1
|
Konishi A, Tokuyama H, Kitamura H, Tsuchida S, Suzuki M, Nakayama KI, Kishi R, Yasuda M. Synthesis and Characterization of Cycloocta[1,2- a:6,5- a']diindene as an Octagon-Containing Nonalternant Isomer of Pentacyclic Benzenoid Aromatic Hydrocarbons with Hidden Diradical Character That Induces Dimerization. J Am Chem Soc 2025; 147:17281-17292. [PMID: 40354667 DOI: 10.1021/jacs.5c03615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Recently, the interest in nonbenzenoid hydrocarbons has resurged, focusing on the replacement of two benzenoid hexagons with a pentagon/heptagon pair, which has led to abundant azulenoid hydrocarbons. For ortho-fused benzenoid hydrocarbons with three or more rings, replacing the three hexagons with a set of two pentagons and one octagon is also possible. Following this concept, we designed pentacyclic cyclooctadiindenes 4 and 5 with a 5-8-5 tricyclic skeleton. Although the pronounced open-shell nature of 4 hampered its synthesis, five examples of cyclooctadiindenes 5 were synthesized and characterized as stable closed-shell molecules. A thin film of 5a exhibited p-type transistor behavior with a hole mobility of 0.63 × 10-2 cm2/(V·s). Optoelectronic measurements clearly showed the nonalternant character of 5. Heating or photoirradiation of a solution of 5 afforded a formal [6 + 4] cycloadduct. Theoretical calculations and mechanistic investigations revealed the occurrence of a stepwise formation of two C-C bonds, in which the hidden open-shell character of 5 emerges with the two molecules in close contact. Notably, in the dimeric π-complex 5·5, the nonalternant character of 5 is alleviated. The increased spatial overlap of the frontier orbitals and the reduction of the energy gap facilitate the diradical-based bond formations. Our results demonstrate that the open-shell electronic structures of a π-stacked compound can be tuned even for monomer compounds with negligible open-shell character. This study will contribute to establishing design strategies for novel open-shell functional molecular materials based on closed-shell nonalternant hydrocarbons in the condensed state.
Collapse
Affiliation(s)
- Akihito Konishi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Haruka Tokuyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hinaki Kitamura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Seiya Tsuchida
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Mitsuharu Suzuki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ken-Ichi Nakayama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryohei Kishi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- Center for Quantum Information and Quantum Biology (QIQB), Osaka University, Toyonaka, Osaka 560-8531, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Zhang L, Zhao Y, Li J, Fu Y, Peng B, Yang J, Lu X, Miao Q. Molecular Orbital Tuning of Pentacene-Based Organic Semiconductors through N-Ethynylation of Dihydrodiazapentacene. J Am Chem Soc 2025; 147:3459-3467. [PMID: 39835460 PMCID: PMC11783513 DOI: 10.1021/jacs.4c14775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
This study explores the concept of molecular orbital tuning for organic semiconductors through the use of N,N'-diethynylated derivatives of 6,13-dihydro-6,13-diazapentacene (2a and 2b). These novel molecules maintain the same molecular geometry and π-π stacking as their parent pentacene derivatives (1a and 1b), as confirmed by X-ray crystallography. However, they exhibit altered frontier molecular orbitals in terms of the phase, nodal properties, and energy levels. Theoretical calculations based on crystal structures indicate that 2a and 2b could significantly enhance the hole mobilities of the parent compounds by improving the hole transfer integral. Organic field-effect transistors (OFETs) of 1a and 2a were fabricated by using dip-coating and bar-coating methods. Both types of devices for 2a demonstrated a hole mobility exceeding 1 cm2 V-1 s-1, more than twice that of the respective devices for 1a. Additionally, unlike its pentacene parent, 2a is transparent to visible light and exhibits significantly enhanced environmental stability against light and air, making it a promising candidate for broader applications in organic electronic devices.
Collapse
Affiliation(s)
- Li Zhang
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin,
New Territories, Hong Kong, China
- State Key
Laboratory of Synthetic Chemistry, The Chinese
University of Hong Kong, Hong Kong, China
| | - Yujie Zhao
- MOE Key Laboratory
of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou 310027, China
- International
Research Center for X Polymers, Zhejiang
University, Hangzhou 310027, China
- Department
of Polymer Science and Engineering, Zhejiang
University, Hangzhou 310027, China
| | - Jiasheng Li
- Department
of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Yuang Fu
- Department
of Physics, The Chinese University of Hong
Kong, Shatin,
New Territories, Hong Kong,
China
| | - Boyu Peng
- MOE Key Laboratory
of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou 310027, China
- International
Research Center for X Polymers, Zhejiang
University, Hangzhou 310027, China
- Department
of Polymer Science and Engineering, Zhejiang
University, Hangzhou 310027, China
| | - Jun Yang
- Department
of Chemistry, The University of Hong Kong, Hong Kong, China
- State
Key
Laboratory of Synthetic Chemistry, The University
of Hong Kong, Hong Kong, China
| | - Xinhui Lu
- Department
of Physics, The Chinese University of Hong
Kong, Shatin,
New Territories, Hong Kong,
China
| | - Qian Miao
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin,
New Territories, Hong Kong, China
- State Key
Laboratory of Synthetic Chemistry, The Chinese
University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Heo J, Prayogo JA, Lee SW, Park H, Muthu S, Hong J, Kim H, Kim Y, Whang DR, Chang DW, Park HJ. High Open-Circuit Voltage Wide-Bandgap Perovskite Solar Cell with Interface Dipole Layer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404784. [PMID: 39205546 PMCID: PMC11636069 DOI: 10.1002/smll.202404784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Wide-bandgap perovskite solar cells (PSCs) with high open-circuit voltage (Voc) represent a compelling and emerging technological advancement in high-performing perovskite-based tandem solar cells. Interfacial engineering is an effective strategy to enhance Voc in PSCs by tailoring the energy level alignments between the constituent layers. Herein, n-type quinoxaline-phosphine oxide-based small molecules with strong dipole moments is designed and introduce them as effective cathode interfacial layers. Their strong dipole effect leads to appropriate energy level alignment by tuning the work function of the Ag electrode to form an ohmic contact and enhance the built-in potential within the device, thereby improving charge-carrier transport and mitigating charge recombination. The organic interfacial layer-modified wide-bandgap PSCs exhibit a high Voc of 1.31 V (deficit of <0.44 V) and a power conversion efficiency (PCE) of 20.3%, significantly improved from the device without an interface dipole layer (Voc of 1.26 V and PCE of 16.7%). Furthermore, the hydrophobic characteristics of the small molecules contribute to improved device stability, retaining 95% of the initial PCE after 500 h in ambient air.
Collapse
Affiliation(s)
- Jihyeon Heo
- Department of Organic and Nano EngineeringHanyang UniversitySeoul04763Republic of Korea
- Human‐Tech Convergence ProgramHanyang UniversitySeoul04763Republic of Korea
| | - Juan Anthony Prayogo
- Department of Industrial Chemistry and CECS Research InstitutePukyong National UniversityBusan48513Republic of Korea
| | - Seok Woo Lee
- Department of Industrial Chemistry and CECS Research InstitutePukyong National UniversityBusan48513Republic of Korea
| | - Hansol Park
- Department of Organic and Nano EngineeringHanyang UniversitySeoul04763Republic of Korea
- Human‐Tech Convergence ProgramHanyang UniversitySeoul04763Republic of Korea
| | - Senthilkumar Muthu
- Department of Organic and Nano EngineeringHanyang UniversitySeoul04763Republic of Korea
- Human‐Tech Convergence ProgramHanyang UniversitySeoul04763Republic of Korea
| | - JeeHee Hong
- Department of Organic and Nano EngineeringHanyang UniversitySeoul04763Republic of Korea
- Human‐Tech Convergence ProgramHanyang UniversitySeoul04763Republic of Korea
| | - Haeun Kim
- Department of Organic and Nano EngineeringHanyang UniversitySeoul04763Republic of Korea
- Human‐Tech Convergence ProgramHanyang UniversitySeoul04763Republic of Korea
| | - Young‐Hoon Kim
- Department of Energy EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Dong Ryeol Whang
- Department of Advanced MaterialsHannam UniversityDaejeon34054Republic of Korea
| | - Dong Wook Chang
- Department of Industrial Chemistry and CECS Research InstitutePukyong National UniversityBusan48513Republic of Korea
| | - Hui Joon Park
- Department of Organic and Nano EngineeringHanyang UniversitySeoul04763Republic of Korea
- Human‐Tech Convergence ProgramHanyang UniversitySeoul04763Republic of Korea
- Department of Semiconductor EngineeringHanyang UniversitySeoul04763Republic of Korea
| |
Collapse
|
4
|
Wu T, Tan L, Feng Y, Zheng L, Li Y, Sun S, Liu S, Cao J, Yu Z. Toward Ultrathin: Advances in Solution-Processed Organic Semiconductor Transistors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61530-61550. [PMID: 39479971 DOI: 10.1021/acsami.4c11824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
In recent years, organic semiconductor (OSC) ultrathin films and their solution-processed organic field-effect transistors (OFETs) have garnered attention for their high flexibility, light weight, solution processability, and tunable optoelectronic properties. These features make them promising candidates for next-generation optoelectronic applications. An ultrathin film typically refers to a film thickness of less than 10 nm, i.e., several molecular layers, which poses challenges for OSC materials and solution-processed methods. In this paper, first we introduce the carrier-transport regulation mechanism under ultrathin limits. Second, we summarize various solution-processed techniques for OSC ultrathin films and elucidate advances in their OFETs performance, such as enhanced or maintained mobilities, improved switching ratios, reduced threshold voltages, and minimized contact resistance. The relationship between the ultrathin-film thickness, microstructure of various OSCs (small molecules and polymers), and device performance is discussed. Third, we explore the recent application of OSC ultrathin-film-based OFETs, such as gas sensors, biosensors, photodetectors, and ferroelectric OFETs (Fe-OFETs). Finally, the conclusion is drawn, and the challenges and prospects of ultrathin OSC transistors are presented. Nowadays, research on ultrathin films is still in its early stages; further experience in precise film deposition control is crucial to advancing research and broadening the scope of applications for OSC ultrathin devices.
Collapse
Affiliation(s)
- Ti Wu
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Lin Tan
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Yuguang Feng
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Luyao Zheng
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Yongpeng Li
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Shengtao Sun
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Shengzhen Liu
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Jin Cao
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Zhaohui Yu
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| |
Collapse
|
5
|
Roosta S, Elstner M, Xie W. Effect of Halogen Substituents on Charge Transport Properties of n-type Organic Semiconductors: A Theoretical Study. J Phys Chem A 2024; 128:8878-8885. [PMID: 39360760 DOI: 10.1021/acs.jpca.4c03739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Organic semiconductors (OSCs) have received significant attention as promising materials for electronic devices. In this study, we investigate the impact of halogen groups on the charge transport properties of n-type OSC-6,13 bis((triisopropylsilyl)ethynyl)-5,7,12,14-tetraazapentacene (TIPS-TAP). The computed mobilities for TIPS-TAPs substituted with F and Cl exhibit excellent agreement with the experimental values, while the simulation overestimates the electron mobility for TIPS-TAP. Interestingly, the mobility of TIPS-TAP-4F is significantly lower than that of TIPS-TAP-4Cl/Br, despite their similar packing structures. This discrepancy can be attributed to the strong electron-withdrawing effect of fluoride, which reduces the electron transfer integral and increases the reorganization energy. While molecular packing is widely recognized as a dominant factor in charge transport in OSCs, our study highlights the crucial role of electronic effects in charge transport in OSCs. This study provides new insights into the mechanisms underlying charge transport in OSCs.
Collapse
Affiliation(s)
- Sara Roosta
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Marcus Elstner
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute of Biological Interfaces (IBG2), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Weiwei Xie
- Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Zhang W, Liu B, Zhang S, Zhang X, Qiao P, Liang B, Fan S, Su T, Liu K, Dai B, Zhu J. Ultrahigh On/Off Ratio (110) Diamond Transistors with Exceptional Reproducibility of Normally Off Characteristics. J Phys Chem Lett 2024; 15:9301-9310. [PMID: 39235319 DOI: 10.1021/acs.jpclett.4c02040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The development of monolithic integrated energy-efficient complementary circuits is crucial for the large-scale application of wide bandgap semiconductor-based high-frequency and high-power field-effect transistors (FETs). However, the inferior performance of p-channel FETs attributed to low hole density and mobility presents a substantial challenge. Diamond is a promising candidate due to its excellent comprehensive electrical properties and high thermal conductivity. Here, we report the fabrication of normally off diamond FETs based on a low work function metal gate and (110) hydrogen-terminated diamond with high hole density. The use of high-quality SiO2 layer ensures the complete depletion of the channel by the gate and offers high gating efficiency. Therefore, the developed devices demonstrate exceptional reproducibility of normally off characteristics with centrally distributed threshold voltages (-0.37 ± 0.3 V) and realize large current and voltage handling capabilities and low static standby power consumption in a synergic manner with record-high on/off ratio exceeding 1010, high current density (∼200 μA·μm-1), ultralow off-state current (∼fA·μm-1), and high breakdown voltage (-676 V). Additionally, the thermal desorption of negatively charged acceptors has been proven to significantly reduce carrier scattering. This work offers superior performance p-channel FETs for implementing energy-efficient complementary circuits, laying the groundwork for accelerated development in wide bandgap semiconductor power electronics.
Collapse
Affiliation(s)
- Wenchao Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450008, China
| | - Benjian Liu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450008, China
| | - Sen Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450008, China
| | - Xiaohui Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450008, China
| | - Pengfei Qiao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450008, China
| | - Bo Liang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450008, China
| | - Saifei Fan
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450008, China
| | - Tao Su
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450008, China
| | - Kang Liu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450008, China
| | - Bing Dai
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450008, China
| | - Jiaqi Zhu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450008, China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing Ministry of Education, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
7
|
Chen Y, Wu Z, Chen Z, Zhang S, Li W, Zhao Y, Wang Y, Liu Y. Molecular "backbone surgery" of electron-deficient heteroarenes based on dithienopyrrolobenzothiadiazole: conformation-dependent crystal structures and charge transport properties. Chem Sci 2024; 15:11761-11774. [PMID: 39092104 PMCID: PMC11290414 DOI: 10.1039/d4sc02794a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/18/2024] [Indexed: 08/04/2024] Open
Abstract
Electron-deficient heteroarenes based on dithienopyrrolobenzothiadiazole (BTP) have been highly attractive due to their fascinating packing structures, broad absorption profiles, and promising applications in non-fullerene organic solar cells. However, the control of their crystal structures for superior charge transport still faces big challenges. Herein, a conformation engineering strategy is proposed to rationally manipulate the single crystal structure of BTP-series heteroarenes. The parent molecule BTPO-c has a 3D network crystal structure, which originates from its banana-shaped conformation. Subtracting one thiophene moiety from the central backbone leads to a looser brickwork crystal structure of the derivative BTPO-z because of its interrupted angular-shaped conformation. Further subtracting two thiophene moieties results in the derivative BTPO-l with a compact 2D-brickwork crystal structure due to its quasi-linear conformation with a unique dimer packing structure and short π-π stacking distance (3.30 Å). Further investigation of charge-transport properties via single-crystal organic transistors demonstrates that the compact 2D-brickwork crystal structure of BTPO-l leads to an excellent electron mobility of 3.5 cm2 V-1 s-1, much higher than that of BTPO-c with a 3D network (1.9 cm2 V-1 s-1) and BTPO-z with a looser brickwork structure (0.6 cm2 V-1 s-1). Notably, this study presents, for the first time, an elegant demonstration of the tunable single crystal structures of electron-deficient heteroarenes for efficient organic electronics.
Collapse
Affiliation(s)
- Yuzhong Chen
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| | - Zeng Wu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| | - Zekun Chen
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| | - Shuixin Zhang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| | - Wenhao Li
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| | - Yan Zhao
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| | - Yang Wang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| | - Yunqi Liu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| |
Collapse
|
8
|
Li F, Zhou J, Zhang J, Zhao J. Research and Progress on Organic Semiconductor Power Devices. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3362. [PMID: 38998442 PMCID: PMC11243007 DOI: 10.3390/ma17133362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Organic semiconductor power devices have been attracting increasing attention due to their advantages such as flexibility, low fabrication cost, and sustainability. They have found wide applications in fields such as flexible electronic devices and biomedical devices. However, in the field of power applications, the lack of reliable organic semiconductor power devices is mainly attributed to the limited thermal stability and electrical stability of organic materials. This article provides a detailed review of the development status of organic semiconductor power devices from three aspects: device structure, organic materials, and fabrication methods. It clarifies that the future development goal is to enhance the voltage resistance and thermal stability of organic transistors through higher-performance structure design, higher-mobility materials, and higher-quality fabrication methods. The continuous innovation and development of the structures, materials, and fabrication of these devices will generate more novel devices, offering more possibilities for the application of organic semiconductor power devices. This information is of great reference value and guidance significance for engineers in related fields.
Collapse
Affiliation(s)
- Fangyi Li
- School of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jiayi Zhou
- Shanghai Qingwei Intelligent Technology Co., Ltd., Shanghai 200062, China
| | - Jun Zhang
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jiang Zhao
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
9
|
Giri I, Chhetri S, John P J, Mondal M, Dey AB, Vijayaraghavan RK. Engineered solid-state aggregates in brickwork stacks of n-type organic semiconductors: a way to achieve high electron mobility. Chem Sci 2024; 15:9630-9640. [PMID: 38939134 PMCID: PMC11206358 DOI: 10.1039/d4sc02339k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/16/2024] [Indexed: 06/29/2024] Open
Abstract
Efficient, economically viable n-type organic semiconductor materials suitable for solution-processed OFET devices with high electron mobility and ambient stability are scarce. Merging these attributes into a single molecule remains a significant challenge and a careful molecular design is needed. To address this, synthetic viability (achievable in fewer than three steps) and using cost-effective starting materials are crucial. Our research presents a strategy that meets these criteria using naphthalene diimide (NDI) core structures. The approach involves a simple synthesis process with a cost of $ 5-10 per gram for the final products. This paper highlights our success in scaling up the production using affordable known reagents, creating ambient condition solution-processed OFET devices with impressive electron mobility, on-off current ratio (1 cm2 V-1 s-1 and I on/I off ∼ 109) and good ambient stability (more than 100 h). We conducted a comprehensive study on EHNDIBr2, a material that demonstrates superior performance due to its unique supramolecular arrangement in its brickwork stack. This was compared with two similar structures to validate our findings. The superior performance of EHNDIBr2 is attributed to the effective interlocking of charge-hopping units within the NDI core in its brickwork stack. Our findings include detailed electronic, spectroscopic, and microscopic analyses of these layers.
Collapse
Affiliation(s)
- Indrajit Giri
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur Kolkata 741246 India
| | - Shant Chhetri
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur Kolkata 741246 India
| | - Jesslyn John P
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur Kolkata 741246 India
| | - Madalasa Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur Kolkata 741246 India
| | - Arka Bikash Dey
- Deutsches Elektronen-Synchrotron DESY Notkestr. 85 22607 Hamburg Germany
| | - Ratheesh K Vijayaraghavan
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur Kolkata 741246 India
| |
Collapse
|
10
|
Du H, Chen B, Zhang F. Strong Acceptors Based on Derivatives of Benzothiadiazoloimidazole. Molecules 2024; 29:2262. [PMID: 38792123 PMCID: PMC11124087 DOI: 10.3390/molecules29102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Despite the rapid progression of organic semiconductors, developing high-air-stability n-type organic semiconductors are still challenging. Herein, novel strong acceptors based on benzothiadiazoloimidazole units are reported. The results reveal that the strong acceptor BTI-NDI-BTI-a has good solubility and high electron affinity (3.94 eV), accompanied by 1D slipped-stacking crystals. Notably, the material presents promising potential for developing into air-stable n-type organic semiconductor materials.
Collapse
Affiliation(s)
- Hanyun Du
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China;
| | - Bin Chen
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
| | - Fengyuan Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
| |
Collapse
|
11
|
Zhang D, Zhang F, Du H, Liu F, Yi X, Chen J, Hu BL. U-shaped stereoscopic design strategy toward N-doped nanographene segment. RSC Adv 2024; 14:11771-11774. [PMID: 38617572 PMCID: PMC11009840 DOI: 10.1039/d4ra00788c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024] Open
Abstract
There have been scarce reports about stereoscopic design of N-heteroacenes (NHAs), especially for the electron-deficient π-building blocks. Herein, we report the design and synthesis of a U-shaped bis(pyrene-quinoxaline) (BPQ). Single crystal X-ray diffraction reveals the herringbone stacking pattern and the presence of regular and incompletely closed pores.
Collapse
Affiliation(s)
- Dongyang Zhang
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology Ganzhou 341000 China
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| | - Fengyuan Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| | - Hanyun Du
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
- School of Materials Science and Chemical Engineering, Ningbo University Ningbo 315211 China
| | - Fei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| | - Xiaohui Yi
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| | - Jun Chen
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology Ganzhou 341000 China
| | - Ben-Lin Hu
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| |
Collapse
|
12
|
Takimiya K, Bulgarevich K, Kawabata K. Crystal-Structure Control of Molecular Semiconductors by Methylthiolation: Toward Ultrahigh Mobility. Acc Chem Res 2024; 57:884-894. [PMID: 38428923 PMCID: PMC10956433 DOI: 10.1021/acs.accounts.3c00756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 03/03/2024]
Abstract
ConspectusThe crystal structure of organic semiconductors has been regarded as one of the crucial factors for realizing high-performance electronic devices, such as organic field-effect transistors. However, although the control of crystal structures of organic semiconductors has been examined in the last two decades of intensive efforts of the development of organic semiconductors, active measures to control crystal structures enabling high carrier mobility are still limited. In 2016, our research group noticed that regioselective methylthiolation could provide a selective crystal structure change from an ordinary herringbone structure to a pitched π-stacking structure, similar to the crystal structure of rubrene, in the benzo[1,2-b:4,5-b']dithiophene (BDT) system. Following this serendipitous finding, our group systematically investigated the relationship between the molecular and crystal structures of a range of methylthiolated aromatic and heteroaromatic compounds.This Account provides a comprehensive overview of our research efforts and advancements in the development of methylthiolated small-molecule-based organic semiconductors (molecular semiconductors). We first describe the outline of the past development of molecular semiconductors, focusing on the types of crystal structures of high-performance molecular semiconductors. Then, we describe our findings on the drastic crystal structure change in the BDT system upon methylthiolation, detailing the causes of the change in terms of the intermolecular contacts and intermolecular interaction energies. This is followed by the confirmation of the generality of the crystal-structure change by methylthiolation of a series of acene and heteroacenes, where the herringbone structure in the parent system is unexceptionally transformed into the pitched π-stacking structure, a promising crystal structure for high-mobility molecular semiconductors well exemplified by the prototypical molecular semiconductor, rubrene. In fact, the methylthiolated anthradithiophene afforded comparable high mobility to rubrene in single-crystal field-effect transistors. Then, we demonstrate that the sandwich herringbone structures of peri-condensed polycyclic aromatic hydrocarbons, including pyrene, perylene, and peropyrene, change into brickwork crystal structures upon methylthiolation and that, among these compounds, very promising molecular semiconductors, methylthiolated pyrene and peropyrene, showing ultrahigh mobility of 30 cm2 V s-1, are realized.Through the studies, by gaining insights into the underlying mechanisms driving the crystal structure changes, we lay a strong foundation for tackling challenges related to controlling the crystal structures and developing high-performance molecular semiconductors. This will be a distinct approach from the past activities in the development of molecular semiconductors that mainly focused on molecules themselves, including their synthesis, properties, and characterization. We thus anticipate that our findings and the present Account will open the door to a new era of the development of molecular semiconductors.
Collapse
Affiliation(s)
- Kazuo Takimiya
- Department
of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 Japan
- RIKEN
Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Tohoku
University Advanced Institute for Materials Research (AIMR), 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 Japan
| | - Kirill Bulgarevich
- RIKEN
Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kohsuke Kawabata
- Department
of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 Japan
- RIKEN
Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
13
|
Chen C, Chang ZD, Guo YK, Huang YB, Wang XY. BN-Isosteres of Nonacene with Antiaromatic B 2 C 4 and N 2 C 4 Heterocycles: Synthesis and Strong Luminescence. Angew Chem Int Ed Engl 2024; 63:e202316596. [PMID: 38216533 DOI: 10.1002/anie.202316596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/14/2024]
Abstract
Embedding both boron and nitrogen into the backbone of acenes to generate their isoelectronic structures has significantly enriched the acene chemistry to offer appealing properties. However, only small BN-heteroacenes have been extensively investigated, with BN-heptacenes as the hitherto longest homologue. Herein, we report the synthesis of three new nonacene BN-isosteres via incorporating a pair of antiaromatic B2 C4 and N2 C4 heterocycles, representing a new length record for BN-heteroacenes. The distance between the B2 C4 and N2 C4 rings affects the contribution of the charge-separated resonance forms, leading to tunable antiaromaticity of the two heterocycles. The adjusted local antiaromaticity manifests substantial influence on the molecular orbital arrangement, and consequently, the radiative transition rate of BN-3 is greatly enhanced compared with BN-1 and BN-2, realizing a high fluorescence quantum yield of 92 %. This work provides a novel design concept of large acene BN-isosteres and reveals the importance of BN/CC isosterism on their luminescent properties.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Zhi-Dong Chang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Yong-Kang Guo
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Yan-Bo Huang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Xiao-Ye Wang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| |
Collapse
|
14
|
Padniuk I, Stoica O, Zuzak R, Blieck R, Krawiec M, Godlewski S, Echavarren AM. On surface synthesis of an eleven-ring sulfur-doped nonacene. Chem Commun (Camb) 2024; 60:858-861. [PMID: 38131529 DOI: 10.1039/d3cc05486a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Dithienoacenes with a heptacene core, heptaceno[2,3-b:11,12-b']bis[1]benzothiophene, have been synthesized through the combination of solution and surface assisted chemistry. The atomic composition, structural arrangement and electronic properties of the molecules on the Au(111) surface have been deeply explored by non-contact atomic force microscopy (nc-AFM), bond-resolved scanning tunnelling microscopy (BR-STM) and scanning tunneling spectroscopy (STS) corroborated by density functional theory (DFT) calculations. Our combined experiments reveal modifications induced by sulfur substitution.
Collapse
Affiliation(s)
- Irena Padniuk
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, Krakow PL 30-348, Poland.
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Prof. St. Łojasiewicza St 11, PL30348, Cracow, Poland
| | - Otilia Stoica
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Avenida Països Catalans 16, Tarragona 43007, Spain.
- Departament de Química Organica i Analítica, Universitat Rovira i Virgili, C/Marcell·lí Domingo s/n, Tarragona 43007, Spain
| | - Rafal Zuzak
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, Krakow PL 30-348, Poland.
| | - Remi Blieck
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Avenida Països Catalans 16, Tarragona 43007, Spain.
- Departament de Química Organica i Analítica, Universitat Rovira i Virgili, C/Marcell·lí Domingo s/n, Tarragona 43007, Spain
| | - Mariusz Krawiec
- Institute of Physics, Maria Curie-Sklodowska University, Pl. M. Curie-Skłodowskiej 1, Lublin 20-031, Poland.
| | - Szymon Godlewski
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, Krakow PL 30-348, Poland.
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Avenida Països Catalans 16, Tarragona 43007, Spain.
- Departament de Química Organica i Analítica, Universitat Rovira i Virgili, C/Marcell·lí Domingo s/n, Tarragona 43007, Spain
| |
Collapse
|
15
|
Zhao W, Fu GE, Yang H, Zhang T. Two-Dimensional Conjugated Polymers: a New Choice For Organic Thin-Film Transistors. Chem Asian J 2023:e202301076. [PMID: 38151907 DOI: 10.1002/asia.202301076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 12/29/2023]
Abstract
Organic thin-film transistors (OTFTs) as a vital component among transistors have shown great potential in smart sensing, flexible displays, and bionics due to their flexibility, biocompatibility and customizable chemical structures. Even though linear conjugated polymer semiconductors are common for constructing channel materials of OTFTs, advanced materials with high charge carrier mobility, tunable band structure, robust stability, and clear structure-property relationship are indispensable for propelling the evolution of OTFTs. Two-dimensional conjugated polymers (2DCPs), featured with conjugated lattice, tailorable skeletons, and functional porous structures, match aforementioned criteria closely. In this review, we firstly introduce the synthesis of 2DCP thin films, focusing on their characteristics compatible with the channels of OTFTs. Subsequently, the physics and operating mechanisms of OTFTs and the applications of 2DCPs in OTFTs are summarized in detail. Finally, the outlook and perspective in the field of OTFTs using 2DCPs are provided as well.
Collapse
Affiliation(s)
- Wenkai Zhao
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Key Laboratory of Marine Materials and Related Technologies, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Guang-En Fu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Key Laboratory of Marine Materials and Related Technologies, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Haoyong Yang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Key Laboratory of Marine Materials and Related Technologies, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Tao Zhang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Key Laboratory of Marine Materials and Related Technologies, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
16
|
Xiong Y, Gong Q, Miao Q. Synthesis, Molecular Packing and Semiconductor Properties of V-Shaped N-Heteroacene Dimers. Chem Asian J 2023; 18:e202300623. [PMID: 37584325 DOI: 10.1002/asia.202300623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/17/2023]
Abstract
This article presents two groups of V-shaped π-scaffolds that consist of two N-heteroacene units fused with either a rigid or flexible eight-membered ring. These rigid and flexible N-heteroacene dimers were synthesized through the condensation of tetraphenylenetetraone with the corresponding diamine and the Pd-catalyzed cross-coupling of tetrabromodibenzo[a,e]cyclooctatetraene with the corresponding diamine, respectively. A comparison of electronic structures and properties of the two groups of V-shaped N-heteroacene dimers shows subtle difference between the rigid and flexible eight-membered ring linkers in forming extended π-systems. X-ray crystallography of these V-shaped molecules has revealed interesting π-π interaction modes, which are dependent on the central connecting units and substituting groups. These π-π interactions between the V-shaped π-scaffolds have enabled the molecules to function as organic semiconductors in solution-processed field effect transistors.
Collapse
Affiliation(s)
- Yongming Xiong
- Department of Chemistry, The Chinese University of Hong Kong Shatin, New Territories, Hong Kong, China
| | - Qi Gong
- Department of Chemistry, The Chinese University of Hong Kong Shatin, New Territories, Hong Kong, China
| | - Qian Miao
- Department of Chemistry, The Chinese University of Hong Kong Shatin, New Territories, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, New Territories, Hong Kong, China
| |
Collapse
|
17
|
Wu Z, Liu W, Yang X, Li W, Zhao L, Chi K, Xiao X, Yan Y, Zeng W, Liu Y, Chen H, Zhao Y. An In-Situ Cyanidation Strategy To Access Tetracyanodiacenaphthoanthracene Diimides with High Electron Mobilities Exceeding 10 cm 2 V -1 s -1. Angew Chem Int Ed Engl 2023; 62:e202307695. [PMID: 37394618 DOI: 10.1002/anie.202307695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023]
Abstract
A family of novel highly π-extended tetracyano-substituted acene diimides, named as tetracyanodiacenaphthoanthracene diimides (TCDADIs), have been synthesized using a facile four-fold Knoevenagel condensation strategy. Unlike conventional cyano substitution reactions, our approach enables access to a large π-conjugated backbone with the in-situ formation of four cyano substitutents at room temperature while avoiding extra cyano-functionalization reactions. TCDADIs decorated with different N-alkyl substituents present good solubility, near-coplanar backbones, good crystallinity, and low-lying lowest unoccupied molecular orbital energies of -4.33 eV, all of which contribute to desirable electron-transport performance when applied in organic field-effect transistors (OFET). The highest electron mobility of an OFET based on a 2-hexyldecyl-substituted TCDADI single crystal reaches 12.6 cm2 V-1 s-1 , which is not only among the highest values for the reported n-type organic semiconductor materials (OSMs) but also exceeds that of most n-type OSMs decorated with imide units.
Collapse
Affiliation(s)
- Zeng Wu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Wentao Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Xin Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Wenhao Li
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Lingli Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Kai Chi
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xuetao Xiao
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yongkun Yan
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Weixuan Zeng
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Huajie Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yan Zhao
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
18
|
Wang H, Wu H, Bian G, Song L. An Anthracene-Based Bis-Stilbene Derivative as Luminescent Materials for Organic Light Emitting Diodes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103685. [PMID: 37241312 DOI: 10.3390/ma16103685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
In this work, a new luminescent material of a small-molecule stilbene derivative (BABCz) containing anthracene was designed and synthesized by three simple reactions. The material was characterized by 1H-NMR, FTMS, and X-ray and tested using TGA, DSC, UV/Vis, fluorescence spectroscopy, and atomic force microscopy. The results demonstrate that BABCz has luminescence properties with good thermal stability and can be doped with 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP) to prepare highly uniform films, which allows the fabrication of OLED devices with ITO/Cs2CO3:BABCz/CBP:BABCz/MoO3/Al configuration. This simplest device in the sandwich structure emits green light at 6.6-12 V and has a brightness of 2300 cd/m2, indicating the potential of this material in OLED manufacturing.
Collapse
Affiliation(s)
- Hui Wang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- The Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Houlin Wu
- The Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Guangling Bian
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- The Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Ling Song
- The Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
19
|
Zhang Y, Huang Z, Jiang J. Emerging photoelectric devices for neuromorphic vision applications: principles, developments, and outlooks. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2186689. [PMID: 37007672 PMCID: PMC10054230 DOI: 10.1080/14686996.2023.2186689] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
The traditional von Neumann architecture is gradually failing to meet the urgent need for highly parallel computing, high-efficiency, and ultra-low power consumption for the current explosion of data. Brain-inspired neuromorphic computing can break the inherent limitations of traditional computers. Neuromorphic devices are the key hardware units of neuromorphic chips to implement the intelligent computing. In recent years, the development of optogenetics and photosensitive materials has provided new avenues for the research of neuromorphic devices. The emerging optoelectronic neuromorphic devices have received a lot of attentions because they have shown great potential in the field of visual bionics. In this paper, we summarize the latest visual bionic applications of optoelectronic synaptic memristors and transistors based on different photosensitive materials. The basic principle of bio-vision formation is first introduced. Then the device structures and operating mechanisms of optoelectronic memristors and transistors are discussed. Most importantly, the recent progresses of optoelectronic synaptic devices based on various photosensitive materials in the fields of visual perception are described. Finally, the problems and challenges of optoelectronic neuromorphic devices are summarized, and the future development of visual bionics is also proposed.
Collapse
Affiliation(s)
- Yi Zhang
- Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan, China
| | - Zhuohui Huang
- Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan, China
| | - Jie Jiang
- Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan, China
| |
Collapse
|
20
|
Duan J, Zhu G, Chen J, Zhang C, Zhu X, Liao H, Li Z, Hu H, McCulloch I, Nielsen CB, Yue W. Highly Efficient Mixed Conduction in a Fused Oligomer n-Type Organic Semiconductor Enabled by 3D Transport Pathways. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300252. [PMID: 36918256 DOI: 10.1002/adma.202300252] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/23/2023] [Indexed: 05/17/2023]
Abstract
Tailoring organic semiconductors to facilitate mixed conduction of ionic and electronic charges when interfaced with an aqueous media has spurred many recent advances in organic bioelectronics. The field is still restricted, however, by very few n-type (electron-transporting) organic semiconductors with adequate performance metrics. Here, a new electron-deficient, fused polycyclic aromatic system, TNR, is reported with excellent n-type mixed conduction properties including a µC* figure-of-merit value exceeding 30 F cm-1 V-1 s-1 for the best performing derivative. Comprising three naphthalene bis-isatin moieties, this new molecular design builds on successful small-molecule mixed conductors; by extending the molecular scaffold into the oligomer domain, good film-forming properties, strong π-π interactions, and consequently excellent charge-transport properties are obtained. Through judicious optimization of the side chains, the linear oligoether and branched alkyl chain derivative bgTNR is obtained which shows superior mixed conduction in an organic electrochemical transistor configuration including an electron mobility around 0.3 cm2 V-1 s-1 . By optimizing the side chains, the dominant molecular packing can be changed from a preferential edge-on orientation (with high charge-transport anisotropy) to an oblique orientation that can support 3D transport pathways which in turn ensure highly efficient mixed conduction properties across the bulk semiconductor film.
Collapse
Affiliation(s)
- Jiayao Duan
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Genming Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Junxin Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Chenyang Zhang
- Hoffman Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, 518055, China
| | - Xiuyuan Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Hailiang Liao
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhengke Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Hanlin Hu
- Hoffman Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, 518055, China
| | - Iain McCulloch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Christian B Nielsen
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Wan Yue
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
21
|
Chen J, Zhang W, Wang L, Yu G. Recent Research Progress of Organic Small-Molecule Semiconductors with High Electron Mobilities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210772. [PMID: 36519670 DOI: 10.1002/adma.202210772] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Organic electronics has made great progress in the past decades, which is inseparable from the innovative development of organic electronic devices and the diversity of organic semiconductor materials. It is worth mentioning that both of these great advances are inextricably linked to the development of organic high-performance semiconductor materials, especially the representative n-type organic small-molecule semiconductor materials with high electron mobilities. The n-type organic small molecules have the advantages of simple synthesis process, strong intermolecular stacking, tunable molecular structure, and easy to functionalize structures. Furthermore, the n-type semiconductor is a remarkable and important component for constructing complementary logic circuits and p-n heterojunction structures. Therefore, n-type organic semiconductors play an extremely important role in the field of organic electronic materials and are the basis for the industrialization of organic electronic functional devices. This review focuses on the modification strategies of organic small molecules with high electron mobility at molecular level, and discusses in detail the applications of n-type small-molecule semiconductor materials with high mobility in organic field-effect transistors, organic light-emitting transistors, organic photodetectors, and gas sensors.
Collapse
Affiliation(s)
- Jiadi Chen
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
22
|
Zhang Y, Wang Y, Gao C, Ni Z, Zhang X, Hu W, Dong H. Recent advances in n-type and ambipolar organic semiconductors and their multi-functional applications. Chem Soc Rev 2023; 52:1331-1381. [PMID: 36723084 DOI: 10.1039/d2cs00720g] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Organic semiconductors have received broad attention and research interest due to their unique integration of semiconducting properties with structural tunability, intrinsic flexibiltiy and low cost. In order to meet the requirements of organic electronic devices and their integrated circuits, p-type, n-type and ambipolar organic semiconductors are all necessary. However, due to the limitation in both material synthesis and device fabrication, the development of n-type and ambipolar materials is quite behind that of p-type materials. Recent development in synthetic methods of organic semiconductors greatly enriches the range of n-type and ambipolar materials. Moreover, the newly developed materials with multiple functions also put forward multi-functional device applications, including some emerging research areas. In this review, we give a timely summary on these impressive advances in n-type and ambipolar organic semiconductors with a special focus on their synthesis methods and advanced materials with enhanced properties of charge carrier mobility, integration of high mobility and strong emission and thermoelectric properties. Finally, multi-functional device applications are further demonstrated as an example of these developed n-type and ambipolar materials.
Collapse
Affiliation(s)
- Yihan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongshuai Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhenjie Ni
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaotao Zhang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.,Department of Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.,Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Maier S, Hippchen N, Jester F, Dodds M, Weber M, Skarjan L, Rominger F, Freudenberg J, Bunz UHF. Azaarenes: 13 Rings in a Row by Cyclopentannulation. Angew Chem Int Ed Engl 2023; 62:e202214031. [PMID: 36383088 PMCID: PMC10107455 DOI: 10.1002/anie.202214031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
Cyclopentannulation was explored as a strategy to access large, stable azaarenes. Buchwald-Hartwig coupling of previously reported di- and tetrabrominated cyclopentannulated N,N'-dihydrotetraazapentacenes furnished stable azaarenes with up to 13 six-membered rings in a row and a length of 3.1 nm. Their optoelectronic and semi-conducting properties as well as their aromaticity were investigated.
Collapse
Affiliation(s)
- Steffen Maier
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Nikolai Hippchen
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Fabian Jester
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Marcus Dodds
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Michel Weber
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Leon Skarjan
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| |
Collapse
|
24
|
Duan J, Zhu G, Lan L, Chen J, Zhu X, Chen C, Yu Y, Liao H, Li Z, McCulloch I, Yue W. Electron-Deficient Polycyclic Molecules via Ring Fusion for n-Type Organic Electrochemical Transistors. Angew Chem Int Ed Engl 2023; 62:e202213737. [PMID: 36349830 DOI: 10.1002/anie.202213737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Indexed: 11/11/2022]
Abstract
The primary challenge for n-type small-molecule organic electrochemical transistors (OECTs) is to improve their electron mobilities and thus the key figure of merit μC*. Nevertheless, few reports in OECTs have specially proposed to address this issue. Herein, we report a 10-ring-fused polycyclic π-system consisting of the core of naphthalene bis-isatin dimer and the terminal moieties of rhodanine, which features intramolecular noncovalent interactions, high π-delocalization and strong electron-deficient characteristics. We find that this extended π-conjugated system using the ring fusion strategy displays improved electron mobilities up to 0.043 cm2 V-1 s-1 compared to our previously reported small molecule gNR, and thereby leads to a remarkable μC* of 10.3 F cm-1 V-1 s-1 in n-type OECTs, which is the highest value reported to date for small-molecule OECTs. This work highlights the importance of π-conjugation extension in polycyclic-fused molecules for enhancing the performance of n-type small-molecule OECTs.
Collapse
Affiliation(s)
- Jiayao Duan
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Genming Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Liuyuan Lan
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Junxin Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiuyuan Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Chaoyue Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yaping Yu
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hailiang Liao
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhengke Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Iain McCulloch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Wan Yue
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
25
|
Wiesner T, Pardon M, Maier S, Rominger F, Freudenberg J, Bunz UHF. N-Acenoacenes: Synthesis and Solid-State Properties. Chemistry 2022; 28:e202201916. [PMID: 35947374 PMCID: PMC10091707 DOI: 10.1002/chem.202201916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 12/14/2022]
Abstract
Four N-acenoacenes were synthesized and analyzed for their optoelectronic properties and solid-state packings. Two of the regioisomeric acridinoacridines are TIPS-ethynylated, whereas the other pair are Boc- and triflate substituted derivatives. The two TIPS-ethynyldiazaacenoacenes were processed into organic thin-film transistors with saturation hole mobilities reaching 2.9×10-2 cm2 (Vs)-1 .
Collapse
Affiliation(s)
- Thomas Wiesner
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Marcel Pardon
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Steffen Maier
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,Centre for Advanced Materials (CAM), Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| |
Collapse
|
26
|
Wiesner T, Wu Z, Han J, Ji L, Friedrich A, Krummenacher I, Moos M, Lambert C, Braunschweig H, Rudin B, Reiss H, Tverskoy O, Rominger F, Dreuw A, Marder TB, Freudenberg J, Bunz UHF. The Radical Anion, Dianion and Electron Transport Properties of Tetraiodotetraazapentacene. Chemistry 2022; 28:e202201919. [PMID: 35916326 PMCID: PMC10092590 DOI: 10.1002/chem.202201919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 12/14/2022]
Abstract
Tetraiodotetraazapentacene I4 TAP, the last missing derivative in the series of halogenated silylated tetraazapentacenes, was synthesized via condensation chemistry from a TIPS-ethynylated diaminobenzothiadiazol in three steps. Single and double reduction furnished its air-stable monoanion and relatively air-stable dianion, both of which were characterized by crystallography. All three species are structurally and spectroscopically compared to non-halogenated TAP and Br4 TAP. I4 TAP is an n-channel material in thin-film transistors with average electron mobilities exceeding 1 cm2 (Vs)-1 .
Collapse
Affiliation(s)
- Thomas Wiesner
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Zhu Wu
- Institut für Anorganische Chemie and, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Jie Han
- Interdisziplinares Zentrum für Wissenschaftliches Rechnen, Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany.,Present Adress: State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Lei Ji
- Institut für Anorganische Chemie and, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Ivo Krummenacher
- Institut für Anorganische Chemie and, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Michael Moos
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Christoph Lambert
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Holger Braunschweig
- Institut für Anorganische Chemie and, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Benjamin Rudin
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Hilmar Reiss
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Olena Tverskoy
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Andreas Dreuw
- Interdisziplinares Zentrum für Wissenschaftliches Rechnen, Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
| | - Todd B Marder
- Institut für Anorganische Chemie and, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
27
|
Chen J, Yang J, Guo Y, Liu Y. Acceptor Modulation Strategies for Improving the Electron Transport in High-Performance Organic Field-Effect Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104325. [PMID: 34605074 DOI: 10.1002/adma.202104325] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/04/2021] [Indexed: 06/13/2023]
Abstract
High-performance ambipolar and electronic type semiconducting polymers are essential for fabricating various organic optoelectronic devices and complementary circuits. This review summarizes the strategies of improving the electron transport of semiconducting polymers via acceptor modulation strategies, which include the use of single, dual, triple, multiple, and all acceptors as well as the fusion of multiple identical acceptors to obtain new heterocyclic acceptors. To further improve the electron transport of semiconducting polymers, the introduction of strong electron-withdrawing groups can enhance the electron-withdrawing ability of donors and acceptors, thereby facilitating electron injection and suppressing hole accumulation. In addition, the relationships between the molecular structure, frontier molecular orbital energy levels, thin film morphology, microstructure, processing conditions, and device performances are also comprehensively discussed. Finally, the challenges encountered in this research area are proposed and the future outlook is presented.
Collapse
Affiliation(s)
- Jinyang Chen
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jie Yang
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
28
|
Wei Y, Geng Y, Wang K, Gao H, Wu Y, Jiang L. Organic ultrathin nanostructure arrays: materials, methods and applications. NANOSCALE ADVANCES 2022; 4:2399-2411. [PMID: 36134127 PMCID: PMC9417106 DOI: 10.1039/d1na00863c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/20/2022] [Indexed: 06/16/2023]
Abstract
Organic ultrathin semiconductor nanostructures have attracted continuous attention in recent years owing to their excellent charge transport capability, favorable flexibility, solution-processability and adjustable photoelectric properties, providing opportunities for next-generation optoelectronic applications. For integrated electronics, organic ultrathin nanostructures need to be prepared as large-area patterns with precise alignment and high crystallinity to achieve organic electronic devices with high performance and high throughput. However, the fabrication of organic ultrathin nanostructure arrays still remains challenging due to uncontrollable growth along the height direction in solution processes. In this review, we first introduce the properties, assembly methods and applications of four typical organic ultrathin nanostructures, including small molecules, polymers, and other organic-inorganic hybrid materials. Five categories of representative solution-processing techniques for patterning organic micro- and nanostructures are summarized and discussed. Finally, challenges and perspectives in the controllable preparation of organic ultrathin arrays and potential applications are featured on the basis of their current development.
Collapse
Affiliation(s)
- Yanjie Wei
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
| | - Yue Geng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P.R. China
- University of Chinese Academy of Sciences (UCAS) Beijing 100049 P. R. China
| | - Kui Wang
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
| | - Hanfei Gao
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P.R. China
| | - Yuchen Wu
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P.R. China
| | - Lei Jiang
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P.R. China
| |
Collapse
|
29
|
A thriving decade: rational design, green synthesis, and cutting-edge applications of isoindigo-based conjugated polymers in organic field-effect transistors. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1239-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Chen C, Wang MW, Zhao XY, Yang S, Chen XY, Wang XY. Pushing the Length Limit of Dihydrodiboraacenes: Synthesis and Characterizations of Boron-Embedded Heptacene and Nonacene. Angew Chem Int Ed Engl 2022; 61:e202200779. [PMID: 35253330 DOI: 10.1002/anie.202200779] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 12/24/2022]
Abstract
Boron-embedded heteroacenes (boraacenes) have attracted enormous interest in organic chemistry and materials science. However, extending the skeleton of boraacenes to higher acenes (N≥6) is synthetically challenging because of their limited stability under ambient conditions. Herein, we report the synthesis of boron-embedded heptacene (DBH) and nonacene (DBN) as the hitherto longest boraacenes. The former is highly stable (even after 240 h in tetrahydrofuran), while the latter is air-sensitive with the half-life (t1/2 ) of 11.8 min. The structures of both compounds are verified by single-crystal X-ray diffraction, revealing a linear backbone with an antiaromatic C4 B2 core. Photophysical characterizations associated with theoretical calculations indicate that both compounds exhibit highly efficient anti-Kasha emissions. Remarkably, the air-stable DBH manifests an ultrahigh photoluminescence quantum yield (PLQY) of 98±2 % and can be chemically reduced to its radical anion and dianion states, implying the value of boron-doped higher acenes as novel functional materials.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ming-Wei Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xing-Yu Zhao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shuang Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xing-Yu Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiao-Ye Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
31
|
Naphthalene-Diimide-Based Small Molecule Containing a Thienothiophene Linker for n-Type Organic Field-Effect Transistors. Macromol Res 2022. [DOI: 10.1007/s13233-022-0054-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Jiang H, Zhu S, Cui Z, Li Z, Liang Y, Zhu J, Hu P, Zhang HL, Hu W. High-performance five-ring-fused organic semiconductors for field-effect transistors. Chem Soc Rev 2022; 51:3071-3122. [PMID: 35319036 DOI: 10.1039/d1cs01136g] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Organic molecular semiconductors have been paid great attention due to their advantages of low-temperature processability, low fabrication cost, good flexibility, and excellent electronic properties. As a typical example of five-ring-fused organic semiconductors, a single crystal of pentacene shows a high mobility of up to 40 cm2 V-1 s-1, indicating its potential application in organic electronics. However, the photo- and optical instabilities of pentacene make it unsuitable for commercial applications. But, molecular engineering, for both the five-ring-fused building block and side chains, has been performed to improve the stability of materials as well as maintain high mobility. Here, several groups (thiophenes, pyrroles, furans, etc.) are introduced to design and replace one or more benzene rings of pentacene and construct novel five-ring-fused organic semiconductors. In this review article, ∼500 five-ring-fused organic prototype molecules and their derivatives are summarized to provide a general understanding of this catalogue material for application in organic field-effect transistors. The results indicate that many five-ring-fused organic semiconductors can achieve high mobilities of more than 1 cm2 V-1 s-1, and a hole mobility of up to 18.9 cm2 V-1 s-1 can be obtained, while an electron mobility of 27.8 cm2 V-1 s-1 can be achieved in five-ring-fused organic semiconductors. The HOMO-LUMO levels, the synthesis process, the molecular packing, and the side-chain engineering of five-ring-fused organic semiconductors are analyzed. The current problems, conclusions, and perspectives are also provided.
Collapse
Affiliation(s)
- Hui Jiang
- School of Materials Science and Engineering, Tianjin University, 300072, China. .,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Shengli Zhu
- School of Materials Science and Engineering, Tianjin University, 300072, China.
| | - Zhenduo Cui
- School of Materials Science and Engineering, Tianjin University, 300072, China.
| | - Zhaoyang Li
- School of Materials Science and Engineering, Tianjin University, 300072, China.
| | - Yanqin Liang
- School of Materials Science and Engineering, Tianjin University, 300072, China.
| | - Jiamin Zhu
- School of Materials Science and Engineering, Tianjin University, 300072, China.
| | - Peng Hu
- School of Physics, Northwest University, Xi'an 710069, China
| | - Hao-Li Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China. .,State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| |
Collapse
|
33
|
Zeng C, Zheng W, Xu H, Osella S, Ma W, Wang HI, Qiu Z, Otake K, Ren W, Cheng H, Müllen K, Bonn M, Gu C, Ma Y. Electrochemical Deposition of a Single-Crystalline Nanorod Polycyclic Aromatic Hydrocarbon Film with Efficient Charge and Exciton Transport. Angew Chem Int Ed Engl 2022; 61:e202115389. [PMID: 34931418 PMCID: PMC9306484 DOI: 10.1002/anie.202115389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Indexed: 11/22/2022]
Abstract
Electrochemical deposition has emerged as an efficient technique for preparing conjugated polymer films on electrodes. However, this method encounters difficulties in synthesizing crystalline products and controlling their orientation on electrodes. Here we report electrochemical film deposition of a large polycyclic aromatic hydrocarbon. The film is composed of single-crystalline nanorods, in which the molecules adopt a cofacial stacking arrangement along the π-π direction. Film thickness and crystal size can be controlled by electrochemical conditions such as scan rate and electrolyte species, while the choice of anode material determines crystal orientation. The film supports exceptionally efficient migration of both free carriers and excitons: the free carrier mobility reaches over 30 cm2 V-1 s-1 , whereas the excitons are delocalized with a low binding energy of 118.5 meV and a remarkable exciton diffusion length of 45 nm.
Collapse
Affiliation(s)
- Cheng Zeng
- State Key Laboratory of Luminescent Materials and DevicesInstitute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyGuangzhou510640P. R. China
| | - Wenhao Zheng
- Max Planck Institute for Polymer ResearchAckermannweg 1055122MainzGermany
| | - Hong Xu
- Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijing100084P. R. China
| | - Silvio Osella
- Chemical and Biological Systems Simulation LabCenter of New TechnologiesUniversity of WarsawBanacha 2C02-097WarsawPoland
| | - Wei Ma
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of SciencesShenyang110016P. R. China
| | - Hai I. Wang
- Max Planck Institute for Polymer ResearchAckermannweg 1055122MainzGermany
| | - Zijie Qiu
- Max Planck Institute for Polymer ResearchAckermannweg 1055122MainzGermany
| | - Ken‐ichi Otake
- Institute for Integrated Cell-Material SciencesInstitute for Advanced StudyKyoto UniversityKyoto606-8501Japan
| | - Wencai Ren
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of SciencesShenyang110016P. R. China
| | - Huiming Cheng
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of SciencesShenyang110016P. R. China
| | - Klaus Müllen
- Max Planck Institute for Polymer ResearchAckermannweg 1055122MainzGermany
| | - Mischa Bonn
- Max Planck Institute for Polymer ResearchAckermannweg 1055122MainzGermany
| | - Cheng Gu
- State Key Laboratory of Luminescent Materials and DevicesInstitute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyGuangzhou510640P. R. China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of TechnologyGuangzhou510640P. R. China
| | - Yuguang Ma
- State Key Laboratory of Luminescent Materials and DevicesInstitute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyGuangzhou510640P. R. China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of TechnologyGuangzhou510640P. R. China
| |
Collapse
|
34
|
Chen C, Wang M, Zhao X, Yang S, Chen X, Wang X. Pushing the Length Limit of Dihydrodiboraacenes: Synthesis and Characterizations of Boron‐Embedded Heptacene and Nonacene. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Ming‐Wei Wang
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Xing‐Yu Zhao
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Shuang Yang
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Xing‐Yu Chen
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Xiao‐Ye Wang
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
35
|
Huang H, Liu L, Wang J, Zhou Y, Hu H, Ye X, Liu G, Xu Z, Xu H, Yang W, Wang Y, Peng Y, Yang P, Sun J, Yan P, Cao X, Tang BZ. Aggregation caused quenching to aggregation induced emission transformation: a precise tuning based on BN-doped polycyclic aromatic hydrocarbons toward subcellular organelle specific imaging. Chem Sci 2022; 13:3129-3139. [PMID: 35414886 PMCID: PMC8926285 DOI: 10.1039/d2sc00380e] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/05/2022] [Indexed: 11/21/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) with boron–nitrogen (BN) moieties have attracted tremendous interest due to their intriguing electronic and optoelectronic properties. However, most of the BN-fused π-systems reported to date are difficult to modify and exhibit traditional aggregation-caused quenching (ACQ) characteristics. This phenomenon greatly limits their scope of application. Thus, continuing efforts to seek novel, structurally distinct and functionally diverse structures are highly desirable. Herein, we proposed a one-stone-two-birds strategy including simultaneous exploration of reactivity and tuning of the optical and electronic properties for BN-containing π-skeletons through flexible regioselective functionalization engineering. In this way, three novel functionalized BN luminogens (DPA-BN-BFT, MeO-DPA-BN-BFT and DMA-DPA-BN-BFT) with similar structures were obtained. Intriguingly, DPA-BN-BFT, MeO-DPA-BN-BFT and DMA-DPA-BN-BFT exhibit completely different emission behaviors. Fluorogens DPA-BN-BFT and MeO-DPA-BN-BFT exhibit a typical ACQ effect; in sharp contrast, DMA-DPA-BN-BFT possesses a prominent aggregation induced emission (AIE) effect. To the best of our knowledge, this is the first report to integrate ACQ and AIE properties into one BN aromatic backbone with subtle modified structures. Comprehensive analysis of the crystal structure and theoretical calculations reveal that relatively large twisting angles, multiple intermolecular interactions and tight crystal packing modes endow DMA-DPA-BN-BFT with strong AIE behavior. More importantly, cell imaging demonstrated that luminescent materials DPA-BN-BFT and DMA-DPA-BN-BFT can highly selectively and sensitively detect lipid droplets (LDs) in living MCF-7 cells. Overall, this work provides a new viewpoint of the rational design and synthesis of advanced BN–polycyclic aromatics with AIE features and triggers the discovery of new functions and properties of azaborine chemistry. A one-stone-two-birds strategy including simultaneous exploration of reactivity and tuning of the optical and electronic properties for BN-fused polycyclic aromatics through flexible regioselective functionalization engineering is presented.![]()
Collapse
Affiliation(s)
- Huanan Huang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Lingxiu Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University Hohhot 010021 China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University Hohhot 010021 China
| | - Ying Zhou
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Huanan Hu
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Xinglin Ye
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Guochang Liu
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Zhixiong Xu
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Han Xu
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Wen Yang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Yawei Wang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - You Peng
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Pinghua Yang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Jianqi Sun
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Ping Yan
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Xiaohua Cao
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong Shenzhen 518172 China
| |
Collapse
|
36
|
Roosta S, Galami F, Elstner M, Xie W. Efficient Surface Hopping Approach for Modeling Charge Transport in Organic Semiconductors. J Chem Theory Comput 2022; 18:1264-1274. [PMID: 35179894 DOI: 10.1021/acs.jctc.1c00944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The trajectory surface hopping (TSH) method is nowadays widely applied to study the charge/exciton transport process in organic semiconductors (OSCs). In the present study, we systematically examine the performance of two approximations in the fewest switched surface hopping (FSSH) simulations for charge transport (CT) in several representative OSCs. These approximations include (i) the substitution of the nuclear velocity scaling along the nonadiabatic coupling vector (NCV) by rescaling the hopping probability with the Boltzmann factor (Boltzmann correction (BC)) and (ii) a phenomenological approach to treat the quantum feedback from the electronic system to the nuclear system (implicit charge relaxation (IR)) in the OSCs. We find that charge mobilities computed by FSSH-BC-IR are in very good agreement with the mobilities obtained by standard FSSH simulations with explicit charge relaxation (FSSH-ER), however, at reduced computational cost. A key parameter determining the charge carrier mobility is the reorganization energy, which is sensitively dependent on DFT functionals applied. By employing the IR approximation, the FSSH method allows systematic investigation of the effect of the reorganization energies obtained by different DFT functionals like B3LYP or ωB97XD on CT in OSCs. In comparison to the experiments, FSSH-BC-IR using ωB97XD reorganization energy underestimates mobilities in the low-coupling regime, which may indicate the lack of nuclear quantum effects (e.g., zero point energy (ZPE)) in the simulations. The mobilities obtained by FSSH-BC-IR using the B3LYP reorganization energy agree well with experimental values in 3 orders of magnitude. The accidental agreement may be the consequence of the underestimation of the reorganization energy by the B3LYP functional, which compensates for the neglect of nuclear ZPE in the simulations.
Collapse
Affiliation(s)
- Sara Roosta
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Farhad Galami
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Marcus Elstner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany.,Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Weiwei Xie
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
37
|
Zeng C, Zheng W, Xu H, Osella S, Ma W, Wang HI, Qiu Z, Otake K, Ren W, Cheng H, Müllen K, Bonn M, Gu C, Ma Y. Electrochemical Deposition of a Single‐Crystalline Nanorod Polycyclic Aromatic Hydrocarbon Film with Efficient Charge and Exciton Transport. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Cheng Zeng
- State Key Laboratory of Luminescent Materials and Devices Institute of Polymer Optoelectronic Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Wenhao Zheng
- Max Planck Institute for Polymer Research Ackermannweg 10 55122 Mainz Germany
| | - Hong Xu
- Institute of Nuclear and New Energy Technology Tsinghua University Beijing 100084 P. R. China
| | - Silvio Osella
- Chemical and Biological Systems Simulation Lab Center of New Technologies University of Warsaw Banacha 2C 02-097 Warsaw Poland
| | - Wei Ma
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang 110016 P. R. China
| | - Hai I. Wang
- Max Planck Institute for Polymer Research Ackermannweg 10 55122 Mainz Germany
| | - Zijie Qiu
- Max Planck Institute for Polymer Research Ackermannweg 10 55122 Mainz Germany
| | - Ken‐ichi Otake
- Institute for Integrated Cell-Material Sciences Institute for Advanced Study Kyoto University Kyoto 606-8501 Japan
| | - Wencai Ren
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang 110016 P. R. China
| | - Huiming Cheng
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang 110016 P. R. China
| | - Klaus Müllen
- Max Planck Institute for Polymer Research Ackermannweg 10 55122 Mainz Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research Ackermannweg 10 55122 Mainz Germany
| | - Cheng Gu
- State Key Laboratory of Luminescent Materials and Devices Institute of Polymer Optoelectronic Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 P. R. China
| | - Yuguang Ma
- State Key Laboratory of Luminescent Materials and Devices Institute of Polymer Optoelectronic Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
38
|
Metrangolo P, Canil L, Abate A, Terraneo G, Cavallo G. Halogen Bonding in Perovskite Solar Cells: A New Tool for Improving Solar Energy Conversion. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Pierangelo Metrangolo
- Laboratory of Supramolecular and Bio-Nanomaterials (SBNLab) Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta” Politecnico di Milano Via L. Mancinelli 7 20131 Milano Italy
| | - Laura Canil
- Department Novel Materials and Interfaces for Photovoltaic Solar Cells Helmholtz-Zentrum Berlin für Materialen und Energie Hahn-Meitner-Platz 1 14109 Berlin Germany
| | - Antonio Abate
- Department Novel Materials and Interfaces for Photovoltaic Solar Cells Helmholtz-Zentrum Berlin für Materialen und Energie Hahn-Meitner-Platz 1 14109 Berlin Germany
| | - Giancarlo Terraneo
- Laboratory of Supramolecular and Bio-Nanomaterials (SBNLab) Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta” Politecnico di Milano Via L. Mancinelli 7 20131 Milano Italy
| | - Gabriella Cavallo
- Laboratory of Supramolecular and Bio-Nanomaterials (SBNLab) Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta” Politecnico di Milano Via L. Mancinelli 7 20131 Milano Italy
| |
Collapse
|
39
|
Metrangolo P, Canil L, Abate A, Terraneo G, Cavallo G. Halogen Bonding in Perovskite Solar Cells: A New Tool for Improving Solar Energy Conversion. Angew Chem Int Ed Engl 2021; 61:e202114793. [PMID: 34962355 PMCID: PMC9306797 DOI: 10.1002/anie.202114793] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 11/10/2022]
Abstract
Hybrid organic–inorganic halide perovskites (HOIHPs) have recently emerged as a flourishing area of research. Their easy and low‐cost production and their unique optoelectronic properties make them promising materials for many applications. In particular, HOIHPs hold great potential for next‐generation solar cells. However, their practical implementation is still hindered by their poor stability in air and moisture, which is responsible for their short lifetime. Optimizing the chemical composition of materials and exploiting non‐covalent interactions for interfacial and defects engineering, as well as defect passivation, are efficient routes towards enhancing the overall efficiency and stability of perovskite solar cells (PSCs). Due to the rich halogen chemistry of HOIHPs, exploiting halogen bonding, in particular, may pave the way towards the development of highly stable PSCs. Improved crystallization and stability, reduction of the surface trap states, and the possibility of forming ordered structures have already been preliminarily demonstrated.
Collapse
Affiliation(s)
- Pierangelo Metrangolo
- Politecnico di Milano, chem., mat., and chem. eng., Via Mancinelli 7, 20131, Milano, ITALY
| | - Laura Canil
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH: Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH, Department of novel materials and interfaces for photovoltaic solar cells, GERMANY
| | - Antonio Abate
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH: Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH, Department of novel materials and interfaces for photovoltaic solar cells, GERMANY
| | - Giancarlo Terraneo
- Politecnico di Milano, Chemistry, Materials and Chemical Engineering "Giulio Natta", ITALY
| | - Gabriella Cavallo
- Politecnico di Milano, Chemistry, Materials and Chemical Engineering "Giulio Natta", ITALY
| |
Collapse
|
40
|
Usuba J, Fukazawa A. Thiophene-Fused 1,4-Diazapentalene: A Stable C=N-Containing π-Conjugated System with Restored Antiaromaticity. Chemistry 2021; 27:16127-16134. [PMID: 34605567 DOI: 10.1002/chem.202103122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Indexed: 11/07/2022]
Abstract
A thiophene-fused 1,4-diazapentalene (TAP) was rationally designed and synthesized as a C=N-containing 4n π-electron system that exhibits restored antiaromaticity impaired by the doping with C=N bonds. X-ray crystallographic analysis and quantum chemical calculations revealed that the annulation of thiophene rings with the 1,4-diazapentalene moiety resulted in a much higher antiaromaticity than the pristine 1,4-diazapentalene. These effects can be ascribed to the reduced bond alternation of the eight-membered-ring periphery caused by stabilization of the less-stable bond-shifted resonance structure upon increasing the degree of substitution of imine moieties. Consequently, TAP underwent facile hydrogenation even under mild conditions because of its pronounced antiaromaticity and the high aromaticity of the corresponding hydrogenated product H2 -TAP. In addition, the electrophilic C=N moieties in TAP led to the formation of a dense π-stacked structure. These results highlight the effect of partial replacement of C=C bonds with C=N bonds in antiaromatic π-electron systems.
Collapse
Affiliation(s)
- Junichi Usuba
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Institute for Advanced Study, Kyoto University Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan.,Department of Chemistry Graduate School of Science, Nagoya University Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Aiko Fukazawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Institute for Advanced Study, Kyoto University Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
41
|
Kotwica K, Wielgus I, Proń A. Azaacenes Based Electroactive Materials: Preparation, Structure, Electrochemistry, Spectroscopy and Applications-A Critical Review. MATERIALS 2021; 14:ma14185155. [PMID: 34576378 PMCID: PMC8472324 DOI: 10.3390/ma14185155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/23/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022]
Abstract
This short critical review is devoted to the synthesis and functionalization of various types of azaacenes, organic semiconducting compounds which can be considered as promising materials for the fabrication of n-channel or ambipolar field effect transistors (FETs), components of active layers in light emitting diodes (LEDs), components of organic memory devices and others. Emphasis is put on the diversity of azaacenes preparation methods and the possibility of tuning their redox and spectroscopic properties by changing the C/N ratio, modifying the nitrogen atoms distribution mode, functionalization with electroaccepting or electrodonating groups and changing their molecular shape. Processability, structural features and degradation pathways of these compounds are also discussed. A unique feature of this review concerns the listed redox potentials of all discussed compounds which were normalized vs. Fc/Fc+. This required, in frequent cases, recalculation of the originally reported data in which these potentials were determined against different types of reference electrodes. The same applied to all reported electron affinities (EAs). EA values calculated using different methods were recalculated by applying the method of Sworakowski and co-workers (Org. Electron. 2016, 33, 300-310) to yield, for the first time, a set of normalized data, which could be directly compared.
Collapse
Affiliation(s)
- Kamil Kotwica
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
- Correspondence:
| | - Ireneusz Wielgus
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warszawa, Poland; (I.W.); (A.P.)
| | - Adam Proń
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warszawa, Poland; (I.W.); (A.P.)
| |
Collapse
|
42
|
Chen WC, Chang YC. Rational design of organic semiconductors with low internal reorganization energies for hole and electron transport: position effect of aza-substitution in phenalenyl derivatives. Phys Chem Chem Phys 2021; 23:18163-18172. [PMID: 34612279 DOI: 10.1039/d1cp02902a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Amphoteric-redox phenalenyl radical (PLY) is a suitable candidate used to design ambipolar organic materials. Because the singly occupied nonbonding molecular orbital (NBMO) of PLY has a perfect local nonbonding character, its internal reorganization energy (λ) for transporting holes (λ+) or electrons (λ-) is known to be small. Herein, PLY is employed to study the position effect of the aza group on the λ. By adding or extracting an electron from the NBMO, the bond length alterations can be minute. Therefore, the PLY derivatives are also an excellent candidate to study the contributions from the bond angle alterations to the λ. Substituting the aza groups at the β- or α-positions of PLY shows two different trends. When consecutively substituting the aza group at the three β-positions of PLY, the λs are consistently decreased. Contrarily, a series of double functionalization of aza groups at the four α-positions of PLY, the λs are increased. It is because the local bonding or antibonding character in frontier orbitals (FMO) is observed in α2N-PLY and α4N-PLY. As the FMOs of the three β-substituted PLYs and α6N-PLY have perfect local nonbonding character, we found the bond angle alterations are the main contributors of λ. The λs for most aza-PLYs were smaller than 100 meV. Thus, we propose a design rule for substituting aza groups on the parent molecules with strong local nonbonding character in their FMOs. Based on the adiabatic ionization potential and electron affinity, two π-extended PLY derivatives with small λ were recommended for fabricating air-stable ambipolar OFET.
Collapse
Affiliation(s)
- Wei-Chih Chen
- Department of Chemistry, National Taiwan University, Taipei City 10617, Taiwan
| | | |
Collapse
|
43
|
Yan Y, Zhao Y, Liu Y. Recent progress in organic field‐effect transistor‐based integrated circuits. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yongkun Yan
- Department of Materials Science Fudan University Shanghai China
| | - Yan Zhao
- Department of Materials Science Fudan University Shanghai China
| | - Yunqi Liu
- Department of Materials Science Fudan University Shanghai China
| |
Collapse
|
44
|
Takimiya K, Bulgarevich K, Abbas M, Horiuchi S, Ogaki T, Kawabata K, Ablat A. "Manipulation" of Crystal Structure by Methylthiolation Enabling Ultrahigh Mobility in a Pyrene-Based Molecular Semiconductor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102914. [PMID: 34219291 PMCID: PMC11468581 DOI: 10.1002/adma.202102914] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Control and prediction of crystal structures of molecular semiconductors are considered challenging, yet they are crucial for rational design of superior molecular semiconductors. It is here reported that through methylthiolation, one can rationally control the crystal structure of pyrene derivatives as molecular semiconductors; 1,6-bis(methylthio)pyrene keeps a similar sandwich herringbone structure to that of parent pyrene, whereas 1,3,6,8-tetrakis(methylthio)pyrene (MT-pyrene) takes a new type of brickwork structure. Such changes in these crystal structures are explained by the alteration of intermolecular interactions that are efficiently controlled by methylthiolation. Single crystals of MT-pyrene are evaluated as the active semiconducting material in single-crystal field-effect transistors (SC-FETs), which show extremely high mobility (32 cm2 V-1 s-1 on average) operating at the drain and gate voltages of -5 V. Moreover, the band-like transport and very low trap density are experimentally confirmed for the MT-pyrene SC-FETs, testifying that the MT-pyrene is among the best molecular semiconductors for the SC-FET devices.
Collapse
Affiliation(s)
- Kazuo Takimiya
- RIKEN Center for Emergent Matter Science (CEMS)2‐1 HirosawaWakoSaitama351‐0198Japan
- Department of ChemistryGraduate School of ScienceTohoku University6‐3 Aoba, Aramaki, Aoba‐kuSendaiMiyagi980‐8578Japan
- Advanced Institute for Materials Research (WPI‐AIMR)Tohoku University2‐1‐1 Katahira, Aoba‐kuSendaiMiyagi980‐8577Japan
| | - Kirill Bulgarevich
- RIKEN Center for Emergent Matter Science (CEMS)2‐1 HirosawaWakoSaitama351‐0198Japan
| | - Mamatimin Abbas
- IMSUniversity of BordeauxCNRSUMR‐5218Bordeaux INPENSCBPTalence33405France
| | - Shingo Horiuchi
- RIKEN Center for Emergent Matter Science (CEMS)2‐1 HirosawaWakoSaitama351‐0198Japan
- Department of ChemistryGraduate School of ScienceTohoku University6‐3 Aoba, Aramaki, Aoba‐kuSendaiMiyagi980‐8578Japan
| | - Takuya Ogaki
- RIKEN Center for Emergent Matter Science (CEMS)2‐1 HirosawaWakoSaitama351‐0198Japan
| | - Kohsuke Kawabata
- RIKEN Center for Emergent Matter Science (CEMS)2‐1 HirosawaWakoSaitama351‐0198Japan
- Department of ChemistryGraduate School of ScienceTohoku University6‐3 Aoba, Aramaki, Aoba‐kuSendaiMiyagi980‐8578Japan
| | - Abduleziz Ablat
- IMSUniversity of BordeauxCNRSUMR‐5218Bordeaux INPENSCBPTalence33405France
| |
Collapse
|
45
|
Reiser P, Konrad M, Fediai A, Léon S, Wenzel W, Friederich P. Analyzing Dynamical Disorder for Charge Transport in Organic Semiconductors via Machine Learning. J Chem Theory Comput 2021; 17:3750-3759. [PMID: 33944566 DOI: 10.1021/acs.jctc.1c00191] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Organic semiconductors are indispensable for today's display technologies in the form of organic light-emitting diodes (OLEDs) and further optoelectronic applications. However, organic materials do not reach the same charge carrier mobility as inorganic semiconductors, limiting the efficiency of devices. To find or even design new organic semiconductors with higher charge carrier mobility, computational approaches, in particular multiscale models, are becoming increasingly important. However, such models are computationally very costly, especially when large systems and long timescales are required, which is the case to compute static and dynamic energy disorder, i.e., the dominant factor to determine charge transport. Here, we overcome this drawback by integrating machine learning models into multiscale simulations. This allows us to obtain unprecedented insight into relevant microscopic materials properties, in particular static and dynamic disorder contributions for a series of application-relevant molecules. We find that static disorder and thus the distribution of shallow traps are highly asymmetrical for many materials, impacting widely considered Gaussian disorder models. We furthermore analyze characteristic energy level fluctuation times and compare them to typical hopping rates to evaluate the importance of dynamic disorder for charge transport. We hope that our findings will significantly improve the accuracy of computational methods used to predict application-relevant materials properties of organic semiconductors and thus make these methods applicable for virtual materials design.
Collapse
Affiliation(s)
- Patrick Reiser
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany.,Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), Am Fasanengarten 5, Karlsruhe 76131, Germany
| | - Manuel Konrad
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Artem Fediai
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Salvador Léon
- Department of Industrial Chemical Engineering and Environment, Universidad Politécnica de Madrid, C/ José Gutierrez Abascal, 2, Madrid 28006, Spain
| | - Wolfgang Wenzel
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Pascal Friederich
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany.,Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), Am Fasanengarten 5, Karlsruhe 76131, Germany
| |
Collapse
|
46
|
Li QY, Yao ZF, Wang JY, Pei J. Multi-level aggregation of conjugated small molecules and polymers: from morphology control to physical insights. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:076601. [PMID: 33887704 DOI: 10.1088/1361-6633/abfaad] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Aggregation of molecules is a multi-molecular phenomenon occurring when two or more molecules behave differently from discrete molecules due to their intermolecular interactions. Moving beyond single molecules, aggregation usually demonstrates evolutive or wholly emerging new functionalities relative to the molecular components. Conjugated small molecules and polymers interact with each other, resulting in complex solution-state aggregates and solid-state microstructures. Optoelectronic properties of conjugated small molecules and polymers are sensitively determined by their aggregation states across a broad range of spatial scales. This review focused on the aggregation ranging from molecular structure, intermolecular interactions, solution-state assemblies, and solid-state microstructures of conjugated small molecules and polymers. We addressed the importance of such aggregation in filling the gaps from the molecular level to device functions and highlighted the multi-scale structures and properties at different scales. From the view of multi-level aggregation behaviors, we divided the whole process from the molecule to devices into several parts: molecular design, solvation, solution-state aggregation, crystal engineering, and solid-state microstructures. We summarized the progress and challenges of relationships between optoelectronic properties and multi-level aggregation. We believe aggregation science will become an interdisciplinary research field and serves as a general platform to develop future materials with the desired functions.
Collapse
Affiliation(s)
- Qi-Yi Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Ze-Fan Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
47
|
Wiesner T, Ahrens L, Rominger F, Freudenberg J, Bunz UHF. Diazapentacenes from Quinacridones. Chemistry 2021; 27:4553-4556. [PMID: 33289942 PMCID: PMC7986698 DOI: 10.1002/chem.202004761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/07/2020] [Indexed: 11/09/2022]
Abstract
Bis(silylethynylated) 5,7‐ and 5,12‐diazapentacenes were synthesized from cis‐ and trans‐quinacridone using protection, alkynylation and deoxygenation. The solid‐state packing of the targets is determined by choice and position of the silylethynyl substituents. The position of the substituents and nitrogen atoms influence the optical properties of the targets.
Collapse
Affiliation(s)
- Thomas Wiesner
- Organisch Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Lukas Ahrens
- Organisch Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jan Freudenberg
- Organisch Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
48
|
Liu YH, Dadvand A, Titi HM, Hamzehpoor E, Perepichka DF. Halogen bonding vs. π-stacking interactions in new bis(acenaphthylene)dione semiconductors. CrystEngComm 2021. [DOI: 10.1039/d1ce01047f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A series of new halogenated bis(acenaphthylene)dione (BAN) derivatives was synthesized, and the effect of halogen bonding on both molecular and crystal structure, and charge transport in n-type thin film transistors was investigated.
Collapse
Affiliation(s)
- Ying-Hsuan Liu
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Afshin Dadvand
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Hatem M. Titi
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Ehsan Hamzehpoor
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | | |
Collapse
|
49
|
Min Y, Cao X, Tian H, Liu J, Wang L. B←N-Incorporated Dibenzo-azaacene with Selective Near-Infrared Absorption and Visible Transparency. Chemistry 2020; 27:2065-2071. [PMID: 32978969 DOI: 10.1002/chem.202003925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/23/2020] [Indexed: 12/26/2022]
Abstract
Organic compounds with selective near-infrared absorption and visible transparency are very desirable for fabrication of transparent/semitransparent optoelectronic devices. Herein, we develop a molecule with selective near-infrared absorption property, QBNA-O, in which four B←N units are incorporated to the core and two benzodioxin groups are introduced at the termini of the dibenzo-azaacene skeleton. QBNA-O exhibits a small optical gap of 1.39 eV due to the strong electron-donating benzodioxin groups and the strong electron-withdrawing B←N units. In toluene solution, QBNA-O shows a strong absorption peak at 856 nm with the full width at half maximum (FWHM) of only 41 nm as well as very weak absorption in the visible range from 380 nm to 760 nm. Thin films of QBNA-O exhibit the average visible transparency (AVT) of 78 % at the thickness of 205 nm and 90 % at the thickness of 45 nm. Solution-processed organic field-effect transistors (OFETs) of QBNA-O display ambipolar transporting behavior with the electron mobility of 0.52 cm2 V-1 s-1 and the hole mobility of 0.013 cm2 V-1 s-1 together with excellent air-stability. The selective NIR absorbing property and excellent charge transporting property imply that QBNA-O can be used to fabricate transparent organic optoelectronic devices.
Collapse
Affiliation(s)
- Yang Min
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Cao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230023, China
| | - Hongkun Tian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
50
|
Wang H, Fontein F, Li J, Huang L, Jiang L, Fuchs H, Wang W, Wang Y, Chi L. Lithographical Fabrication of Organic Single-Crystal Arrays by Area-Selective Growth and Solvent Vapor Annealing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48854-48860. [PMID: 32981323 DOI: 10.1021/acsami.0c14349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Miniaturized organic single-crystal arrays that are addressed by reading-out circuits are crucial for high performance and high-level integration organic electronics. Here, we report a lithography compatible strategy to fabricate organic single-crystal arrays via area-selective growth and solvent vapor annealing (SVA). The organic semiconducting molecules can first selectively grow on photographically patterned drain-source electrodes, forming ordered amorphous aggregates that can further be converted to discrete single-crystal arrays by SVA. This strategy can be applied to self-align the microsized organic single crystals on predesigned locations. With this method, suppression of cross-talk among devices, organic field-effect transistors, and basic logic gate arrays with reading-out electrodes are further demonstrated.
Collapse
Affiliation(s)
- Hong Wang
- Physikalisches Institut and Center for Nanotechnology (CeNTech), Universität Münster, Münster 48149, Germany
- School of Materials and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 135 Xingang Xi Road, Guangzhou 510275, Guangdong, P. R. China
| | - Florian Fontein
- Physikalisches Institut and Center for Nanotechnology (CeNTech), Universität Münster, Münster 48149, Germany
| | - Jianping Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Lizhen Huang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Lin Jiang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Harald Fuchs
- Physikalisches Institut and Center for Nanotechnology (CeNTech), Universität Münster, Münster 48149, Germany
| | - Wenchong Wang
- Physikalisches Institut and Center for Nanotechnology (CeNTech), Universität Münster, Münster 48149, Germany
| | - Yandong Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Lifeng Chi
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|