1
|
Kirkebæk BS, Ali A, Quist-Jensen CA. Masked stereolithography and polymerization induced phase separation for 3D printing of membranes. Sci Rep 2025; 15:18776. [PMID: 40437027 PMCID: PMC12119815 DOI: 10.1038/s41598-025-03527-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 05/21/2025] [Indexed: 06/01/2025] Open
Abstract
Conventional polymeric membrane manufacturing faces significant limitations, including reliance on harsh chemicals, limited geometrical shapes (primarily flat sheets and hollow fibers), low resolution, and slow production speeds. This study introduces an innovative approach for 3D printing complex-shaped membranes with tailored properties, utilizing polymerization-induced phase separation (PIPS) and masked stereolithography (MSLA). The influence of processing parameters, including resin volume, irradiation duration, and temperature, on membrane characteristics-such as pore size, porosity, thickness, surface morphology, water permeability, and rejection rate- is systematically investigated. The findings indicate that this method can fabricate membranes with a wide range of pore sizes and porosities. The membrane architecture comprises interconnected nodules, the dimensions of which are contingent upon the processing conditions. Furthermore, the study demonstrates that PIPS facilitates the phase inversion of thermosets and the incorporation of environmentally friendly biobased solvents, thereby broadening the scope of membrane fabrication with novel polymers.
Collapse
Affiliation(s)
- Bastian Stiem Kirkebæk
- Center for Membrane Technology, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg East, 9220, Denmark
| | - Aamer Ali
- AAU Energy, Aalborg University, Pontoppidanstraede 111, Aalborg East, 9220, Denmark
| | - Cejna Anna Quist-Jensen
- Center for Membrane Technology, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg East, 9220, Denmark.
| |
Collapse
|
2
|
Scacchi A, Rigoni C, Haataja M, Timonen JVI, Sammalkorpi M. A coarse-grained model for aqueous two-phase systems: Application to ferrofluids. J Colloid Interface Sci 2025; 686:1135-1146. [PMID: 39933351 DOI: 10.1016/j.jcis.2025.01.256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 02/13/2025]
Abstract
Aqueous two-phase systems (ATPSs), phase-separating solutions of water soluble but mutually immiscible molecular species, offer fascinating prospects for selective partitioning, purification, and extraction. Here, we formulate a general Brownian dynamics based coarse-grained simulation model for an ATPS of two water soluble but mutually immiscible polymer species. Including additional solute species into the model is straightforward, which enables capturing the assembly and partitioning response of, e.g., nanoparticles (NPs), additional macromolecular species, or impurities in the ATPS. We demonstrate that the simulation model captures satisfactorily the phase separation, partitioning, and interfacial properties of an actual ATPS using a model ATPS in which a polymer mixture of dextran and polyethylene glycol (PEG) phase separates, and magnetic NPs selectively partition into one of the two polymeric phases. Phase separation and NP partitioning are characterized both via the computational model and experimentally, under different conditions. The simulation model captures the trends observed in the experimental system and quantitatively links the partitioning behavior to the component species interactions. Finally, the simulation model reveals that the ATPS interface fluctuations in systems with magnetic NPs as a partitioned species can be controlled by the magnetic field at length scales much smaller than those probed experimentally to date.
Collapse
Affiliation(s)
- Alberto Scacchi
- Department of Mechanical and Materials Engineering, University of Turku, Vesilinnantie 5, 20500 Turku, Finland; Department of Applied Physics, Aalto University, Konemiehentie 1, 02150 Espoo, Finland; Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
| | - Carlo Rigoni
- Department of Applied Physics, Aalto University, Konemiehentie 1, 02150 Espoo, Finland; Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Mikko Haataja
- Department of Mechanical and Aerospace Engineering, and Princeton Materials Institute (PMI), Princeton University, Princeton, NJ 08544, United States
| | - Jaakko V I Timonen
- Department of Applied Physics, Aalto University, Konemiehentie 1, 02150 Espoo, Finland; Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Maria Sammalkorpi
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| |
Collapse
|
3
|
Liu Q, Xiong J, Lin W, Liu J, Wan Y, Guo CF, Wang Q, Liu Z. Porous polymers: structure, fabrication and application. MATERIALS HORIZONS 2025; 12:2436-2466. [PMID: 39804097 DOI: 10.1039/d4mh01618a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The porous polymer is a common and fascinating category within the vast family of porous materials. It offers valuable features such as sufficient raw materials, easy processability, controllable pore structures, and adjustable surface functionality by combining the inherent properties of both porous structures and polymers. These characteristics make it an effective choice for designing functional and advanced materials. In this review, the structural features, processing techniques and application fields of the porous polymer are discussed comprehensively to present their current status and provide a valuable tutorial guide and help for researchers. Firstly, the basic classification and structural features of porous polymers are elaborated upon to provide a comprehensive analysis from a mesoscopic to macroscopic perspective. Secondly, several established techniques for fabricating porous polymers are introduced, including their respective basic principles, characteristics of the resulting pores, and applied scopes. Thirdly, we demonstrate application research of porous polymers in various emerging frontier fields from multiple perspectives, including pressure sensing, thermal control, electromagnetic shielding, acoustic reduction, air purification, water treatment, health management, and so on. Finally, the review explores future directions for porous polymers and evaluates their future challenges and opportunities.
Collapse
Affiliation(s)
- Qingxian Liu
- Department of Mechanical Engineering, Shantou University, Shantou, Guangdong, 515063, China.
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou, Guangdong, 515063, China
| | - Jinkui Xiong
- Department of Mechanical Engineering, Shantou University, Shantou, Guangdong, 515063, China.
| | - Wengui Lin
- Department of Mechanical Engineering, Shantou University, Shantou, Guangdong, 515063, China.
| | - Jinlong Liu
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yongbiao Wan
- Microsystem & Terahertz Research Center, Institute of Electronic Engineering, China Academy of Engineering Physics, Chengdu, Sichuan, 610200, China
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Quan Wang
- College of Engineering, Eastern Institute of Technology, Ningbo (EIT), Zhejiang, 315000, China
| | - Zhiguang Liu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| |
Collapse
|
4
|
Meng N, Hu Y, Zhang Y, Cheng N, Lin Y, Ding C, Chen Q, Fu S, Li Z, Wang X, Yu J, Ding B. Highly Permeable and Liquid-Repellent Textiles with Micro-Nano-Networks for Medical and Health Protection. NANO-MICRO LETTERS 2025; 17:208. [PMID: 40202548 PMCID: PMC11982006 DOI: 10.1007/s40820-025-01716-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/28/2025] [Indexed: 04/10/2025]
Abstract
Current protective clothing often lacks sufficient comfort to ensure efficient performance of healthcare workers. Developing protective textiles with high air and moisture permeability is a potential and effective solution to discomfort of medical protective clothing. However, realizing the facile production of a protective textile that combines safety and comfort remains a challenge. Herein, we report the fabrication of highly permeable protective textiles (HPPT) with micro/nano-networks, using non-solvent induced phase separation synergistically driven by CaCl2 and fluorinated polyurethane, combined with spraying technique. The HPPT demonstrates excellent liquid repellency and comfort, ensuring high safety and a dry microenvironment for the wearer. The textile exhibits not only a high hydrostatic pressure (12.86 kPa) due to its tailored small mean pore size (1.03 μm) and chemical composition, but also demonstrates excellent air permeability (14.24 mm s-1) and moisture permeability (7.92 kg m-2 d-1) owing to the rational combination of small pore size and high porosity (69%). The HPPT offers superior comfort compared to the commercially available protective materials. Additionally, we elucidated a molding mechanism synergistically inducted by diffusion-dissolution-phase separation. This research provides an innovative perspective on enhancing the comfort of medical protective clothing and offers theoretical support for regulating of pore structure during phase separations.
Collapse
Affiliation(s)
- Na Meng
- State Key Laboratory of Advanced Fiber Materials, College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Yuen Hu
- State Key Laboratory of Advanced Fiber Materials, College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China
| | - Yufei Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China
| | - Ningbo Cheng
- College of Fashion and Design, Donghua University, Shanghai, 200051, People's Republic of China
| | - Yanyan Lin
- State Key Laboratory of Advanced Fiber Materials, College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China
| | - Chengfeng Ding
- State Key Laboratory of Advanced Fiber Materials, College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China
| | - Qingyu Chen
- State Key Laboratory of Advanced Fiber Materials, College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China
| | - Shaoju Fu
- State Key Laboratory of Advanced Fiber Materials, College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China
| | - Zhaoling Li
- State Key Laboratory of Advanced Fiber Materials, College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China
| | - Xianfeng Wang
- State Key Laboratory of Advanced Fiber Materials, College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China.
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
5
|
Xu S, Ouyang Y, Qin Y, Chen D, Duan Z, Song D, Harries D, Xia F, Willner I, Huang F. Spatiotemporal dynamic and catalytically mediated reconfiguration of compartmentalized cyanuric acid/polyadenine DNA microdroplet condensates. Nat Commun 2025; 16:3352. [PMID: 40204808 PMCID: PMC11982331 DOI: 10.1038/s41467-025-58650-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
Native cells possess membrane-bound subcompartments, organelles, such as mitochondria and lysosomes, that intercommunicate and regulate cellular functions. Extensive efforts are directed to develop synthetic cells, or protocells, that replicate these structures and functions. Among these approaches, phase-separated coacervate microdroplets composed of polymers, polysaccharides, proteins, or nucleic acids are gaining interest as cell-mimicking systems. Particularly, compartmentalization of the synthetic protocell assemblies and the integration of functional constituents in the containments allowing signaling, programmed transfer of chemical agents, and spatiotemporal controlled catalytic transformations across the protocell subdomains, are challenging goals in developing artificial cells. Here, we report the assembly of compartmentalized, phase-separated cyanuric acid/polyadenine coacervate microdroplets. Hierarchical, co-centric compartmentalization is achieved through the dynamic and competitive spatiotemporal occupation of pre-engineered barcode domains within the polyadenine microdroplet framework by invading DNA strands. By encoding structural and functional information within these DNA-invaded compartments, the light-triggered, switchable reconfiguration of compartments, switchable catalytic reconfiguration of containments, and reversible aggregation/deaggregation of the compartmentalized microdroplets are demonstrated.
Collapse
Affiliation(s)
- Shijun Xu
- State Key Laboratory of Geomicrobiology and Environmental Changes, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Yu Ouyang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yunlong Qin
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Danlong Chen
- State Key Laboratory of Geomicrobiology and Environmental Changes, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Zhijuan Duan
- State Key Laboratory of Geomicrobiology and Environmental Changes, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Dongxing Song
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, Henan, China.
| | - Daniel Harries
- Institute of Chemistry, The Fritz Haber Research Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Fan Xia
- State Key Laboratory of Geomicrobiology and Environmental Changes, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China.
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Fujian Huang
- State Key Laboratory of Geomicrobiology and Environmental Changes, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China.
| |
Collapse
|
6
|
Zhang X, Sun N, Li J, He L, Li X, Li J, Zhang X, Gu H, Lu F. Thermoresponsive gel polymer electrolytes for smart rechargeable zinc-ion batteries. Chem Commun (Camb) 2025; 61:4511-4514. [PMID: 39992243 DOI: 10.1039/d4cc06723a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Thermoresponsive double-network hydrogels based on poly(N-isopropylacrylamide) (PNIPAM) with lower critical solution temperature (LCST) were developed to prevent the thermal runaway of rechargeable zinc-ion batteries (ZIBs) due to rapid, reversible, and intelligent blocking of the zinc ion transport channels at a specific trigger temperature.
Collapse
Affiliation(s)
- Xintong Zhang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570216, China.
| | - Na Sun
- College of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Jie Li
- Shandong University Hospital, Jinan 250100, China
| | - Lianwen He
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570216, China.
| | - Xia Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570216, China.
| | - Jiayi Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570216, China.
| | - Xiao Zhang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570216, China.
| | - Hui Gu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570216, China.
| | - Fei Lu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570216, China.
| |
Collapse
|
7
|
Li G, Yuan C, Yan X. Peptide-mediated liquid-liquid phase separation and biomolecular condensates. SOFT MATTER 2025; 21:1781-1812. [PMID: 39964249 DOI: 10.1039/d4sm01477d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Liquid-liquid phase separation (LLPS) is a cornerstone of cellular organization, driving the formation of biomolecular condensates that regulate diverse biological processes and inspire innovative applications. This review explores the molecular mechanisms underlying peptide-mediated LLPS, emphasizing the roles of intermolecular interactions such as hydrophobic effects, electrostatic interactions, and π-π stacking in phase separation. The influence of environmental factors, such as pH, temperature, ionic strength, and molecular crowding on the stability and dynamics of peptide coacervates is examined, highlighting their tunable properties. Additionally, the unique physicochemical properties of peptide coacervates, including their viscoelastic behavior, interfacial dynamics, and stimuli-responsiveness, are discussed in the context of their biological relevance and engineering potential. Peptide coacervates are emerging as versatile platforms in biotechnology and medicine, particularly in drug delivery, tissue engineering, and synthetic biology. By integrating fundamental insights with practical applications, this review underscores the potential of peptide-mediated LLPS as a transformative tool for advancing science and healthcare.
Collapse
Affiliation(s)
- Guangle Li
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Chengqian Yuan
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xuehai Yan
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
8
|
Seo H, Ryu WM, Jang J, Park S. Thermally drawn porous sutures for controlled drug release using thermally induced phase separation. MATERIALS HORIZONS 2025; 12:779-787. [PMID: 39660620 DOI: 10.1039/d4mh01429d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Surgical sutures have increasingly been developed to incorporate functionalities beyond wound closure, including the promotion of tissue regeneration and monitoring of tissue conditions. However, conventional surface treatment methods for inducing functionality to sutures have limitations, primarily due to restricted material integration and the inability to form complex internal morphologies. This study introduces a customizable porous (CP) suture fabricated through a combination of the thermal drawing process (TDP) and thermally induced phase separation (TIPS), resulting in a microscale porous structure. The CP suture developed via the TIPS-TDP overcomes the limitations of surface-coated drug delivery sutures by enabling controlled drug release. By engineering the TIPS-TDP, we produced CP sutures with tunable pore sizes, allowing precise control over drug release profiles and degradation rates suitable for various therapeutic applications. Additionally, the versatility of the TIPS-TDP facilitates the integration of multiple materials, supporting the development of innovative functional sutures capable of dual-drug delivery. This platform demonstrates its potential in advancing the fabrication of complex, multi-functional sutures for extensive biomedical applications.
Collapse
Affiliation(s)
- Hyeonyeob Seo
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Woo Mi Ryu
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Jaehyun Jang
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Seongjun Park
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- School of Transdisciplinary Innovations, Seoul National University, Seoul 03080, Republic of Korea
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
9
|
Jiang Y, Wong ZM, Yan H, Tan TL, Mirsaidov U. Revealing Multistep Phase Separation in Metal Alloy Nanoparticles with In Situ Transmission Electron Microscopy. ACS NANO 2025; 19:3886-3894. [PMID: 39807967 DOI: 10.1021/acsnano.4c16095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Phase separation plays a crucial role in many natural and industrial processes, such as the formation of clouds and minerals and the distillation of crude oil. In metals and alloys, phase separation is an important approach often utilized to improve their mechanical strength for use in construction, automobile, and aerospace manufacturing. Despite its importance in many processes, the atomic details of phase separation are largely unknown. In particular, it is unclear how a different crystal phase emerges from the parent alloy. Here, using real-time in situ transmission electron microscopy, we describe the stages of the phase separation in face-centered cubic (fcc) AuRu alloy nanoparticles, resulting in a Ru phase with a hexagonal close-packed (hcp) crystal structure. Our observation reveals that the hcp Ru phase forms in two steps: the spinodal decomposition of the alloy produces metastable fcc Ru clusters, and as they grow larger, these clusters transform into hcp Ru domains. Our calculations indicate that the primary reason for the fcc-to-hcp transformation is the size-dependent competition between the interfacial and bulk energies of Ru domains. These insights into elusive, transient steps in the phase separation of alloys can aid in engineering nanomaterials with unconventional phases.
Collapse
Affiliation(s)
- Yingying Jiang
- Department of Physics, National University of Singapore, Singapore 117551, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Zicong Marvin Wong
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| | - Hongwei Yan
- Department of Physics, National University of Singapore, Singapore 117551, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Teck Leong Tan
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| | - Utkur Mirsaidov
- Department of Physics, National University of Singapore, Singapore 117551, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore 117546, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|
10
|
Majewski M, Qiu S, Ronsin O, Lüer L, Le Corre VM, Du T, Brabec CJ, Egelhaaf HJ, Harting J. Simulation of perovskite thin layer crystallization with varying evaporation rates. MATERIALS HORIZONS 2025; 12:555-564. [PMID: 39495118 DOI: 10.1039/d4mh00957f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Perovskite solar cells (PSC) are promising potential competitors to established photovoltaic technologies due to their superior efficiency and low-cost solution processability. However, the limited understanding of the crystallization behaviour hinders the technological transition from lab-scale cells to modules. In this work, advanced phase field (PF) simulations of solution-based film formation are used for the first time to obtain mechanistic and morphological information that is experimentally challenging to access. The well-known transition from a film with many pinholes, for a low evaporation rate, to a smooth film, for high evaporation rates, is recovered in simulation and experiment. The simulation results provide us with an unprecedented understanding of the crystallization process. They show that supersaturation and crystallization confinement effects determine the final morphology. The ratio of evaporation to crystallization rates turns out to be the key parameter driving the final morphology. Increasing this ratio is a robust design rule for obtaining high-quality films, which we expect to be valid independently of the material type.
Collapse
Affiliation(s)
- M Majewski
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (HIERN), Forschungszentrum Jülich, Fürther Straße 248, 90429 Nürnberg, Germany.
| | - S Qiu
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - O Ronsin
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (HIERN), Forschungszentrum Jülich, Fürther Straße 248, 90429 Nürnberg, Germany.
| | - L Lüer
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - V M Le Corre
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - T Du
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (HIERN), Forschungszentrum Jülich, Immerwahrstraße 2, 91058 Erlangen, Germany
| | - C J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (HIERN), Forschungszentrum Jülich, Immerwahrstraße 2, 91058 Erlangen, Germany
| | - H-J Egelhaaf
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (HIERN), Forschungszentrum Jülich, Immerwahrstraße 2, 91058 Erlangen, Germany
| | - J Harting
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (HIERN), Forschungszentrum Jülich, Fürther Straße 248, 90429 Nürnberg, Germany.
- Department of Chemical and Biological Engineering and Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fürther Straße 248, 90429 Nürnberg, Germany
| |
Collapse
|
11
|
Zhang F, Xu Y, Zhao G, Chen Z, Li C, Yan Z. Multifunctional Porous Soft Bioelectronics. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2025; 82:123-138. [PMID: 40212730 PMCID: PMC11981227 DOI: 10.1016/j.mattod.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Soft bioelectronics, seamlessly interfacing with the human body to enable both recording and modulation of curvilinear biological tissues and organs, have significantly driven fields such as digital healthcare, human-machine interfaces, and robotics. Nonetheless, intractable challenges persist due to the onerous demand for imperceptible, burden-free, and user-centric comfortable bioelectronics. Porous soft bioelectronics is a new way to a library of imperceptible bioelectronic systems, that form natural interfaces with the human body. In this review, we provide an overview of the development and recent advances in multifunctional porous engineered soft bioelectronics, aiming to bridge the gap between living biotic and stiff abiotic systems. We first discuss strategies for fabricating porous, soft, and stretchable bioelectronic materials, emphasizing the concept of materials-level porous engineering for breathable and imperceptible bioelectronics. Next, we summarize wearable bioelectronics devices and multimodal systems with porous configurations designed for on-skin healthcare applications. Moving beneath the skin, we discuss implantable devices and systems enabled by porous bioelectronics with tissue-like compliance. Finally, existing challenges and translational gaps are also proposed to usher further research efforts towards realizing practical and clinical applications of porous bioelectronic systems; thus, revolutionizing conventional healthcare and medical practices and opening up unprecedented opportunities for long-term, imperceptible, non-invasive, and human-centric healthcare networks.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
| | - Yadong Xu
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
| | - Ganggang Zhao
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
| | - Zehua Chen
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
| | - Can Li
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Zheng Yan
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
12
|
Wang F, Zhang H, Nestler B. Wetting Phenomena: Line Tension and Gravitational Effect. PHYSICAL REVIEW LETTERS 2024; 133:246201. [PMID: 39750331 DOI: 10.1103/physrevlett.133.246201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/05/2024] [Accepted: 10/24/2024] [Indexed: 01/04/2025]
Abstract
An apparent contact angle is formed when a droplet is deposited on a solid substrate. Young's law has been employed to describe the equilibrium contact angle. Often in experiments, the equilibrium contact angle deviates from Young's law and depends on the volume of the droplet, known as the line tension effect. However, the physical origin of the line tension is quite controversial. Especially, the sign and the quantity of the line tension spanning 6 orders of magnitude are unsolved problems. Here, we quantify the line energy in terms of physical parameters and demonstrate that both positive and negative line tensions exist. The results are quantitatively compared with existing experiments as well as with previous theories.
Collapse
Affiliation(s)
| | | | - Britta Nestler
- Institute for Applied Materials - Microstructure Modelling and Simulation (IAM-MMS), Karlsruhe Institute of Technology (KIT), Strasse am Forum 7, 76131 Karlsruhe, Germany; Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; and Institute of Digital Materials Science, Karlsruhe University of Applied Sciences, Moltkestrasse 30, 76133 Karlsruhe, Germany
| |
Collapse
|
13
|
Furuki T, Togo A, Usuda H, Nobeyama T, Hirano A, Shiraki K. Monovalent Ion Effect on Liquid-Liquid Phase Separation of Aqueous Polyphosphate-Salt Mixtures. J Phys Chem B 2024; 128:11435-11440. [PMID: 39508447 DOI: 10.1021/acs.jpcb.4c03457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Polyphosphate (polyP) is one of the most conserved biomacromolecules and can form aggregates, such as polyP granules in bacteria, which are generated through liquid-liquid phase separation (LLPS). Studies have examined the mechanism of polyP aggregation using LLPS systems containing artificial polyP molecules as aggregation system models, where LLPS is typically induced by multivalent salts and polyelectrolytes. Although the typical concentrations of monovalent ions in living cells are approximately 100 times higher than those of divalent ions, the effects of monovalent ions on the LLPS of polyP solutions are little known. This study demonstrated that submolar NaCl induces LLPS of polyP solutions, whereas other monovalent salts did not induce LLPS at the same concentrations. Small-angle X-ray scattering measurements revealed that NaCl significantly stabilizes the intermolecular association of polyP, inducing LLPS. These findings suggest that the modulation of monovalent ion concentrations is an underlying mechanism of polyP aggregate formation and deformation within living cells.
Collapse
Affiliation(s)
- Tomohiro Furuki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Azusa Togo
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Hatsuho Usuda
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Tomohiro Nobeyama
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Atsushi Hirano
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
14
|
Zhang R, Mao S, Haataja MP. Chemically reactive and aging macromolecular mixtures. II. Phase separation and coarsening. J Chem Phys 2024; 161:184903. [PMID: 39526744 DOI: 10.1063/5.0196794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
In a companion paper, we put forth a thermodynamic model for complex formation via a chemical reaction involving multiple macromolecular species, which may subsequently undergo liquid-liquid phase separation and a further transition into a gel-like state. In the present work, we formulate a thermodynamically consistent kinetic framework to study the interplay between phase separation, chemical reaction, and aging in spatially inhomogeneous macromolecular mixtures. A numerical algorithm is also proposed to simulate domain growth from collisions of liquid and gel domains via passive Brownian motion in both two and three spatial dimensions. Our results show that the coarsening behavior is significantly influenced by the degree of gelation and Brownian motion. The presence of a gel phase inside condensates strongly limits the diffusive transport processes, and Brownian motion coalescence controls the coarsening process in systems with high area/volume fractions of gel-like condensates, leading to the formation of interconnected domains with atypical domain growth rates controlled by size-dependent translational and rotational diffusivities.
Collapse
Affiliation(s)
- Ruoyao Zhang
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Sheng Mao
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Mikko P Haataja
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
- Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
15
|
Chen C, Amona FM, Chen J, Chen X, Ke Y, Tang S, Xu J, Chen X, Pang Y. Multifunctional SEBS/AgNWs Nanocomposite Films with Antimicrobial, Antioxidant, and Anti-Inflammatory Properties Promote Infected Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61751-61764. [PMID: 39479988 DOI: 10.1021/acsami.4c15649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Wound healing is a complex biological process that can trigger inflammation and oxidative stress and impair myofibrillogenesis and angiogenesis. Several advanced wound-dressing nanocomposite materials have been designed to address these issues. Here, we designed a new multifunctional styrene-ethylene-butylene-styrene/silver nanowire (SEBS/AgNWs)-based nanocomposite film with antimicrobial, antioxidant, and anti-inflammatory properties to promote wound healing. The porous morphological structure of SEBS/AgNWs enhances their antimicrobial, antioxidant, and anti-inflammatory properties. SEBS/AgNWs significantly inhibited the growth of Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Escherichia coli strains, effectively wiping out ABTS•+, DPPH•, hydrogen peroxide (H2O2), and hydroxyl (•OH) radicals, showing their effective ROS-scavenging properties. It further showed significant antioxidant properties by increasing the levels of enzyme-like catalase (CAT), superoxide dismutase (SOD), and glutathione (GSH), while decreasing malonaldehyde (MDA) levels. Additionally, SEBS/AgNWs reduced the expression of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), while increasing levels of transforming growth factor- β (TGF-β), vascular endothelial growth factor-A (VEGF), and CD31 in wound healing. This suggests that applying a multifunctional nanoplatform based on SEBS/AgNWs could enhance wound healing and improve patient outcomes in wound care management.
Collapse
Affiliation(s)
- Chen Chen
- College of Hydraulic Engineering Jiangsu Vocational Institute of Architectural Technology, Xuzhou 221000, China
- College of Water Resources and Hydropower Engineering, Yangzhou University, Yangzhou 225009, China
| | - Fructueux Modeste Amona
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Junhao Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xiaohan Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Yongding Ke
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Shuangcheng Tang
- College of Water Resources and Hydropower Engineering, Yangzhou University, Yangzhou 225009, China
| | - Jinming Xu
- College of Water Resources and Hydropower Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xi Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Yipeng Pang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
16
|
Li T, Ding Y, Teng C, Zheng Y, Wang X, Zhou D. Spray-Coated Ultrathin and Porous Films for Physiological Sensing and Force Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60625-60632. [PMID: 39453918 DOI: 10.1021/acsami.4c11179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Epidermal electronics employed on human skin for the long term require good breathability and nonforeign wearing. In this work, we combine phase separation and spray coating to fabricate a porous and ultrathin electrode within minutes as well as micrometer-scale porous pressure sensors. The resulting electrodes show a water vapor transmission rate of 18.4 mg·cm-2·h-1, sheet resistance of 5.2 Ω/sq, and thickness below 5 μm. The introduction of the biogel further reduced the electrode-skin impedance, which is lower than that of the commercial gel electrode, indicating that the electrode can have a high degree of conformal contact with the skin. The epidermal electronics prepared by this strategy exhibit an excellent performance in force sensing. Such results strongly prove the efficiency and practicality of the strategy.
Collapse
Affiliation(s)
- Tang Li
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Material and Technology, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yichen Ding
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Material and Technology, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chao Teng
- Institute of Critical Materials for Integrated Circuits, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Yan Zheng
- Department of Polymer Science and Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Xiaoliang Wang
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Material and Technology, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Dongshan Zhou
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Material and Technology, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
17
|
Cao Y, Chao Y, Shum HC. Affinity-Controlled Partitioning of Biomolecules at Aqueous Interfaces and Their Bioanalytic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409362. [PMID: 39171488 DOI: 10.1002/adma.202409362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Indexed: 08/23/2024]
Abstract
All-aqueous phase separation systems play essential roles in bioanalytical and biochemical applications. Compared to conventional oil and organic solvent-based systems, these systems are characterized by their rich bulk and interfacial properties, offering superior biocompatibility. In particular, phase separation in all-aqueous systems facilitates the creation of compartments with specific physicochemical properties, and therefore largely enhances the accessibility of the systems. In addition, the all-aqueous compartments have diverse affinities, with an important property known as partitioning, which can concentrate (bio)molecules toward distinct immiscible phases. This partitioning affinity imparts all-aqueous interfaces with selective permeability, enabling the controlled enrichment of target (bio)molecules. This review introduces the basic principles and applications of partitioning-induced interfacial phenomena in a typical all-aqueous system, namely aqueous two-phase systems (ATPSs); these applications include interfacial chemical reactions, bioprinting, and assembly, as well as bio-sensing and detection. The primary challenges associated with designing all-aqueous phase separation systems and several future directions are also discussed, such as the stabilization of aqueous interfaces, the handling of low-volume samples, and exploration of suitable ATPSs compositions with the efficient protocol.
Collapse
Affiliation(s)
- Yang Cao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, 999077, China
| | - Youchuang Chao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, 999077, China
| |
Collapse
|
18
|
Duijs H, Kumar M, Dhiman S, Su L. Harnessing Competitive Interactions to Regulate Supramolecular "Micelle-Droplet-Fiber" Transition and Reversibility in Water. J Am Chem Soc 2024; 146:29759-29766. [PMID: 39405510 PMCID: PMC11528417 DOI: 10.1021/jacs.4c11285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 11/01/2024]
Abstract
The supramolecular assembly of proteins into irreversible fibrils is often associated with diseases in which aberrant phase transitions occur. Due to the complexity of biological systems and their surrounding environments, the mechanism underlying phase separation-mediated supramolecular assembly is poorly understood, making the reversal of so-called irreversible fibrillization a significant challenge. Therefore, it is crucial to develop simple model systems that provide insights into the mechanistic process of monomers to phase-separated droplets and ordered supramolecular assemblies. Such models can help in investigating strategies to either reverse or modulate these states. Herein, we present a simple synthetic model system composed of three components, including a benzene-1,3,5-tricarboxamide-based supramolecular monomer, a surfactant, and water, to mimic the condensate pathway observed in biological systems. This highly dynamic system can undergo "micelle-droplet-fiber" transition over time and space with a concentration gradient field, regulated by competitive interactions. Importantly, manipulating these competitive interactions through guest molecules, temperature changes, and cosolvents can reverse ordered fibers into a disordered liquid or micellar state. Our model system provides new insights into the critical balance between various interactions among the three components that determine the pathway and reversibility of the process. Extending this "competitive interaction" approach from a simple model system to complex macromolecules, e.g., proteins, could open new avenues for biomedical applications, such as condensate-modifying therapeutics.
Collapse
Affiliation(s)
- Heleen Duijs
- Division
of Biotherapeutics, Leiden Academic Centre
for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mohit Kumar
- Department
of Chemistry, Johannes Gutenberg University
in Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Shikha Dhiman
- Department
of Chemistry, Johannes Gutenberg University
in Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Lu Su
- Division
of Biotherapeutics, Leiden Academic Centre
for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
19
|
Cai Y, Wang F, Zhang H, Nestler B. Chemo-elasto-electro free energy of non-uniform system in the diffuse interface context. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:495702. [PMID: 39222654 DOI: 10.1088/1361-648x/ad7660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
In the present work, we propose an alternative approach for deriving the free energy formulation of a non-uniform system. Compared with the work of Cahn and Hilliard (1958 J.Chem. Phys.28258-67), our approach provides a more comprehensive explanation for the individual energy contribution in a non-uniform system, including entropy, interaction energy, and internal energy. By employing a fundamental mathematical calculus, we reformulate the local composition within the interface region. Utilizing the reformulated local composition as well as classic thermodynamic principles, we establish formal expressions for entropy, interaction energy, and the internal energy, which are functions of both composition and composition gradients. We obtain a comprehensive free energy expression for a non-uniform system by integrating these energy density formulations. The obtained free energy expression is consistent with the formula type of Cahn and Hilliard and prodives more deeper physical interpretation. Moreover, using the same approach, we derive formulations for elastic energy and electric potential energy in a non-uniform system. However, the proposed approach encounters a limitation in the special case of a non-uniform fluid contacting a solid substrate. Due to the significant difference in the length scales between the solid-fluid and fluid-fluid interfaces, the wall free energy formulation based on the aforementioned concept is unsuitable for this multi-scale system. To address this limitation, we reformulate the wall free energy as a function of the average composition over the solid-fluid interface. Additionally, the previous derivation relies on an artificial treatment of describing the composition variation across the interface by a smooth monotone function, while the true nature of this variation remains unclear. By utilizing the concept of average composition, we circumvent the open question of how the composition varies across the interface region. Our work provides a thorough understanding for the construction of free energy formulations for a non-uniform system in condensed matter physics.
Collapse
Affiliation(s)
- Yuhan Cai
- Institute of Applied Materials-Microstructure Modelling and Simulation, Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
| | - Fei Wang
- Institute of Applied Materials-Microstructure Modelling and Simulation, Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Haodong Zhang
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Britta Nestler
- Institute of Applied Materials-Microstructure Modelling and Simulation, Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Digital Materials Science, Karlsruhe University of Applied Sciences, Moltkestraße 30, 76133 Karlsruhe, Germany
| |
Collapse
|
20
|
Strain-resilient porous conductors with fewer nanofillers from in situ phase separation. NATURE NANOTECHNOLOGY 2024; 19:1089-1090. [PMID: 38730119 DOI: 10.1038/s41565-024-01661-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
|
21
|
Xu Y, Ye Z, Zhao G, Fei Q, Chen Z, Li J, Yang M, Ren Y, Berigan B, Ling Y, Qian X, Shi L, Ozden I, Xie J, Gao W, Chen PY, Yan Z. Phase-separated porous nanocomposite with ultralow percolation threshold for wireless bioelectronics. NATURE NANOTECHNOLOGY 2024; 19:1158-1167. [PMID: 38684805 PMCID: PMC11330368 DOI: 10.1038/s41565-024-01658-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/25/2024] [Indexed: 05/02/2024]
Abstract
Realizing the full potential of stretchable bioelectronics in wearables, biomedical implants and soft robotics necessitates conductive elastic composites that are intrinsically soft, highly conductive and strain resilient. However, existing composites usually compromise electrical durability and performance due to disrupted conductive paths under strain and rely heavily on a high content of conductive filler. Here we present an in situ phase-separation method that facilitates microscale silver nanowire assembly and creates self-organized percolation networks on pore surfaces. The resultant nanocomposites are highly conductive, strain insensitive and fatigue tolerant, while minimizing filler usage. Their resilience is rooted in multiscale porous polymer matrices that dissipate stress and rigid conductive fillers adapting to strain-induced geometry changes. Notably, the presence of porous microstructures reduces the percolation threshold (Vc = 0.00062) by 48-fold and suppresses electrical degradation even under strains exceeding 600%. Theoretical calculations yield results that are quantitatively consistent with experimental findings. By pairing these nanocomposites with near-field communication technologies, we have demonstrated stretchable wireless power and data transmission solutions that are ideal for both skin-interfaced and implanted bioelectronics. The systems enable battery-free wireless powering and sensing of a range of sweat biomarkers-with less than 10% performance variation even at 50% strain. Ultimately, our strategy offers expansive material options for diverse applications.
Collapse
Affiliation(s)
- Yadong Xu
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Zhilu Ye
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Ganggang Zhao
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
| | - Qihui Fei
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
| | - Zehua Chen
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
| | - Jiahong Li
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Minye Yang
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Yichong Ren
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Benton Berigan
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
| | - Yun Ling
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
| | - Xiaoyan Qian
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
| | - Lin Shi
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
| | - Ilker Ozden
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| | - Pai-Yen Chen
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, USA.
| | - Zheng Yan
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA.
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA.
- Materials Science and Engineering Institute, University of Missouri, Columbia, MO, USA.
- NextGen Precision Health, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
22
|
Feng L, Huang S, Heo TW, Biener J. Integrated Framework to Model Microstructure Evolution and Decipher the Microstructure-Property Relationship in Polymeric Porous Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38442-38457. [PMID: 39009042 DOI: 10.1021/acsami.4c03011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Unraveling the microstructure-property relationship is crucial for improving material performance and advancing the design of next-generation structural and functional materials. However, this is inherently challenging because it requires both the comprehensive quantification of microstructural features and the accurate assessment of corresponding properties. To meet these requirements, we developed an efficient and comprehensive integrated modeling framework, using polymeric porous materials as a representative model system. Our framework generates microstructures using a physics-based phase-field model, characterizes them using various average and localized microstructural features, and evaluates microstructure-aware properties, such as effective diffusivity, using an efficient Fourier-based perturbation numerical scheme. Additionally, the framework incorporates machine learning methods to decipher the intricate microstructure-property relationships. Our findings indicate that the connectivity of phase channels is the most critical microstructural descriptor for determining effective diffusivity, followed by the domain shape represented by curvature distribution, while the domain size has a minor impact. This comprehensive approach offers a novel framework for assessing microstructure-property relationships in polymer-based porous materials, paving the way for the development of advanced materials for diverse applications.
Collapse
Affiliation(s)
- Longsheng Feng
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Laboratory for Energy Applications for the Future (LEAF), Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Sijia Huang
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Tae Wook Heo
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Laboratory for Energy Applications for the Future (LEAF), Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Juergen Biener
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
23
|
Yang B, Deng C, Chen N, Zhang F, Hu K, Gui B, Zhao L, Wu F, Chen R. Super-Ionic Conductor Soft Filler Promotes Li + Transport in Integrated Cathode-Electrolyte for Solid-State Battery at Room Temperature. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403078. [PMID: 38583072 DOI: 10.1002/adma.202403078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Indexed: 04/08/2024]
Abstract
Composite polymer solid electrolytes (CPEs), possessing good rigid flexible, are expected to be used in solid-state lithium-metal batteries. The integration of fillers into polymer matrices emerges as a dominant strategy to improve Li+ transport and form a Li+-conducting electrode-electrolyte interface. However, challenges arise as traditional fillers: 1) inorganic fillers, characterized by high interfacial energy, induce agglomeration; 2) organic fillers, with elevated crystallinity, impede intrinsic ionic conductivity, both severely hindering Li+ migration. Here, a concept of super-ionic conductor soft filler, utilizing a Li+ conductivity nanocellulose (Li-NC) as a model, is introduced which exhibits super-ionic conductivity. Li-NC anchors anions, and enhances Li+ transport speed, and assists in the integration of cathode-electrolyte electrodes for room temperature solid-state batteries. The tough dual-channel Li+ transport electrolyte (TDCT) with Li-NC and polyvinylidene fluoride (PVDF) demonstrates a high Li+ transfer number (0.79) due to the synergistic coordination mechanism in Li+ transport. Integrated electrodes' design enables stable performance in LiNi0.5Co0.2Mn0.3O2|Li cells, with 720 cycles at 0.5 C, and 88.8% capacity retention. Furthermore, the lifespan of Li|TDCT|Li cells over 4000 h and Li-rich Li1.2Ni0.13Co0.13Mn0.54O2|Li cells exhibits excellent performance, proving the practical application potential of soft filler for high energy density solid-state lithium-metal batteries at room temperature.
Collapse
Affiliation(s)
- Binbin Yang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chenglong Deng
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Nan Chen
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Institute of Advanced Technology, Beijing Institute of Technology, Jinan, 250300, China
| | - Fengling Zhang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Kaikai Hu
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Boshun Gui
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Liyuan Zhao
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Feng Wu
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| | - Renjie Chen
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Institute of Advanced Technology, Beijing Institute of Technology, Jinan, 250300, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| |
Collapse
|
24
|
Ghorbandoust M, Fasihi M, Norouzbeigi R. Tuning pore size and density of rigid polylactic acid foams through thermally induced phase separation and optimization using response surface methodology. Sci Rep 2024; 14:12395. [PMID: 38811650 PMCID: PMC11137040 DOI: 10.1038/s41598-024-62958-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
Rigid polylactic acid (PLA) foams fabricated via thermally induced phase separation (TIPS) utilizing a ternary solution of PLA, Tetrahydrofuran (THF), and water. The PLA gels were stabilized mechanically by the substituting of the THF/water solvent mixture with ethanol as non-solvent and subsequently vacuum dried. A comprehensive characterization of PLA foams was achieved by Scanning Electron Microscopy (SEM), X-ray Diffractometry (XRD) and Brunauer-Emmett-Teller (BET) analyses. The BET area obtained in the PLA foam is up to 18.76 m2/g. The Response Surface Methodology (RSM) was utilized to assess the impacts of four independent variables (polymer concentration, solvent composition, quench temperature, and aging time) on the pore size and density of PLA foam. The experimental findings demonstrated that the fabrication parameters could be fine-tuned to govern the morphology of the pores, comprising their size and density. The optimal values of parameters for cell size were identified by RSM to be 8.96 (wt%), 91.60 (w/w), 5.50 °C, and 3.86 h for the optimum cell size of 37.96 µm (37.78 by Genetic Algorithm). Optimum density by RSM 88.88 mgr/cm3 (88.38 mgr/cm3 by Genetic Algorithm) was obtained at 5.00 (wt%), 89.33 (w/w), 14.40 °C and 2.65 h.
Collapse
Affiliation(s)
- Morteza Ghorbandoust
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Mail Box: 16846-13114, Narmak, Tehran, Iran
| | - Mohammad Fasihi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Mail Box: 16846-13114, Narmak, Tehran, Iran.
| | - Reza Norouzbeigi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Mail Box: 16846-13114, Narmak, Tehran, Iran
| |
Collapse
|
25
|
Lee S, Liang X, Kim JS, Yokota T, Fukuda K, Someya T. Permeable Bioelectronics toward Biointegrated Systems. Chem Rev 2024; 124:6543-6591. [PMID: 38728658 DOI: 10.1021/acs.chemrev.3c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Bioelectronics integrates electronics with biological organs, sustaining the natural functions of the organs. Organs dynamically interact with the external environment, managing internal equilibrium and responding to external stimuli. These interactions are crucial for maintaining homeostasis. Additionally, biological organs possess a soft and stretchable nature; encountering objects with differing properties can disrupt their function. Therefore, when electronic devices come into contact with biological objects, the permeability of these devices, enabling interactions and substance exchanges with the external environment, and the mechanical compliance are crucial for maintaining the inherent functionality of biological organs. This review discusses recent advancements in soft and permeable bioelectronics, emphasizing materials, structures, and a wide range of applications. The review also addresses current challenges and potential solutions, providing insights into the integration of electronics with biological organs.
Collapse
Affiliation(s)
- Sunghoon Lee
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Xiaoping Liang
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Joo Sung Kim
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomoyuki Yokota
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kenjiro Fukuda
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Someya
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
26
|
Wang F, Nestler B. Wetting and Contact-Angle Hysteresis: Density Asymmetry and van der Waals Force. PHYSICAL REVIEW LETTERS 2024; 132:126202. [PMID: 38579226 DOI: 10.1103/physrevlett.132.126202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/23/2024] [Indexed: 04/07/2024]
Abstract
A droplet depositing on a solid substrate leads to the wetting phenomenon, such as dew on plant leaves. On an ideally smooth substrate, the classic Young's law has been employed to describe the wetting effect. However, no real substrate is ideally smooth at the microscale. Given this fact, we introduce a surface composition concept to scrutinize the wetting mechanism via considering the liquid-gas density asymmetry and the fluid-solid van der Waals interaction. The current concept enables one to comprehend counterintuitive phenomenon of contact-angle hysteresis on a smooth substrate and increase of contact angle with temperature as well as gas bubble wetting.
Collapse
Affiliation(s)
- Fei Wang
- Institute for Applied Materials-Microstructure Modelling and Simulation (IAM-MMS), Karlsruhe Institute of Technology (KIT), Strasse am Forum 7, 76131 Karlsruhe, Germany and Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Britta Nestler
- Institute for Applied Materials-Microstructure Modelling and Simulation (IAM-MMS), Karlsruhe Institute of Technology (KIT), Strasse am Forum 7, 76131 Karlsruhe, Germany; Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany and Institute of Digital Materials Science, Karlsruhe University of Applied Sciences, Moltkestrasse 30, 76133 Karlsruhe, Germany
| |
Collapse
|
27
|
Wu Y, Wang F, Zheng S, Nestler B. Evolution dynamics of thin liquid structures investigated using a phase-field model. SOFT MATTER 2024; 20:1523-1542. [PMID: 38265427 DOI: 10.1039/d3sm01553j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Liquid structures of thin-films and torus droplets are omnipresent in daily lives. The morphological evolution of liquid structures suspending in another immiscible fluid and sitting on a solid substrate is investigated by using three-dimensional (3D) phase-field (PF) simulations. Here, we address the evolution dynamics by scrutinizing the interplay of surface energy, kinetic energy, and viscous dissipation, which is characterized by Reynolds number Re and Weber number We. We observe special droplet breakup phenomena by varying Re and We. In addition, we gain the essential physical insights into controlling the droplet formation resulting from the morphological evolution of the liquid structures by characterizing the top and side profiles under different circumstances. We find that the shape evolution of the liquid structures is intimately related to the initial shape, Re, We as well as the intrinsic wettability of the substrate. Furthermore, it is revealed that the evolution dynamics are determined by the competition between the coalescence phenomenology and the hydrodynamic instability of the liquid structures. For the coalescence phenomenology, the liquid structure merges onto itself, while the hydrodynamic instability leads to the breakup of the liquid structure. Last but not least, we investigate the influence of wall relaxation on the breakup outcome of torus droplets on substrates with different contact angles. We shed light on how the key parameters including the initial shape, Re, We, wettability, and wall relaxation influence the droplet dynamics and droplet formation. These findings are anticipated to contribute insights into droplet-based systems, potentially impacting areas like ink-jet printing, drug delivery systems, and microfluidic devices, where the interplay of surface energy, kinetic energy, and viscous dissipation plays a crucial role.
Collapse
Affiliation(s)
- Yanchen Wu
- Institute for Applied Materials - Microstructure Modelling and Simulation (IAM-MMS), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, Karlsruhe 76131, Germany.
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Pl. 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Fei Wang
- Institute for Applied Materials - Microstructure Modelling and Simulation (IAM-MMS), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, Karlsruhe 76131, Germany.
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Pl. 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Sai Zheng
- Institute for Applied Materials - Microstructure Modelling and Simulation (IAM-MMS), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, Karlsruhe 76131, Germany.
| | - Britta Nestler
- Institute for Applied Materials - Microstructure Modelling and Simulation (IAM-MMS), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, Karlsruhe 76131, Germany.
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Pl. 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute of Digital Materials Science (IDM), Karlsruhe University of Applied Sciences, Moltkestraße 30, Karlsruhe, 76133, Germany
| |
Collapse
|
28
|
Jambhulkar S, Ravichandran D, Zhu Y, Thippanna V, Ramanathan A, Patil D, Fonseca N, Thummalapalli SV, Sundaravadivelan B, Sun A, Xu W, Yang S, Kannan AM, Golan Y, Lancaster J, Chen L, Joyee EB, Song K. Nanoparticle Assembly: From Self-Organization to Controlled Micropatterning for Enhanced Functionalities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306394. [PMID: 37775949 DOI: 10.1002/smll.202306394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/02/2023] [Indexed: 10/01/2023]
Abstract
Nanoparticles form long-range micropatterns via self-assembly or directed self-assembly with superior mechanical, electrical, optical, magnetic, chemical, and other functional properties for broad applications, such as structural supports, thermal exchangers, optoelectronics, microelectronics, and robotics. The precisely defined particle assembly at the nanoscale with simultaneously scalable patterning at the microscale is indispensable for enabling functionality and improving the performance of devices. This article provides a comprehensive review of nanoparticle assembly formed primarily via the balance of forces at the nanoscale (e.g., van der Waals, colloidal, capillary, convection, and chemical forces) and nanoparticle-template interactions (e.g., physical confinement, chemical functionalization, additive layer-upon-layer). The review commences with a general overview of nanoparticle self-assembly, with the state-of-the-art literature review and motivation. It subsequently reviews the recent progress in nanoparticle assembly without the presence of surface templates. Manufacturing techniques for surface template fabrication and their influence on nanoparticle assembly efficiency and effectiveness are then explored. The primary focus is the spatial organization and orientational preference of nanoparticles on non-templated and pre-templated surfaces in a controlled manner. Moreover, the article discusses broad applications of micropatterned surfaces, encompassing various fields. Finally, the review concludes with a summary of manufacturing methods, their limitations, and future trends in nanoparticle assembly.
Collapse
Affiliation(s)
- Sayli Jambhulkar
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dharneedar Ravichandran
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuxiang Zhu
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Varunkumar Thippanna
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Arunachalam Ramanathan
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dhanush Patil
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Nathan Fonseca
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sri Vaishnavi Thummalapalli
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Barath Sundaravadivelan
- Department of Mechanical and Aerospace Engineering, School for Engineering of Matter, Transport & Energy, Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Tempe, AZ, 85281, USA
| | - Allen Sun
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Weiheng Xu
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sui Yang
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Arizona State University (ASU), Tempe, AZ, 85287, USA
| | - Arunachala Mada Kannan
- The Polytechnic School (TPS), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuval Golan
- Department of Materials Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Jessica Lancaster
- Department of Immunology, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Lei Chen
- Mechanical Engineering, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI, 48128, USA
| | - Erina B Joyee
- Mechanical Engineering and Engineering Science, University of North Carolina, Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Kenan Song
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia (UGA), Athens, GA, 30602, USA
- Adjunct Professor of School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| |
Collapse
|
29
|
Ben Messaoud G, Stefanopoulou E, Wachendörfer M, Aveic S, Fischer H, Richtering W. Structuring gelatin methacryloyl - dextran hydrogels and microgels under shear. SOFT MATTER 2024; 20:773-787. [PMID: 38165831 DOI: 10.1039/d3sm01365k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Gelatin methacryloyl (GelMA) is a widely used semi-synthetic polymer for a variety of bioapplications. However, the development of versatile GelMA hydrogels requires tuning of their microstructure. Herein, we report the possibility of preparing hydrogels with various microstructures under shear from an aqueous two-phase system (ATPS) consisting of GelMA and dextran. The influence of an applied preshear on dextran/GelMA droplets and bicontinuous systems is investigated by rheology that allows the application of a constant shear and is immediately followed by in situ UV-curing of the GelMA-rich phase. The microstructure of the resulting hydrogels is examined by confocal laser scanning microscopy (CLSM). The results show that the GelMA string phase and GelMA hydrogels with aligned bands can be formed depending on the concentration of dextran and the applied preshear. The influence of the pH of the ATPS is investigated and demonstrates the formation of multiple emulsions upon decreasing the charge density of GelMA. The preshearing of multiple emulsions, following gelation, leads to the formation of porous GelMA microgels. The diversity of the formed structures highlights the application potential of preshearing ATPS in the development of functional soft materials.
Collapse
Affiliation(s)
- Ghazi Ben Messaoud
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany
| | - Evdokia Stefanopoulou
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany
| | - Mattis Wachendörfer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Sanja Aveic
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany
| |
Collapse
|
30
|
Liu Y, Wang L, Liu Z, Kang Y, Chen T, Xu C, Zhu T. Durable Immunomodulatory Nanofiber Niche for the Functional Remodeling of Cardiovascular Tissue. ACS NANO 2024; 18:951-971. [PMID: 38146717 DOI: 10.1021/acsnano.3c09692] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Functional remodeling and prolonged anti-inflammatory responses are both vital for repairing damage in the cardiovascular system. Although these aspects have each been studied extensively alone, attempts to fabricate scaffolds that combine these effects have seen limited success. In this study, we synthesized salvianic acid A (SA, danshensu) blocked biodegradable polyurethane (PCHU-D) and enclosed it within electrospun nanofibers to synthesize a durable immunomodulatory nanofiber niche (DINN), which provided sustained SA release during inflammation. Given its excellent processability, mechanical properties, and shape memory function, we developed two variants of the DINN as vascular scaffolds and heart patches. Both these variants exhibited outstanding therapeutic effects in in vivo experiments. The DINN was expertly designed such that it gradually decomposes along with SA release, substantially facilitating cellular infiltration and tissue remodeling. Therefore, the DINN effectively inhibited the migration and chemotaxis of inflammatory cells, while also increasing the expression of angiogenic genes. As a result, it promoted the recovery of myocardial function after myocardial infarction and induced rapid reendothelialization following arterial orthotopic transplantation repair. These excellent characteristics indicate that the DINN holds great potential as a multifunctional agent for repairing cardiovascular tissues.
Collapse
Affiliation(s)
- Yonghang Liu
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, P.R. China
| | - Liren Wang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, P.R. China
| | - Zhuo Liu
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Fudan University, 138 Xueyuan Road, Shanghai 200032, P.R. China
| | - Yuhao Kang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, P.R. China
| | - Tianhui Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, P.R. China
| | - Chen Xu
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Fudan University, 138 Xueyuan Road, Shanghai 200032, P.R. China
| | - Tonghe Zhu
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, P.R. China
| |
Collapse
|
31
|
Wang X, Qiao X, Chen H, Wang L, Liu X, Huang X. Synthetic-Cell-Based Multi-Compartmentalized Hierarchical Systems. SMALL METHODS 2023; 7:e2201712. [PMID: 37069779 DOI: 10.1002/smtd.202201712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/14/2023] [Indexed: 06/19/2023]
Abstract
In the extant lifeforms, the self-sustaining behaviors refer to various well-organized biochemical reactions in spatial confinement, which rely on compartmentalization to integrate and coordinate the molecularly crowded intracellular environment and complicated reaction networks in living/synthetic cells. Therefore, the biological phenomenon of compartmentalization has become an essential theme in the field of synthetic cell engineering. Recent progress in the state-of-the-art of synthetic cells has indicated that multi-compartmentalized synthetic cells should be developed to obtain more advanced structures and functions. Herein, two ways of developing multi-compartmentalized hierarchical systems, namely interior compartmentalization of synthetic cells (organelles) and integration of synthetic cell communities (synthetic tissues), are summarized. Examples are provided for different construction strategies employed in the above-mentioned engineering ways, including spontaneous compartmentalization in vesicles, host-guest nesting, phase separation mediated multiphase, adhesion-mediated assembly, programmed arrays, and 3D printing. Apart from exhibiting advanced structures and functions, synthetic cells are also applied as biomimetic materials. Finally, key challenges and future directions regarding the development of multi-compartmentalized hierarchical systems are summarized; these are expected to lay the foundation for the creation of a "living" synthetic cell as well as provide a larger platform for developing new biomimetic materials in the future.
Collapse
Affiliation(s)
- Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Qiao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
32
|
Esteki B, Masoomi M, Asadinezhad A. Tailored Morphology in Polystyrene/Poly(lactic acid) Blend Particles: Solvent's Effect on Controlled Janus/Core-Shell Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15306-15318. [PMID: 37864780 DOI: 10.1021/acs.langmuir.3c02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
Controlling the morphology of polymeric particles is vital for their diverse applications. In this study, we explored how solvent composition influences the morphology of poly(styrene)/poly(lactic acid) (PS/PLA) particles prepared via the emulsion solvent evaporation method. We used toluene, dichloromethane (DCM), and various mixtures to prepare these particles. We investigated phase separation within the PS/PLA/solvent system using the Flory-Huggins ternary phase diagram and MesoDyn simulation, revealing pronounced immiscibility and phase separation in both PS/PLA/DCM and PS/PLA/toluene systems. We employed scanning electron microscopy (SEM) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) to characterize the resulting morphologies. Our study unveiled the substantial impact of solvent composition on particle structure. Using pure toluene resulted in acorn-shaped Janus particles. However, incorporating DCM into the solvent induced a transition from Janus to core-shell morphology. Remarkably, core-shell particles exhibited a single-core structure in a mixed toluene/DCM solvent, indicating thermodynamic stability. In contrast, pure DCM favored kinetically controlled multicore morphology, leading to lower PLA crystallinity due to increased PS-PLA interfaces. Samples with high Janus balance formed a self-assembled, two-dimensional (2-D) monolayer film, demonstrating the interfacial activity of the Janus particles. This 2-D monolayer film exhibits desirable emulsification properties with potential applications in various fields. Our study combines theoretical and experimental analyses, shedding light on the profound impact of solvent composition on the PS/PLA particle morphology. We observed transitions from Janus to core-shell structures, highlighted the influence of solvent viscosity on particle size, and uncovered the formation of self-assembled 2-D monolayer films. These insights are pivotal for tailoring polymeric particle structures. Furthermore, our findings advance macromolecular science in interface design, offering promising prospects for innovative materials development.
Collapse
Affiliation(s)
- Bahareh Esteki
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mahmood Masoomi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ahmad Asadinezhad
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
33
|
Tang D, Duan Z, Liu L, Jia Z, Lang L, Tan Y. Design and Application of Portable Centrifuge Inspired by a Hand-Powered Spinning Top. MICROMACHINES 2023; 14:1968. [PMID: 37893405 PMCID: PMC10609382 DOI: 10.3390/mi14101968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023]
Abstract
Traditional centrifuges, extensively employed in biology, chemistry, medicine, and other domains for tasks such as blood separation and pathogen extraction, have certain limitations. Their high cost, substantial size, and reliance on electricity restrict their range of application. Contemporary centrifuges, inspired by everyday items like paper trays and egg beaters, boast characteristics such as ease of operation, independence from electricity, and portability. These features offer unique advantages in specific situations, such as electricity shortages, inadequate infrastructure, and challenging medical conditions. Consequently, we designed a hand-powered portable centrifuge driven by pulling a rope. Our experiments revealed significant performance factors, including load capacity, rope length, and frequency of rope pulling. The results demonstrated that the revolutions per minute (RPM) of a hand-powered portable centrifuge were directly proportional to the length of the rope and the frequency of pulling, up to a certain limit, while inversely proportional to the load. When used for separating and washing polystyrene microspheres, the portable centrifuge's performance equaled that of traditional centrifuges. According to relevant calculations, this centrifuge could be capable of meeting the application of blood separation. Therefore, we believe this portable centrifuge will find meaningful applications in similar areas, particularly in resource-poor settings.
Collapse
Affiliation(s)
- Dongbao Tang
- School of Electrical Engineering, Ultra-Fast/Micro-Nano Technology and Advanced Laser Manufacturing Key Laboratory of Hunan Province, University of South China, Hengyang 421001, China; (D.T.); (L.L.); (Z.J.)
| | - Ziwei Duan
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China;
| | - Luxuan Liu
- School of Electrical Engineering, Ultra-Fast/Micro-Nano Technology and Advanced Laser Manufacturing Key Laboratory of Hunan Province, University of South China, Hengyang 421001, China; (D.T.); (L.L.); (Z.J.)
| | - Zhaoyuan Jia
- School of Electrical Engineering, Ultra-Fast/Micro-Nano Technology and Advanced Laser Manufacturing Key Laboratory of Hunan Province, University of South China, Hengyang 421001, China; (D.T.); (L.L.); (Z.J.)
| | - Lijun Lang
- Department of Computer Science and Engineering, Ho Sin-Hang Engineering Building, Chinese University of Hong Kong, Hong Kong 999077, Hong Kong SAR, China;
| | - Yuyu Tan
- School of Electrical Engineering, Ultra-Fast/Micro-Nano Technology and Advanced Laser Manufacturing Key Laboratory of Hunan Province, University of South China, Hengyang 421001, China; (D.T.); (L.L.); (Z.J.)
| |
Collapse
|
34
|
Yuan J, Tateno M, Tanaka H. Mechanical Slowing Down of Network-Forming Phase Separation of Polymer Solutions. ACS NANO 2023; 17:18025-18036. [PMID: 37675940 DOI: 10.1021/acsnano.3c04657] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Phase separation is a fundamental phenomenon leading to spatially heterogeneous material distribution, which is critical in nature, biology, material science, and industry. In ordinary phase separation, the minority phase always forms droplets. Contrary to this common belief, even the minority phase can form a network structure in viscoelastic phase separation (VPS). VPS can occur in any mixture with significant mobility differences between their components and is highly relevant to soft matter and biomatter. In contrast to classical phase separation, experiments have shown that VPS in polymer solutions lacks self-similar coarsening, resulting in the absence of a domain-coarsening scaling law. However, the underlying microscopic mechanism of this behavior remains unknown. To this end, we perform fluid particle dynamics simulations of bead-spring polymers, incorporating many-body hydrodynamic interactions between polymers through a solvent. We discover that polymers in the dense-network-forming phase are stretched and store elastic energy when the deformation speed exceeds the polymer dynamics. This self-generated viscoelastic stress mechanically interferes with phase separation and slows its dynamics, disrupting self-similar growth. We also highlight the essential role of many-body hydrodynamic interactions in VPS. The implications of our findings may hold importance in areas such as biological phase separation, porous material formation, and other fields where network structures play a pivotal role.
Collapse
Affiliation(s)
- Jiaxing Yuan
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Michio Tateno
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hajime Tanaka
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
35
|
Wang L, Cheng JX. Nanoscale bond-selective imaging by computational fusion of atomic force microscopy and coherent anti-Stokes Raman scattering microscopy. Analyst 2023; 148:2975-2982. [PMID: 37305950 PMCID: PMC10349369 DOI: 10.1039/d3an00662j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Vibrational microscopy based on coherent Raman scattering is a powerful tool for high-speed chemical imaging, but its lateral resolution is bound to the optical diffraction limit. On the other hand, atomic force microscopy (AFM) provides nano-scale spatial resolution, yet with lower chemical specificity. In this study, we leverage a computational approach called pan-sharpening to merge AFM topography images and coherent anti-Stokes Raman scattering (CARS) images. The hybrid system combines the advantages of both modalities, providing informative chemical mapping with ∼20 nm spatial resolution. CARS and AFM images were sequentially acquired on a single multimodal platform, which facilitates image co-localization. Our image fusion approach allowed for discerning merged neighboring features previously invisible due to the diffraction limit and identifying subtle unobservable structures with the input from AFM images. Compared to tip-enhanced CARS measurement, sequential acquisition of CARS and AFM images enables higher laser power to be used and avoids any tip damage caused by the incident laser beams, resulting in a significantly improved CARS image quality. Together, our work suggests a new direction for achieving super-resolution coherent Raman scattering imaging of materials through a computational approach.
Collapse
Affiliation(s)
- Le Wang
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
36
|
Lin WJ, Shi WP, Ge WY, Chen LL, Guo WH, Shang P, Yin DC. Magnetic Fields Reduce Apoptosis by Suppressing Phase Separation of Tau-441. RESEARCH (WASHINGTON, D.C.) 2023; 6:0146. [PMID: 37228640 PMCID: PMC10204748 DOI: 10.34133/research.0146] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
The biological effects of magnetic fields (MFs) have been a controversial issue. Fortunately, in recent years, there has been increasing evidence that MFs do affect biological systems. However, the physical mechanism remains unclear. Here, we show that MFs (16 T) reduce apoptosis in cell lines by inhibiting liquid-liquid phase separation (LLPS) of Tau-441, suggesting that the MF effect on LLPS may be one of the mechanisms for understanding the "mysterious" magnetobiological effects. The LLPS of Tau-441 occurred in the cytoplasm after induction with arsenite. The phase-separated droplets of Tau-441 recruited hexokinase (HK), resulting in a decrease in the amount of free HK in the cytoplasm. In cells, HK and Bax compete to bind to the voltage-dependent anion channel (VDAC I) on the mitochondrial membrane. A decrease in the number of free HK molecules increased the chance of Bax binding to VDAC I, leading to increased Bax-mediated apoptosis. In the presence of a static MF, LLPS was marked inhibited and HK recruitment was reduced, resulting in an increased probability of HK binding to VDAC I and a decreased probability of Bax binding to VDAC I, thus reducing Bax-mediated apoptosis. Our findings revealed a new physical mechanism for understanding magnetobiological effects from the perspective of LLPS. In addition, these results show the potential applications of physical environments, such as MFs in this study, in the treatment of LLPS-related diseases.
Collapse
Affiliation(s)
| | | | - Wan-Yi Ge
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences,
Northwestern Polytechnical University, 127 Youyixi Road, Xi'an 710072, Shaanxi, PR China
| | - Liang-Liang Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences,
Northwestern Polytechnical University, 127 Youyixi Road, Xi'an 710072, Shaanxi, PR China
| | - Wei-Hong Guo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences,
Northwestern Polytechnical University, 127 Youyixi Road, Xi'an 710072, Shaanxi, PR China
| | - Peng Shang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences,
Northwestern Polytechnical University, 127 Youyixi Road, Xi'an 710072, Shaanxi, PR China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences,
Northwestern Polytechnical University, 127 Youyixi Road, Xi'an 710072, Shaanxi, PR China
| |
Collapse
|
37
|
Faraudo J, Moncho-Jordá A, Bastos-González D, Drummond C. Interaction-Limited Aggregation: Fine-Tuning the Size of pNIPAM Particles by Association with Hydrophobic Ions. Macromolecules 2023; 56:2246-2257. [PMID: 37013084 PMCID: PMC10064791 DOI: 10.1021/acs.macromol.3c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/22/2023] [Indexed: 03/19/2023]
Abstract
We have investigated the formation of stable clusters of poly(N-isopropylacrylamide) (pNIPAM) chains in water at temperatures above the lower critical solution temperature (LCST), induced by the presence of sodium tetraphenylborate, NaPh4B. The hydrophobic Ph4B- ions interact strongly with the pNIPAM chains, providing them with a net effective negative charge, which leads to the stabilization of pNIPAM clusters for temperatures above the LCST, with a mean cluster size that depends non-monotonically on salt concentration. Combining experiments with physical modeling at the mesoscopic level and atomistic molecular dynamic simulations, we show that this effect is caused by the interplay between the hydrophobic attraction between pNIPAM chains and the electrostatic repulsion induced by the associated Ph4B- ions. These results provide insight on the significance of weak associative anion-polymer interaction driven by hydrophobic interaction and how this anionic binding can prevent macroscopic phase separation. Harvesting the competition between attractive hydrophobic and repulsive electrostatic interaction opens avenues for the dynamic control of the formation of well-calibrated polymer microparticles.
Collapse
Affiliation(s)
- Jordi Faraudo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Spain
| | - Arturo Moncho-Jordá
- Biocolloid and Fluid Physics Group, Department of Applied Physics, University of Granada, Avenida Fuentenueva 2, E-18071 Granada, Spain
- Institute Carlos I for Theoretical and Computational Physics, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| | - Delfi Bastos-González
- Biocolloid and Fluid Physics Group, Department of Applied Physics, University of Granada, Avenida Fuentenueva 2, E-18071 Granada, Spain
| | - Carlos Drummond
- Centre de Recherche Paul Pascal Université Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France
| |
Collapse
|
38
|
Zhu L, Su Y, Liu Z, Fang Y. Shape-Controlled Synthesis of Covalent Organic Frameworks Enabled by Polymerization-Induced Phase Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205501. [PMID: 36538755 DOI: 10.1002/smll.202205501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The shape and morphology modulations of covalent organic frameworks (COFs) are both difficult, but are of significance to tackle to realize high-performance and practical applications. Here, a two-step method is reported that separates the phase separation and crystallization processes for the shape-controlled synthesis of COFs. The insight into the polymerization-induced phase separation (PIPS) allows for the flexible shaping of COFs into column, rod, film and others, as well as for constructing hierarchically porous structure. The as-synthesized COF monoliths are crack-free, no powder detaching, and show 214 MPa of compressive modulus. The resulting good permeability and mechanical flexibility enable COF films to apply for flow-through adsorption and extraction of pollutants at high flow rates. This work successfully resolves the contradiction between PIPS and crystallization, offering a general approach for scalable production of COFs with desired shapes, sizes, and morphologies.
Collapse
Affiliation(s)
- Lin Zhu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yajiao Su
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhongshan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
39
|
Jana R, Ramakrishnan S. Counterion-Based Polymerizable Porogens─Direct Preparation of Nanoporous Polymer Matrices with Control over Pore Size and Carboxylic Acid Content. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c02154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Rounak Jana
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - S. Ramakrishnan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
40
|
Zhang J, Yin J, Li N, Liu H, Wu Z, Liu Y, Jiao T, Qin Z. Simultaneously Enhancing the Mechanical Strength and Ionic Conductivity of Stretchable Ionogels Enabled by Polymerization-Induced Phase Separation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiaxin Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Juanjuan Yin
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Na Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Hao Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Zihang Wu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Ying Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Zhihui Qin
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
41
|
Ronsin OJJ, Harting J. Formation of Crystalline Bulk Heterojunctions in Organic Solar Cells: Insights from Phase-Field Simulations. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49785-49800. [PMID: 36282868 DOI: 10.1021/acsami.2c14319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The performance of organic solar cells strongly depends on the bulk-heterojunction (BHJ) morphology of the photoactive layer. This BHJ forms during the drying of the wet-deposited solution, because of physical processes such as crystallization and/or liquid-liquid phase separation (LLPS). However, the process-structure relationship remains insufficiently understood. In this work, a recently developed, coupled phase-field-fluid mechanics framework is used to simulate the BHJ formation upon drying. For the first time, this allows to investigate the interplay between all the relevant physical processes (evaporation, crystal nucleation and growth, liquid demixing, composition-dependent kinetic properties), within a single coherent theoretical framework. Simulations for the model system P3HT-PCBM are presented. The comparison with previously reported in situ characterization of the drying structure is very convincing: The morphology formation pathways, crystallization kinetics, and final morphology are in line with experimental results. The final BHJ morphology is a subtle mixture of pure crystalline donor and acceptor phases, pure and mixed amorphous domains, which depends on the process parameters and material properties. The expected benefit of such an approach is to identify physical design rules for ink formulation and processing conditions to optimize the cell's performance. It could be applied to recent organic material systems in the future.
Collapse
Affiliation(s)
- Olivier J J Ronsin
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy, Forschungszentrum Jülich, Fürther Straße 248, 90429Nürnberg, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fürther Straße 248, 90429Nürnberg, Germany
| | - Jens Harting
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy, Forschungszentrum Jülich, Fürther Straße 248, 90429Nürnberg, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fürther Straße 248, 90429Nürnberg, Germany
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fürther Straße 248, 90429Nürnberg, Germany
| |
Collapse
|
42
|
Yanagisawa M. Cell-size space effects on phase separation of binary polymer blends. Biophys Rev 2022; 14:1093-1103. [PMID: 36345284 PMCID: PMC9636348 DOI: 10.1007/s12551-022-01001-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 12/22/2022] Open
Abstract
Within living cells, a diverse array of biomolecules is present at high concentrations. To better understand how molecular behavior differs under such conditions (collectively described as macromolecular crowding), the crowding environment has been reproduced inside artificial cells. We have previously shown that the combination of macromolecular crowding and microscale geometries imposed by the artificial cells can alter the molecular behaviors induced by macromolecular crowding in bulk solutions. We have named the effect that makes such a difference the cell-size space effect (CSE). Here, we review the underlying biophysics of CSE for phase separation of binary polymer blends. We discuss how the cell-size space can initiate phase separation, unlike nano-sized spaces, which are known to hinder nucleation and phase separation. Additionally, we discuss how the dimensions of the artificial cell and its membrane characteristics can significantly impact phase separation dynamics and equilibrium composition. Although these findings are, of themselves, very interesting, their real significance may lie in helping to clarify the functions of the cell membrane and space size in the regulation of intracellular phase separation.
Collapse
Affiliation(s)
- Miho Yanagisawa
- Graduate School of Arts and Sciences, Komaba Institute for Science, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo, 153-8902 Japan
- Department of Physics, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo, 113-0033 Japan
- Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo, 153-8902 Japan
| |
Collapse
|
43
|
Park JM, Lim S, Sun JY. Materials development in stretchable iontronics. SOFT MATTER 2022; 18:6487-6510. [PMID: 36000330 DOI: 10.1039/d2sm00733a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Stretchable iontronics have recently been developed as an ideal interface to promote the interaction between humans and devices. Since the materials that use ions as charge carriers are typically transparent and stretchable, they have been used to fabricate devices with diverse functions with intrinsic transparency and stretchability. With the development of device design, material design has also been investigated to mitigate the issues associated with ionic materials, such as their weak mechanical properties, poor electrical properties, or poor environmental stabilities. In this review, we describe the recent progress on the design of materials in stretchable iontronics. By classifying stretchable ionic materials into three types of components (ionic conductors, ionic semiconductors, and ionic insulators), the issues each component has and the strategies to solve them are introduced, specifically in terms of molecular interactions. We then discuss the existing hurdles and challenges to be handled and shine light on the possibilities and opportunities from the insight of molecular interactions.
Collapse
Affiliation(s)
- Jae-Man Park
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sungsoo Lim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jeong-Yun Sun
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
- Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
44
|
Ronsin OJJ, Harting J. Phase‐Field Simulations of the Morphology Formation in Evaporating Crystalline Multicomponent Films. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Olivier J. J. Ronsin
- Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy Forschungszentrum Jülich Fürther Straße 248 90429 Nürnberg Germany
- Department of Chemical and Biological Engineering Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Fürther Straße 248 90429 Nürnberg Germany
| | - Jens Harting
- Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy Forschungszentrum Jülich Fürther Straße 248 90429 Nürnberg Germany
- Department of Chemical and Biological Engineering Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Fürther Straße 248 90429 Nürnberg Germany
- Department of Physics Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Fürther Straße 248 90429 Nürnberg Germany
| |
Collapse
|
45
|
Wu Z, Zhang J, Xu S, Li H, Zhou H, Zheng J, Pang A, Yang Y. Synthesis of two novel neutral polymeric bonding agents to enhance the mechanical properties of composite solid propellants. RSC Adv 2022; 12:19946-19952. [PMID: 35865213 PMCID: PMC9264331 DOI: 10.1039/d2ra01842j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/23/2022] [Indexed: 12/03/2022] Open
Abstract
Currently, only a few bonding agents can be utilized efficiently in nitramine filler material-based solid rocket energetic binder systems. Herein, we demonstrate the synthesis and specific characterization of two kinds of neutral polymeric bonding agents (NPBA-1 and NPBA-2) and their application in composite propellants consisting of the nitramine octogen (HMX) and glycidyl azide polymer (GAP). The as-obtained NPBAs were well-coated on the surface of HMX and RDX due to their functionalized groups, and they significantly affected the viscosity of the uncured propellant mixtures and possessed obviously enhanced mechanical properties in the cured AP/HMX/GAP propellant mixtures, even at low concentrations (down to 0.001 wt% of the whole propellant). In addition, because of the existence of an epoxy group and no hydroxyl functionalities, NPBA-2 exhibited improved mechanical strength and glass transition temperature as compared to NPBA-1, which has plenty of reactive hydroxyl groups. The as-synthesized epoxy-modified NPBAs are essential for obtaining NEPE propellants with high bonding and mechanical properties. The NPBA-2-based composite solid propellant exhibited improved mechanical strength and glass transition due to the strong interactions between epoxy groups and HMX or RDX.![]()
Collapse
Affiliation(s)
- Zhuo Wu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China .,Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemical Technology Xiangyang Hubei 441003 China
| | - Jian Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China
| | - Shuang Xu
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemical Technology Xiangyang Hubei 441003 China
| | - Hongxu Li
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemical Technology Xiangyang Hubei 441003 China
| | - Huan Zhou
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemical Technology Xiangyang Hubei 441003 China
| | - Jian Zheng
- China Aerospace Science and Technology Corporation 16 Fucheng Road, Haidian District Beijing 100048 China
| | - Aimin Pang
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemical Technology Xiangyang Hubei 441003 China
| | - Yulin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
46
|
Zhang H, Wang F, Nestler B. Janus Droplet Formation via Thermally Induced Phase Separation: A Numerical Model with Diffusion and Convection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6882-6895. [PMID: 35617199 PMCID: PMC9178917 DOI: 10.1021/acs.langmuir.2c00308] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Microscale Janus particles have versatile potential applications in many physical and biomedical fields, such as microsensor, micromotor, and drug delivery. Here, we present a phase-field approach of multicomponent and multiphase to investigate the Janus droplet formation via thermally induced phase separation. The crucial kinetics for the formation of Janus droplets consisting of two polymer species and a solvent component via an interplay of both diffusion and convection is considered in the Cahn-Hilliard-Navier-Stokes equation. The simulation results of the phase-field model show that unequal interfacial tensions between the two polymer species and the solvent result in asymmetric phase separation in the formation process of Janus droplets. This asymmetric phase separation plays a vital role in the establishment of the so-called core-shell structure that has been observed in previous experiments. By varying the droplet size, the surface tension, and the molecular interaction between the polymer species, several novel droplet morphologies are predicted in the development process of Janus droplets. Moreover, we stress that the hydrodynamics should be reckoned as a non-negligible mechanism that not only accelerates the Janus droplet evolution but also has great impacts on the coarsening and coalescence of the Janus droplets.
Collapse
Affiliation(s)
- Haodong Zhang
- Institute
of Applied Materials-Microstructure Modelling and Simulation, Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
| | - Fei Wang
- Institute
of Applied Materials-Microstructure Modelling and Simulation, Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
| | - Britta Nestler
- Institute
of Applied Materials-Microstructure Modelling and Simulation, Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
- Institute
of Digital Materials Science, Karlsruhe
University of Applied Sciences, Moltkestraße 30, 76133 Karlsruhe, Germany
| |
Collapse
|
47
|
Park B, Park J, Kim W, Na SY, Huh YH, Kim M, Choi EH. Light‐Emitting Microinlaid Spots Produced through Lateral Phase Separation by Means of Simple Single‐Inkjet Printing. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Byoungchoo Park
- Department of Electrical and Biological Physics Kwangwoon University Wolgye-Dong Seoul 01897 South Korea
- Department of Plasma-Bio Display Kwangwoon University Wolgye-Dong Seoul 01897 South Korea
| | - Jaewoo Park
- Department of Electrical and Biological Physics Kwangwoon University Wolgye-Dong Seoul 01897 South Korea
- Department of Plasma-Bio Display Kwangwoon University Wolgye-Dong Seoul 01897 South Korea
| | - Wonsun Kim
- Department of Electrical and Biological Physics Kwangwoon University Wolgye-Dong Seoul 01897 South Korea
| | - Seo Young Na
- Department of Electrical and Biological Physics Kwangwoon University Wolgye-Dong Seoul 01897 South Korea
| | - Yoon Ho Huh
- Department of Electrical and Biological Physics Kwangwoon University Wolgye-Dong Seoul 01897 South Korea
| | - Mina Kim
- Department of Electrical and Biological Physics Kwangwoon University Wolgye-Dong Seoul 01897 South Korea
| | - Eun Ha Choi
- Department of Electrical and Biological Physics Kwangwoon University Wolgye-Dong Seoul 01897 South Korea
- Department of Plasma-Bio Display Kwangwoon University Wolgye-Dong Seoul 01897 South Korea
| |
Collapse
|
48
|
Wang JH, Xue CH, Liu BY, Guo XJ, Hu LC, Wang HD, Deng FQ. A Superhydrophobic Dual-Mode Film for Energy-Free Radiative Cooling and Solar Heating. ACS OMEGA 2022; 7:15247-15257. [PMID: 35572754 PMCID: PMC9089744 DOI: 10.1021/acsomega.2c01947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Traditional electric cooling in summer and coal heating in winter consume a huge amount of energy and lead to a greenhouse effect. Herein, we developed an energy-free dual-mode superhydrophobic film, which consists of a white side with porous coating of styrene-ethylene-butylene-styrene/SiO2 for radiative cooling and a black side with nanocomposite coating of carbon nanotubes/polydimethylsiloxane for solar heating. In the cooling mode with the white side, the film achieved a high sunlight reflection of 94% and a strong long-wave infrared emission of 92% in the range of 8-13 μm to contribute to a temperature drop of ∼11 °C. In the heating mode with the black side, the film achieved a high solar absorption of 98% to induce heating to raise the air temperature beneath by ΔT of ∼35.6 °C. Importantly, both sides of the film are superhydrophobic with a contact angle over 165° and a sliding angle near 0°, showing typical self-cleaning effects, which defend the surfaces from outdoor contamination, thus conducive to long-term cooling and heating. This dual-mode film shows great potential in outdoor applications as coverings for both cooling in hot summer and heating in winter without an energy input.
Collapse
Affiliation(s)
- Jiang-He Wang
- College
of Chemistry and Chemical Engineering, Shaanxi
University of Science and Technology, Xi’an 710021, China
| | - Chao-Hua Xue
- College
of Chemistry and Chemical Engineering, Shaanxi
University of Science and Technology, Xi’an 710021, China
- College
of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Bing-Ying Liu
- College
of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Xiao-Jing Guo
- College
of Materials Science and Engineering, Shaanxi
University of Science and Technology, Xi’an 710021, China
| | - Li-Cui Hu
- College
of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Hui-Di Wang
- College
of Materials Science and Engineering, Shaanxi
University of Science and Technology, Xi’an 710021, China
| | - Fu-Quan Deng
- College
of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| |
Collapse
|
49
|
Opdam J, Govers SPW, Melio J, van der Ven LGJ, de With G, Tuinier R, Esteves ACC. Distribution of block copolymers in drying polymer films. J Colloid Interface Sci 2022; 612:617-627. [PMID: 35016021 DOI: 10.1016/j.jcis.2021.12.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Block copolymers (BCP) consisting of a polar block and a surface active apolar block are widely used for surface functionalization of polymer films. The characteristics of the copolymer blocks determine whether surface segregation and/or phase separation occurs, for a given bulk mixture. This data can be used to find the optimal BCP composition where high surface enrichment is obtained without accumulation of phase separated BCP in the bulk. METHODS The distribution of poly(ethylene oxide)-polydimethylsiloxane (PEO-PDMS) BCP in a polymer formulation relevant for coating applications is systematically investigated. The surface segregation is studied in liquid formulations with surface tension measurements and dried films with X-ray photoelectron spectroscopy (XPS), whereas phase separation is quantified using turbidity measurements. The results are compared with Scheutjens-Fleer self-consistent field (SF-SCF) computations, which are also applied to determine the effect of film drying on BCP phase stability and surface segregation. FINDINGS Longer PDMS blocks result in lower interfacial tension of the liquid polymer mixture, whereas for the cured films, the largest PDMS concentration at the interface was obtained for intermediate PDMS block lengths. This is explained by the observation that phase separation already occurs at very low BCP concentrations for long PDMS blocks. The SCF predictions qualitatively agree with the experimental results and reveal that the BCP distribution changes significantly during film drying.
Collapse
Affiliation(s)
- Joeri Opdam
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
| | - Stefan P W Govers
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
| | - Julio Melio
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands; Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, the Netherlands
| | - Leendert G J van der Ven
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
| | - Gijsbertus de With
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
| | - Remco Tuinier
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands.
| | - A Catarina C Esteves
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands.
| |
Collapse
|
50
|
Yang Z, Zang L, Dou T, Xin Y, Zhang Y, Zhao D, Sun L. Asymmetric Cellulose/Carbon Nanotubes Membrane with Interconnected Pores Fabricated by Droplet Method for Solar-Driven Interfacial Evaporation and Desalination. MEMBRANES 2022; 12:membranes12040369. [PMID: 35448339 PMCID: PMC9028968 DOI: 10.3390/membranes12040369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022]
Abstract
Solar-driven interfacial water purification and desalination have attracted much attention in environmentally friendly water treatment field. The structure design of the photothermal materials is still a critical factor to improve the evaporation performance such as evaporation rate and energy conversion efficiency. Herein, an asymmetric cellulose/carbon nanotubes membrane was designed as the photothermal membrane via a modified droplet method. Under 1 sun irradiation, the evaporation rate and energy efficiency of pure water can reach up to 1.6 kg m−2 h−1 and 89%, respectively. Moreover, stable reusability and desalination performance made the cellulose/carbon nanotubes membrane a promising photothermal membrane which can be used for solar-driven desalination.
Collapse
Affiliation(s)
- Zhiyu Yang
- School of Chemical Engineering and Materials, Heilongjiang University, Harbin 150080, China; (Z.Y.); (T.D.); (Y.X.); (L.S.)
| | - Linlin Zang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Tianwei Dou
- School of Chemical Engineering and Materials, Heilongjiang University, Harbin 150080, China; (Z.Y.); (T.D.); (Y.X.); (L.S.)
| | - Yajing Xin
- School of Chemical Engineering and Materials, Heilongjiang University, Harbin 150080, China; (Z.Y.); (T.D.); (Y.X.); (L.S.)
| | - Yanhong Zhang
- School of Chemical Engineering and Materials, Heilongjiang University, Harbin 150080, China; (Z.Y.); (T.D.); (Y.X.); (L.S.)
- Correspondence: (Y.Z.); (D.Z.); Tel.: +86-188-4512-8078 (Y.Z.); +86-158-0461-1506 (D.Z.)
| | - Dongyu Zhao
- School of Chemical Engineering and Materials, Heilongjiang University, Harbin 150080, China; (Z.Y.); (T.D.); (Y.X.); (L.S.)
- Correspondence: (Y.Z.); (D.Z.); Tel.: +86-188-4512-8078 (Y.Z.); +86-158-0461-1506 (D.Z.)
| | - Liguo Sun
- School of Chemical Engineering and Materials, Heilongjiang University, Harbin 150080, China; (Z.Y.); (T.D.); (Y.X.); (L.S.)
| |
Collapse
|