1
|
Singh M, Kaur G, Singh I. Molecular Self-Assembly of Peptides into Supramolecular Nanoarchitectures for Target-Specific Drug Delivery. ACS APPLIED BIO MATERIALS 2025. [PMID: 40359489 DOI: 10.1021/acsabm.5c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Self-assembled fluorescent peptides are promising drug-delivery vehicles targeting cancer cells and enhancing the precision of therapeutic agents. Several systems have been developed including fluorescent peptides as cysteine-core peptides, cyclic peptides, nanostructures and peptide polymer conjugates specifically designed for targeted drug delivery. Further, these supramolecular carriers aid in targeted drug transport by using different cargos like doxorubicin (Dox), paclitaxel (PTX), etc. Additionally, dipeptides such as tryptophan-phenylalanine self-assemble via zinc ion chelation, facilitating the endosomal escape thereby enhancing the drug efficacy within multifunctional nanoparticle systems. Furthermore, pH-activatable and enzyme-responsive peptide nanostructures have been engineered to exhibit potential for controlled drug release. These self-assembled peptide systems not only enable targeted drug delivery but also provide controlled release, with applications extending to ocular drug delivery and the treatment of retinal diseases. These systems possess intrinsic fluorescence properties that allow real-time tracking of drug release and cellular uptake, making them highly useful for theranostic applications. Moreover, fluorescently tagged cell-penetrating peptides (CPPs) are widely used to explore how these systems enter cells, revealing multiple ways they are taken up, like endocytosis, micropinocytosis, direct membrane crossing, and counterion-assisted transport. This versatility adds real value to peptide-based approaches in cancer therapy. Further research advancements should enhance stability, explore combination therapies, and improve clinical translation for broader therapeutic applications.
Collapse
Affiliation(s)
- Mohan Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Gurdeep Kaur
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Iqubal Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| |
Collapse
|
2
|
Liu C, Dan Y, Yun J, Adler-Abramovich L, Luo J. Unveiling the Assembly Transition of Diphenylalanine and Its Analogs: from Oligomer Equilibrium to Nanocluster Formation. ACS NANO 2025; 19:13250-13263. [PMID: 40134347 DOI: 10.1021/acsnano.5c00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Peptide self-assembly is fundamental to various biological processes and holds significant potential for nanotechnology and biomedical applications. Despite progress in understanding larger-scale assemblies, the early formation of low-molecular-weight oligomers remains poorly understood. In this study, we investigate the aggregation behavior of the self-assembling diphenylalanine (FF) peptide and its analogs. Utilizing single-nanopore analysis, we detected and characterized the low-molecular-oligomer formation of FF, N-tert-butoxycarbonyl-diphenylalanine (BocFF), fluorenylmethyloxycarbonyl-diphenylalanine (FmocFF), and fluorenylmethyloxycarbonyl-pentafluoro-phenylalanine (Fmoc-F5-Phe) in real time. This approach provided detailed insights into the early stages of peptide self-assembly, revealing the dynamic behavior and formation kinetics of low-molecular-weight oligomeric species. Analysis revealed that the trimer is the key nucleus for FF, while the dimer is the primary nucleus for FmocFF and Fmoc-F5-Phe aggregation, whereas both the dimer and trimer serve as nuclei for BocFF. Mass photometry was employed to track the evolution of these oligomers, revealing the transition from low- to high-molecular-weight species, thereby elucidating intermediate phases in the aggregation process. Transmission electron microscopy and Fourier transform infrared spectroscopy were further employed to characterize the final assembly states, offering high-resolution imaging of morphological structures and detailed information on secondary structures. Based on these analyses, we constructed a comprehensive graph that correlates the entire aggregation processes of the tested self-assembling peptides across multiple scales. This integrative approach provides a holistic understanding of peptide self-assembly, particularly in the formation of low-molecular-weight oligomers toward mature supramolecular structures. These findings shed light on their assembly pathways and structural properties, advancing our understanding of their assembly pathways for nanotechnology and biomedical applications.
Collapse
Affiliation(s)
- Chang Liu
- PSI Center for Life Sciences, PSI, Villigen 5232, Switzerland
| | - Yoav Dan
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- Jan Koum Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The Center for Physics & Chemistry of Living Systems, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Ji Yun
- Department of Biology, University of Bern, Bern 3012, Switzerland
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- Jan Koum Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The Center for Physics & Chemistry of Living Systems, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Jinghui Luo
- PSI Center for Life Sciences, PSI, Villigen 5232, Switzerland
| |
Collapse
|
3
|
Zhou S, Sun X, Liang G. Activatable peptide-AIEgen conjugates for cancer imaging. Chem Sci 2025; 16:5369-5382. [PMID: 40060104 PMCID: PMC11887570 DOI: 10.1039/d4sc08633c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Aggregation-induced emission luminogens (AIEgens) have undergone significant development over the past decade, making substantial and profound contributions to a diverse range of research fields, prominently including cancer/disease diagnosis and therapy. Through the covalent conjugation of AIEgens with functional peptides, the resultant peptide-AIEgen conjugates possess not only the excellent biocompatibility characteristics, along with low systemic toxicity and negligible immunogenicity of peptides, but also the remarkable fluorescence properties of AIEgens. This "win-win" integration has significantly propelled the applications of peptide-AIEgen conjugates, particularly within the domain of cancer imaging. Three principal types of peptide-AIEgen conjugates, namely, tumor-targeting, tumor biomarker-responsive, and biomarker-responsive self-assembling peptide-AIEgen conjugates, are commonly devised. These conjugates confer enhanced targeting capabilities and selectivity towards tumors, thereby facilitating "smart" and precise tumor imaging with high signal-to-background ratios. In light of the crucial significance of peptide-AIEgen conjugates in tumor imaging and the recent inspiring breakthroughs that have not been encompassed in previous reviews, we present this review. We highlight the activatable peptide-AIEgen conjugates developed for tumor imaging over the past three years (from 2022 to the present). Particular attention is directed towards their design rationales, operational mechanisms, and imaging performance. Finally, prospective opportunities within this field are also reasonably deliberated.
Collapse
Affiliation(s)
- Sisi Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Xianbao Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University Nanjing 211189 China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University Nanjing 211189 China
| |
Collapse
|
4
|
Ji S, Pan T, Wang K, Zai W, Jia R, Wang N, Jia S, Ding D, Shi Y. A Membrane-Anchoring Self-Assembling Peptide Allows Bioorthogonal Coupling of Type-I AIEgens for Pyroptosis-Induced Cancer Therapy. Angew Chem Int Ed Engl 2025; 64:e202415735. [PMID: 39223092 DOI: 10.1002/anie.202415735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Enrichment of photosensitizers (PSs) on cancer cell membranes via bioorthogonal reactions is considered to be a very promising therapeutic modality. However, azide-modified sugars-based metabolic labeling processes usually lack targeting and the labeling speed is relatively slow. Moreover, it has been rarely reported that membrane-anchoring pure type-I PSs can induce cancer cell pyroptosis. Here, we report an alkaline phosphatase (ALP) and cholecystokinin-2 receptor (CCK2R) dual-targeting peptide named DBCO-pYCCK6, which can selectively and rapidly self-assemble on cancer cell membrane, and then bioorthogonal enrich type-I aggregation-induced emission luminogens (AIEgen) PSs (SAIE-N3) on the cell membrane. Upon light irradiation, the membrane-anchoring SAIE-N3 could effectively generate type-I reactive oxygen species (ROS) to induce gasdermin E (GSDME)-mediated pyroptosis. In vivo experiments demonstrated that the bioorthogonal combination strategy of peptide and AIEgen PSs could significantly inhibit tumor growth, which is accompanied by CD8+ cytotoxic T cell infiltration. This work provides a novel self-assembly peptide-mediated bioorthogonal reaction strategy to bridge the supramolecular self-assembly and AIE field through strain-promoted azide-alkyne cycloaddition (SPAAC) and elucidates that pure type-I membrane-anchoring PSs can be used for cancer therapy via GSDME-mediated pyroptosis.
Collapse
Affiliation(s)
- Shenglu Ji
- The Key Laboratory of Biomedical Materials, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Tengwu Pan
- Frontiers Science Center for New Organic Matter, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Kaiyuan Wang
- The Key Laboratory of Biomedical Materials, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Weiqi Zai
- The Key Laboratory of Biomedical Materials, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ruikang Jia
- Frontiers Science Center for New Organic Matter, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Nannan Wang
- The Key Laboratory of Biomedical Materials, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Shaorui Jia
- Frontiers Science Center for New Organic Matter, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Dan Ding
- The Key Laboratory of Biomedical Materials, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
- Frontiers Science Center for New Organic Matter, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yang Shi
- Frontiers Science Center for New Organic Matter, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
5
|
Zhang Z, Hu Y, Ding Y, Zhang X, Dong X, Xie L, Yang Z, Hu ZW. Dual-Enzyme-Instructed Peptide Self-Assembly to Boost Immunogenic Cell Death by Coordinating Intracellular Calcium Overload and Chemotherapy. ACS NANO 2025; 19:488-503. [PMID: 39754594 DOI: 10.1021/acsnano.4c10119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The concept of immunogenic cell death (ICD) induced by chemotherapy as a potential synergistic modality for cancer immunotherapy has been widely discussed. Unfortunately, most chemotherapeutic agents failed to dictate effective ICD responses due to their defects in inducing potent ICD signaling. Here, we report a dual-enzyme-instructed peptide self-assembly platform of CPMC (CPT-GFFpY-PLGVRK-Caps) that cooperatively utilizes camptothecin (CPT) and capsaicin (Caps) to promote ICD and engage systemic adaptive immunity for tumor rejection. Although CPT and Caps respectively prevent tumor progression by inhibiting type-I DNA topoisomerase and activating transient receptor potential cation channel subfamily V member 1 (TRPV1) for intracellular calcium overload, neither alone effectively stimulates sufficient ICD signaling to meet immunotherapeutic needs. CPMC, sequentially allowing an active Caps derivative of VRK-Caps and CPT to release extracellularly and intracellularly, can synergize two distinct apoptosis pathways stimulated by Caps and CPT to increase tumor immunogenicity and elicit systemic T-cell-based immunity. Consequently, CPMC facilitates the generation of improved tumor-specific cytotoxic T-cell responses and sustained immunological memory, successfully suppressing both primary and distant tumors. Moreover, CPMC can render tumors susceptible to PD-L1 blockade and synergize with an antiprogrammed cell death-ligand 1 (aPDL1) antibody for tumor inhibition. Combining two cancer chemotherapeutic drugs with low ICD-stimulating capacity using a peptide self-assembly strategy was demonstrated to boost ICD responses and potentiate cancer immunotherapy.
Collapse
Affiliation(s)
- Zhenghao Zhang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Yuhan Hu
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Yinghao Ding
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Xiangyang Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Xiao Dong
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Limin Xie
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Zhimou Yang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Zhi-Wen Hu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
6
|
Xia N, Huang Y, He C, Li Y, Yang S, Liu L. Multifunctional porphyrin-substituted phenylalanine-phenylalanine nanoparticles for diagnostic and therapeutic applications in Alzheimer's disease. Bioorg Chem 2025; 154:108065. [PMID: 39693925 DOI: 10.1016/j.bioorg.2024.108065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
β-Amyloid (Aβ) peptides are believed as the diagnostic biomarkers and therapeutic targets of Alzheimer's disease (AD). Their complexes with copper ions can catalyze the generation of reactive oxygen species (ROS) to further promote neuronal death. Herein, we suggested that porphyrin-substituted phenylalanine-phenylalanine nanoparticles (TPP-FF NPs) could inhibit the aggregation of Aβ monomers, disassemble the fibrillar Aβ aggregates under light illumination, and depressing the Cu2+-induced generation of ROS. Meanwhile, the TPP-FF NPs could be used as the nanocarriers and quenchers of fluorescently-labeled probes for the detection of Aβ oligomer (AβO). Inhibition of Aβ assembly and dissolution of Aβ aggregates were monitored by Thioflavin T (ThT)-based fluorescent assay and characterized by atomic force microscopy. The Aβ/Cu2+-induced generation of ROS was limited by TPP-FF NPs. The fluorescein-labeled probe aptamers attached on the surface of TPP-FF NPs emitted low fluorescence. The interaction between AβO and aptamers induced the release of the probes from the surface of TPP-FF NPs, driving the fluorophore far away from the quenchers and turning on the fluorescence. The signal-on strategy can be used for the detection of AβO with a low detection limit. This work should be evaluable for the development of multifunctional candidates for the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Ning Xia
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Anyang Normal University, Anyang, Henan 455000, China
| | - Yaliang Huang
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Anyang Normal University, Anyang, Henan 455000, China; School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Cancan He
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Anyang Normal University, Anyang, Henan 455000, China
| | - Yadi Li
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Anyang Normal University, Anyang, Henan 455000, China
| | - Suling Yang
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Anyang Normal University, Anyang, Henan 455000, China
| | - Lin Liu
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Anyang Normal University, Anyang, Henan 455000, China.
| |
Collapse
|
7
|
Ma X, Yang N, Mao R, Hao Y, Li Y, Guo Y, Teng D, Huang Y, Wang J. Self-assembly antimicrobial peptide for treatment of multidrug-resistant bacterial infection. J Nanobiotechnology 2024; 22:668. [PMID: 39478570 PMCID: PMC11526549 DOI: 10.1186/s12951-024-02896-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Abstract
The wide-spreading of multidrug resistance poses a significant threat to human and animal health. Although antimicrobial peptides (AMPs) show great potential application, their instability has severely limited their clinical application. Here, self-assembled AMPs composed of multiple modules based on the principle of associating natural marine peptide N6 with ß-sheet-forming peptide were designed. It is noteworthy that one of the designed peptides, FFN could self-assemble into nanoparticles at 35.46 µM and achieve a dynamic transformation from nanoparticles to nanofibers in the presence of bacteria, resulting in a significant increase in stability in trypsin and tissues by 1.72-57.5 times compared to that of N6. Additionally, FFN exhibits a broad spectrum of antibacterial activity against multidrug-resistant (MDR) gram-positive (G+) and gram-negative (G-) bacteria with Minimum inhibitory concentrations (MICs) as low as 2 µM by membrane destruction and complemented by nanofiber capture. In vivo mouse mastitis infection model further confirmed the therapeutic potential and promising biosafety of the self-assembled peptide FFN, which can effectively alleviate mastitis caused by MDR Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), and eliminate pathogenic bacteria. In conclusion, the design of peptide-based nanomaterials presents a novel approach for the delivery and clinical translation of AMPs, promoting their application in medicine and animal husbandry.
Collapse
Affiliation(s)
- Xuanxuan Ma
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, China
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Na Yang
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Ruoyu Mao
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Ya Hao
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Yuanyuan Li
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Ying Guo
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Da Teng
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, China.
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| | - Yinhua Huang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, Beijing, 100193, China.
| | - Jianhua Wang
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, China.
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
8
|
Sun N, Bai S, Dai L, Jia Y. Super-Resolution Microscopy as a Versatile Tool in Probing Molecular Assembly. Int J Mol Sci 2024; 25:11497. [PMID: 39519049 PMCID: PMC11545975 DOI: 10.3390/ijms252111497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Molecular assembly is promising in the construction of advanced materials, obtaining structures with specific functions. In-depth investigation of the relationships between the formation, dynamics, structure, and functionality of the specific molecular assemblies is one of the greatest challenges in nanotechnology and chemistry, which is essential in the rational design and development of functional materials for a variety of applications. Super-resolution microscopy (SRM) has been used as a versatile tool for investigating and elucidating the structures of individual molecular assemblies with its nanometric resolution, multicolor ability, and minimal invasiveness, which are also complementary to conventional optical or electronic techniques that provide the direct observation. In this review, we will provide an overview of the representative studies that utilize SRM to probe molecular assemblies, mainly focusing on the imaging of biomolecular assemblies (lipid-based, peptide-based, protein-based, and DNA-based), organic-inorganic hybrid assemblies, and polymer assemblies. This review will provide guidelines for the evaluation of the dynamics of molecular assemblies, assembly and disassembly processes with distinct dynamic behaviors, and multicomponent assembly through the application of these advanced imaging techniques. We believe that this review will inspire new ideas and propel the development of structural analyses of molecular assemblies to promote the exploitation of new-generation functional materials.
Collapse
Affiliation(s)
- Nan Sun
- National Engineering Research Center for Colloidal Materials, Shandong University, Jinan 250100, China;
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China;
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luru Dai
- Wenzhou Key Laboratory of Biomedical Imaging, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China;
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China;
| |
Collapse
|
9
|
Feng Y, Liu C, Cui W, Yang L, Wu D, Zhang H, Wang X, Sun Y, He B, Dai W, Zhang Q. Engineering supramolecular peptide nanofibers for in vivo platelet-hitchhiking beyond ligand-receptor recognition. SCIENCE ADVANCES 2024; 10:eadq2072. [PMID: 39441939 PMCID: PMC11498226 DOI: 10.1126/sciadv.adq2072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024]
Abstract
Ex vivo or in vivo cell-hitchhiking has emerged as a potential means for efficient drug delivery and various disease therapies. However, many challenges remain, such as the complicated engineering process and dependence on ligand-receptor interaction. Here, we present a simple in vivo platelet-hitchhiking strategy based on self-assembling peptides without ligand modification. The engineered peptide nanofibers can hitchhike ultrafast (<5 s) and efficiently on both resting and activated platelets in a receptor-independent and species-independent manner. Mechanistic studies showed that unique secondary structure of nanofibers, which lead to surface exposure of hydrophobic and hydrogen bond-forming groups, might primarily contribute to the selective and efficient platelet-hitchhiking behavior. After intravenous injection, these peptide nanofibers hitchhiked in situ on circulating platelets and achieved almost 20-fold lung accumulation. Our study provides not only a different paradigm of in vivo platelet-hitchhiking beyond ligand-receptor recognition but also a potential strategy for lung-targeted drug delivery and pulmonary disease therapy.
Collapse
Affiliation(s)
- Yan Feng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, (China)
| | - Chenyang Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, (China)
| | - Weiping Cui
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, (China)
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, (China)
| | - Liuqing Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, (China)
| | - Di Wu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, (China)
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, (China)
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, (China)
| | - Yuqian Sun
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing 100044, (China)
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, (China)
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, (China)
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, (China)
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, (China)
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, (China)
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, (China)
| |
Collapse
|
10
|
Wen X, Zhang C, Tian Y, Miao Y, Liu S, Xu JJ, Ye D, He J. Smart Molecular Imaging and Theranostic Probes by Enzymatic Molecular In Situ Self-Assembly. JACS AU 2024; 4:2426-2450. [PMID: 39055152 PMCID: PMC11267545 DOI: 10.1021/jacsau.4c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Enzymatic molecular in situ self-assembly (E-MISA) that enables the synthesis of high-order nanostructures from synthetic small molecules inside a living subject has emerged as a promising strategy for molecular imaging and theranostics. This strategy leverages the catalytic activity of an enzyme to trigger probe substrate conversion and assembly in situ, permitting prolonging retention and congregating many molecules of probes in the targeted cells or tissues. Enhanced imaging signals or therapeutic functions can be achieved by responding to a specific enzyme. This E-MISA strategy has been successfully applied for the development of enzyme-activated smart molecular imaging or theranostic probes for in vivo applications. In this Perspective, we discuss the general principle of controlling in situ self-assembly of synthetic small molecules by an enzyme and then discuss the applications for the construction of "smart" imaging and theranostic probes against cancers and bacteria. Finally, we discuss the current challenges and perspectives in utilizing the E-MISA strategy for disease diagnoses and therapies, particularly for clinical translation.
Collapse
Affiliation(s)
- Xidan Wen
- Department
of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital
of Medical School, Nanjing University, Nanjing 210008, China
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Chao Zhang
- Department
of Neurosurgery, Zhujiang Hospital, Southern
Medical University, Guangzhou 510282, China
| | - Yuyang Tian
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Yinxing Miao
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Shaohai Liu
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Jing-Juan Xu
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Deju Ye
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Jian He
- Department
of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital
of Medical School, Nanjing University, Nanjing 210008, China
| |
Collapse
|
11
|
Luan X, Hu H, Sun Z, He P, Zhu D, Xu Y, Liu B, Wei G. Assembling Ag 2S quantum dots onto peptide nanosheet as a biomimetic two-dimensional nanoplatform for synergistic near infrared-II fluorescent imaging and photothermal therapy of tumor. J Colloid Interface Sci 2024; 663:111-122. [PMID: 38394816 DOI: 10.1016/j.jcis.2024.02.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Fluorescent bioimaging and photothermal therapy (PTT) techniques have potential significance in cancer diagnosis and treatment and have been widely applied in biomedical and practical clinical trials. This study proposes the molecular design and biofabrication of a two-dimensional (2D) nanoplatform, exhibiting promising prospects for synergistic bioimaging and PTT of tumors. First, biocompatible 2D peptide nanosheets (PNSs) were designed and prepared through peptide self-assembly. These served as a support matrix for assembling polyethylene glycol-modified Ag2S quantum dots (PEG-Ag2SQDs) to form a 2D nanoplatform (PNS/PEG-Ag2SQDs) with unique fluorescent and photothermal properties. The designed 2D nanoplatform not only showed improved photothermal efficacy and an elevated photothermal conversion efficiency of 52.46 %, but also demonstrated significant lethality against tumors in both in vitro and in vivo cases. Additionally, it displays excellent imaging effects in the near-infrared II region, making it suitable for synergistic fluorescent imaging-guided PTT of tumors. This study not only provides a facile approach for devising and synthesizing 2D peptide assemblies but also presents new biomimetic strategies to create functional 2D organic/inorganic nanoplatforms for biomedical applications.
Collapse
Affiliation(s)
- Xin Luan
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Huiqiang Hu
- The Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Zhengang Sun
- Department of Spinal Surgery, Qingdao Huangdao Central Hospital, Qingdao University Medical Group, Qingdao 266555, China
| | - Peng He
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Danzhu Zhu
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Youyin Xu
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Bin Liu
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Gang Wei
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
12
|
Mo X, Zhang Z, Song J, Wang Y, Yu Z. Self-assembly of peptides in living cells for disease theranostics. J Mater Chem B 2024; 12:4289-4306. [PMID: 38595070 DOI: 10.1039/d4tb00365a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The past few decades have witnessed substantial progress in biomedical materials for addressing health concerns and improving disease therapeutic and diagnostic efficacy. Conventional biomedical materials are typically created through an ex vivo approach and are usually utilized under physiological environments via transfer from preparative media. This transfer potentially gives rise to challenges for the efficient preservation of the bioactivity and implementation of theranostic goals on site. To overcome these issues, the in situ synthesis of biomedical materials on site has attracted great attention in the past few years. Peptides, which exhibit remarkable biocompability and reliable noncovalent interactions, can be tailored via tunable assembly to precisely create biomedical materials. In this review, we summarize the progress in the self-assembly of peptides in living cells for disease diagnosis and therapy. After a brief introduction to the basic design principles of peptide assembly systems in living cells, the applications of peptide assemblies for bioimaging and disease treatment are highlighted. The challenges in the field of peptide self-assembly in living cells and the prospects for novel peptide assembly systems towards next-generation biomaterials are also discussed, which will hopefully help elucidate the great potential of peptide assembly in living cells for future healthcare applications.
Collapse
Affiliation(s)
- Xiaowei Mo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Zeyu Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Jinyan Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Yushi Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
- Haihe Laboratory of Synthetic Biology, 21 West 15th Avenue, Tianjin 300308, China
| |
Collapse
|
13
|
Yi Y, An HW, Wang H. Intelligent Biomaterialomics: Molecular Design, Manufacturing, and Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305099. [PMID: 37490938 DOI: 10.1002/adma.202305099] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/14/2023] [Indexed: 07/27/2023]
Abstract
Materialomics integrates experiment, theory, and computation in a high-throughput manner, and has changed the paradigm for the research and development of new functional materials. Recently, with the rapid development of high-throughput characterization and machine-learning technologies, the establishment of biomaterialomics that tackles complex physiological behaviors has become accessible. Breakthroughs in the clinical translation of nanoparticle-based therapeutics and vaccines have been observed. Herein, recent advances in biomaterials, including polymers, lipid-like materials, and peptides/proteins, discovered through high-throughput screening or machine learning-assisted methods, are summarized. The molecular design of structure-diversified libraries; high-throughput characterization, screening, and preparation; and, their applications in drug delivery and clinical translation are discussed in detail. Furthermore, the prospects and main challenges in future biomaterialomics and high-throughput screening development are highlighted.
Collapse
Affiliation(s)
- Yu Yi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
14
|
Jiao Q, Zheng Y, Xie Q, Luo X, Zhou S, Pei S, Zhang T, Wu X, Xu K, Zhong W. A Dual-Responsive Morphologically-Adaptable Nanoplatform for Targeted Delivery of Activatable Photosensitizers in Precision Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309054. [PMID: 38081131 DOI: 10.1002/smll.202309054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/24/2023] [Indexed: 05/25/2024]
Abstract
Photodynamic therapy (PDT) is an effective approach for treating melanoma. However, the photosensitizers employed in PDT can accumulate in healthy tissues, potentially causing harm to normal cells and resulting in side effects such as heightened photosensitivity. To address this, an activatable photosensitizer (PSD) by linking PpIX with a fluorescence quencher using a disulfide bond is designed. PSD responded to endogenous GSH, showing high selectivity for A375 cells. To enhance PSD's bioavailability and anticancer efficacy, an enzyme-responsive nanoplatform based on a lonidamine-derived self-assembling peptide is developed. Initially, PSD and the peptide self-assembled into nanoparticles, displaying potent tumor targeting of PSD in vivo. Upon cell uptake, these nanoparticles specifically responded to elevated cathepsin B, causing nanoparticle disintegration and releasing PSD and lonidamine prodrug (LND-1). PSD is selectively activated by GSH for cancer-specific fluorescence imaging and precision PDT, while LND-1 targeted mitochondria, forming a fibrous lonidamine depot in situ and intensifying photosensitizer's cytotoxicity through ROS generation, mitochondrial dysfunction, and DNA damage. Notably, intravenous administration of LND-1-PEG@PSD with light irradiation significantly suppressed A375-xenografted mouse tumor growth, with minimal systemic toxicity. Together, the synergy of activatable photosensitizer and enzyme-responsive nanoplatform elevates PDT precision and diminishes side effects, showcasing significant potential in the realm of cancer nanomedicine.
Collapse
Affiliation(s)
- Qishu Jiao
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Yaxin Zheng
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Qinqing Xie
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Xuan Luo
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Shuyao Zhou
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Shicheng Pei
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Tingting Zhang
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaoxing Wu
- Department of Medicinal Chemistry, School of Pharmacy and Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China
| | - Keming Xu
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenying Zhong
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
15
|
Sha XL, Lv GT, Chen QH, Cui X, Wang L, Cui X. A peptide selectively recognizes Gram-negative bacteria and forms a bacterial extracellular trap (BET) through interfacial self-assembly. J Mater Chem B 2024; 12:3676-3685. [PMID: 38530749 DOI: 10.1039/d3tb02559d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
An innate immune system intricately leverages unique mechanisms to inhibit colonization of external invasive Bacteria, for example human defensin-6, through responsive encapsulation of bacteria. Infection and accompanying antibiotic resistance stemming from Gram-negative bacteria aggregation represent an emerging public health crisis, which calls for research into novel anti-bacterial therapeutics. Herein, inspired by naturally found host-defense peptides, we design a defensin-like peptide ligand, bacteria extracellular trap (BET) peptide, with modular design composed of targeting, assembly, and hydrophobic motifs with an aggregation-induced emission feature. The ligand specifically recognizes Gram-negative bacteria via targeting cell wall conserved lipopolysaccharides (LPS) and transforms from nanoparticles to nanofibrous networks in situ to trap bacteria and induce aggregation. Importantly, treatment of the BET peptide was found to have an antibacterial effect on the Pseudomonas aeruginosa strain, which is comparable to neomycin. Animal studies further demonstrate its ability to trigger aggregation of bacteria in vivo. This biomimetic self-assembling BET peptide provides a novel approach to fight against pathogenic Gram-negative bacteria.
Collapse
Affiliation(s)
- Xiao-Ling Sha
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P.R. China.
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Gan-Tian Lv
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P.R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Qing-Hua Chen
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P.R. China.
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xin Cui
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P.R. China.
- Department of Orthopedics, The 4th Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China.
- Department of Graduate, Hebei North University, No. 11 Diamond South Road, High-tech Zone, Zhangjiakou, Hebei Province, 075000, P.R. China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P.R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xu Cui
- Department of Orthopedics, The 4th Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China.
- Department of Graduate, Hebei North University, No. 11 Diamond South Road, High-tech Zone, Zhangjiakou, Hebei Province, 075000, P.R. China
| |
Collapse
|
16
|
He Q, Chen F, Zhao Z, Pei P, Gan Y, Zhou A, Zhou J, Qu JH, Crommen J, Fillet M, Li Y, Wang Q, Jiang Z. Supramolecular Mimotope Peptide Nanofibers Promote Antibody-Ligand Polyvalent and Instantaneous Recognition for Biopharmaceutical Analysis. Anal Chem 2024; 96:5940-5950. [PMID: 38562013 DOI: 10.1021/acs.analchem.4c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Peptide-based supramolecules exhibit great potential in various fields due to their improved target recognition ability and versatile functions. However, they still suffer from numerous challenges for the biopharmaceutical analysis, including poor self-assembly ability, undesirable ligand-antibody binding rates, and formidable target binding barriers caused by ligand crowding. To tackle these issues, a "polyvalent recognition" strategy employing the CD20 mimotope peptide derivative NBD-FFVLR-GS-WPRWLEN (acting on the CDR domains of rituximab) was proposed to develop supramolecular nanofibers for target antibody recognition. These nanofibers exhibited rapid self-assembly within only 1 min and robust stability. Their binding affinity (179 nM) for rituximab surpassed that of the monomeric peptide (7 μM) by over 38-fold, highlighting that high ligand density and potential polyvalent recognition can efficiently overcome the target binding barriers of traditional supramolecules. Moreover, these nanofibers exhibited an amazing "instantaneous capture" rate (within 15 s), a high recovery (93 ± 3%), and good specificity for the target antibody. High-efficiency enrichment of rituximab was achieved from cell culture medium with good recovery and reproducibility. Intriguingly, these peptide nanofibers combined with bottom-up proteomics were successful in tracking the deamidation of asparagine 55 (from 10 to 16%) on the rituximab heavy chain after 21 day incubation in human serum. In summary, this study may open up an avenue for the development of versatile mimotope peptide supramolecules for biorecognition and bioanalysis of biopharmaceuticals.
Collapse
Affiliation(s)
- Qiaoxian He
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Feng Chen
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Zheng Zhao
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Pengfei Pei
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yongqing Gan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Aixuan Zhou
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jingwei Zhou
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jia-Huan Qu
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jacques Crommen
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Laboratory for the Analysis of Medicines, Department of Pharmaceutical Sciences, CIRM, University of Liege, CHU B36, B-4000 Liege, Belgium
| | - Marianne Fillet
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Laboratory for the Analysis of Medicines, Department of Pharmaceutical Sciences, CIRM, University of Liege, CHU B36, B-4000 Liege, Belgium
| | - Yingchun Li
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| |
Collapse
|
17
|
Gao G, Jiang YW, Chen J, Xu X, Sun X, Xu H, Liang G, Liu X, Zhan W, Wang M, Xu Y, Zheng J, Wang G. Three-in-One Peptide Prodrug with Targeting, Assembly and Release Properties for Overcoming Bacterium-Induced Drug Resistance and Potentiating Anti-Cancer Immune Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312153. [PMID: 38444205 DOI: 10.1002/adma.202312153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/02/2024] [Indexed: 03/07/2024]
Abstract
The presence of bacteria in tumor results in chemotherapeutic drug resistance and weakens the immune response in colorectal cancer. To overcome bacterium-induced chemotherapeutic drug resistance and potentiate antitumor immunity, herein a novel molecule Biotin-Lys(SA-Cip-OH)-Lys(SA-CPT)-Phe-Phe-Nap (Biotin-Cip-CPT-Nap) is rationally designed containing four functional motifs (i.e., a biotin motif for targeting, Phe-Phe(-Nap) motif for self-assembly, ciprofloxacin derivative (Cip-OH) motif for antibacterial effect, and camptothecin (CPT) motif for chemotherapy). Using the designed molecule, a novel strategy of intracellular enzymatic nanofiber formation and synergistic antibacterium-enhanced chemotherapy and immunotherapy is achieved. Under endocytosis mediated by highly expressed biotin receptor in colorectal cancer cell membrane and the catalysis of highly expressed carboxylesterase in the cytoplasm, this novel molecule can be transformed into Biotin-Nap, which self-assembled into nanofibers. Meanwhile, antibiotic Cip-OH and chemotherapeutic drug CPT are released, overcoming bacterium-induced drug resistance and enhancing the therapeutic efficacy of immunotherapy towards colorectal cancer. This work offers a feasible strategy for the design of novel multifunctional prodrugs to improve the efficiency of colorectal cancer treatment.
Collapse
Affiliation(s)
- Ge Gao
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Yao-Wen Jiang
- School of Medical Imaging, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Jiaxuan Chen
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Xiaodi Xu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Xianbao Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Haidong Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Gaolin Liang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Xiaoyang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Wenjun Zhan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Meng Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Yixin Xu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| |
Collapse
|
18
|
Hu JJ, Lin N, Zhang Y, Xia F, Lou X. Nanofibers in Organelles: From Structure Design to Biomedical Applications. Angew Chem Int Ed Engl 2024; 63:e202313139. [PMID: 37889872 DOI: 10.1002/anie.202313139] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 10/29/2023]
Abstract
Nanofibers are one of the most important morphologies of molecular self-assemblies, the formation of which relies on the diverse intermolecular interactions of fibrous-forming units. In the past decade, rapid advances have been made in the biomedical application of nanofibers, such as bioimaging and tumor treatment. An important topic to be focused on is not only the nanofiber formation mechanism but also where it forms, because different destinations could have different influences on cells and its formation could be triggered by unique stimuli in organelles. It is therefore necessary and timely to summarize the nanofibers assembled in organelles. This minireview discusses the formation mechanism, triggering strategies, and biomedical applications of nanofibers, which may facilitate the rational design of nanofibers, improve our understanding of the relationship between nanofiber properties and organelle characteristics, allow a comprehensive recognition of organelles affected by materials, and enhance the therapeutic efficiency of nanofibers.
Collapse
Affiliation(s)
- Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Niya Lin
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yunfan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
19
|
Liu R, Dong X, Seroski DT, Soto Morales B, Wong KM, Robang AS, Melgar L, Angelini TE, Paravastu AK, Hall CK, Hudalla GA. Side-Chain Chemistry Governs Hierarchical Order of Charge-Complementary β-sheet Peptide Coassemblies. Angew Chem Int Ed Engl 2023; 62:e202314531. [PMID: 37931093 PMCID: PMC10841972 DOI: 10.1002/anie.202314531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
Self-assembly of proteinaceous biomolecules into functional materials with ordered structures that span length scales is common in nature yet remains a challenge with designer peptides under ambient conditions. This report demonstrates how charged side-chain chemistry affects the hierarchical co-assembly of a family of charge-complementary β-sheet-forming peptide pairs known as CATCH(X+/Y-) at physiologic pH and ionic strength in water. In a concentration-dependent manner, the CATCH(6K+) (Ac-KQKFKFKFKQK-Am) and CATCH(6D-) (Ac-DQDFDFDFDQD-Am) pair formed either β-sheet-rich microspheres or β-sheet-rich gels with a micron-scale plate-like morphology, which were not observed with other CATCH(X+/Y-) pairs. This hierarchical order was disrupted by replacing D with E, which increased fibril twisting. Replacing K with R, or mutating the N- and C-terminal amino acids in CATCH(6K+) and CATCH(6D-) to Qs, increased observed co-assembly kinetics, which also disrupted hierarchical order. Due to the ambient assembly conditions, active CATCH(6K+)-green fluorescent protein fusions could be incorporated into the β-sheet plates and microspheres formed by the CATCH(6K+/6D-) pair, demonstrating the potential to endow functionality.
Collapse
Affiliation(s)
- Renjie Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611, USA
| | - Xin Dong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC-27695, USA
| | - Dillon T Seroski
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611, USA
| | - Bethsymarie Soto Morales
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611, USA
| | - Kong M Wong
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA-30332, USA
| | - Alicia S Robang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA-30332, USA
| | - Lucas Melgar
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611, USA
| | - Thomas E Angelini
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL-32611, USA
| | - Anant K Paravastu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA-30332, USA
| | - Carol K Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC-27695, USA
| | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611, USA
| |
Collapse
|
20
|
Zhang X, Wang J, Zhang Y, Yang Z, Gao J, Gu Z. Synthesizing biomaterials in living organisms. Chem Soc Rev 2023; 52:8126-8164. [PMID: 37921625 DOI: 10.1039/d2cs00999d] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Living organisms fabricate biomacromolecules such as DNA, RNA, and proteins by the self-assembly process. The research on the mechanism of biomacromolecule formation also inspires the exploration of in vivo synthesized biomaterials. By elaborate design, artificial building blocks or precursors can self-assemble or polymerize into functional biomaterials within living organisms. In recent decades, these so-called in vivo synthesized biomaterials have achieved extensive applications in cell-fate manipulation, disease theranostics, bioanalysis, cellular surface engineering, and tissue regeneration. In this review, we classify strategies for in vivo synthesis into non-covalent, covalent, and genetic types. The development of these approaches is based on the chemical principles of supramolecular chemistry and synthetic chemistry, biological cues such as enzymes and microenvironments, and the means of synthetic biology. By summarizing the design principles in detail, some insights into the challenges and opportunities in this field are provided to enlighten further research.
Collapse
Affiliation(s)
- Xiangyang Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Junxia Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
21
|
Guo L, Yang J, Wang H, Yi Y. Multistage Self-Assembled Nanomaterials for Cancer Immunotherapy. Molecules 2023; 28:7750. [PMID: 38067480 PMCID: PMC10707962 DOI: 10.3390/molecules28237750] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Advances in nanotechnology have brought innovations to cancer therapy. Nanoparticle-based anticancer drugs have achieved great success from bench to bedside. However, insufficient therapy efficacy due to various physiological barriers in the body remains a key challenge. To overcome these biological barriers and improve the therapeutic efficacy of cancers, multistage self-assembled nanomaterials with advantages of stimuli-responsiveness, programmable delivery, and immune modulations provide great opportunities. In this review, we describe the typical biological barriers for nanomedicines, discuss the recent achievements of multistage self-assembled nanomaterials for stimuli-responsive drug delivery, highlighting the programmable delivery nanomaterials, in situ transformable self-assembled nanomaterials, and immune-reprogramming nanomaterials. Ultimately, we perspective the future opportunities and challenges of multistage self-assembled nanomaterials for cancer immunotherapy.
Collapse
Affiliation(s)
- Lamei Guo
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China; (L.G.); (J.Y.)
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China;
| | - Jinjun Yang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China; (L.G.); (J.Y.)
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China;
| | - Yu Yi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China;
| |
Collapse
|
22
|
Zhang L, Yao L, Zhao F, Yu A, Zhou Y, Wen Q, Wang J, Zheng T, Chen P. Protein and Peptide-Based Nanotechnology for Enhancing Stability, Bioactivity, and Delivery of Anthocyanins. Adv Healthc Mater 2023; 12:e2300473. [PMID: 37537383 PMCID: PMC11468125 DOI: 10.1002/adhm.202300473] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/18/2023] [Indexed: 08/05/2023]
Abstract
Anthocyanin, a unique natural polyphenol, is abundant in plants and widely utilized in biomedicine, cosmetics, and the food industry due to its excellent antioxidant, anticancer, antiaging, antimicrobial, and anti-inflammatory properties. However, the degradation of anthocyanin in an extreme environment, such as alkali pH, high temperatures, and metal ions, limits its physiochemical stabilities and bioavailabilities. Encapsulation and combining anthocyanin with biomaterials could efficiently stabilize anthocyanin for protection. Promisingly, natural or artificially designed proteins and peptides with favorable stabilities, excellent biocapacity, and wide sources are potential candidates to stabilize anthocyanin. This review focuses on recent progress, strategies, and perspectives on protein and peptide for anthocyanin functionalization and delivery, i.e., formulation technologies, physicochemical stability enhancement, cellular uptake, bioavailabilities, and biological activities development. Interestingly, due to the simplicity and diversity of peptide structure, the interaction mechanisms between peptide and anthocyanin could be illustrated. This work sheds light on the mechanism of protein/peptide-anthocyanin nanoparticle construction and expands on potential applications of anthocyanin in nutrition and biomedicine.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Liang Yao
- College of Biotechnology, Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Feng Zhao
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Alice Yu
- Schulich School of Medicine and Dentistry, Western University, Ontario, N6A 3K7, Canada
| | - Yueru Zhou
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Qingmei Wen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Jun Wang
- College of Biotechnology, Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Tao Zheng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Pu Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| |
Collapse
|
23
|
Mao X, Wang G, Wang Z, Duan C, Wu X, Xu H. Theranostic Lipid Nanoparticles for Renal Cell Carcinoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306246. [PMID: 37747365 DOI: 10.1002/adma.202306246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/07/2023] [Indexed: 09/26/2023]
Abstract
Renal cell carcinoma (RCC) is a common urological malignancy and represents a leading threat to healthcare. Recent years have seen a series of progresses in the early diagnosis and management of RCC. Theranostic lipid nanoparticles (LNPs) are increasingly becoming one of the focuses in this field, because of their suitability for tumor targeting and multimodal therapy. LNPs can be precisely fabricated with desirable chemical compositions and biomedical properties, which closely match the physiological characteristics and clinical needs of RCC. Herein, a comprehensive review of theranostic LNPs is presented, emphasizing the generic tool nature of LNPs in developing advanced micro-nano biomaterials. It begins with a brief overview of the compositions and formation mechanism of LNPs, followed with an introduction to kidney-targeting approaches, such as passive, active, and stimulus responsive targeting. With examples provided, a series of modification strategies for enhancing the tumor targeting and functionality of LNPs are discussed. Thereafter, research advances on applications of these LNPs for RCC including bioimaging, liquid biopsy, drug delivery, physical therapy, and gene therapy are summarized and discussed from an interdisciplinary perspective. The final part highlights the milestone achievements of translation medicine, current challenges as well as future development directions of LNPs for the diagnosis and treatment of RCC.
Collapse
Affiliation(s)
- Xiongmin Mao
- Department of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Guanyi Wang
- Department of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zijian Wang
- Department of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chen Duan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoliang Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hua Xu
- Department of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
24
|
Abstract
Self-assembly processes exist widely in life systems and play essential roles in maintaining life activities. It is promising to explore the molecular fundamentals and mechanisms of life systems through artificially constructing self-assembly systems in living cells. As an excellent self-assembly construction material, deoxyribonucleic acid (DNA) has been widely used to achieve the precise construction of self-assembly systems in living cells. This review focuses on the recent progress of DNA-guided intracellular self-assembly. First, the methods of intracellular DNA self-assembly based on the conformational transition of DNA are summarized, including complementary base pairing, the formation of G-quadruplex/i-motif, and the specific recognition of DNA aptamer. Next, The applications of DNA-guided intracellular self-assembly on the detection of intracellular biomolecules and the regulation of cell behaviors are introduced, and the molecular design of DNA in the self-assembly systems is discussed in detail. Ultimately, the challenges and opportunities of DNA-guided intracellular self-assembly are commented.
Collapse
Affiliation(s)
- Jinqiao Liu
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Jianpu Tang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Zhaobin Tong
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Guangshuai Teng
- Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315200, P.R. China
| |
Collapse
|
25
|
Sun N, Jia Y, Bai S, Li Q, Dai L, Li J. The power of super-resolution microscopy in modern biomedical science. Adv Colloid Interface Sci 2023; 314:102880. [PMID: 36965225 DOI: 10.1016/j.cis.2023.102880] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Super-resolution microscopy (SRM) technology that breaks the diffraction limit has revolutionized the field of cell biology since its appearance, which enables researchers to visualize cellular structures with nanometric resolution, multiple colors and single-molecule sensitivity. With the flourishing development of hardware and the availability of novel fluorescent probes, the impact of SRM has already gone beyond cell biology and extended to nanomedicine, material science and nanotechnology, and remarkably boosted important breakthroughs in these fields. In this review, we will mainly highlight the power of SRM in modern biomedical science, discussing how these SRM techniques revolutionize the way we understand cell structures, biomaterials assembly and how assembled biomaterials interact with cellular organelles, and finally their promotion to the clinical pre-diagnosis. Moreover, we also provide an outlook on the current technical challenges and future improvement direction of SRM. We hope this review can provide useful information, inspire new ideas and propel the development both from the perspective of SRM techniques and from the perspective of SRM's applications.
Collapse
Affiliation(s)
- Nan Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049
| | - Qi Li
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, China
| | - Luru Dai
- Wenzhou Institute and Wenzhou Key Laboratory of Biophysics, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049.
| |
Collapse
|
26
|
Zheng Z, Yuan L, Hu JJ, Xia F, Lou X. Modular Peptide Probe for Protein Analysis. Chemistry 2023; 29:e202203225. [PMID: 36333271 DOI: 10.1002/chem.202203225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/07/2022]
Abstract
The analysis and regulation of proteins are of great significance for the development of disease diagnosis and treatment. However, complicated analytical environment and complex protein structure severely limit the accuracy of their analysis results. Nowadays, ascribing to the editability and bioactivity of peptides, peptide-based probes could meet the requirements of good selectivity and high affinity to overcome the challenges. In this review, we summarize the advances in the use of modular peptide probes for proteins analysis. It focuses on how to design and optimize the structure of probes, as well as their performance. Then, the strategies and application to improve the analysis result of modular peptide probes are introduced. Finally, we also discuss current challenge and provide some ideas for the future direction for modular peptide probes, hoping to accelerate their clinical transformation.
Collapse
Affiliation(s)
- Zhi Zheng
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Lizhen Yuan
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| |
Collapse
|
27
|
Advances in Self-Assembled Peptides as Drug Carriers. Pharmaceutics 2023; 15:pharmaceutics15020482. [PMID: 36839803 PMCID: PMC9964150 DOI: 10.3390/pharmaceutics15020482] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
In recent years, self-assembled peptide nanotechnology has attracted a great deal of attention for its ability to form various regular and ordered structures with diverse and practical functions. Self-assembled peptides can exist in different environments and are a kind of medical bio-regenerative material with unique structures. These materials have good biocompatibility and controllability and can form nanoparticles, nanofibers and hydrogels to perform specific morphological functions, which are widely used in biomedical and material science fields. In this paper, the properties of self-assembled peptides, their influencing factors and the nanostructures that they form are reviewed, and the applications of self-assembled peptides as drug carriers are highlighted. Finally, the prospects and challenges for developing self-assembled peptide nanomaterials are briefly discussed.
Collapse
|
28
|
Song Y, Zhang Z, Cao Y, Yu Z. Stimulus-Responsive Amino Acids Behind In Situ Assembled Bioactive Peptide Materials. Chembiochem 2023; 24:e202200497. [PMID: 36278304 DOI: 10.1002/cbic.202200497] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/18/2022] [Indexed: 02/04/2023]
Abstract
In situ self-assembly of peptides into well-defined nanostructures represents one of versatile strategies for creation of bioactive materials within living cells with great potential in disease diagnosis and treatment. The intimate relationship between amino acid sequences and the assembling propensity of peptides has been thoroughly elucidated over the past few decades. This has inspired development of various controllable self-assembling peptide systems based on stimuli-responsive naturally occurring or non-canonical amino acids, including redox-, pH-, photo-, enzyme-responsive amino acids. This review attempts to summarize the recent progress achieved in manipulating in situ self-assembly of peptides by controllable reactions occurring to amino acids. We will highlight the systems containing non-canonical amino acids developed in our laboratory during the past few years, primarily including acid/enzyme-responsive 4-aminoproline, redox-responsive (seleno)methionine, and enzyme-responsive 2-nitroimidazolyl alanine. Utilization of the stimuli-responsive assembling systems in creation of bioactive materials will be specifically introduced to emphasize their advantages for addressing the concerns lying in disease theranostics. Eventually, we will provide the perspectives for the further development of stimulus-responsive amino acids and thereby demonstrating their great potential in development of next-generation biomaterials.
Collapse
Affiliation(s)
- Yanqiu Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Zeyu Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Yawei Cao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China.,Haihe Laboratory of Synthetic Biology, 21 West 15th Avenue, Tianjin, 300308, P. R. China
| |
Collapse
|
29
|
Functional Peptides from One-bead One-compound High-throughput Screening Technique. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-2356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
30
|
Chen H, Zhou B, Zheng X, Wei J, Ji C, Yin M. Tumor microenvironment-activated multi-functional nanodrug with size-enlargement for enhanced cancer phototheranostics. Biomater Sci 2023; 11:472-480. [PMID: 36472245 DOI: 10.1039/d2bm01604d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Phototheranostics that integrate diagnosis and treatment modalities have shown great promise in personalized cancer therapy. However, the "always on" characteristics often lead to suboptimal imaging quality and severe side effects. Herein, we report the construction of a perylenemonoimide based nanodrug CPMI NP with multi-functional activatable theranostic capability. The nanodrug is facilely co-assembled from a prodrug CPMI and DSPE-mPEG2000. In a tumor microenvironment (TME) with excessive glutathione (GSH), CPMI undergoes a cascade reaction to generate the phototheranostic molecule NPMI and the chemodrug chlorambucil, simultaneously switching on the near-infrared (NIR) fluorescence, photothermal effect, and drug release. The photothermal conversion efficiency is as high as 52.2%. Moreover, NPMI exhibits an enhanced intermolecular π-π stacking effect, leading to significant size-enlargement of the nanodrug and prolonged tumor retention. Due to TME-activation, the strong in vivo fluorescence signal of the tumor can be observed 144 h post injection with a high signal-to-noise ratio of up to 17. The enhanced tumor inhibition efficiency of the nanodrug is confirmed through activatable chemo-photothermal therapy. This work paves the way for the design of activatable phototheranostic agents for accurate cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Hongtao Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Bingcheng Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xian Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jie Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
31
|
Li Y, Liang H, Zhang C, Qiu Y, Wang D, Wang H, Chen A, Hong C, Wang L, Wang H, Hu B. Ophthalmic Solution of Smart Supramolecular Peptides to Capture Semaphorin 4D against Diabetic Retinopathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203351. [PMID: 36437109 PMCID: PMC9875641 DOI: 10.1002/advs.202203351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Diabetic retinopathy (DR) is the leading cause of vision loss in working age population. Intravitreal injection of anti-VEGF antibody is widely used in clinical practice. However, about 27% of patients show poor response to anti-VEGF therapy and about 50% of these patients continue to have macular thickening. Frequent intravitreal injections of antibody may increase the chance of endophthalmitis and cause visual loss or even blindness once happened. Therefore, there is a greatly urgent need for novel noninvasive target to treat DR clinically. Here, the formulation of a smart supramolecular peptide (SSP) eye drop for DR treatment that is effective via specifically identifying and capturing soluble semaphorin 4D (sSema4D), a strongly pro-angiogenesis and exudates factor, is reported. The SSP nanostructures encapsulate sSema4D so that all biological effects mediated by three receptors of sSema4D are inhibited, thereby significantly alleviating pathological retinal angiogenesis and exudates in DR. Moreover, it is found that combination of SSPs eye drop and anti-VEGF injection shows better therapeutic effect over anti-VEGF treatment alone. Overall, SSP eye drop provide an alternative and effective method for noninvasive treatment for DR.
Collapse
Affiliation(s)
- Ya‐Nan Li
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Hong‐Wen Liang
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST)Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100190China
| | - Chun‐Lin Zhang
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yan‐Mei Qiu
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - David Wang
- Neurovascular DivisionDepartment of NeurologyBarrow Neurological InstituteSaint Joseph's Hospital and Medical CenterPhoenixAZ85013USA
| | - Hai‐Ling Wang
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - An‐Qi Chen
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Can‐Dong Hong
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Lei Wang
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST)Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100190China
| | - Hao Wang
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST)Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100190China
| | - Bo Hu
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
32
|
Bassan GA, Marchesan S. Peptide-Based Materials That Exploit Metal Coordination. Int J Mol Sci 2022; 24:ijms24010456. [PMID: 36613898 PMCID: PMC9820281 DOI: 10.3390/ijms24010456] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Metal-ion coordination has been widely exploited to control the supramolecular behavior of a variety of building blocks into functional materials. In particular, peptides offer great chemical diversity for metal-binding modes, combined with inherent biocompatibility and biodegradability that make them attractive especially for medicine, sensing, and environmental remediation. The focus of this review is the last 5 years' progress in this exciting field to conclude with an overview of the future directions that this research area is currently undertaking.
Collapse
|
33
|
Lin F, Jia C, Wu FG. Intracellular Enzyme-Instructed Self-Assembly of Peptides (IEISAP) for Biomedical Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196557. [PMID: 36235094 PMCID: PMC9571778 DOI: 10.3390/molecules27196557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/13/2022]
Abstract
Despite the remarkable significance and encouraging breakthroughs of intracellular enzyme-instructed self-assembly of peptides (IEISAP) in disease diagnosis and treatment, a comprehensive review that focuses on this topic is still desirable. In this article, we carefully review the advances in the applications of IEISAP, including the development of various bioimaging techniques, such as fluorescence imaging, photoacoustic imaging, magnetic resonance imaging, positron-emission tomography imaging, radiation imaging, and multimodal imaging, which are successfully leveraged in visualizing cancer tissues and cells, bacteria, and enzyme activity. We also summarize the utilization of IEISAP in disease treatments, including anticancer, antibacterial, and antiinflammation applications, among others. We present the design, action modes, structures, properties, functions, and performance of IEISAP materials, such as nanofibers, nanoparticles, nanoaggregates, and hydrogels. Finally, we conclude with an outlook towards future developments of IEISAP materials for biomedical applications. It is believed that this review may foster the future development of IEISAP with better performance in the biomedical field.
Collapse
|
34
|
Wang L, Li C, Wang J, Yang G, Lv Y, Fu B, Jian L, Ma J, Yu J, Yang Z, Wu P, Li G, Liu X, Kang Z, Wang Z, Wang L, Wang H, Xu W. Transformable ECM Deprivation System Effectively Suppresses Renal Cell Carcinoma by Reversing Anoikis Resistance and Increasing Chemotherapy Sensitivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203518. [PMID: 36004775 DOI: 10.1002/adma.202203518] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Extracellular matrix (ECM) is crucial in various biological functions during tumor progression, including induction of anoikis resistance and cell adhesion-mediated drug resistance (CAM-DR). Fibronectin (FN) is a vital ECM component with direct regulatory effects on ECM-mediated anoikis resistance and CAM-DR, making it an attractive and innovative therapeutic target for depriving ECM in tumor tissue. Herein, an ECM deprivation system (EDS) is developed based on FN targeting self-assembly peptide for constructing nanofibers in the ECM of renal cell carcinoma (RCC), which contributes to: i) targeting and recognizing FN to form nanofibers for long-term retention in ECM, ii) reversing anoikis resistance via arresting the FN signaling pathway, and iii) serving as a drug-loading platform for sensitizing chemotherapy by ameliorating CAM-DR. The results reveal that EDS significantly reverses anoikis resistance of RCC cells by inhibiting the phosphorylation of FAK, a positive regulator of the FN signaling pathway. Meanwhile, EDS serves as a chemotherapy-sensitizer of cancer, exerting significant synergistic effects with doxorubicin (DOX). In vivo validation experiments show that EDS effectively suppresses metastasis and tumor growth with chemotherapy resistance. Collectively, the innovative EDS notably inhibits the tumor-promoting effect of ECM and may provide a novel approach for suppressing ECM and enhancing chemo-drug sensitivity.
Collapse
Affiliation(s)
- Lu Wang
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Cong Li
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Jiaqi Wang
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yulin Lv
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Bo Fu
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Lingrui Jian
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Jinpeng Ma
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Jiaao Yu
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Zongzheng Yang
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Peng Wu
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Guangbin Li
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Xiao Liu
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Zhijian Kang
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Ziqi Wang
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Lei Wang
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Wanhai Xu
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| |
Collapse
|
35
|
Xu Y, Wang H, Qiao Z. Precise Control of Self‐Assembly in Vivo Based on Polymer‐Peptide Conjugates. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yin‐Sheng Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100190 China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100190 China
| | - Zeng‐Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
36
|
Wang J, Wang X, Yang K, Hu S, Wang W. Self-Assembly of Small Organic Molecules into Luminophores for Cancer Theranostic Applications. BIOSENSORS 2022; 12:683. [PMID: 36140068 PMCID: PMC9496225 DOI: 10.3390/bios12090683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022]
Abstract
Self-assembled biomaterials have been widely explored for real-time fluorescence imaging, imaging-guided surgery, and targeted therapy for tumors, etc. In particular, small molecule-based self-assembly has been established as a reliable strategy for cancer theranostics due to the merits of small-sized molecules, multiple functions, and ease of synthesis and modification. In this review, we first briefly introduce the supramolecular chemistry of small organic molecules in cancer theranostics. Then, we summarize and discuss advanced small molecule-based self-assembly for cancer theranostics based on three types, including peptides, amphiphilic molecules, and aggregation-induced emission luminogens. Finally, we conclude with a perspective on future developments of small molecule-based self-assembled biomaterials integrating diagnosis and therapy for biomedical applications. These applications highlight the opportunities arising from the rational design of small organic molecules with self-assembly properties for precision medicine.
Collapse
Affiliation(s)
- Jing Wang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 400000, China
| | - Xueliang Wang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 400000, China
| | - Kai Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Sijun Hu
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Wanhe Wang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 400000, China
| |
Collapse
|
37
|
Wu B, Zhong Y, Chen J, Pan X, Fan X, Chen P, Fu C, Ou C, Chen M. A dual-targeting peptide facilitates targeting anti-inflammation to attenuate atherosclerosis in ApoE -/- mice. Chem Commun (Camb) 2022; 58:8690-8693. [PMID: 35833251 DOI: 10.1039/d2cc01457b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a peptidic dual-targeting drug delivery platform (integrins targeting and self-assembly instructed by matrix metalloproteinases) towards inflamed endothelial cells, which improved the anti-inflammatory ability of the loaded drug (i.e., puerarin) in vitro and thus improved the antiatherogenic effect of the loaded drug (i.e., puerarin) in vivo.
Collapse
Affiliation(s)
- Bo Wu
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| | - Yuanzhi Zhong
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| | - Jinmin Chen
- Cardiovascular Department of The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Xianmei Pan
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| | - Xianglin Fan
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| | - Peier Chen
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| | - Chenxing Fu
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| | - Caiwen Ou
- Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523059, P. R. China
| | - Minsheng Chen
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| |
Collapse
|
38
|
Lin S, Zhang Q, Li S, Qin X, Cai X, Wang H. Tetrahedral framework nucleic acids-based delivery promotes intracellular transfer of healing peptides and accelerates diabetic would healing. Cell Prolif 2022; 55:e13279. [PMID: 35810322 PMCID: PMC9436915 DOI: 10.1111/cpr.13279] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
Objectives Peptide‐based therapeutics are natural candidates to desirable wound healing. However, enzymatic surroundings largely limit its stability and bioavailability. Here, we developed a tetrahedral framework nucleic acids(tFNA)‐based peptide delivery system, that is, p@tFNAs, to address deficiencies of healing peptide stability and intracellular delivery in diabetic wound healing. Materials and Methods AGEs (advanced glycation end products) were used to treat endothelial cell to simulate cell injury in diabetic microenvironment. The effects and related mechanisms of p@tFNAs on endothelial cell proliferation, migration, angiogenesis and ROS (reactive oxygen species) production have been comprehensively studied. The wound healing model in diabetic mice was photographically and histologically investigated in vivo. Results Efficient delivery of healing peptide by the framework(tFNA) was verified. p@tFNAs helped overcome the angiogenic obstacles induced by AGEs via ERK1/2 phosphorylation. In the meantime, p@tFNA exhibited its antioxidative property to achieve ROS balance. As a result, p@tFNA improved angiogenesis and diabetic wound healing in vitro and in vivo. Conclusions Our findings demonstrate that p@tFNA could be a novel therapeutic strategy for diabetic wound healing. Moreover, a new method for intracellular delivery of peptides was also constructed.
Collapse
Affiliation(s)
- Shiyu Lin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Qi Zhang
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Qin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huiming Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| |
Collapse
|
39
|
Wang XJ, Cheng J, Zhang LY, Zhang JG. Self-assembling peptides-based nano-cargos for targeted chemotherapy and immunotherapy of tumors: recent developments, challenges, and future perspectives. Drug Deliv 2022; 29:1184-1200. [PMID: 35403517 PMCID: PMC9004497 DOI: 10.1080/10717544.2022.2058647] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Xue-Jun Wang
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, China
| | - Jian Cheng
- General Surgery, Cancer Center, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital of Hangzhou Medical College), Hangzhou, China
| | - Le-Yi Zhang
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, China
| | - Jun-Gang Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital of Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
40
|
Song Y, Li M, Song N, Liu X, Wu G, Zhou H, Long J, Shi L, Yu Z. Self-Amplifying Assembly of Peptides in Macrophages for Enhanced Inflammatory Treatment. J Am Chem Soc 2022; 144:6907-6917. [PMID: 35388694 DOI: 10.1021/jacs.2c01323] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Enzyme-regulated in situ self-assembly of peptides represents one versatile strategy in the creation of theranostic agents, which, however, is limited by the strong dependence on enzyme overexpression. Herein, we reported the self-amplifying assembly of peptides precisely in macrophages associated with enzyme expression for improving the anti-inflammatory efficacy of conventional drugs. The self-amplifying assembling system was created via coassembling an enzyme-responsive peptide with its derivative functionalized with a protein ligand. Reduction of the peptides by the enzyme NAD(P)H quinone dehydrogenase 1 (NQO1) led to the formation of nanofibers with high affinity to the protein, thereby facilitating NQO1 expression. The improved NQO1 level conversely promoted the assembly of the peptides into nanofibers, thus establishing an amplifying relationship between the peptide assembly and the NQO1 expression in macrophages. Utilization of the amplifying assembling system as vehicles for drug dexamethasone allowed for its passive targeting delivery to acute injured lungs. Both in vitro and in vivo studies confirmed the capability of the self-amplifying assembling system to enhance the anti-inflammatory efficacy of dexamethasone via simultaneous alleviation of the reactive oxygen species side effect and downregulation of proinflammatory cytokines. Our findings demonstrate the manipulation of the assembly of peptides in living cells with a regular enzyme level via a self-amplification process, thus providing a unique strategy for the creation of supramolecular theranostic agents in living cells.
Collapse
Affiliation(s)
- Yanqiu Song
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mingming Li
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Na Song
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xin Liu
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Guangyao Wu
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hao Zhou
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiafu Long
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Linqi Shi
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhilin Yu
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
41
|
Gu L, Duan Z, Chen X, Li X, Luo Q, Bhamra A, Pan D, Zhu H, Tian X, Chen R, Gu Z, Zhang H, Qian Z, Gong Q, Luo K. A Transformable Amphiphilic and Block Polymer-Dendron Conjugate for Enhanced Tumor Penetration and Retention with Cellular Homeostasis Perturbation via Membrane Flow. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200048. [PMID: 35170102 DOI: 10.1002/adma.202200048] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/04/2022] [Indexed: 02/05/2023]
Abstract
Efficient penetration and retention of therapeutic agents in tumor tissues can be realized through rational design of drug delivery systems. Herein, a polymer-dendron conjugate, POEGMA-b-p(GFLG-Dendron-Ppa) (GFLG-DP), is presented, which allows a cathepsin-B-triggered stealthy-to-sticky structural transformation. The compositions and ratios are optimized through dissipative particle dynamics simulations. GFLG-DP displays tumor-specific transformation and the consequently released dendron-Ppa is found to effectively accumulate on the tumor cell membrane. The interaction between the dendron-Ppa and the tumor cell membrane results in intracellular and intercellular transport via membrane flow, thus achieving efficient deep penetration and prolonged retention of therapeutic agents in the solid tumor tissues. Meanwhile, the interaction of dendron-Ppa with the endoplasmic reticulum disrupts cell homeostasis, making tumor cells more vulnerable and susceptible to photodynamic therapy. This platform represents a versatile approach to augmenting the tumor therapeutic efficacy of a nanomedicine via manipulation of its interactions with tumor membrane systems.
Collapse
Affiliation(s)
- Lei Gu
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Zhenyu Duan
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Xiaoting Chen
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Xiaoling Li
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Qiang Luo
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Apanpreet Bhamra
- Department of Chemical Engineering Imperial College London South Kensington Campus London SW7 2AZ UK
| | - Dayi Pan
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Hongyan Zhu
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Xiaohe Tian
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| | - Rongjun Chen
- Department of Chemical Engineering Imperial College London South Kensington Campus London SW7 2AZ UK
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Hu Zhang
- Amgen Bioprocessing Centre Keck Graduate Institute Claremont CA 91711 USA
| | - Zhiyong Qian
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| |
Collapse
|
42
|
Sun M, Wang C, Lv M, Fan Z, Du J. Intracellular Self-Assembly of Peptides to Induce Apoptosis against Drug-Resistant Melanoma. J Am Chem Soc 2022; 144:7337-7345. [PMID: 35357824 DOI: 10.1021/jacs.2c00697] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Biosynthesis has been a diverse toolbox to develop bioactive molecules and materials, especially for fabricating modified peptides and their assemblies induced by enzymes. Although desired chemical structures and nanoarchitectures have been achieved, the subsequent interferences of peptide assemblies with organelles and the cellular pathways still remain unsolved important challenges. Herein, we developed a new tripeptide, phenylalanine-phenylalanine-tyrosine (Phe-Phe-Tyr, or FFY), which can be intracellularly oxidized and in situ self-assemble into nanoparticles with excellent interference capability with microtubules and ultimately reverse the drug resistance of melanoma. With the catalysis of tyrosinase, FFY was first oxidized to a melanin-like FFY dimer (mFFY) with a diquinone structure for further self-assembling into mFFY assemblies, which could inhibit the self-polymerization of tubulin to induce severe G2/M arrest (13.9% higher than control). Afterward, mitochondrial dysfunction was also induced for overproduction of cleaved caspase 3 (3.1 times higher than control) and cleaved PARP (6.3 times higher), achieving a high level of resistant reversing without chemotherapeutic drugs. In vivo studies showed that the resistant melanoma tumor volumes were reduced by 87.4% compared to control groups after FFY treatment by peritumoral injections. Overall, this tyrosinase-induced tripeptide assembly has been demonstrated with effective intrinsic apoptosis against drug-resistant melanoma, providing a new insight into utilizing biomolecules to interfere with organelles to activate certain apoptosis pathways for treatment of drug-resistant cancer.
Collapse
Affiliation(s)
- Min Sun
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Congyu Wang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Mingchen Lv
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Zhen Fan
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.,Department of Gynaecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Institute for Advanced Study, Tongji University, Shanghai 200092, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.,Department of Gynaecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| |
Collapse
|
43
|
Liu Q, Jin B, Li Q, Yang H, Luo Y, Li X. Self-sorting assembly of artificial building blocks. SOFT MATTER 2022; 18:2484-2499. [PMID: 35266949 DOI: 10.1039/d2sm00153e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Self-assembly to build high-level structures, which is ubiquitous in living systems, has captured the imagination of scientists, striving to emulate the intricacy, homogeneity and versatility of the naturally occurring systems, and to pursue a similar level of organization in artificial building blocks. In particular, self-sorting assembly in multicomponent systems, based on the spontaneous recognition and consequent spatial aggregation of the same or interactive building units, is able to realize very complicated assembly behaviours, and usually results in multiple well-ordered products or hierarchical structures in a one-step manner. This highly efficient assembly strategy has attracted tremendous research attention in recent years, and numerous examples have been reported in artificial systems, particularly with supramolecular and polymeric building blocks. In the current review, we summarize the progress in recent years, and classify them into five main categories, based on their working mechanisms or principles. With the review of these strategies, we hope to provide not only some deep insights into this field, but also and more importantly, useful thoughts in the design and fabrication of self-sorting systems in the future.
Collapse
Affiliation(s)
- Qianwei Liu
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Bixin Jin
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Qin Li
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Huanzhi Yang
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Yunjun Luo
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
- Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of China, Beijing 100081, People's Republic of China
| | - Xiaoyu Li
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
- Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of China, Beijing 100081, People's Republic of China
- Experimental Centre of Advanced Materials, Beijing Institute of China, Beijing 100081, People's Republic of China
| |
Collapse
|
44
|
Liu Y, Zhang L, Chang R, Yan X. Supramolecular cancer photoimmunotherapy based on precise peptide self-assembly design. Chem Commun (Camb) 2022; 58:2247-2258. [PMID: 35083992 DOI: 10.1039/d1cc06355c] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Combinational photoimmunotherapy (PIT) is considered to be an ideal strategy for the treatment of highly recurrent and metastatic cancer, because it can ablate the primary tumor and provide in situ an autologous tumor vaccine to induce the host immune response, ultimately achieving the goal of controlling tumor growth and distal metastasis. Significant efforts have been devoted to enhancing the immune response caused by phototherapy-eliminated tumors. Recently, supramolecular PIT nanoagents based on precise peptide self-assembly design have been employed to improve the efficacy of photoimmunotherapy by utilizing the stability, targeting capability and flexibility of drugs, increasing tumor immunogenicity and realizing the synergistic amplification of immune effects through multiple pathways and collaborative strategy. This review summarizes peptide-based supramolecular PIT nanoagents for phototherapy-synergized cancer immunotherapy and its progress in enhancing the effect of photoimmunotherapy, especially focusing on the design of peptide-based PIT nanoagents, the progress of bioactive peptides combined photoimmunotherapy, and the synergistic immune-response mechanism.
Collapse
Affiliation(s)
- Yamei Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
| | - Lu Zhang
- State Key Laboratory of Polymer Physics & Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
| | - Rui Chang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China.,Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China.
| |
Collapse
|
45
|
Zhao J, Song W, Tang Z, Chen X. Macromolecular Effects in Medicinal Chemistry ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Luo Z, Gao Y, Duan Z, Yi Y, Wang H. Mitochondria-Targeted Self-Assembly of Peptide-Based Nanomaterials. Front Bioeng Biotechnol 2021; 9:782234. [PMID: 34900970 PMCID: PMC8664541 DOI: 10.3389/fbioe.2021.782234] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/01/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are well known to serve as the powerhouse for cells and also the initiator for some vital signaling pathways. A variety of diseases are discovered to be associated with the abnormalities of mitochondria, including cancers. Thus, targeting mitochondria and their metabolisms are recognized to be promising for cancer therapy. In recent years, great efforts have been devoted to developing mitochondria-targeted pharmaceuticals, including small molecular drugs, peptides, proteins, and genes, with several molecular drugs and peptides enrolled in clinical trials. Along with the advances of nanotechnology, self-assembled peptide-nanomaterials that integrate the biomarker-targeting, stimuli-response, self-assembly, and therapeutic effect, have been attracted increasing interest in the fields of biotechnology and nanomedicine. Particularly, in situ mitochondria-targeted self-assembling peptides that can assemble on the surface or inside mitochondria have opened another dimension for the mitochondria-targeted cancer therapy. Here, we highlight the recent progress of mitochondria-targeted peptide-nanomaterials, especially those in situ self-assembly systems in mitochondria, and their applications in cancer treatments.
Collapse
Affiliation(s)
- Zhen Luo
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Yujuan Gao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Zhongyu Duan
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Yu Yi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
47
|
Sun X, Dong Y, Liu Y, Song N, Li F, Yang D. Self-assembly of artificial architectures in living cells — design and applications. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1091-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Li RS, Liu J, Shi H, Hu PP, Wang Y, Gao PF, Wang J, Jia M, Li H, Li YF, Mao C, Li N, Huang CZ. Transformable Helical Self-Assembly for Cancerous Golgi Apparatus Disruption. NANO LETTERS 2021; 21:8455-8465. [PMID: 34569805 DOI: 10.1021/acs.nanolett.1c03112] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Golgi apparatus is a major subcellular organelle responsible for drug resistance. Golgi apparatus-targeted nanomechanical disruption provides an attractive approach for killing cancer cells by multimodal mechanism and avoiding drug resistance. Inspired by the poisonous twisted fibrils in Alzheimer's brain tissue and enhanced rigidity of helical structure in nature, we designed transformable peptide C6RVRRF4KY that can self-assemble into nontoxic nanoparticles in aqueous medium but transformed into left-handed helical fibrils (L-HFs) after targeting and furin cleavage in the Golgi apparatus of cancer cells. The L-HFs can mechanically disrupt the Golgi apparatus membrane, resulting in inhibition of cytokine secretion, collapse of the cellular structure, and eventually death of cancer cells. Repeated stimulation of the cancers by the precursors causes no acquired drug resistance, showing that mechanical disruption of subcellular organelle is an excellent strategy for cancer therapy without drug resistance. This nanomechanical disruption concept should also be applicable to multidrug-resistant bacteria and viruses.
Collapse
Affiliation(s)
- Rong Sheng Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Jiahui Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
| | - Hu Shi
- School of Chemistry and Chemical Engineering and Institute of Molecular Science, Shanxi University, Taiyuan 030006, P.R. China
| | - Ping Ping Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Yao Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
| | - Peng Fei Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
| | - Jian Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
| | - Moye Jia
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Hongwei Li
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Yuan Fang Li
- Key Laboratory of Luminescence and Real-Time Analytical System, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Chengde Mao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 United States
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|
49
|
Zhou Y, Shen X, Cao Y. Activatable peptide-based nanoprobes for multimodal imaging in vivo. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/ac2a8e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
An H, Mamuti M, Wang X, Yao H, Wang M, Zhao L, Li L. Rationally designed modular drug delivery platform based on intracellular peptide self-assembly. EXPLORATION (BEIJING, CHINA) 2021; 1:20210153. [PMID: 37323217 PMCID: PMC10190849 DOI: 10.1002/exp.20210153] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/08/2021] [Indexed: 06/14/2023]
Abstract
Modulated molecular design-based intracellular self-assembly strategy has showed great potentiality in drug delivery, due to its assembling nature-resulted optimized drug biodistribution and metabolism. The modular designing concept endows the delivery system multiple functions, such as, selectivity and universality to improve the pharmacokinetics of loaded drugs. However, the accurate controlling of the self-assembling process in desired site to achieve optimal drug delivery is posed great challenges toward rational molecular design. Here, we fabricated a modulated drug-delivery system (MDS) through intracellular peptide self-assembly to realize effective drug delivery. MDS was designed based on modulated molecular designing strategy which contains five functional motifs and effectively transformed into fibrous nanostructures inside target cells by caspase3/7 hydrolysis directed in situ self-assembly. The experimental studies and molecular simulations were carried out to evaluate the successful construction and delivering efficacy of MDS. According to the experimental results and molecular simulation analysis, the percentage of solvent-exposed surface area of assembling modular (KLVFFAE), as well as its non-covalent interaction between four other modules synergeticly decide the solubility of molecules. The weak intramolecular forces of the peptide back bone, such as, hydrogen bond, as well as multivalent interactions of the side chains such as, salt bridge and hydrophobic interaction both contribute to the self-assembly of the molecules. The significant structural difference between delivering molecules optimize the system to adapt hydrophilic and hydrophobic drugs. Finally, the predicted drug delivery molecule specifically recognizes targeted cancer cell lines and self-assembles to form fibers intracellularly, resulting in prolonged drug retention and accumulation. The regular prediction and rational molecular design will benefit the further construction and optimization of modulated drug delivery platform.
Collapse
Affiliation(s)
- Hong‐Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST)BeijingChina
| | - Muhetaerjiang Mamuti
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST)BeijingChina
| | - Xiaofeng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy PhysicsChinese Academy of Sciences (CAS)BeijingChina
| | - Haodong Yao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy PhysicsChinese Academy of Sciences (CAS)BeijingChina
| | - Man‐Di Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST)BeijingChina
| | - Lina Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy PhysicsChinese Academy of Sciences (CAS)BeijingChina
| | - Li‐Li Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST)BeijingChina
| |
Collapse
|