antibacterial hydrogel based on metal ion crosslinking and chitosan functionalization for wound healing. Int J Biol Macromol 2023:125062. [PMID: 37247717 DOI: 10.1016/j.ijbiomac.2023.125062] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
With the increasing prevalence of drug-resistant bacterial infections and frequent occurrences of slow wound healing, the development of novel antibacterial wound dressings has become a serious challenge. Hydrogel dressings have attracted extensive attention on wound healing due to their unique three-dimensional network structures and properties. However, it is a challenge to develop natural long-acting antibacterial hydrogels with multiple functions such as excellent cell affinity, wet adhesion and mechanical properties. Inspired by the wound healing mechanism and adhesion characteristics of tunicates, a series of biomimetic antibacterial hydrogels were prepared by utilizing pyrogallol-modified chitosan (GACS) and polyvinyl alcohol (PVA) as matrix, zinc ions (Zn2+) as crosslinking and antibacterial agents, and ethyl N-lauroyl l-arginate hydrochloride (LAE) as the antibacterial active ingredient. The morphology, swelling, water retention, degradability, wet adhesion, biocompatibility, mechanical and rheological properties of PVA/GACS/Zn2+/LAE hydrogels were evaluated. And the adhesion ability conferred by the pyrogallol structures enabled the hydrogel with enhanced antibacterial effect and hemostatic ability. Moreover, the in vivo experiments on rat models with full-thickness infected wounds confirmed that PVA/GACS/Zn2+/LAE hydrogels could efficiently kill bacteria, significantly improve the wound microenvironment, greatly promote fibroblast proliferation and collagen deposition and ultimately accelerate wound healing. In a word, this study provided a feasible and simple way for the development of biomimetic antibacterial hydrogel dressings applied in infected wounds, which could not only seal wounds with various shapes and provide a moist and antibacterial environment for wounds, but also have certain mechanical strength, excellent wound adhesion, good biocompatibility and hemostatic performance.
Collapse
Affiliation(s)
- Manyue Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Wenxin Xu
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaodan Li
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
42
|
Interpenetrating network expansion sponge based on chitosan and plasma for ultrafast hemostasis of arterial bleeding wounds. Carbohydr Polym 2023; 307:120590. [PMID: 36781269 DOI: 10.1016/j.carbpol.2023.120590] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/27/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Preventing arterial hemorrhage by intervening within the first few minutes is critical to the patient's life. Hemostatic materials have been developed over the last decades to address this issue, nevertheless these materials alone do not contribute to improve the survival effects in many extreme conditions, which is usually caused by penetrating arterial bleeding wounds that are incompressible and deep arterial bleeding with irregularly shapes. It is well known that, after calcium ion stimulation, many intriguing changes occurred in the major components of plasma, including the activation of several coagulation factors, such as the conversion of fibrinogen to fibrin, prothrombin to thrombin, and so on. Therefore, we constructed an expansion sponge with interpenetrating network based on chitosan and plasma, while various activated coagulation factors in plasma were also loaded into the pore structure of chitosan sponges. The prepared CS-PG sponge is capable of providing a simpler and more efficient method for treating high-pressure arterial bleeding wounds, which includes three steps: Rapid sealing and adhension, Thrombin catalysis and Activated autocoagulation. As the next generation bioactive materials, compared to conventional hemostatic materials, CS-PG sponge demonstrated superior hemostatic characteristics in both rabbit femoral artery damage and rat liver injury models.
Collapse
|
43
|
Chen J, Zhao L, Ling J, Yang LY, Ouyang XK. A quaternized chitosan and carboxylated cellulose nanofiber-based sponge with a microchannel structure for rapid hemostasis and wound healing. Int J Biol Macromol 2023; 233:123631. [PMID: 36775224 DOI: 10.1016/j.ijbiomac.2023.123631] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
A hemostatic sponge should perform rapid hemostasis and exhibit antibacterial properties, whilst being non-toxic, breathable, and degradable. This study prepared a hemostatic sponge (CQTC) with microchannels, specifically a microchannel structure based on quaternized chitosan (QCS) and carboxylated cellulose nanofibers (CCNF) obtained by using tannic acid and Cu2+ complex (crosslinking agent). The sponge had low density and high porosity, while being degradable. The combination of microchannels and three-dimensional porous structure of CQTC leads to excellent liquid absorption and hemostasis ability, based on a liquid absorption rate test and in vitro hemostasis experiment. In addition, CQTC exhibited excellent antibacterial activity against both gram-negative and gram-positive bacteria, and it promoted wound healing. In conclusion, this porous and microchannel hemostatic sponge has broad application prospects as a clinical wound hemostatic material.
Collapse
Affiliation(s)
- Jing Chen
- Zhoushan Maternal and Child Care Hospital, Zhoushan 316000, PR China
| | - Lijuan Zhao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Junhong Ling
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Li-Ye Yang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
44
|
Zhao M, Xu R, Yang Y, Tong L, Liang J, Jiang Q, Fan Y, Zhang X, Sun Y. Bioabsorbable nano-micelle hybridized hydrogel scaffold prevents postoperative melanoma recurrence. J Control Release 2023; 356:219-231. [PMID: 36889462 DOI: 10.1016/j.jconrel.2023.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/10/2023]
Abstract
The residual and scattered small tumor tissue or cells after surgery are the main reason for tumor recurrence. Chemotherapy has a powerful ability to eradicate tumors but always accompanied by serious side effects. In this work, tissue-affinity mercapto gelatin (GelS) and dopamine-modified hyaluronic acid (HAD) were employed to fabricate a hybridized cross-linked hydrogel scaffold (HG) by multiple chemical reactions, which could integrate the doxorubicin (DOX) loaded reduction-responsive nano-micelle (PP/DOX) into this scaffold via click reaction to obtain the bioabsorbable nano-micelle hybridized hydrogel scaffold (HGMP). With the degradation of HGMP, PP/DOX was slowly released and formed targeted PP/DOX with degraded gelatin fragments as target molecules, which increased the intracellular accumulation, and inhibited the aggregation of B16F10 cells in vitro. In mouse models, HGMP absorbed the scattered B16F10 cells and released targeted PP/DOX to suppress tumorigenesis. For another, implantation of HGMP at the surgical site reduced the recurrence rate of postoperative melanoma and inhibited the growth of recurrent tumors. Meanwhile, HGMP significantly relieved the damage of free DOX to hair follicle tissue. This bioabsorbable nano-micelle hybridized hydrogel scaffold provided a valuable strategy for adjuvant therapy after tumor surgery.
Collapse
Affiliation(s)
- Mingda Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Ruiling Xu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Yuedi Yang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Lei Tong
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; Sichuan Testing Centre for Biomaterials and Medical Devices, No.29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China.
| |
Collapse
|
45
|
Wang H, Cheng J, Sun F, Dou X, Liu J, Wang Y, Li M, Gao J, Liu X, Wang X, Yang F, Zhu Z, Shen H, Zhang L, Tang P, Wu D. A Super Tough, Rapidly Biodegradable, Ultrafast Hemostatic Bioglue. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208622. [PMID: 36579739 DOI: 10.1002/adma.202208622] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Death happening due to massive hemorrhage has been involved in military conflicts, traffic accidents, and surgical injuries of various human disasters. Achieving rapid and effective hemostasis to save lives is crucial in urgent massive bleeding situations. Herein, a covalent cross-linked AG-PEG glue based on extracellular matrix-like amino-gelatin (AG) and PEG derivatives is developed. The AG-PEG glue gelatinizes fast and exhibits firm and indiscriminate close adhesion with various moist tissues upon being dosed. The formed glue establishes an adhesive and robust barrier to seal the arterial, hepatic, and cardiac hemorrhagic wounds, enabling it to withstand up to 380 mmHg blood pressure in comparison with normal systolic blood pressure of 60-180 mmHg. Remarkably, massive bleeding from a pig cardiac penetrating hole with 6 mm diameter is effectively stopped using the glue within 60 s. Postoperative indexes of the treated pig gradually recover and the cardiac wounds regrow significantly at 14 days. Possessing on-demand solubility, self-gelling, and rapid degradability, the AG-PEG glue may provide a fascinating stop-bleeding approach for clinical hemostasis and emergency rescue.
Collapse
Affiliation(s)
- Hufei Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junyao Cheng
- Senior Department of Orthopedics, National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Chinese PLA General Hospital, Beijing, 100853, China
| | - Feifei Sun
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xueyu Dou
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Jianheng Liu
- Senior Department of Orthopedics, National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yiru Wang
- Department of Ultrasound, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ming Li
- Senior Department of Orthopedics, National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jianpeng Gao
- Senior Department of Orthopedics, National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiao Liu
- Senior Department of Orthopedics, National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ziran Zhu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Shen
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Licheng Zhang
- Senior Department of Orthopedics, National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Chinese PLA General Hospital, Beijing, 100853, China
| | - Peifu Tang
- Senior Department of Orthopedics, National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Chinese PLA General Hospital, Beijing, 100853, China
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
46
|
Sun Y, Miao T, Wang Y, Wang X, Lin J, Zhao N, Hu Y, Xu FJ. A natural polyphenol-functionalized chitosan/gelatin sponge for accelerating hemostasis and infected wound healing. Biomater Sci 2023; 11:2405-2418. [PMID: 36799455 DOI: 10.1039/d2bm02049a] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Natural polymers have been particularly appealing for constructing hemostatic materials/devices, but it is still desirable to develop new natural polymer-based biomaterials with balanced hemostatic and wound-healing performance. In this work, a natural polyphenol-functionalized chitosan/gelatin sponge (PCGS) was prepared by the lyophilization of a chitosan/gelatin mixture solution (under a self-foaming condition to prepare the CGS) and subsequent chemical cross-linking with procyanidin (PC). Compared with the original CGS, PCGS exhibited an enhanced liquid-absorption ability, reduced surface charges, and similar/low hemolysis rate. Benefiting from such a liquid-absorption ability (∼4000% for whole blood and normal saline) and moderate surface charges, PCGS exhibited high in vitro hemostatic property and promising hemostatic performance in an in vivo femoral-artery-injury model. In addition, PCGS possessed higher antioxidant property and slightly decreased antibacterial ability than CGS, owing to the incorporation of PC. The feasibility of PCGS for treating infected wounds was further confirmed in an in vivo infected-tooth-extraction model, as the typical complication of intractable tooth-extraction bleeding. The present work demonstrated a facile approach for developing multifunctional hemostatic materials through the flexible management of natural polymers and polyphenols.
Collapse
Affiliation(s)
- Yujie Sun
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Tengfei Miao
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China. .,College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yu Wang
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China. .,College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiaochen Wang
- Shandong Center for Food and Drug Evaluation & Inspection, Jinan 250014, China
| | - Jie Lin
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China. .,College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Nana Zhao
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China. .,College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yang Hu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China. .,College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Fu-Jian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China. .,College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
47
|
Jing P, Luo Y, Chen Y, Tan J, Liao C, Zhang S. Aspirin-Loaded Cross-Linked Lipoic Acid Nanodrug Prevents Postoperative Tumor Recurrence by Residual Cancer Cell Killing and Inflammatory Microenvironment Improvement. Bioconjug Chem 2023; 34:366-376. [PMID: 36626242 DOI: 10.1021/acs.bioconjchem.2c00548] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In addition to residual cancer cells, the surgery resection-induced hyperinflammatory microenvironment is a key factor that leads to postsurgical cancer recurrence. Herein, we developed a dual-functional nanodrug Asp@cLANVs for postsurgical recurrence inhibition by loading the classical anti-inflammatory drug aspirin (Asp) into cross-linked lipoic acid nanovesicles (cLANVs). The Asp@cLANVs can not only kill residual cancer cells at the doses comparable to common cytotoxic drugs by synergistic interaction between Asp and cLANVs, but also improve the postsurgical inflammatory microenvironment by their strongly synergistic anti-inflammation activity between Asp and cLANVs. Using mice bearing partially removed NCI-H460 tumors, we found that Asp@cLANVs gave a much lower recurrence rate (33.3%) compared with the first-line cytotoxic drug cisplatin (100%), and no mice died for at least 60 days after Asp@cLANV treatment while no mouse survived beyond day 43 in the cisplatin group. This dual-functional nanodrug constructs the first example that combines residual cancer cell killing and postoperative inflammation microenvironment improvement to suppress postsurgical cancer recurrence.
Collapse
Affiliation(s)
- Pei Jing
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China.,Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, P.R. China
| | - Yuling Luo
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, P.R. China
| | - Yun Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Jiangbing Tan
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Chunyan Liao
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Shiyong Zhang
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| |
Collapse
|
48
|
Xie Y, Liu M, Cai C, Ye C, Guo T, Yang K, Xiao H, Tang X, Liu H. Recent progress of hydrogel-based local drug delivery systems for postoperative radiotherapy. Front Oncol 2023; 13:1027254. [PMID: 36860309 PMCID: PMC9969147 DOI: 10.3389/fonc.2023.1027254] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
Surgical resection and postoperative radiotherapy remained the most common therapeutic modalities for malignant tumors. However, tumor recurrence after receiving such combination is difficult to be avoided because of high invasiveness and radiation resistance of cancer cells during long-term therapy. Hydrogels, as novel local drug delivery systems, presented excellent biocompatibility, high drug loading capacity and sustained drug release property. Compared with conventional drug formulations, hydrogels are able to be administered intraoperatively and directly release the entrapped therapeutic agents to the unresectable tumor sites. Therefore, hydrogel-based local drug delivery systems have their unique advantages especially in sensitizing postoperative radiotherapy. In this context, classification and biological properties of hydrogels were firstly introduced. Then, recent progress and application of hydrogels for postoperative radiotherapy were summarized. Finally, the prospects and challenges of hydrogels in postoperative radiotherapy were discussed.
Collapse
Affiliation(s)
- Yandong Xie
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China,Department of Neurosurgery, The Suqian Clinical College of Xuzhou Medical University, Suqian, China
| | - Mingxi Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Chang Cai
- Department of Neurosurgery, The Suqian Clinical College of Xuzhou Medical University, Suqian, China
| | - Chengkun Ye
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tangjun Guo
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kun Yang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Hong Xiao
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China,*Correspondence: Hongyi Liu, ; Xianglong Tang, ; Hong Xiao,
| | - Xianglong Tang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China,Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China,*Correspondence: Hongyi Liu, ; Xianglong Tang, ; Hong Xiao,
| | - Hongyi Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China,*Correspondence: Hongyi Liu, ; Xianglong Tang, ; Hong Xiao,
| |
Collapse
|
49
|
Miao F, Lin H, Yao T, Zhang R, Sun X, Cheng H, Gu L, Xia X, Wu T, Li W, Liu G. A topical platelet-independent multilevel clotting initiator for intraoperative hemostasis. CHEMICAL ENGINEERING JOURNAL 2023; 454:139925. [DOI: 10.1016/j.cej.2022.139925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
|
50
|
Dual drug-loaded hydrogels with pH-responsive and antibacterial activity for skin wound dressing. Colloids Surf B Biointerfaces 2023; 222:113063. [PMID: 36502601 DOI: 10.1016/j.colsurfb.2022.113063] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Antibacterial and hemostatic properties are essential for wound healing dressing. In this study, a new type of hydrogel composed of gelatin methacryloyl (GelMA) and hyaluronic acid-aldehyde (HA-CHO) is fabricated by photo-crosslinking and respectively loaded with a single drug gentamicin sulfate (GS), and two drugs of GS and lysozyme (LZM). The composite hydrogel of GelMA and HA-CHO is successfully synthesized by the aldehyde and Schiff base reactions. The structures and compositions of the hydrogels with and without drug loaded are characterized by FT-IR, 1H NMR, and XPS. Furthermore, the microstructure and swelling behaviour of hydrogels prove that the content of HA-CHO has a significant role in the formation of hydrogels with dense porous structures and super absorbent. pH 7.4 and pH 5.0 conditions are used to evaluate the drug release behaviour of the obtained hydrogels. The released amount of GS of the drug-loaded hydrogels in the acidic buffer is more than that of the physiological environment because of the cleaved Schiff base bonds and the electrostatic interaction. Especially for the dual drug-loaded hydrogel GelMA/HA-CHO/GS/LZM, the released ratio of GS is elevated from 59 % in pH 7.4 buffer to about 78 % in pH 5.0 buffer within the first 6 h, which verifies the excellent pH-stimulus responsiveness. These endow the GS-LZM dual drug-loaded hydrogels with superior antibacterial efficiencies to that of the single GS drug-loaded hydrogels, no drug-loaded hydrogels, and SEBS control, especially in inhibiting S. aureus in a lower concentration of 106 CFU mL-1, which can be attributed to the synergistic effect of LZM and GS. For S. aureus at 106 CFU mL-1, the bacterial survival of GelMA/HA-CHO/GS/LZM is 1.1 %, which shows outstanding antibacterial effect. Hence, the drug-loaded hydrogels, especially the dual drug-loaded hydrogels with pH-responsive, antibacterial, and hemostatic properties have great potential as wound healing materials.
Collapse
|