1
|
Zhang Y, Huang X, Zhou J, Liang W, Li X, Zhu C. Durable Metallized Liquid Crystal Polymer Fibers Enable Flexible and Tough Electrical Heaters. Polymers (Basel) 2025; 17:1087. [PMID: 40284354 PMCID: PMC12030729 DOI: 10.3390/polym17081087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Fiber-shaped electrical heaters with high flexibility and excellent adaptability make an ideal candidate for the application of wearable electronics but still suffer from low strength and poor durability. Herein, an all-in-one Joule-heating fiber capable of outstanding mechanical properties, good heating efficiency, and long-term stability is reported by using polymer-assisted metal deposition to firmly coat Cu nanoparticles on high-performance liquid crystal polymer (LCP) fibers. Taking advantage of LCP, the resultant fibers exhibit a satisfying temperature threshold (up to 200 °C) and immense strength (2.94 GPa). By virtue of dense and continuous Cu film, these fibers show low electrical resistance (5.51 Ω/cm) and an ultrafast response rate (12.6 °C·s-1) at low supplied voltages (0.5-3.5 V). Benefiting from the levodopa/polyethyleneimine interface design, such fibers maintain nearly constant resistance after repeatable bending, folding, and even washing (50 cycles). Based on the above-mentioned merits, a wearable patch with a Joule-heating function is knitted by using as-made fibers to offer therapeutic benefits for human body joints. This work demonstrates prospective potential for enriching the challenging applications of fiber-shaped electrical heating systems.
Collapse
Affiliation(s)
| | | | | | | | | | - Chuang Zhu
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
2
|
Wen H, Si Y, Chen Z, Xin Y, Cao S, Chen C, Zu H, He D. GO-Enhanced MXene Sediment-Based Inks Achieve Remarkable Oxidation Resistance and High Conductivity. ACS APPLIED MATERIALS & INTERFACES 2025; 17:12731-12738. [PMID: 39950987 DOI: 10.1021/acsami.4c23060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
MXenes are emerging materials renowned for their exceptional conductivity, abundant functional groups, and excellent solution processability, making them highly promising as conductive-additive-free inks for flexible electronic devices. However, current preparation methods are hampered by low yields of MXene flakes so that substantial waste MXene sediments (MS) are generated. Here, we demonstrate a type of conductive ink with appropriate rheological properties, namely MG inks formulated using MS and graphene oxide (GO), for screen-printing frequency selective surface (FSS). GO facilitates interlayer interactions by covalently cross-linking with MXene flakes, resulting in a denser structure and significantly enhancing the conductivity of the best-performing MG-based ink to 849 S cm-1. Additionally, GO serves as a binder to considerably improve the rheological properties of MS, thus enabling high-quality printing on various substrates. The close stacking of MS and GO not only improves the oxidation resistance but also maintains conductivity above 97% even after 60 days. Furthermore, the MG-based FSS produced via straightforward screen printing demonstrates excellent performance and retains its functionality after 90 days of operation. This MS-based ink formulation represents a strategy of "turning trash into treasure" and highlights the potential of MS for the next generation of electronic devices.
Collapse
Affiliation(s)
- Haofan Wen
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China
| | - Yunfa Si
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China
| | - Zibo Chen
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China
| | - Yitong Xin
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Shaowen Cao
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Cheng Chen
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Haoran Zu
- School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Daping He
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
- Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
3
|
Chen Z, Chao Y, Xu Y, Liu H, Wallace GG, Ding J, Wang C. A Highly Impact-Tolerant Textile-Based Lithium-Ion Battery. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3289-3297. [PMID: 39757791 DOI: 10.1021/acsami.4c16109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Textile-based lithium-ion batteries (LIBs) are in great demand to power wearable electronics. They currently face a key safety challenge, particularly concerning mechanical abuse that could trigger thermal runaway, causing harm to individuals. Here, we report on Kevlar-fabric-based LIBs that can afford high impact tolerance while offering excellent electrochemical performance comparable to metal-foil-based cells. The integration of Kevlar electrodes, known for their protective nature, with impact-tolerant shear thickening electrolytes (STEs) effectively dissipates the impact energy. It can be ascribed to the shear thickening effect and the induced yarn-to-yarn friction within Kevlar fabrics. This design mirrors the configuration of liquid body armor that consists of shear thickening fluid and Kevlar fabric. This work provides an alternative approach for developing highly impact-tolerant LIBs.
Collapse
Affiliation(s)
- Zhiqi Chen
- Intelligent Polymer Research Institute, Faculty of Engineering and Information Sciences, Innovation Campus, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Yunfeng Chao
- Intelligent Polymer Research Institute, Faculty of Engineering and Information Sciences, Innovation Campus, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Yeqing Xu
- Intelligent Polymer Research Institute, Faculty of Engineering and Information Sciences, Innovation Campus, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Hanwen Liu
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, Western Australia 6102, Australia
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, Faculty of Engineering and Information Sciences, Innovation Campus, University of Wollongong, Wollongong, NSW 2500, Australia
- Australian National Fabrication Facility - Materials Node, Innovation Campus, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Jie Ding
- Platforms Division, Defence Science & Technology Group, 506 Lorimer Street, Fishermans Bend, VIC 3207, Australia
| | - Caiyun Wang
- Intelligent Polymer Research Institute, Faculty of Engineering and Information Sciences, Innovation Campus, University of Wollongong, Wollongong, NSW 2500, Australia
| |
Collapse
|
4
|
Xu B, Zhang Y, Li J, Wang B, Lu Y, Cheng D. Preparation and Applications of Multifunctional MXene/Tussah Silk Fabric. MATERIALS (BASEL, SWITZERLAND) 2025; 18:169. [PMID: 39795813 PMCID: PMC11722387 DOI: 10.3390/ma18010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/17/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
The development of functional textiles has become a key focus in recent years, aiming to meet the diverse requirements of modern society. MXene has excellent conductivity, hydrophilicity, and UV resistance, and is widely used in electromagnetic shielding, sensors, energy storage, and photothermal conversion. Tussah silk (TS) is a unique natural textile raw material and has a unique jewelry luster, natural luxury, and a smooth and comfortable feel. However, there are relatively few studies on the functional finishing of TS fabric with Ti3C2Tx MXene. Here, we developed a multifunctional MXene/tussah silk (MXene/TS) fabric by the deposition of Ti3C2Tx MXene sheets on the surface of TS fabric through a simple padding-drying-curing process. The obtained MXene/TS fabric (five cycles) exhibited excellent conductivity (4.8 S/m), air permeability (313.6 mm/s), ultraviolet resistance (ultraviolet protection factor, UPF = 186.3), photothermal conversion (temperature increase of 11 °C), and strain sensing. Thanks to these superior properties, the MXene/TS fabric has broad application prospects in motion monitoring, smart clothing, flexible wearables, and artificial intelligence.
Collapse
Affiliation(s)
- Bingbing Xu
- College of Textiles and Garment, Liaodong University, Dandong 118003, China; (B.X.); (Y.Z.); (J.L.); (B.W.); (Y.L.)
- Liaoning Provincial Key Laboratory of Functional Textile Materials, Liaodong University, Dandong 118003, China
- Key Laboratory of Jiangsu Province for Silk Engineering, Soochow University, Suzhou 215123, China
| | - Yue Zhang
- College of Textiles and Garment, Liaodong University, Dandong 118003, China; (B.X.); (Y.Z.); (J.L.); (B.W.); (Y.L.)
- Liaoning Provincial Key Laboratory of Functional Textile Materials, Liaodong University, Dandong 118003, China
| | - Jia Li
- College of Textiles and Garment, Liaodong University, Dandong 118003, China; (B.X.); (Y.Z.); (J.L.); (B.W.); (Y.L.)
- Liaoning Provincial Key Laboratory of Functional Textile Materials, Liaodong University, Dandong 118003, China
| | - Boxiang Wang
- College of Textiles and Garment, Liaodong University, Dandong 118003, China; (B.X.); (Y.Z.); (J.L.); (B.W.); (Y.L.)
- Liaoning Provincial Key Laboratory of Functional Textile Materials, Liaodong University, Dandong 118003, China
| | - Yanhua Lu
- College of Textiles and Garment, Liaodong University, Dandong 118003, China; (B.X.); (Y.Z.); (J.L.); (B.W.); (Y.L.)
- Liaoning Provincial Key Laboratory of Functional Textile Materials, Liaodong University, Dandong 118003, China
| | - Dehong Cheng
- College of Textiles and Garment, Liaodong University, Dandong 118003, China; (B.X.); (Y.Z.); (J.L.); (B.W.); (Y.L.)
- Liaoning Provincial Key Laboratory of Functional Textile Materials, Liaodong University, Dandong 118003, China
| |
Collapse
|
5
|
Wei Z, Luo Y, Yu W, Zhang Y, Cai J, Xie C, Chang J, Huang Q, Xu X, Deng Y, Zheng Z. Bipolar Textile Composite Electrodes Enabling Flexible Tandem Solid-State Lithium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406386. [PMID: 38973220 DOI: 10.1002/adma.202406386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/25/2024] [Indexed: 07/09/2024]
Abstract
A majority of flexible and wearable electronics require high operational voltage that is conventionally achieved by serial connection of battery unit cells using external wires. However, this inevitably decreases the energy density of the battery module and may cause additional safety hazards. Herein, a bipolar textile composite electrode (BTCE) that enables internal tandem-stacking configuration to yield high-voltage (6 to 12 V class) solid-state lithium metal batteries (SSLMBs) is reported. BTCE is comprised of a nickel-coated poly(ethylene terephthalate) fabric (NiPET) core layer, a cathode coated on one side of the NiPET, and a Li metal anode coated on the other side of the NiPET. Stacking BTCEs with solid-state electrolytes alternatively leads to the extension of output voltage and decreased usage of inert package materials, which in turn significantly boosts the energy density of the battery. More importantly, the BTCE-based SSLMB possesses remarkable capacity retention per cycle of over 99.98% over cycling. The composite structure of BTCE also enables outstanding flexibility; the battery keeps stable charge/discharge characteristics over thousands of bending and folding. BTCE shows great promise for future safe, high-energy-density, and flexible SSLMBs for a wide range of flexible and wearable electronics.
Collapse
Affiliation(s)
- Zhenyao Wei
- Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Yufeng Luo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Wancheng Yu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Yufei Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Jiehua Cai
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Chuan Xie
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Jian Chang
- Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, Dongguan, Guangdong, 523000, China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Xiaoxiong Xu
- Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yonghong Deng
- Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zijian Zheng
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| |
Collapse
|
6
|
Gao Y, Li H, Chao S, Wang Y, Hou L, Bai T, Bai J, Man X, Cui Z, Wang N, Li Z, Zhao Y. Zebra-Patterned Stretchable Helical Yarn for Triboelectric Self-Powered Multifunctional Sensing. ACS NANO 2024; 18:16958-16966. [PMID: 38907712 DOI: 10.1021/acsnano.4c03115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Smart textiles capable of both energy harvesting and multifunctional sensing are highly desirable for next-generation portable electronics. However, there are still challenges that need to be conquered, such as the innovation of an energy-harvesting model and the optimization of interface bonding between fibers and active materials. Herein, inspired by the spiral structure of natural vines, a highly stretchable triboelectric helical yarn (TEHY) was manufactured by twisting the carbon nanotube/polyurethane nanofiber (CNT/PU NF) Janus membrane. The TEHY had a zebra-stripe-like design that was composed of black interval conductive CNTs and white insulative PU NFs. Due to the different electron affinity, the zebra-patterned TEHY realized a self-frictional triboelectric effect because the numerous microscopic CNT/PU triboelectric interfaces generated an alternating current in the external conductive circuit without extra external friction layers. The helical geometry combined with the elastic PU matrix endowed TEHY with superelastic stretchability and outstanding output stability after 1000 cycles of the stretch-release test. By virtue of the robust mechanical and electrical stability, the TEHY can not only be used as a high-entropy mechanical energy harvester but also serve as a self-powered sensor to monitor the stretching or deforming stimuli and human physiological activities in real time. These merits manifested the versatile applications of TEHY in smart fabrics, wearable power supplies, and human-machine interactions.
Collapse
Affiliation(s)
- Yuan Gao
- School of Machinery and Automation, Weifang University, Weifang 261061, P. R. China
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Hu Li
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Shengyu Chao
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yaqiong Wang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Lanlan Hou
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Tonghua Bai
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Jie Bai
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot 010051, P. R. China
| | - Xingkun Man
- Center of Soft Matter Physics and Its Applications, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, P. R. China
| | - Zhimin Cui
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Nü Wang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Zhou Li
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yong Zhao
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University, Beijing 100191, P. R. China
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot 010051, P. R. China
| |
Collapse
|
7
|
Ye C, Zhao L, Yang S, Li X. Recent Research on Preparation and Application of Smart Joule Heating Fabrics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309027. [PMID: 38072784 DOI: 10.1002/smll.202309027] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/10/2023] [Indexed: 05/03/2024]
Abstract
Multifunctional wearable heaters have attracted much attention for their effective applications in personal thermal management and medical therapy. Compared to passive heating, Joule heating offers significant advantages in terms of reusability, reliable temperature control, and versatile coupling. Joule-heated fabrics make wearable electronics smarter. This review critically discusses recent advances in Joule-heated smart fabrics, focusing on various fabrication strategies based on material-structure synergy. Specifically, various applicable conductive materials with Joule heating effect are first summarized. Subsequently, different preparation methods for Joule heating fabrics are compared, and then their various applications in smart clothing, healthcare, and visual indication are discussed. Finally, the challenges faced in developing these smart Joule heating fabrics and their possible solutions are discussed.
Collapse
Affiliation(s)
- Chunfa Ye
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Longqi Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Sihui Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiaoyan Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
8
|
Ding Y, Jiang J, Wu Y, Zhang Y, Zhou J, Zhang Y, Huang Q, Zheng Z. Porous Conductive Textiles for Wearable Electronics. Chem Rev 2024; 124:1535-1648. [PMID: 38373392 DOI: 10.1021/acs.chemrev.3c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Over the years, researchers have made significant strides in the development of novel flexible/stretchable and conductive materials, enabling the creation of cutting-edge electronic devices for wearable applications. Among these, porous conductive textiles (PCTs) have emerged as an ideal material platform for wearable electronics, owing to their light weight, flexibility, permeability, and wearing comfort. This Review aims to present a comprehensive overview of the progress and state of the art of utilizing PCTs for the design and fabrication of a wide variety of wearable electronic devices and their integrated wearable systems. To begin with, we elucidate how PCTs revolutionize the form factors of wearable electronics. We then discuss the preparation strategies of PCTs, in terms of the raw materials, fabrication processes, and key properties. Afterward, we provide detailed illustrations of how PCTs are used as basic building blocks to design and fabricate a wide variety of intrinsically flexible or stretchable devices, including sensors, actuators, therapeutic devices, energy-harvesting and storage devices, and displays. We further describe the techniques and strategies for wearable electronic systems either by hybridizing conventional off-the-shelf rigid electronic components with PCTs or by integrating multiple fibrous devices made of PCTs. Subsequently, we highlight some important wearable application scenarios in healthcare, sports and training, converging technologies, and professional specialists. At the end of the Review, we discuss the challenges and perspectives on future research directions and give overall conclusions. As the demand for more personalized and interconnected devices continues to grow, PCT-based wearables hold immense potential to redefine the landscape of wearable technology and reshape the way we live, work, and play.
Collapse
Affiliation(s)
- Yichun Ding
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Jinxing Jiang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yingsi Wu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yaokang Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Junhua Zhou
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yufei Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| | - Zijian Zheng
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
9
|
Wang P, Ma X, Lin Z, Chen F, Chen Z, Hu H, Xu H, Zhang X, Shi Y, Huang Q, Lin Y, Zheng Z. Well-defined in-textile photolithography towards permeable textile electronics. Nat Commun 2024; 15:887. [PMID: 38291087 PMCID: PMC10828459 DOI: 10.1038/s41467-024-45287-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
Textile-based wearable electronics have attracted intensive research interest due to their excellent flexibility and breathability inherent in the unique three-dimensional porous structures. However, one of the challenges lies in achieving highly conductive patterns with high precision and robustness without sacrificing the wearing comfort. Herein, we developed a universal and robust in-textile photolithography strategy for precise and uniform metal patterning on porous textile architectures. The as-fabricated metal patterns realized a high precision of sub-100 µm with desirable mechanical stability, washability, and permeability. Moreover, such controllable coating permeated inside the textile scaffold contributes to the significant performance enhancement of miniaturized devices and electronics integration through both sides of the textiles. As a proof-of-concept, a fully integrated in-textiles system for multiplexed sweat sensing was demonstrated. The proposed method opens up new possibilities for constructing multifunctional textile-based flexible electronics with reliable performance and wearing comfort.
Collapse
Affiliation(s)
- Pengwei Wang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiaohao Ma
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, China
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhiqiang Lin
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Fan Chen
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Zijian Chen
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Hong Hu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Hailong Xu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xinyi Zhang
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuqing Shi
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, China
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, China.
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| | - Yuanjing Lin
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Zijian Zheng
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, China.
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China.
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR, China.
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
10
|
Gao N, Huang J, Chen Z, Liang Y, Zhang L, Peng Z, Pan C. Biomimetic Ion Channel Regulation for Temperature-Pressure Decoupled Tactile Perception. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302440. [PMID: 37668280 DOI: 10.1002/smll.202302440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/15/2023] [Indexed: 09/06/2023]
Abstract
The perception of temperature and pressure of skin plays a vital role in joint movement, hand grasp, emotional expression, and self-protection of human. Among many biomimetic materials, ionic gels are uniquely suited to simulate the function of skin due to its ionic transport mechanism. However, both the temperature and pressure sensing are heavily dependent on the changes in ionic conductivity, making it impossible to decouple the temperature and pressure signals. Here, a pressure-insensitive and temperature-modulated ion channel is designed by synergistic strategies for gel skeleton's compact packing and ultra-thin structure, mimicking the function of the temperature ion channel in human skin. This ion-confined gel can completely suppress the pressure response of the temperature sensing layer. Furthermore, a temperature-pressure decoupled ionic sensor is fabricated and it is demonstrated that the ionic sensor can sense complex signals of temperature and pressure. This novel and effective approach has great potential to overcome one of the current barriers in developing ionic skin and extending its applications.
Collapse
Affiliation(s)
- Naiwei Gao
- Center for Stretchable Electronics and Nano Sensors, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jiaoya Huang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiwu Chen
- Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China
| | - Yegang Liang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Li Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Zhengchun Peng
- Center for Stretchable Electronics and Nano Sensors, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Caofeng Pan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Ma X, Wang P, Huang L, Ding R, Zhou K, Shi Y, Chen F, Zhuang Q, Huang Q, Lin Y, Zheng Z. A monolithically integrated in-textile wristband for wireless epidermal biosensing. SCIENCE ADVANCES 2023; 9:eadj2763. [PMID: 37948514 PMCID: PMC10637736 DOI: 10.1126/sciadv.adj2763] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
Textile bioelectronics that allow comfortable epidermal contact hold great promise in noninvasive biosensing. However, their applications are limited mainly because of the large intrinsic electrical resistance and low compatibility for electronics integration. We report an integrated wristband that consists of multifunctional modules in a single piece of textile to realize wireless epidermal biosensing. The in-textile metallic patterning and reliable interconnect encapsulation contribute to the excellent electrical conductivity, mechanical robustness, and waterproofness that are competitive with conventional flexible devices. Moreover, the well-maintained porous textile architectures deliver air permeability of 79 mm s-1 and moisture permeability of 270 g m-2 day-1, which are more than one order of magnitude higher than medical tapes, thus ensuring superior wearing comfort. The integrated in-textile wristband performed continuous sweat potassium monitoring in the range of 0.3 to 40 mM with long-term stability, demonstrating its great potential for wearable fitness monitoring and point-of-care testing.
Collapse
Affiliation(s)
- Xiaohao Ma
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
| | - Pengwei Wang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
| | - Liting Huang
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruochen Ding
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kemeng Zhou
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuqing Shi
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
| | - Fan Chen
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
| | - Qiuna Zhuang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
| | - Qiyao Huang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
| | - Yuanjing Lin
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
| |
Collapse
|
12
|
Hu H, Zhang C, Ding Y, Chen F, Huang Q, Zheng Z. A Review of Structure Engineering of Strain-Tolerant Architectures for Stretchable Electronics. SMALL METHODS 2023; 7:e2300671. [PMID: 37661591 DOI: 10.1002/smtd.202300671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2023] [Indexed: 09/05/2023]
Abstract
Stretchable electronics possess significant advantages over their conventional rigid counterparts and boost game-changing applications such as bioelectronics, flexible displays, wearable health monitors, etc. It is, nevertheless, a formidable task to impart stretchability to brittle electronic materials such as silicon. This review provides a concise but critical discussion of the prevailing structural engineering strategies for achieving strain-tolerant electronic devices. Not only the more commonly discussed lateral designs of structures such as island-bridge, wavy structures, fractals, and kirigami, but also the less discussed vertical architectures such as strain isolation and elastoplastic principle are reviewed. Future opportunities are envisaged at the end of the paper.
Collapse
Affiliation(s)
- Hong Hu
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Chi Zhang
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Yichun Ding
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Fan Chen
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Qiyao Huang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| |
Collapse
|
13
|
Wang H, Dou X, Wang Z, Liu Z, Ye Q, Guo R, Zhou F. Boosting Sensitivity and Durability of Pressure Sensors Based on Compressible Cu Sponges by Strengthening Adhesion of "Rigid-Soft" Interfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303234. [PMID: 37501331 DOI: 10.1002/smll.202303234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/10/2023] [Indexed: 07/29/2023]
Abstract
The interface adhesion plays a key role between rigid metal and elastomer in compressible and stretchable conductors. However, the poor interfacial adhesion hinders their wide applications. To strengthen the interface adhesion, herein, a combination strategy of structure interlocking and polymer bridging is designed by introducing a method of subsurface-initiated atom transfer radical polymerization (sSI-ATRP). This method can make polymer brush root in polydimethylsiloxane (PDMS) subsurface, on this basis, metals further grow from subsurface to surface of PDMS via electroless deposition. As a result, the adhesive strength (≈2.5 MPa) between metal layer and PDMS elastomer is 4 times higher than that made by common polymer modification. As a demonstration, pressure sensor is constructed by using as-prepared compressible 3D Cu sponge as a top electrode and paper-based interdigited metal electrode as a bottom electrode. The device sensitivity can reach up to 961.2 kPa-1 and the durability can arrive at 3 000 cycles without degradation. Thus, this proposed interface-enhancement strategy for rigid-soft materials can significantly promote the performance of piezoresistive pressure sensors based on 3D conductive sponge. In the future, it would also be expanded to the fabrication of stretchable conductors and extensively applied in other flexible and wearable electronics.
Collapse
Affiliation(s)
- Haoran Wang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoqiang Dou
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zheng Wang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zihan Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Qian Ye
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ruisheng Guo
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai, 264006, China
| | - Feng Zhou
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai, 264006, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese of Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
14
|
Farraj Y, Kanner A, Magdassi S. E-Textile by Printing an All-through Penetrating Copper Complex Ink. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21651-21658. [PMID: 37075249 PMCID: PMC10165605 DOI: 10.1021/acsami.3c02242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Wearable electronics is an emerging field in academics and industry, in which electronic devices, such as smartwatches and sensors, are printed or embedded within textiles. The electrical circuits in electronics textile (e-textile) should withstand many cycles of bending and stretching. Direct printing of conductive inks enables the patterning of electrical circuits; however, while using conventional nanoparticle-based inks, printing onto the fabric results in a thin layer of a conductor, which is not sufficiently robust and impairs the reliability required for practical applications. Here, we present a new process for fabricating robust stretchable e-textile using a thermodynamically stable, solution-based copper complex ink, which is capable of full penetrating the fabric. After printing on knitted stretchable fabrics, they were heated, and the complex underwent an intermolecular self-reduction reaction. The continuously formed metallic copper was used as a seed layer for electroless plating (EP) to form highly conductive circuits. It was found that the stretching direction has a significant role in resistivity. This new approach enables fabricating e-textiles with high stretchability and durability, as demonstrated for wearable gloves, toward printing functional e-textile.
Collapse
Affiliation(s)
- Yousef Farraj
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Aviad Kanner
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Shlomo Magdassi
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
15
|
Shang J, Yu W, Wang L, Xie C, Xu H, Wang W, Huang Q, Zheng Z. Metallic Glass-Fiber Fabrics: A New Type of Flexible, Super-Lightweight, and 3D Current Collector for Lithium Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211748. [PMID: 36994791 DOI: 10.1002/adma.202211748] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/28/2023] [Indexed: 05/30/2023]
Abstract
Current collectors are indispensable parts that provide electron transport and mechanical support of electrode materials in a battery. Nowadays, thin metal foils made of Cu and Al are used as current collectors of lithium batteries, but they do not contribute to the storage capacity. Therefore, decreasing the weight of current collectors can directly enhance the energy density of a battery. However, limited by the requirements of mechanical strength, it is difficult to reduce the weight of metal foils any further. Herein, a new type of current collectors made of 3D metallic glass-fiber fabrics (MGFs), which shows advantages of super-lightweight (2.9-3.2 mg cm⁻2 ), outstanding electrochemical stability for cathodes and anodes of lithium-ion and lithium-metal batteries (LMBs), fire resistance, high strength, and flexibility suitable for roll-to-roll electrode fabrication is reported. The gravimetric energy densities of lithium batteries exhibit improvements of 9-18% by only replacing the metal foils with the MGFs. In addition, MGFs are suitable for the fabrication of flexible batteries. A high-energy-density flexible lithium battery with an outstanding figure of merit of flexible battery (fbFOM ) and flexing stability is demonstrated.
Collapse
Affiliation(s)
- Jian Shang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Wancheng Yu
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Lei Wang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Chuan Xie
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Hailong Xu
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Wenshuo Wang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Qiyao Huang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| |
Collapse
|
16
|
Luo Y, Abidian MR, Ahn JH, Akinwande D, Andrews AM, Antonietti M, Bao Z, Berggren M, Berkey CA, Bettinger CJ, Chen J, Chen P, Cheng W, Cheng X, Choi SJ, Chortos A, Dagdeviren C, Dauskardt RH, Di CA, Dickey MD, Duan X, Facchetti A, Fan Z, Fang Y, Feng J, Feng X, Gao H, Gao W, Gong X, Guo CF, Guo X, Hartel MC, He Z, Ho JS, Hu Y, Huang Q, Huang Y, Huo F, Hussain MM, Javey A, Jeong U, Jiang C, Jiang X, Kang J, Karnaushenko D, Khademhosseini A, Kim DH, Kim ID, Kireev D, Kong L, Lee C, Lee NE, Lee PS, Lee TW, Li F, Li J, Liang C, Lim CT, Lin Y, Lipomi DJ, Liu J, Liu K, Liu N, Liu R, Liu Y, Liu Y, Liu Z, Liu Z, Loh XJ, Lu N, Lv Z, Magdassi S, Malliaras GG, Matsuhisa N, Nathan A, Niu S, Pan J, Pang C, Pei Q, Peng H, Qi D, Ren H, Rogers JA, Rowe A, Schmidt OG, Sekitani T, Seo DG, Shen G, Sheng X, Shi Q, Someya T, Song Y, Stavrinidou E, Su M, Sun X, Takei K, Tao XM, Tee BCK, Thean AVY, Trung TQ, et alLuo Y, Abidian MR, Ahn JH, Akinwande D, Andrews AM, Antonietti M, Bao Z, Berggren M, Berkey CA, Bettinger CJ, Chen J, Chen P, Cheng W, Cheng X, Choi SJ, Chortos A, Dagdeviren C, Dauskardt RH, Di CA, Dickey MD, Duan X, Facchetti A, Fan Z, Fang Y, Feng J, Feng X, Gao H, Gao W, Gong X, Guo CF, Guo X, Hartel MC, He Z, Ho JS, Hu Y, Huang Q, Huang Y, Huo F, Hussain MM, Javey A, Jeong U, Jiang C, Jiang X, Kang J, Karnaushenko D, Khademhosseini A, Kim DH, Kim ID, Kireev D, Kong L, Lee C, Lee NE, Lee PS, Lee TW, Li F, Li J, Liang C, Lim CT, Lin Y, Lipomi DJ, Liu J, Liu K, Liu N, Liu R, Liu Y, Liu Y, Liu Z, Liu Z, Loh XJ, Lu N, Lv Z, Magdassi S, Malliaras GG, Matsuhisa N, Nathan A, Niu S, Pan J, Pang C, Pei Q, Peng H, Qi D, Ren H, Rogers JA, Rowe A, Schmidt OG, Sekitani T, Seo DG, Shen G, Sheng X, Shi Q, Someya T, Song Y, Stavrinidou E, Su M, Sun X, Takei K, Tao XM, Tee BCK, Thean AVY, Trung TQ, Wan C, Wang H, Wang J, Wang M, Wang S, Wang T, Wang ZL, Weiss PS, Wen H, Xu S, Xu T, Yan H, Yan X, Yang H, Yang L, Yang S, Yin L, Yu C, Yu G, Yu J, Yu SH, Yu X, Zamburg E, Zhang H, Zhang X, Zhang X, Zhang X, Zhang Y, Zhang Y, Zhao S, Zhao X, Zheng Y, Zheng YQ, Zheng Z, Zhou T, Zhu B, Zhu M, Zhu R, Zhu Y, Zhu Y, Zou G, Chen X. Technology Roadmap for Flexible Sensors. ACS NANO 2023; 17:5211-5295. [PMID: 36892156 PMCID: PMC11223676 DOI: 10.1021/acsnano.2c12606] [Show More Authors] [Citation(s) in RCA: 338] [Impact Index Per Article: 169.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.
Collapse
Affiliation(s)
- Yifei Luo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Mohammad Reza Abidian
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77024, United States
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Deji Akinwande
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Anne M Andrews
- Department of Chemistry and Biochemistry, California NanoSystems Institute, and Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Markus Antonietti
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Campus Norrköping, Linköping University, 83 Linköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability (WISE) and Wallenberg Wood Science Center (WWSC), SE-100 44 Stockholm, Sweden
| | - Christopher A Berkey
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94301, United States
| | - Christopher John Bettinger
- Department of Biomedical Engineering and Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Wenlong Cheng
- Nanobionics Group, Department of Chemical and Biological Engineering, Monash University, Clayton, Australia, 3800
- Monash Institute of Medical Engineering, Monash University, Clayton, Australia3800
| | - Xu Cheng
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
| | - Seon-Jin Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Alex Chortos
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Canan Dagdeviren
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Reinhold H Dauskardt
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94301, United States
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yin Fang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Jianyou Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Xue Feng
- Laboratory of Flexible Electronics Technology, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Huajian Gao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Xiwen Gong
- Department of Chemical Engineering, Department of Materials Science and Engineering, Department of Electrical Engineering and Computer Science, Applied Physics Program, and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan, 48109 United States
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaojun Guo
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Martin C Hartel
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zihan He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - John S Ho
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Youfan Hu
- School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yu Huang
- Department of Materials Science and Engineering, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Muhammad M Hussain
- mmh Labs, Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Ali Javey
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Engineering (POSTECH), Pohang, Gyeong-buk 37673, Korea
| | - Chen Jiang
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Jiheong Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Daniil Karnaushenko
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
| | | | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dmitry Kireev
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Lingxuan Kong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Nae-Eung Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, Research Institute of Advanced Materials, Seoul National University, Soft Foundry, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Fengyu Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jinxing Li
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Neuroscience Program, BioMolecular Science Program, and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48823, United States
| | - Cuiyuan Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 119276, Singapore
| | - Yuanjing Lin
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Darren J Lipomi
- Department of Nano and Chemical Engineering, University of California, San Diego, La Jolla, California 92093-0448, United States
| | - Jia Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Kai Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Nan Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Ren Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Yuxin Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Biomedical Engineering, N.1 Institute for Health, Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 119077, Singapore
| | - Yuxuan Liu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zhiyuan Liu
- Neural Engineering Centre, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China 518055
| | - Zhuangjian Liu
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, Department of Electrical and Computer Engineering, Department of Mechanical Engineering, Department of Biomedical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhisheng Lv
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Shlomo Magdassi
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge CB3 0FA, Cambridge United Kingdom
| | - Naoji Matsuhisa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Arokia Nathan
- Darwin College, University of Cambridge, Cambridge CB3 9EU, United Kingdom
| | - Simiao Niu
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Jieming Pan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Changhyun Pang
- School of Chemical Engineering and Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Qibing Pei
- Department of Materials Science and Engineering, Department of Mechanical and Aerospace Engineering, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Dianpeng Qi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Huaying Ren
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095, United States
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Department of Mechanical Engineering, Department of Biomedical Engineering, Departments of Electrical and Computer Engineering and Chemistry, and Department of Neurological Surgery, Northwestern University, Evanston, Illinois 60208, United States
| | - Aaron Rowe
- Becton, Dickinson and Company, 1268 N. Lakeview Avenue, Anaheim, California 92807, United States
- Ready, Set, Food! 15821 Ventura Blvd #450, Encino, California 91436, United States
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz 09107, Germany
- Nanophysics, Faculty of Physics, TU Dresden, Dresden 01062, Germany
| | - Tsuyoshi Sekitani
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, Japan 5670047
| | - Dae-Gyo Seo
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Qiongfeng Shi
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Beijing 100190, China
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrkoping, Sweden
| | - Meng Su
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Beijing 100190, China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Kuniharu Takei
- Department of Physics and Electronics, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Xiao-Ming Tao
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, Hong Kong Polytechnic University, Hong Kong, China
| | - Benjamin C K Tee
- Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- iHealthtech, National University of Singapore, Singapore 119276, Singapore
| | - Aaron Voon-Yew Thean
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Tran Quang Trung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Changjin Wan
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Huiliang Wang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California, San Diego, California 92093, United States
| | - Ming Wang
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chip and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
- the Shanghai Qi Zhi Institute, 41th Floor, AI Tower, No.701 Yunjin Road, Xuhui District, Shanghai 200232, China
| | - Sihong Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, 60637, United States
| | - Ting Wang
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Paul S Weiss
- California NanoSystems Institute, Department of Chemistry and Biochemistry, Department of Bioengineering, and Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Hanqi Wen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, China 314000
| | - Sheng Xu
- Department of Nanoengineering, Department of Electrical and Computer Engineering, Materials Science and Engineering Program, and Department of Bioengineering, University of California San Diego, La Jolla, California, 92093, United States
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Hongping Yan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hui Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, China, 300072
| | - Le Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, #03-09 EA, Singapore 117575, Singapore
| | - Shuaijian Yang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, and Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Cunjiang Yu
- Department of Engineering Science and Mechanics, Department of Biomedical Engineering, Department of Material Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Evgeny Zamburg
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Haixia Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Xiangyu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Xiaosheng Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics; Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
| | - Yu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Siyuan Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Yuanjin Zheng
- Center for Integrated Circuits and Systems, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yu-Qing Zheng
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Zijian Zheng
- Department of Applied Biology and Chemical Technology, Faculty of Science, Research Institute for Intelligent Wearable Systems, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Tao Zhou
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Huck Institutes of the Life Sciences, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bowen Zhu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Ming Zhu
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Rong Zhu
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, Department of Materials Science and Engineering, and Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Guijin Zou
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xiaodong Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Laboratory for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
17
|
Hu H, Guo X, Zhang Y, Chen Z, Wang L, Gao Y, Wang Z, Zhang Y, Wang W, Rong M, Liu G, Huang Q, Zhu Y, Zheng Z. Elasto-Plastic Design of Ultrathin Interlayer for Enhancing Strain Tolerance of Flexible Electronics. ACS NANO 2023; 17:3921-3930. [PMID: 36762695 DOI: 10.1021/acsnano.2c12269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The ability to tolerate large strains during various degrees of deformation is a core issue in the development of flexible electronics. Commonly used strategies nowadays to enhance the strain tolerance of thin film devices focus on the optimization of the device architecture and the increase of bonding at the materials interface. In this paper, we propose a strategy, namely elasto-plastic design of an ultrathin interlayer, to boost the strain tolerance of flexible electronics. We demonstrate that insertion of an ultrathin, stiff (high Young's modulus) and elastic (high yield strain) interlayer between an upper rigid film/device and a soft substrate, regardless of the substrate thickness or the interfacial bonding, can significantly reduce the actual strain applied on the film/device when the substrate is bent. Being independent of existing strategies, the elasto-plastic design strategy offers an effective method to enhance the device flexibility without redesigning the device structure or altering the material interface.
Collapse
Affiliation(s)
- Hong Hu
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR 999077, People's Republic of China
| | - Xuyun Guo
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAR 999077, People's Republic of China
| | - Yaokang Zhang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR 999077, People's Republic of China
| | - Zijian Chen
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR 999077, People's Republic of China
| | - Lei Wang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR 999077, People's Republic of China
| | - Yuan Gao
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR 999077, People's Republic of China
| | - Ziran Wang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR 999077, People's Republic of China
| | - Yuqi Zhang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR 999077, People's Republic of China
| | - Wenshuo Wang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR 999077, People's Republic of China
| | - Mingming Rong
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR 999077, People's Republic of China
| | - Guoqiang Liu
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR 999077, People's Republic of China
| | - Qiyao Huang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR 999077, People's Republic of China
| | - Ye Zhu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAR 999077, People's Republic of China
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR 999077, People's Republic of China
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong SAR 999077, People's Republic of China
- Research Institute for Intelligent Wearable Systems (RI-IWEAR), The Hong Kong Polytechnic University, Hong Kong SAR 999077, People's Republic of China
- Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hong Kong SAR 999077, People's Republic of China
| |
Collapse
|
18
|
Stable, amphiphobic, and electrically conductive coating on flexible polyimide substrate. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2022.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Zhang Y, Luo Y, Wang L, Ng PF, Hu H, Chen F, Huang Q, Zheng Z. Destructive-Treatment-Free Rapid Polymer-Assisted Metal Deposition for Versatile Electronic Textiles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56193-56202. [PMID: 36475587 DOI: 10.1021/acsami.2c19278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Highly conductive, durable, and breathable metal-coated textiles are critical building block materials for future wearable electronics. In order to enhance the metal adhesion on the textile surface, existing solution-based approaches to preparing these materials require time-consuming presynthesis and/or premodification processes, typically in the order of tens of minutes to hours, on textiles prior to metal plating. Herein, we report a UV-induced rapid polymer-assisted metal deposition (r-PAMD) that offers a destructive-treatment-free process to deposit highly conductive metals on a wide variety of textile materials, including cotton, polyester, nylon, Kevlar, glass fiber, and carbon cloth. In comparison to the state of the arts, r-PAMD significantly shortens the modification time to several minutes and is compatible with the roll-to-roll fabrication manner. Moreover, the deposited metals show outstanding adhesion, which withstands rigorous flexing, abrasion, and machine washing tests. We demonstrate that these metal-coated textiles are suitable for applications in two vastly different fields, being wearable and washable sensors, and lithium batteries.
Collapse
Affiliation(s)
- Yaokang Zhang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
| | - Yufeng Luo
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
| | - Lei Wang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
| | - Pui Fai Ng
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
| | - Hong Hu
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
| | - Fan Chen
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
| | - Qiyao Huang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
| |
Collapse
|
20
|
Wang B, Zhang W, Zhao F, Yu WW, Elezzabi AY, Liu L, Li H. An overview of recent progress in the development of flexible electrochromic devices. NANO MATERIALS SCIENCE 2022. [DOI: 10.1016/j.nanoms.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Zhao H, Gao H, Chen T, Xie L, Ma Y, Sha J. Fabrication of patterned polymer brushes using programmable modulated light-excited controllable radical polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
22
|
Wu D, Yao B, Wu S, Hingorani H, Cui Q, Hua M, Frenkel I, Du Y, Hsiai TK, He X. Room-Temperature Annealing-Free Gold Printing via Anion-Assisted Photochemical Deposition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201772. [PMID: 35703311 PMCID: PMC9884391 DOI: 10.1002/adma.202201772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/11/2022] [Indexed: 05/30/2023]
Abstract
Metal patterning via additive manufacturing has been phasing-in to broad applications in many medical, electronics, aerospace, and automotive industries. While previous efforts have produced various promising metal-patterning strategies, their complexity and high cost have limited their practical application in rapid production and prototyping. Herein, a one-step gold printing technique based on anion-assisted photochemical deposition (APD), which can directly print highly conductive gold patterns (1.08 × 107 S m-1 ) under ambient conditions without post-annealing treatment, is introduced. Uniquely, the APD uses specific ion effects with projection lithography to pattern Au nanoparticles and simultaneously sinter them into tunable porous gold structures. The significant influence of kosmotropic or chaotropic anions in the precursor ink on tuning the morphologies and conductivities of the printed patterns by employing a series of different ions, including Cl- ions, in the printing process is presented. Additionally, the resistance stabilities and the electrochemical properties of the APD-printed gold patterns are carefully investigated. The high conductivity and excellent conformability of the printed Au electrodes are demonstrated with reliable performance in electrophysiological signal delivery and acquisition for biomedical applications. This work exploits the potential of photochemical-deposition-based metal patterning in flexible electronic manufacturing.
Collapse
Affiliation(s)
- Dong Wu
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Bowen Yao
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Shuwang Wu
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Hardik Hingorani
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Qingyu Cui
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Mutian Hua
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Imri Frenkel
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Yingjie Du
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Tzung K Hsiai
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Ximin He
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| |
Collapse
|
23
|
Lu G, Yuan H, Zhou J, Chen F, Li C, Xue T, Shu X, Zhao Y, Nie J, Zhu X. Patterned Magnetofluids via Magnetic Printing and Photopolymerization for Multifunctional Flexible Electronic Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30332-30342. [PMID: 35730674 DOI: 10.1021/acsami.2c04755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Liquid conductor-based flexible sensors with high mechanical deformability and reliable electrical reversibility have aroused great interest in electronic skin, soft robotics, environmental monitoring, and other fields. Herein, we develop a novel strategy to fabricate liquid conductor-based flexible sensors by combining ionic liquid-based magnetofluids (IL-MFs), magnetic printing, and photopolymerization techniques. The as-prepared sensors exhibit excellent electromechanical properties, such as a wide detection range, low hysteresis, fast response time, good durability, etc. Moreover, the gauge factors (GFs) of the sensor could be easily adjusted by changing the modulators with different line widths or patterns, and the strain sensors can also be designed for anisotropic monitoring. Apart from serving as strain sensors, the magnetofluid-based flexible sensors can be used to detect external pressure, human activities, and changes in temperature, illumination, and magnetic field as well. This work provides a facile strategy to fabricate liquid conductor-based multifunctional sensors. Such a magnetofluid-based sensor has a great promising future.
Collapse
Affiliation(s)
- Guoqiang Lu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hengda Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jiulei Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Fuping Chen
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Chao Li
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Tanlong Xue
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xin Shu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yingying Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jun Nie
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xiaoqun Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
24
|
Gao D, Lv J, Lee PS. Natural Polymer in Soft Electronics: Opportunities, Challenges, and Future Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105020. [PMID: 34757632 DOI: 10.1002/adma.202105020] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/20/2021] [Indexed: 05/21/2023]
Abstract
Pollution caused by nondegradable plastics has been a serious threat to environmental sustainability. Natural polymers, which can degrade in nature, provide opportunities to replace petroleum-based polymers, meanwhile driving technological advances and sustainable practices. In the research field of soft electronics, regenerated natural polymers are promising building blocks for passive dielectric substrates, active dielectric layers, and matrices in soft conductors. Here, the natural-polymer polymorphs and their compatibilization with a variety of inorganic/organic conductors through interfacial bonding/intermixing and surface functionalization for applications in various device modalities are delineated. Challenges that impede the broad utilization of natural polymers in soft electronics, including limited durability, compromises between conductivity and deformability, and limited exploration in controllable degradation, etc. are explicitly inspected, while the potential solutions along with future prospects are also proposed. Finally, integrative considerations on material properties, device functionalities, and environmental impact are addressed to warrant natural polymers as credible alternatives to synthetic ones, and provide viable options for sustainable soft electronics.
Collapse
Affiliation(s)
- Dace Gao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jian Lv
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
25
|
Hua Z, Chen G, Zhao K, Li R, He M. A Repeatable Self-Adhesive Liquid-Free Double-Network Ionic Conductor with Tunable Multifunctionality. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22418-22425. [PMID: 35533349 DOI: 10.1021/acsami.2c00950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Liquid-free ionic conductors (LFICs) have promising applications in flexible electronics because most ionic conductors currently suffer from ionic liquid leakage or water evaporation issues. However, it has been a formidable challenge for LFICs to achieve long-term repeated self-adhesion on different substrates, especially on soft biological tissues. Based on the double-network design concept, we first fabricate a series of repeatable self-adhesive liquid-free double-network ionic conductors (SALFDNICs), consisting of stretchable first poly(AA-ChCl)-type supramolecular deep eutectic polymer networks and stiff second polydopamine (PDA) networks, which can maintain sufficient dynamic hydrogen bonds and catechol groups in the ionic conductors by preventing the overoxidation of dopamine, thus balancing the contradiction between adhesion and cohesion in liquid-free ionic conductors. Therefore, SALFDNICs can instantly form various interface interaction forces with multiple substrates (adhesion strength up to 757 N/m) and firmly adhere to various substrates for 20 detachment-reattachment cycles with a reduction in adhesion strength of less than 15%. Furthermore, SALFDNICs also have other comprehensive properties, such as optimum self-healing properties (self-healing efficiency of 90%), good stretchability (strain at break of 1200%), and promising conductivity (2.31 × 10-2 S m-1). Therefore, we believe that the extraordinary performance of SALFDNICs is important for improving device integration and the further development of flexible electronics.
Collapse
Affiliation(s)
- Ziyu Hua
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guangxue Chen
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kai Zhao
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ren'ai Li
- Jiangsu Co-innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing, 210037, China
| | - Minghui He
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
26
|
Abstract
The application of flexible electronics in the field of communication has made the transition from rigid physical form to flexible physical form. Flexible electrode technology is the key to the wide application of flexible electronics. However, flexible electrodes will break when large deformation occurs, failing flexible electronics. It restricts the further development of flexible electronic technology. Flexible stretchable electrodes are a hot research topic to solve the problem that flexible electrodes cannot withstand large deformation. Flexible stretchable electrode materials have excellent electrical conductivity, while retaining excellent mechanical properties in case of large deformation. This paper summarizes the research results of flexible stretchable electrodes from three aspects: material, process, and structure, as well as the prospects for future development.
Collapse
|
27
|
Ji Y, Liao Y, Li H, Cai Y, Fan D, Liu Q, Huang S, Zhu R, Wang S, Wang H, Guo L. Flexible Metal Electrodes by Femtosecond Laser-Activated Deposition for Human-Machine Interfaces. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11971-11980. [PMID: 35212517 DOI: 10.1021/acsami.2c00419] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Flexible metal electrodes are essential for flexible electronics, where the main challenge is to obtain mask-free patterned metals directly on substrates such as poly(dimethylsiloxane) (PDMS) at low cost. This work highlights a feasible strategy named femtosecond laser-activated metal deposition for electroless deposition of metals (Cu, Ni, Ag, and Au) on PDMS, which is suitable for maskless and low-cost fabrication of metal layers on PDMS and even on other materials of different natures including polyethylene terephthalate, paper, Si, and glass. The electrical conductivity of the PDMS/Cu electrode is comparable to that of bulk Cu. Moreover, robust bonding at the PDMS/Cu interface is evidenced by a scotch tape test and bending test of more than 20,000 cycles. Compared with previous studies using a nanosecond laser, the restriction on absorbing sensitizers could be alleviated, and catalysts could originate from precursors without polymer substrates under a femtosecond laser, which may be attributed to nonlinear absorption and ultrashort heating time with the femtosecond laser. Implementing a human-machine interface task is demonstrated by recognizing hand gestures via a multichannel electrode array with high fidelity to control a robot hand.
Collapse
Affiliation(s)
- Yaqiang Ji
- School of Mechanical Engineering, Harbin Institute of Technology, Harbin 150080, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuxuan Liao
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Haihui Li
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuhang Cai
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dongliang Fan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qian Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shubin Huang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Renjie Zhu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuai Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongqiang Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liang Guo
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
28
|
Liu Z, Zhu T, Wang J, Zheng Z, Li Y, Li J, Lai Y. Functionalized Fiber-Based Strain Sensors: Pathway to Next-Generation Wearable Electronics. NANO-MICRO LETTERS 2022; 14:61. [PMID: 35165824 PMCID: PMC8844338 DOI: 10.1007/s40820-022-00806-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/07/2022] [Indexed: 05/09/2023]
Abstract
Wearable strain sensors are arousing increasing research interests in recent years on account of their potentials in motion detection, personal and public healthcare, future entertainment, man-machine interaction, artificial intelligence, and so forth. Much research has focused on fiber-based sensors due to the appealing performance of fibers, including processing flexibility, wearing comfortability, outstanding lifetime and serviceability, low-cost and large-scale capacity. Herein, we review the latest advances in functionalization and device fabrication of fiber materials toward applications in fiber-based wearable strain sensors. We describe the approaches for preparing conductive fibers such as spinning, surface modification, and structural transformation. We also introduce the fabrication and sensing mechanisms of state-of-the-art sensors and analyze their merits and demerits. The applications toward motion detection, healthcare, man-machine interaction, future entertainment, and multifunctional sensing are summarized with typical examples. We finally critically analyze tough challenges and future remarks of fiber-based strain sensors, aiming to implement them in real applications.
Collapse
Affiliation(s)
- Zekun Liu
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Tianxue Zhu
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Junru Wang
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Zijian Zheng
- Institute of Textiles and Clothing, Research Institute for Intelligent Wearable Systems, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR, China
| | - Yi Li
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Jiashen Li
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China.
| |
Collapse
|
29
|
Chunyi Y, Xuexian W, Zhibin Z, Ping D, Jing-Li L, Xian-Zhu F. Research Progress of Electroless Plating Technology in Chip Manufacturing. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22080347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
30
|
Du P, Guo Z, Li Y, Zhang J, Muhammad J, Cai Z, Ge F. One‐step anchored polymers via phenolamine bionic design on textile‐based heater for application in personal heat management. J Appl Polym Sci 2021. [DOI: 10.1002/app.52021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Peibo Du
- College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Zhiguang Guo
- College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Yonghe Li
- College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Jinping Zhang
- College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Javed Muhammad
- College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Zaisheng Cai
- College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Fengyan Ge
- College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai China
- Technology Innovation Center of Hebei for fiber material Shijiazhuang University Shijiazhuang Hebei China
| |
Collapse
|
31
|
Liu H, Zhong X, He X, Li Y, Zhou N, Ma Z, Zhu D, Ji H. Stretchable Conductive Fabric Enabled By Surface Functionalization of Commercial Knitted Cloth. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55656-55665. [PMID: 34758625 DOI: 10.1021/acsami.1c15268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Textile-based stretchable electronic devices are one of the best candidates for future wearable applications, as they can simultaneously provide high compliance and wearing comfort to the human body. Stretchable conductive textile is the fundamental building block for constructing high-performance textile-based stretchable electronic devices. Here, we report a simple strategy for the fabrication of stretchable conductive fabric using commercial knitted cloth as a substrate. Briefly, we coated the fibers of the fabric with a thin layer of poly(styrene-block-butadiene-block-styrene) (SBS) by dip-coating. Then, silver nanoparticles (AgNPs) were loaded on the fabric by sequential absorption and in situ reduction. After loading AgNPs, the conductivity of the fabric could be as high as ∼800 S/m, while its maximal strain at break was higher than 540%. Meanwhile, such fabric also possesses excellent permeability, robust endurance to repeated stretching, long-time washing, and mechanical rubbing or tearing. We further approve that the fabric is less cytotoxic to mammalian skin and antibacterial to microbial, making it safe for on-skin applications. With these multifarious advantages, the fabric developed here is promising for on-skin wearable applications. As a proof-of-concept, we demonstrate its use as an electrode for collecting electrocardiograph signals and electrothermal therapy.
Collapse
Affiliation(s)
- Haojun Liu
- State Key Laboratory of Luminescent Materials &Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Wushan Road No. 381, Guangzhou 510640, Tianhe District, P. R. China
| | - Xianmei Zhong
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 319, Section 3, Zhongshan Road, Luzhou 646000, Jiangyang District, Sichuan, P. R. China
| | - Xin He
- State Key Laboratory of Luminescent Materials &Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Wushan Road No. 381, Guangzhou 510640, Tianhe District, P. R. China
| | - Yushan Li
- State Key Laboratory of Luminescent Materials &Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Wushan Road No. 381, Guangzhou 510640, Tianhe District, P. R. China
| | - Ningjing Zhou
- State Key Laboratory of Luminescent Materials &Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Wushan Road No. 381, Guangzhou 510640, Tianhe District, P. R. China
| | - Zhijun Ma
- State Key Laboratory of Luminescent Materials &Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Wushan Road No. 381, Guangzhou 510640, Tianhe District, P. R. China
- Zhejiang Lab, Research Center of Intelligent Sensing, South China University of Technology, Wenyi West Road No. 1818, Hangzhou 311121, P. R. China
| | - Dezhi Zhu
- School of Mechanical and Automobile Engineering, South China University of Technology, Wushan Road No. 381, Guangzhou 510640, Tianhe District, P. R. China
| | - Huijiao Ji
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 319, Section 3, Zhongshan Road, Luzhou 646000, Jiangyang District, Sichuan, P. R. China
| |
Collapse
|
32
|
Chen M, Yang F, Chen X, Qin R, Pi H, Zhou G, Yang P. Crack Suppression in Conductive Film by Amyloid-Like Protein Aggregation toward Flexible Device. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104187. [PMID: 34510560 DOI: 10.1002/adma.202104187] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/28/2021] [Indexed: 06/13/2023]
Abstract
A fatal weakness in flexible electronics is the mechanical fracture that occurs during repetitive fatigue deformation; thus, controlling the crack development of the conductive layer is of prime importance and has remained a great challenge until now. Herein, this issue is tackled by utilizing an amyloid/polysaccharide molecular composite as an interfacial binder. Sodium alginate (SA) can take part in amyloid-like aggregation of the lysozyme, leading to the facile synthesis of a 2D protein/saccharide hybrid nanofilm over an ultralarge area (e.g., >400 cm2 ). The introduction of SA into amyloid-like aggregates significantly enhances the mechanical strength of the hybrid nanofilm, which, with the help of amyloid-mediated interfacial adhesion, effectively diminishes the microcracks in the hybrid nanofilm coating after repetitive bending or stretching. The microcrack-free hybrid nanofilm then shows high interfacial activity to induce electroless deposition of metal in a Kelvin model on a substrate, which noticeably suppresses the formation of microcracks and consequent conductivity loss during the bending and stretching of the metal-coated flexible substrates. This work underlines the significance of amyloid/polysaccharide nanocomposites in the design of interfacial binders for reliable flexible electronic devices and represents an important contribution to mimicking amyloid and polysaccharide-based adhesive cements created by organisms.
Collapse
Affiliation(s)
- Mengmeng Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Facui Yang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, China
| | - Xi Chen
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710119, China
| | - Rongrong Qin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Hemu Pi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Guijiang Zhou
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710119, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
33
|
Sun P, Ma C, Chen Y, Liu H. Flexible Conducting Composite Film with Reversible In-Plane Folding-Unfolding Property. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102314. [PMID: 34390231 PMCID: PMC8529486 DOI: 10.1002/advs.202102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Flexible conducting films in the forms of bendability or stretchability are developed as a key component to enable soft electronics. With the requirements of miniaturization and portability of modern electronics, conducting film that can endure in-plane shrinkage is urgently needed but still remains challenging. Here, a new type of conducting film achieving reversible in-plane folding-unfolding function with large deformation by infusing conductive liquids into hierarchically structured polymer films consisting of both nanostructured polymer nanofibers and microstructured frames is reported. Nanostructured polymer nanofibers that can be completely wetted by the conductive liquids provide capillary forces to gain reversible in-plane folding-unfolding property, while the microstructured frames greatly enhance the extent during folding-unfolding process. Conductivity of the produced films can be significantly improved by rationally tuning the composition of infused conductive liquids, which always keeps high values during the folding-unfolding deformation. It is believed that this work may serve as the basis for robust fabrication of flexible conducting films with reversible in-plane folding-unfolding function, and can also put one-step forward of modern soft electronics.
Collapse
Affiliation(s)
- Peiru Sun
- School of Chemistry and Chemical EngineeringYantai UniversityYantai264005P. R. China
- School of Metallurgy and Materials EngineeringChongqing University of Science and TechnologyChongqing401331P. R. China
| | - Chuao Ma
- College of ChemistryJilin UniversityChangchun130012P. R. China
| | - Yong Chen
- School of Metallurgy and Materials EngineeringChongqing University of Science and TechnologyChongqing401331P. R. China
| | - Hongliang Liu
- School of Chemistry and Chemical EngineeringYantai UniversityYantai264005P. R. China
| |
Collapse
|
34
|
Wang W, Gan Q, Zhang Y, Lu X, Wang H, Zhang Y, Hu H, Chen L, Shi L, Wang S, Zheng Z. Polymer-Assisted Metallization of Mammalian Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102348. [PMID: 34279053 DOI: 10.1002/adma.202102348] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/06/2021] [Indexed: 06/13/2023]
Abstract
Developing biotemplating techniques to translate microorganisms and cultured mammalian cells into metallic biocomposites is of great interest for biosensors, electronics, and energy. The metallization of viruses and microbial cells is successfully demonstrated via a genetic engineering strategy or electroless deposition. However, it is difficult to transform mammalian cells into metallic biocomposites because of the complicated genes and the delicate morphological features. Herein, "polymer-assisted cell metallization" (PACM) is reported as a general method for the transformation of mammalian cells into metallic biocomposites. PACM includes a first step of in situ polymerization of functional polymer on the surface and in the interior of the mammalian cells, and a subsequent electroless deposition of metal to convert the polymer-functionalized cells into metallic biocomposites, which retain the micro- and nanostructures of the mammalian cells. This new biotemplating method is compatible with different cell types and metals to yield a wide variety of metallic biocomposites with controlled structures and properties.
Collapse
Affiliation(s)
- Wenshuo Wang
- Laboratory for Advanced Interfacial Materials and Devices, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qi Gan
- Laboratory for Advanced Interfacial Materials and Devices, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yuqi Zhang
- Laboratory for Advanced Interfacial Materials and Devices, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xi Lu
- Laboratory for Advanced Interfacial Materials and Devices, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Huixin Wang
- Laboratory for Advanced Interfacial Materials and Devices, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yaokang Zhang
- Laboratory for Advanced Interfacial Materials and Devices, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Hong Hu
- Laboratory for Advanced Interfacial Materials and Devices, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Lina Chen
- Laboratory for Advanced Interfacial Materials and Devices, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Lianxin Shi
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
35
|
Lv J, Thangavel G, Li Y, Xiong J, Gao D, Ciou J, Tan MWM, Aziz I, Chen S, Chen J, Zhou X, Poh WC, Lee PS. Printable elastomeric electrodes with sweat-enhanced conductivity for wearables. SCIENCE ADVANCES 2021; 7:eabg8433. [PMID: 34261658 PMCID: PMC8279513 DOI: 10.1126/sciadv.abg8433] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/28/2021] [Indexed: 05/17/2023]
Abstract
We rationally synthesized the thermoplastic and hydrophilic poly(urethane-acrylate) (HPUA) binder for a type of printable and stretchable Ag flakes-HPUA (Ag-HPUA) electrodes in which the conductivity can be enhanced by human sweat. In the presence of human sweat, the synergistic effect of Cl- and lactic acid enables the partial removal of insulating surfactant on silver flakes and facilitates sintering of the exposed silver flakes, thus the resistance of Ag-HPUA electrodes can be notably reduced in both relaxed and stretched state. The on-body data show that the resistance of one electrode has been decreased from 3.02 to 0.62 ohm during the subject's 27-min sweating activity. A stretchable textile sweat-activated battery using Ag-HPUA electrodes as current collectors and human sweat as the electrolyte was constructed for wearable electronics. The enhanced conductivity of the wearable wiring electrode from the reaction with sweat would provide meritorious insight into the design of wearable devices.
Collapse
Affiliation(s)
- Jian Lv
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Gurunathan Thangavel
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yi Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei, 430072, China
| | - Jiaqing Xiong
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Dace Gao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jinghao Ciou
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Matthew Wei Ming Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Izzat Aziz
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shaohua Chen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Juntong Chen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xinran Zhou
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Wei Church Poh
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
36
|
Cao W, Gong Y, Wang W, Chen M, Yang J, Xue Y. Rationally designed hierarchical C/TiO 2/Ti multilayer core-sheath wires for high-performance energy storage devices. NANOSCALE 2021; 13:8658-8664. [PMID: 33949558 DOI: 10.1039/d1nr00814e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Fiber-shaped supercapacitors (FSCs) are promising power sources for wearable electronic devices due to their small size, excellent flexibility and deformability. The performance of FSCs has been severely affected by the framework of the fibrous electrodes and the interface between the electrode materials and current collector. Herein, we propose an ingenious strategy that combines anodizing etching and CVD methods to transform the less-active titanium wires into unique hierarchical carbon/TiO2 nanotube/Ti (CTNT) core-sheath wires, which have high conductivity, good mechanical strength and porous structure on the surface. CTNT wires can be used not only as a high-performance electrode, but also as an ideal substrate for depositing active materials. We have demonstrated the deposition of MnO2 and MoS2 on the surface of CTNT to prepare MnO2@CTNT and MoS2@CTNT core-sheath composite wires through electrochemical deposition and hydrothermal reaction, respectively. The specific areal capacitance of a single wire (MoS2@CTNT) can reach up to 557.83 mF cm-2 in a three-electrode system. Two such wires were further used as electrodes for making an all-solid-state asymmetric fiber-shaped supercapacitor (AFSC). The prepared AFSC has a wide voltage window of 2.7 V, a large areal capacitance of 121.42 mF cm-2 and an excellent energy density of 74.37 μW h cm-2. It also shows good rate performance and stability, and even after 10 000 cycles of charging and discharging, a capacitance retention rate of 76.5% can be achieved.
Collapse
Affiliation(s)
- Wei Cao
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | | | | | | | | | | |
Collapse
|
37
|
Hu F, Zhao H, Pan Y, Yang D, Sha J, Gao Y. Fabricating patterned polyelectrolyte brushes by dynamic microprojection lithography for selective electroless metal deposition. J Appl Polym Sci 2021. [DOI: 10.1002/app.50249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fenghuai Hu
- School of Mechanical and Power Engineering East China University of Science and Technology Shanghai China
| | - Haili Zhao
- School of Mechanical and Power Engineering East China University of Science and Technology Shanghai China
| | - Yunfei Pan
- R&D Department SKF (Shanghai) Automotive Technology Co., Ltd Shanghai China
| | - Dasheng Yang
- School of Mechanical and Power Engineering East China University of Science and Technology Shanghai China
| | - Jin Sha
- School of Mechanical and Power Engineering East China University of Science and Technology Shanghai China
| | - Yang Gao
- School of Mechanical and Power Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
38
|
Bi S, Hou L, Dong W, Lu Y. Multifunctional and Ultrasensitive-Reduced Graphene Oxide and Pen Ink/Polyvinyl Alcohol-Decorated Modal/Spandex Fabric for High-Performance Wearable Sensors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2100-2109. [PMID: 33347284 DOI: 10.1021/acsami.0c21075] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sensitive and flexible sensors capable of monitoring physiological signals of human body for healthcare have been developed in recent years. It is still a challenge to fabricate a wearable sensor-integrated multifunctional performances and a good fit to human body. Here, an rGO and pen ink/PVA-layered strain-humidity sensor based on MS fabric is prepared through a cost-effective and scalable solution process. The conductive fabric as a strain sensor has a workable strain range (∼300%), ultrahigh sensitivity (maximum gauge factor of 492.8), great comfort, and long-term stability. Notably, a step increase in relative resistance variation will be achieved by controlling the coverage of an ink layer. Moreover, the reliable linear humidity-dependent resistance void of hysteresis and excellent repeatability renders conductive fabrics an opportunity as humidity sensors. Based on these superior multifunctions, the resultant conductive fabric can be applied to detect both human motions and skin humidity, showing potential in applications of wearable electronics for professional athletes.
Collapse
Affiliation(s)
- Siyi Bi
- Department of Materials Science, Fudan University, Shanghai 200433, China
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Yiwu Institute of Fudan University, Jinhua, Zhejiang 322002, China
| | - Lei Hou
- Department of Materials Science, Fudan University, Shanghai 200433, China
- Yiwu Institute of Fudan University, Jinhua, Zhejiang 322002, China
| | - Wangwei Dong
- Department of Materials Science, Fudan University, Shanghai 200433, China
- Yiwu Institute of Fudan University, Jinhua, Zhejiang 322002, China
| | - Yinxiang Lu
- Department of Materials Science, Fudan University, Shanghai 200433, China
- Yiwu Institute of Fudan University, Jinhua, Zhejiang 322002, China
| |
Collapse
|
39
|
Zhu C, Li R, Chen X, Chalmers E, Liu X, Wang Y, Xu BB, Liu X. Ultraelastic Yarns from Curcumin-Assisted ELD toward Wearable Human-Machine Interface Textiles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002009. [PMID: 33304755 PMCID: PMC7709996 DOI: 10.1002/advs.202002009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/04/2020] [Indexed: 05/07/2023]
Abstract
Intelligent human-machine interfaces (HMIs) integrated wearable electronics are essential to promote the Internet of Things (IoT). Herein, a curcumin-assisted electroless deposition technology is developed for the first time to achieve stretchable strain sensing yarns (SSSYs) with high conductivity (0.2 Ω cm-1) and ultralight weight (1.5 mg cm-1). The isotropically deposited structural yarns can bear high uniaxial elongation (>>1100%) and still retain low resistivity after 5000 continuous stretching-releasing cycles under 50% strain. Apart from the high flexibility enabled by helical loaded structure, a precise strain sensing function can be facilitated under external forces with metal-coated conductive layers. Based on the mechanics analysis, the strain sensing responses are scaled with the dependences on structural variables and show good agreements with the experimental results. The application of interfacial enhanced yarns as wearable logic HMIs to remotely control the robotic hand and manipulate the color switching of light on the basis of gesture recognition is demonstrated. It is hoped that the SSSYs strategy can shed an extra light in future HMIs development and incoming IoT and artificial intelligence technologies.
Collapse
Affiliation(s)
- Chuang Zhu
- Department of Materials, School of Natural SciencesUniversity of ManchesterManchesterM13 9PLUK
| | - Ruohao Li
- School of Science, Technology, Engineering and MathematicsUniversity of WashingtonBothellWA98011USA
| | - Xue Chen
- Department of Mechanical and Construction EngineeringFaculty of Engineering and EnvironmentNorthumbria UniversityNewcastle upon TyneNE1 8STUK
| | - Evelyn Chalmers
- Department of Materials, School of Natural SciencesUniversity of ManchesterManchesterM13 9PLUK
| | - Xiaoteng Liu
- Department of Mechanical and Construction EngineeringFaculty of Engineering and EnvironmentNorthumbria UniversityNewcastle upon TyneNE1 8STUK
| | - Yuqi Wang
- Department of Materials, School of Natural SciencesUniversity of ManchesterManchesterM13 9PLUK
| | - Ben Bin Xu
- Department of Mechanical and Construction EngineeringFaculty of Engineering and EnvironmentNorthumbria UniversityNewcastle upon TyneNE1 8STUK
| | - Xuqing Liu
- Department of Materials, School of Natural SciencesUniversity of ManchesterManchesterM13 9PLUK
| |
Collapse
|
40
|
Chen L, Lu M, Yang H, Salas Avila JR, Shi B, Ren L, Wei G, Liu X, Yin W. Textile-Based Capacitive Sensor for Physical Rehabilitation via Surface Topological Modification. ACS NANO 2020; 14:8191-8201. [PMID: 32520522 DOI: 10.1021/acsnano.0c01643] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Wearable sensor technologies, especially continuous monitoring of various human health conditions, are attracting increased attention. However, current rigid sensors present obvious drawbacks, like lower durability and poor comfort. Here, a strategy is proposed to efficiently yield wearable sensors using cotton fabric as an essential component, and conductive materials conformally coat onto the cotton fibers, leading to a highly electrically conductive interconnecting network. To improve the conductivity and durability of conductive coatings, a topographical modification approach is developed with genus-3 and genus-5 structures, and topological genus structures enable cage metallic seeds on the surface of substrates. A textile-based capacitive sensor with flexible, comfortable, and durable properties has been demonstrated. High sensitivity and convenience of signal collection have been achieved by the excellent electrical conductivity of this sensor. Based on results of deep investigation on capacitance, effects of distance and angles between two conductive fabrics contribute to the capacitive sensitivity. In addition, the textile-based capacitive sensor has successfully been used for real-time monitoring human breathing, speaking, blinking, and joint motions during physical rehabilitation exercises.
Collapse
Affiliation(s)
- Liming Chen
- Department of Electrical and Electronic Engineering, University of Manchester, Sackville Street Building, Manchester M13 9PL, United Kingdom
| | - Mingyang Lu
- Department of Electrical and Electronic Engineering, University of Manchester, Sackville Street Building, Manchester M13 9PL, United Kingdom
| | - Haosen Yang
- Department of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Sackville Street Building, Manchester M13 9PL, United Kingdom
| | - Jorge Ricardo Salas Avila
- Department of Electrical and Electronic Engineering, University of Manchester, Sackville Street Building, Manchester M13 9PL, United Kingdom
| | - Bowen Shi
- Department of Materials, University of Manchester, Sackville Street Building, Manchester M13 9PL, United Kingdom
| | - Lei Ren
- Department of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Sackville Street Building, Manchester M13 9PL, United Kingdom
| | - Guowu Wei
- School of Computing, Science and Engineering, University of Salford, Salford M5 4WT, United Kingdom
| | - Xuqing Liu
- Department of Materials, University of Manchester, Sackville Street Building, Manchester M13 9PL, United Kingdom
| | - Wuliang Yin
- Department of Electrical and Electronic Engineering, University of Manchester, Sackville Street Building, Manchester M13 9PL, United Kingdom
| |
Collapse
|
41
|
Chen D, Kang Z, Hirahara H, Li W. Interfacial nanoconnections and enhanced mechanistic studies of metallic coatings for molecular gluing on polymer surfaces. NANOSCALE ADVANCES 2020; 2:2106-2113. [PMID: 36132528 PMCID: PMC9417536 DOI: 10.1039/d0na00176g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/13/2020] [Indexed: 05/04/2023]
Abstract
Interfacial adhesion has been identified as being key for realizing flexible devices. Here, strong interfacial nanoconnections involving metallic patterns on polymer surfaces were fabricated via a molecular bonding approach, which includes UV-assisted grafting and molecular self-assembly. The interfacial characteristics of conductive patterns on liquid crystal polymer substrates were observed via transmission electron microscopy and atomic force microscopy infrared spectroscopy. The interfacial molecular layers have a thickness of 10 nm. Due to the successful molecular bonding modifications, interfacial adhesion has been sufficiently improved; in particular, the peel-related breakage sites will be located in the modified layers on the plastic surface beneath the interface after the metallic coatings are peeled off. Integrating X-ray photoelectron spectroscopy, infrared spectroscopy, and scanning electron microscopy results, the molecular bonding mechanism has been revealed: UV-assisted grafting and self-assembly result in the construction of interfacial molecular architectures, which provide nanosized connecting bridges between the metallic patterns and polymer surfaces. Such in-depth interfacial studies can offer insight into interfacial adhesion, which will impact on the development of metal/polymer composite systems and continue to push the improvement of flexible devices.
Collapse
Affiliation(s)
- Dexin Chen
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University 601 Huangpu Avenue West Guangzhou 510632 China
- Shaoguan Research Institute of Jinan University Wujiang District Shaoguan 512027 China
| | - Zhixin Kang
- Guangdong Key Laboratory for Advanced Metallic Materials Processing, School of Mechanical and Automotive Engineering, South China University of Technology 381 Wushan Guangzhou 510640 China
| | - Hidetoshi Hirahara
- Faculty of Science and Engineering, Iwate University 4-3-5 Ueda Morioka 020-8551 Japan
| | - Wei Li
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University 601 Huangpu Avenue West Guangzhou 510632 China
- Shaoguan Research Institute of Jinan University Wujiang District Shaoguan 512027 China
| |
Collapse
|
42
|
Li Y, Li K, Wang X, Cui M, Ge P, Zhang J, Qiu F, Zhong C. Conformable self-assembling amyloid protein coatings with genetically programmable functionality. SCIENCE ADVANCES 2020; 6:eaba1425. [PMID: 32490204 PMCID: PMC7239643 DOI: 10.1126/sciadv.aba1425] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/05/2020] [Indexed: 06/02/2023]
Abstract
Functional coating materials have found broad technological applications in diverse fields. Despite recent advances, few coating materials simultaneously achieve robustness and substrate independence while still retaining the capacity for genetically encodable functionalities. Here, we report Escherichia coli biofilm-inspired protein nanofiber coatings that simultaneously exhibit substrate independence, resistance to organic solvents, and programmable functionalities. The intrinsic surface adherence of CsgA amyloid proteins, along with a benign solution-based fabrication approach, facilitates forming nanofiber coatings on virtually any surface with varied compositions, sizes, shapes, and structures. In addition, the typical amyloid structures endow the nanofiber coatings with outstanding robustness. On the basis of their genetically engineerable functionality, our nanofiber coatings can also seamlessly participate in functionalization processes, including gold enhancement, diverse protein conjugations, and DNA binding, thus enabling a variety of proof-of-concept applications, including electronic devices, enzyme immobilization, and microfluidic bacterial sensors. We envision that our coatings can drive advances in electronics, biocatalysis, particle engineering, and biomedicine.
Collapse
Affiliation(s)
- Yingfeng Li
- Materials and Physical Biology Division, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ke Li
- Materials and Physical Biology Division, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xinyu Wang
- Materials and Physical Biology Division, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Mengkui Cui
- Materials and Physical Biology Division, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Peng Ge
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Junhu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Feng Qiu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chao Zhong
- Materials and Physical Biology Division, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Materials Synthetic Biology Center, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
43
|
Chen X, Xu G, Zeng G, Gu H, Chen H, Xu H, Yao H, Li Y, Hou J, Li Y. Realizing Ultrahigh Mechanical Flexibility and >15% Efficiency of Flexible Organic Solar Cells via a "Welding" Flexible Transparent Electrode. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908478. [PMID: 32103580 DOI: 10.1002/adma.201908478] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/21/2020] [Indexed: 05/19/2023]
Abstract
The power conversion efficiencies (PCEs) of flexible organic solar cells (OSCs) still lag behind those of rigid devices and their mechanical stability is unable to meet the needs of flexible electronics at present due to the lack of a high-performance flexible transparent electrode (FTE). Here, a so-called "welding" concept is proposed to design an FTE with tight binding of the upper electrode and the underlying substrate. The upper electrode consisting of solution-processed Al-doped ZnO (AZO) and silver nanowire (AgNW) network is well welded by utilizing the capillary force effect and secondary growth of AZO, leading to a reduction of the AgNWs junction site resistance. Meanwhile, the poly(ethylene terephthalate) is modified by embedding the AgNWs, which are then used to link with the AgNWs in the upper hybrid electrode, thus enhancing the adhesion of the electrode to the substrate. By this welding strategy, critical bottleneck issues relating to the FTEs in terms of optoelectronic and mechanical properties are comprehensively addressed. The single-junction flexible OSCs based on this welded FTE show a high performance, achieving a record high PCE of 15.21%. In addition, the PCEs of the flexible OSCs are less influenced by the device area and display robust bending durability even under extreme test conditions.
Collapse
Affiliation(s)
- Xiaobin Chen
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Guiying Xu
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Guang Zeng
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- College of Materials Science and Engineering, Nanchang Hangkong University, 696 Fenghe Avenue, Nanchang, 330063, China
| | - Hongwei Gu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Haiyang Chen
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Haitao Xu
- College of Materials Science and Engineering, Nanchang Hangkong University, 696 Fenghe Avenue, Nanchang, 330063, China
| | - Huifeng Yao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yaowen Li
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jianhui Hou
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
44
|
Jiang C, Xiang L, Miao S, Shi L, Xie D, Yan J, Zheng Z, Zhang X, Tang Y. Flexible Interface Design for Stress Regulation of a Silicon Anode toward Highly Stable Dual-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908470. [PMID: 32108386 DOI: 10.1002/adma.201908470] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/26/2020] [Indexed: 05/19/2023]
Abstract
Dual-ion batteries (DIBs) have attracted increasing attention due to their high working voltage, low cost, and environmental friendliness, yet their development is hindered by their limited energy density. Pairing silicon-a most promising anode due to its highest theoretical capacity (4200 mAh g-1 )-with a graphite cathode is a feasible strategy to address the challenge. Nevertheless, the cycling stability of silicon is unsatisfactory due to the loss of electrical contact resulting from the high interface stress when using rigid current collectors. In this work, a flexible interface design to regulate the stress distribution is proposed, via the construction of a silicon anode on a soft nylon fabric modified with a conductive Cu-Ni transition layer, which endows the silicon electrode with remarkable flexibility and stability over 50 000 bends. Assembly of the flexible silicon anode with an expanded graphite cathode yields a silicon-graphite DIB (SGDIB), which possesses record-breaking rate performance (up to 150 C) and cycling stability over 2000 cycles at 10 C with a capacity retention of 97%. Moreover, the SGDIB shows a high capacity retention of ≈84% after 1500 bends and a low self-discharging voltage loss of 0.0015% per bend after 10 000 bends, suggesting high potential for high-performance flexible energy-storage applications.
Collapse
Affiliation(s)
- Chunlei Jiang
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Laboratory for Advanced Interfacial Materials and Devices, Research Center for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Lei Xiang
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Shenzhen, 518055, China
| | - Shijie Miao
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Shenzhen, 518055, China
| | - Lei Shi
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Donghao Xie
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Jiaxiao Yan
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Shenzhen, 518055, China
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, Research Center for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Xiaoming Zhang
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Yongbing Tang
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| |
Collapse
|
45
|
Gao HM, Li B, Zhang R, Sun ZY, Lu ZY. Free energy for inclusion of nanoparticles in solvated polymer brushes from molecular dynamics simulations. J Chem Phys 2020; 152:094905. [DOI: 10.1063/5.0002257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Hui-Min Gao
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
- School of Mathematics, Jilin University, Changchun 130023, China
| | - Bing Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Ran Zhang
- School of Mathematics, Jilin University, Changchun 130023, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Chinese Academy of Sciences, Beijing 100039, China
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matters, College of Physical Science and Technology, Yili Normal University, Yining 835000, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| |
Collapse
|
46
|
Jian M, Zhang Y, Liu Z. Natural Biopolymers for Flexible Sensing and Energy Devices. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2379-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
47
|
Qi Q, Wang Y, Ding X, Wang W, Xu R, Yu D. High‐electromagnetic‐shielding cotton fabric prepared using multiwall carbon nanotubes/nickel–phosphorus electroless plating. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Qingbin Qi
- Key Laboratory of Science and Technology of Eco‐Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and BiotechnologyDonghua University Shanghai 201602 China
| | - Yu Wang
- Key Laboratory of Science and Technology of Eco‐Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and BiotechnologyDonghua University Shanghai 201602 China
| | - Xiaodong Ding
- Key Laboratory of Science and Technology of Eco‐Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and BiotechnologyDonghua University Shanghai 201602 China
| | - Wei Wang
- Key Laboratory of Science and Technology of Eco‐Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and BiotechnologyDonghua University Shanghai 201602 China
- Saintyear Holding Group Co. Ltd China
| | - Rui Xu
- Key Laboratory of Science and Technology of Eco‐Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and BiotechnologyDonghua University Shanghai 201602 China
| | - Dan Yu
- Key Laboratory of Science and Technology of Eco‐Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and BiotechnologyDonghua University Shanghai 201602 China
| |
Collapse
|
48
|
Kalachyova Y, Guselnikova O, Hnatowicz V, Postnikov P, Švorčík V, Lyutakov O. Flexible Conductive Polymer Film Grafted with Azo-Moieties and Patterned by Light Illumination with Anisotropic Conductivity. Polymers (Basel) 2019; 11:E1856. [PMID: 31717943 PMCID: PMC6918303 DOI: 10.3390/polym11111856] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/02/2019] [Accepted: 11/07/2019] [Indexed: 01/22/2023] Open
Abstract
In this work, we present the method for the creation of an anisotropic electric pattern on thin poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) films through PSS grafting by azo-containing moieties followed by light-induced polymers redistribution. Thin PEDOT:PSS films were deposited on the flexible and biodegradable polylactic acid (PLLA) substrates. The light-sensitive azo-groups were grafted to PSS using the diazonium chemistry followed by annealing in methanol. Local illumination of azo-grafted PEDOT:PSS films through the lithographic mask led to the conversion of azo-moieties in Z-configuration and further creation of the lateral gradient of azo-isomers along the film surface. The concentration gradient led to the migration of PSS away from the illuminated area, increasing the PEDOT chains' concentration and the corresponding increase of local electrical conductivity in the illuminated place. Utilization of mask with linear pattern results in the appearance of conductive PEDOT-rich and non-conductive PSS-rich lines on the film surface, and final, lateral anisotropy of electric properties. Our work gives an optical lithography-based alternative to common methods for the creation of anisotropic electric properties, based on the spatial confinement of conductive polymer structures or their mechanical strains.
Collapse
Affiliation(s)
- Yevgeniya Kalachyova
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic; (Y.K.); (P.P.); (V.Š.)
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634049 Tomsk, Russian Federation
| | - Olga Guselnikova
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic; (Y.K.); (P.P.); (V.Š.)
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634049 Tomsk, Russian Federation
| | - Vladimir Hnatowicz
- Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 25068 Rez, Czech Republic;
| | - Pavel Postnikov
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic; (Y.K.); (P.P.); (V.Š.)
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634049 Tomsk, Russian Federation
| | - Vaclav Švorčík
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic; (Y.K.); (P.P.); (V.Š.)
| | - Oleksiy Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic; (Y.K.); (P.P.); (V.Š.)
| |
Collapse
|