1
|
Elbakyan LS, Hayrapetyan DB, Mantashyan PA. DFT study of GaAs quantum dot and 5CB liquid crystal molecule interaction. J Mol Graph Model 2025; 136:108953. [PMID: 39818192 DOI: 10.1016/j.jmgm.2025.108953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Liquid crystals (LC) are widely used in various optical devices due to their birefringence, dielectric anisotropy, and responsive behavior to external fields. Enhancing the properties of existing LCs through doping with nanoparticles, including semiconductor quantum dots, offers a promising route for improving their performance. Among various nanoparticles, QDs stand out for their high charge mobility, sensitivity in the near-infrared spectral region, and cost-effectiveness. These attributes make them ideal candidates for integration with LCs. While liquid crystalline behavior arises from the collective ordering of molecules, the microscopic interactions between QDs and LC molecules remain an intriguing area of study to understand the underlying quantum-level mechanisms. In this study, we employ Density Functional Theory to investigate the interaction between GaAs quantum dot and a 5CB molecule. The 5CB molecule and Ga atoms were brought together gradually, and the corresponding changes in interaction energy and electron density distributions were calculated. The energy profiles reveal a clear distance-dependent interaction, with a minimum observed at 2.1 Å, indicating the formation of stable complexes. While the BVP86 functional slightly overestimated the interaction energy, the B3LYP functional produced more accurate results, confirming the feasibility of stable quantum dot - 5CB molecule complexes.
Collapse
Affiliation(s)
- L S Elbakyan
- Institute of Chemical Physics after A.B. Nalbandyan of NAS RA, 5/2 P. Sevak St., Yerevan, 0014, Armenia; Institute of Priority Technologies, Volgograd State University, 100 Prospect Universitetsky, Volgograd, 400062, Russia
| | - D B Hayrapetyan
- Institute of Chemical Physics after A.B. Nalbandyan of NAS RA, 5/2 P. Sevak St., Yerevan, 0014, Armenia; Russian-Armenian University, 123 Hovsep Emin Str., Yerevan, 0051, Armenia.
| | - P A Mantashyan
- Institute of Chemical Physics after A.B. Nalbandyan of NAS RA, 5/2 P. Sevak St., Yerevan, 0014, Armenia
| |
Collapse
|
2
|
Su Z, Chen X, Sun M, Yang X, Kang J, Cai Z, Guo L. Amorphous Nanobelts for Efficient Electrocatalytic Ammonia Production. Angew Chem Int Ed Engl 2025; 64:e202416878. [PMID: 39363749 DOI: 10.1002/anie.202416878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
One-dimensional (1D) amorphous nanomaterials combine the advantages of high active site concentration of amorphous structure, high specific surface area and efficient charge transfer of 1D materials, so they present promising opportunities for catalysis. However, how to achievie the balance between the high orientation of 1D morphology and the isotropy of amorphous structure is a significant challenge, which severely obstructs the controllable preparation of 1D amorphous materials. Guided by the hard-soft acids-bases theory, here we develop a general strategy for preparing 1D amorphous nanomaterials through the precise modulation of bond strength between metal ions and organic ligands for a moderated fastness. The soft base dodecanethiol (DT) is multifunctionally served as both structure-regulating agent and morphology-directing agent. Compared with the borderline acids (e.g. Fe2+, Co2+, Ni2+) to construct amorphous structure, soft acid of Cu+ which produced crystalline nanobelts can still be amorphized by reducing the hardness of Cu ions through redox reaction to weak Cu-SR bond. Due to the combined advantages of amorphous structure and one-dimensional morphology, amorphous CuDT nanobelts exhibited excellent electrocatalytic activity in electrochemical nitrate reduction, outperformed most of the reported Cu-based catalysts. This work will effectively bridge the gap between traditional 1D crystalline nanomaterials synthesis and their amorphization preparation.
Collapse
Affiliation(s)
- Ziming Su
- School of Chemistry, Beihang University, 100191, Beijing, China
| | - Xiangyu Chen
- School of Chemistry, Beihang University, 100191, Beijing, China
| | - Mingke Sun
- School of Chemistry, Beihang University, 100191, Beijing, China
| | - Xiuyi Yang
- School of Chemistry, Beihang University, 100191, Beijing, China
| | - Jianxin Kang
- School of Chemistry, Beihang University, 100191, Beijing, China
| | - Zhi Cai
- School of Chemistry, Beihang University, 100191, Beijing, China
| | - Lin Guo
- School of Chemistry, Beihang University, 100191, Beijing, China
| |
Collapse
|
3
|
Gowda A, Acharjee G, Pathak SK, Rohaley GAR, Shah A, Lemieux RP, Prévôt ME, Hegmann T. Controlling nano- and microfilament morphology by strategically placing chiral centers in the side chains of bent-core molecules. MATERIALS HORIZONS 2024; 11:5550-5563. [PMID: 39400225 DOI: 10.1039/d4mh01243g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Self-assembled lamellar nano- and microfilaments formed by select types of bent-core molecules are prime examples of the interplay between molecular conformation and morphological chirality. Here, we demonstrate how the strategic placement of chiral centers at C-1 and/or C-3 in the terminal alkyloxy side chains, largely based on a priori calculations of molecular conformation, leads to the predictable formation of increasingly complex nano- and microfilament morphologies. Adding to the previously described diversity of twisted and writhed filament types, we here demonstrate and explain the formation and coexistence of flat nanoribbons, nanocylinders, or nano- as well as microfilaments where the morphology spontaneously changes along the filament long axis. For some these more exotic types of filament morphology, helical multilayer filaments suddenly unwind to form flat nanoribbons that also twist again under preservation (not perversion) of the helical twist sense. Moreover, the morphologies formed by this series of molecules now allows us to demonstrate the complete transformation from flat multilayer ribbons over microfilaments and helical-wrapped nanocylinders to helical nanofilaments depending on the number and position of chiral centers in the aliphatic side chains.
Collapse
Affiliation(s)
- Ashwathanarayana Gowda
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
| | - Gourab Acharjee
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Suraj Kumar Pathak
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
| | - Grace A R Rohaley
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| | - Asmita Shah
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
| | - Robert P Lemieux
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Marianne E Prévôt
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| | - Torsten Hegmann
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
4
|
Li Q, Gao W, Wang Z, Liu W, Fu Y, Wang X, Tan LL, Shang L, Yang YW. Guest-Induced Helical Superstructure from a Gold Nanocluster-Based Supramolecular Organic Framework Enables Efficient Catalysis. ACS NANO 2024; 18:22548-22559. [PMID: 39110641 DOI: 10.1021/acsnano.4c08337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Mimicking hierarchical assembly in nature to exploit atomically precise artificial systems with complex structures and versatile functions remains a long-standing challenge. Herein, we report two single-crystal supramolecular organic frameworks (MSOF-4 and MSOF-5) based on custom-designed atomically precise gold nanoclusters Au11(4-Mpy)3(PPh3)7, showing distinct and intriguing host-guest adaptation behaviors toward 1-/2-bromopropane (BPR) isomers. MSOF-4 exhibits sev topology and cylindrical channels with 4-mercaptopyridine (4-Mpy) ligands matching well with guest 1-BPR. Due to the confinement effect, solid MSOF-4 undergoes significant structural change upon selective adsorption of 1-BPR vapor over 2-BPR, resulting in strong near-infrared fluorescence. Single-crystal X-ray diffraction reveals that Au11(4-Mpy)3(PPh3)7 in MSOF-4 transforms into Au11Br3(PPh3)7 upon ligand exchange with 1-BPR, resulting in 1-BPR@MSOF-6 single crystals with a rarely reported helical assembly structure. Significantly, the double-helical structure of MSOF-6 facilitates efficient catalysis of the electron transfer (ET) reaction, resulting in a nearly 6 times increase of catalytic rates compared with MSOF-4. In sharp contrast, solid MSOF-5 possesses chb topology and cage-type channels with narrow windows, showing excellent selective physical adsorption toward 1-BPR vapor but a nonfluorescent feature upon guest adsorption. Our results demonstrate a powerful strategy for developing advanced assemblies with high-order complexity and engineering their functions in atomic precision.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Wenxing Gao
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Zijian Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Wenfeng Liu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yu Fu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Xin Wang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin Univeersity, 2699 Qianjin Street ,Changchun 130012, P. R. China
| | - Li-Li Tan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin Univeersity, 2699 Qianjin Street ,Changchun 130012, P. R. China
| |
Collapse
|
5
|
Pranav, Bajpai A, Dwivedi PK, Sivakumar S. Chiral nanomaterial-based approaches for diagnosis and treatment of protein-aggregated neurodiseases: current status and future opportunities. J Mater Chem B 2024; 12:1991-2005. [PMID: 38333942 DOI: 10.1039/d3tb02381h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Protein misfolding and its aggregation, known as amyloid aggregates (Aβ), are some of the major causes of more than 20 diseases such as Parkinson's disease, Alzheimer's disease, and type 2 diabetes. The process of Aβ formation involves an energy-driven oligomerization of Aβ monomers, leading to polymerization and eventual aggregation into fibrils. Aβ fibrils exhibit multilevel chirality arising from its amino acid residues and the arrangement of folded polypeptide chains; thus, a chirality-driven approach can be utilized for the detection and inhibition of Aβ fibrils. In this regard, chiral nanomaterials have recently opened new possibilities for various biomedical applications owing to their stereoselective interaction with biological systems. Leveraging this chirality-driven approach with chiral nanomaterials against protein-aggregated diseases could yield promising results, particularly in the early detection of Aβ forms and the inhibition of Aβ aggregate formation via specific and strong "chiral-chiral interaction." Despite the advantages, the development of advanced theranostic systems using chiral nanomaterials against protein-aggregated diseases has received limited attention so far because of considerably limited formulations for chiral nanomaterials and lack of information of their chiroptical behavior. This review aims to present the current status of chiral nanomaterials explored for detecting and inhibiting Aβ forms. This review covers the origin of chirality in amyloid fibrils and nanomaterials and different chiral detection methods; furthermore, different chiral nanosystems such as chiral plasmonic nanomaterials, chiral carbon-based nanomaterials, and chiral nanosurfaces, which have been used so far for different therapeutic applications against protein-aggregated diseases, are discussed in detail. The findings from this review may pave the way for the development of novel approaches using chiral nanomaterials to combat diseases resulting from protein misfolding and can further be extended to other disease forms.
Collapse
Affiliation(s)
- Pranav
- Centre for Nanosciences, Indian Institute of Technology, Kanpur 208016, India.
| | - Abhishek Bajpai
- Centre for Nanosciences, Indian Institute of Technology, Kanpur 208016, India.
| | - Prabhat K Dwivedi
- Centre for Nanosciences, Indian Institute of Technology, Kanpur 208016, India.
| | - Sri Sivakumar
- Centre for Nanosciences, Indian Institute of Technology, Kanpur 208016, India.
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur 208016, India
- Materials Science Program, Indian Institute of Technology, Kanpur 208016, India
- Centre for Environmental Science and Engineering, India
| |
Collapse
|
6
|
Szepke D, Zarzeczny M, Pawlak M, Jarmuła P, Yoshizawa A, Pociecha D, Lewandowski W. Disentangling optical effects in 3D spiral-like, chiral plasmonic assemblies templated by a dark conglomerate liquid crystal. J Chem Phys 2024; 160:074201. [PMID: 38380754 DOI: 10.1063/5.0179535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Chiral thin films showing electronic and plasmonic circular dichroism (CD) are intensively explored for optoelectronic applications. The most studied chiral organic films are the composites exhibiting a helical geometry, which often causes entanglement of circular optical properties with unwanted linear optical effects (linearly polarized absorption or refraction). This entanglement limits tunability and often translates to a complex optical response. This paper describes chiral films based on dark conglomerate, sponge-like, liquid crystal films, which go beyond the usual helical type geometry, waiving the problem of linear contributions to chiroptical electronic and plasmonic properties. First, we show that purely organic films exhibit high electronic CD and circular birefringence, as studied in detail using Mueller matrix polarimetry. Analogous linear properties are two orders of magnitude lower, highlighting the benefits of using the bi-isotropic dark conglomerate liquid crystal for chiroptical purposes. Next, we show that the liquid crystal can act as a template to guide the assembly of chemically compatible gold nanoparticles into 3D spiral-like assemblies. The Mueller matrix polarimetry measurements confirm that these composites exhibit both electronic and plasmonic circular dichroisms, while nanoparticle presence is not compromising the beneficial optical properties of the matrix.
Collapse
Affiliation(s)
- Dorota Szepke
- Faculty of Chemistry, University of Warsaw, Ludwika Pasteura 1, 02-093 Warsaw, Poland
| | - Mateusz Zarzeczny
- Faculty of Chemistry, University of Warsaw, Ludwika Pasteura 1, 02-093 Warsaw, Poland
| | - Mateusz Pawlak
- Faculty of Chemistry, University of Warsaw, Ludwika Pasteura 1, 02-093 Warsaw, Poland
| | - Paweł Jarmuła
- Faculty of Chemistry, University of Warsaw, Ludwika Pasteura 1, 02-093 Warsaw, Poland
| | - Atsushi Yoshizawa
- National University Corporation, Hirosaki University, 1 Bunkyo-cho, Hirosaki, Aomori 036-8560, Japan
| | - Damian Pociecha
- Faculty of Chemistry, University of Warsaw, Ludwika Pasteura 1, 02-093 Warsaw, Poland
| | - Wiktor Lewandowski
- Faculty of Chemistry, University of Warsaw, Ludwika Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
7
|
Kim T, Lee C, Lee JY, Kim DN. Controlling Chiroptical Responses via Chemo-Mechanical Deformation of DNA Origami Structures. ACS NANO 2024; 18:3414-3423. [PMID: 38236130 DOI: 10.1021/acsnano.3c10386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
DNA origami-based templates have been widely used to fabricate chiral plasmonic metamaterials due to their precise control of the placement of nanoparticles (NPs) in a desired configuration. However, achieving various chiroptical responses inevitably requires a change in the structure of DNA origami-based templates or binding sites on them, leading to the use of significantly different sets of DNA strands. Here, we propose an approach to controlling various chiroptical responses with a single DNA origami design using its chemo-mechanical deformation induced by DNA intercalators. The chiroptical response could be finely tuned by altering the concentration of intercalators only. The silver (Ag) enhancement was used to amplify the chiroptical signal by enlarging NPs and to maintain it by stiffening the template DNA structure. Furthermore, the sensitivity in the chiroptical signal change to the concentration of intercalators could be modulated by the type of intercalator, the mixture of two intercalators, and the stiffness of DNA origami structures. This approach would be useful in a variety of optical applications that require programmed spatial modification of chiroptical responses.
Collapse
Affiliation(s)
- Taehwi Kim
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Chanseok Lee
- Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jae Young Lee
- Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Do-Nyun Kim
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
- Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
- Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
8
|
Gowda A, Pathak SK, Rohaley GAR, Acharjee G, Oprandi A, Williams R, Prévôt ME, Hegmann T. Organic chiral nano- and microfilaments: types, formation, and template applications. MATERIALS HORIZONS 2024; 11:316-340. [PMID: 37921354 DOI: 10.1039/d3mh01390a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Organic chiral nanofilaments are part of an important class of nanoscale chiral materials that has recently been receiving significant attention largely due to their potential use in applications such as optics, photonics, metameterials, and potentially a range of medical as well as sensing applications. This review will focus on key examples of the formation of such nano- and micro-filaments based on carbon nanofibers, polymers, synthetic oligo- and polypeptides, self-assembled organic molecules, and one prominent class of liquid crystals. The most critical aspects discussed here are the underlying driving forces for chiral filament formation, potentially answering why specific sizes and shapes are formed, what molecular design strategies are working equally well or rather differently among these materials classes, and what uses and applications are driving research in this fascinating field of materials science.
Collapse
Affiliation(s)
- Ashwathanarayana Gowda
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
| | - Suraj Kumar Pathak
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
| | - Grace A R Rohaley
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| | - Gourab Acharjee
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Andrea Oprandi
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| | - Ryan Williams
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| | - Marianne E Prévôt
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Torsten Hegmann
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
9
|
Kołodziej G, Szostak S, Tomczyk E, Wójcik M. Tuneable Plasmonic Resonances Of A Dynamic Thin Film Of Ultrasmall Nanocrystals Modified In the Anti-Galvanic Reduction Process. Chemistry 2023; 29:e202301843. [PMID: 37642228 DOI: 10.1002/chem.202301843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/27/2023] [Accepted: 08/27/2023] [Indexed: 08/31/2023]
Abstract
Ultrasmall gold nanoparticles (NPs) have revolutionized nanotechnology as they are an excellent starting substrate for the synthesis of organic-inorganic hybrid materials with photonic or energy conversion applications, often with a responsive nature. However, ultrasmall NPs do not sustain plasmonic resonances, preventing their use in plasmon-related applications. In the presented work, we show a method of chemical modification of ultrasmall gold nanoparticles in order to fabricate dynamically controlled plasmonic thin films. For this purpose, we used the Anti-Galvanic Reduction process (AGR) to modify the surface of small gold nanoparticles, inducing plasmonic properties without notable size increases. Au@Ag NPs are then modified with liquid crystal-like organic ligands. The obtained NPs can assemble into densely packed films with long-range order and temperature-dependent structural properties. Namely, we detect two, fully reversible phase transitions between the hexagonal and cubic symmetries. The combination of AGR and organic surface modifications enabled us to demonstrate the possibility of managing plasmonic properties in the thin film of ~2 nm diameter metallic NPs.
Collapse
Affiliation(s)
- Grzegorz Kołodziej
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Szymon Szostak
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Ewelina Tomczyk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Michał Wójcik
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| |
Collapse
|
10
|
Duan Y, Che S. Chiral Mesostructured Inorganic Materials with Optical Chiral Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205088. [PMID: 36245314 DOI: 10.1002/adma.202205088] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Fabricating chiral inorganic materials and revealing their unique quantum confinement-determined optical chiral responses are crucial tasks in the multidisciplinary fields of chemistry, physics, and biology. The field of chiral mesostructured inorganic materials started from the synthesis of individual nanocrystals and evolved to include their assembly from metals, semiconductors, ceramics, and inorganic salts endowed with various chiral structures ranging from atomic to micron scales. This tutorial review highlights the recent research on chiral mesostructured inorganic materials, especially the novel expression of mesostructured chirality and endowed optical chiral response, and it may inspire us with new strategies for the design of chiral inorganic materials and new opportunities beyond the traditional applications of chirality. Fabrication methods for chiral mesostructured inorganic materials are classified according to chirality type, scale, and symmetry-breaking mechanism. Special attention is given to highlight systems with original discoveries, exceptional phenomena, or unique mechanisms of optical chiral response for left- and right-handedness.
Collapse
Affiliation(s)
- Yingying Duan
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Shunai Che
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Matrix Composite, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
11
|
Jańczuk ZZ, Jedrych A, Parzyszek S, Gardias A, Szczytko J, Wojcik M. Dynamically Tunable Assemblies of Superparamagnetic Nanoparticles Stabilized with Liquid Crystal-like Ligands in Organic Thin Films. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2908. [PMID: 37947752 PMCID: PMC10648093 DOI: 10.3390/nano13212908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
The process of arranging magnetic nanoparticles (MNPs) into long-range structures that can be dynamically and reversibly controlled is challenging, although interesting for emerging spintronic applications. Here, we report composites of MNPs in excess of LC-like ligands as promising materials for MNP-based technologies. The organic part ensures the assembly of MNP into long-range ordered phases as well as precise and temperature-reversible control over the arrangement. The dynamic changes are fully reversible, which we confirm using X-ray diffraction (XRD). This methodology allows for the precise control of the nanomaterial's structure in a thin film at different temperatures, translating to variable unit cell parameters. The composition of the materials (XPS, TGA), their structure (XRD), and magnetic properties (SQUID) were performed. Overall, this study confirms that LC-like materials provide the ability to dynamically control the magnetic nanoparticles in thin films, particularly the reversible control of their self-organization.
Collapse
Affiliation(s)
- Zuzanna Z. Jańczuk
- Faculty of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland; (Z.Z.J.); (A.J.); (S.P.)
| | - Agnieszka Jedrych
- Faculty of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland; (Z.Z.J.); (A.J.); (S.P.)
| | - Sylwia Parzyszek
- Faculty of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland; (Z.Z.J.); (A.J.); (S.P.)
| | - Anita Gardias
- Faculty of Physics, University of Warsaw, 5 Pasteur Street, 02-093 Warsaw, Poland; (A.G.); (J.S.)
| | - Jacek Szczytko
- Faculty of Physics, University of Warsaw, 5 Pasteur Street, 02-093 Warsaw, Poland; (A.G.); (J.S.)
| | - Michal Wojcik
- Faculty of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland; (Z.Z.J.); (A.J.); (S.P.)
| |
Collapse
|
12
|
Szustakiewicz P, Powała F, Szepke D, Lewandowski W, Majewski PW. Unrestricted Chiral Patterning by Laser Writing in Liquid Crystalline and Plasmonic Nanocomposite Thin Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310197. [PMID: 37905376 DOI: 10.1002/adma.202310197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Indexed: 11/02/2023]
Abstract
Obtaining hierarchical structures with arbitrarily controlled chirality remains a challenge. Here, thin films featuring chiroptically bipolar patterns are produced by a device utilizing microscale photothermal re-melting of materials exhibiting chirality synchronization. This device operates autonomously, guided by an algorithm that facilitates the homochiral growth of supramolecular organic helices through controlling their re-melting. The chirality synchronization phenomena of constitutionally achiral molecules grants availability of both handednesses of the helices, enabling unrestricted chiral writing in the film. The collective chiroptical response of assembled molecules is utilised to guide the patterning process, creating a foundation for optically secured information. The established methodology enables achieving dissymmetry factor values for circular dichroism (CD) a magnitude higher than previously reported, as confirmed with state-of-the-art, synchrotron-based Mueller matrix polarimetry (MMP). Moreover, the developed method is extended to nanocomposites comprising gold nanoparticles, providing the opportunity to tune the CD toward the plasmonic region. This strategic application of photothermal processing, specifically laser-directed melting, uncovers the potential to broaden the selection of nanostructured materials with precisely designed functionalities for photonic applications.
Collapse
Affiliation(s)
| | - Filip Powała
- Department of Chemistry, University of Warsaw, Warsaw, 02089, Poland
| | - Dorota Szepke
- Department of Chemistry, University of Warsaw, Warsaw, 02089, Poland
| | | | - Pawel W Majewski
- Department of Chemistry, University of Warsaw, Warsaw, 02089, Poland
| |
Collapse
|
13
|
Liu R, Feng Z, Yan X, Lv Y, Wei J, Hao J, Yang Z. Small Molecules Mediated the Chirality Transfer in Self-Assembled Nanocomposites with Strong Circularly Polarized Luminescence. J Am Chem Soc 2023; 145:17274-17283. [PMID: 37493589 DOI: 10.1021/jacs.3c04615] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Manipulation of the chirality at all scales has a cross-disciplinary importance and may address key challenges at the heart of physical sciences. One critical question in this field is how the chirality of one entity can be transferred to the asymmetry of another entity. Here, we find that small molecules play a crucial role in the chirality transfer from chiral organic molecules to CdSe/CdS nanorods, where the handedness of the nanorod assemblies either agrees or disagrees with that of the molecular assemblies, leading to the positive or inverse chirality transfer. The assembling mode of nanorods on the molecular assemblies, where the nanorods are either lying or standing, is closely associated with the handedness of the nanorod assemblies, resulting in opposite chirality. Furthermore, we have found that circularly polarized emission from chiral assemblies of nanorods is dependent on molecular additives. The promoted luminescence dissymmetry factor (glum) of the nanocomposites with a high value of ∼0.3 could be attained under optimal conditions.
Collapse
Affiliation(s)
- Rongjuan Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Zhenyu Feng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Xiangyu Yan
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yujia Lv
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Jingjing Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
14
|
Guo Z, Yu G, Zhang Z, Han Y, Guan G, Yang W, Han MY. Intrinsic Optical Properties and Emerging Applications of Gold Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206700. [PMID: 36620937 DOI: 10.1002/adma.202206700] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/21/2022] [Indexed: 06/09/2023]
Abstract
The collective oscillation of free electrons at the nanoscale surface of gold nanostructures is closely modulated by tuning the size, shape/morphology, phase, composition, hybridization, assembly, and nanopatterning, along with the surroundings of the plasmonic surface located at a dielectric interface with air, liquid, and solid. This review first introduces the physical origin of the intrinsic optical properties of gold nanostructures and further summarizes stimuli-responsive changes in optical properties, metal-field-enhanced optical signals, luminescence spectral shaping, chiroptical response, and photogenerated hot carriers. The current success in the landscape of nanoscience and nanotechnology mainly originates from the abundant optical properties of gold nanostructures in the thermodynamically stable face-centered cubic (fcc) phase. It has been further extended by crystal phase engineering to prepare thermodynamically unfavorable phases (e.g., kinetically stable) and heterophases to modulate their intriguing phase-dependent optical properties. A broad range of promising applications, including but not limited to full-color displays, solar energy harvesting, photochemical reactions, optical sensing, and microscopic/biomedical imaging, have fostered parallel research on the multitude of physical effects occurring in gold nanostructures.
Collapse
Affiliation(s)
- Zilong Guo
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Guo Yu
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Zhiguo Zhang
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Yandong Han
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Guijian Guan
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wensheng Yang
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475001, China
| | - Ming-Yong Han
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Singapore, 138634, Singapore
| |
Collapse
|
15
|
Jedrych A, Pawlak M, Gorecka E, Lewandowski W, Wojcik MM. Light-Responsive Supramolecular Nanotubes-Based Chiral Plasmonic Assemblies. ACS NANO 2023; 17:5548-5560. [PMID: 36897199 PMCID: PMC10062029 DOI: 10.1021/acsnano.2c10955] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
We describe the fabrication of dual-responsive (thermo/light) chiral plasmonic films. The idea is based on using photoswitchable achiral liquid crystal (LCs) forming chiral nanotubes for templating helical assemblies of Au NPs. Circular dichroism spectroscopy (CD) confirms chiroptical properties coming from the arrangement of organic and inorganic components, with up to 0.2 dissymmetry factor (g-factor). Upon exposure to UV light, organic molecules isomerize, resulting in controlled melting of organic nanotubes and/or inorganic nanohelices. The process can be reversed using visible light and further modified by varying the temperature, offering a control of chiroptical response of the composite material. These properties can play a key role in the future development of chiral plasmonics, metamaterials, and optoelectronic devices.
Collapse
|
16
|
Zbonikowski R, Mente P, Bończak B, Paczesny J. Adaptive 2D and Pseudo-2D Systems: Molecular, Polymeric, and Colloidal Building Blocks for Tailored Complexity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:855. [PMID: 36903733 PMCID: PMC10005801 DOI: 10.3390/nano13050855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Two-dimensional and pseudo-2D systems come in various forms. Membranes separating protocells from the environment were necessary for life to occur. Later, compartmentalization allowed for the development of more complex cellular structures. Nowadays, 2D materials (e.g., graphene, molybdenum disulfide) are revolutionizing the smart materials industry. Surface engineering allows for novel functionalities, as only a limited number of bulk materials have the desired surface properties. This is realized via physical treatment (e.g., plasma treatment, rubbing), chemical modifications, thin film deposition (using both chemical and physical methods), doping and formulation of composites, or coating. However, artificial systems are usually static. Nature creates dynamic and responsive structures, which facilitates the formation of complex systems. The challenge of nanotechnology, physical chemistry, and materials science is to develop artificial adaptive systems. Dynamic 2D and pseudo-2D designs are needed for future developments of life-like materials and networked chemical systems in which the sequences of the stimuli would control the consecutive stages of the given process. This is crucial to achieving versatility, improved performance, energy efficiency, and sustainability. Here, we review the advancements in studies on adaptive, responsive, dynamic, and out-of-equilibrium 2D and pseudo-2D systems composed of molecules, polymers, and nano/microparticles.
Collapse
Affiliation(s)
| | | | | | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
17
|
Maniappan S, Dutta C, Solís DM, Taboada JM, Kumar J. Surfactant Directed Synthesis of Intrinsically Chiral Plasmonic Nanostructures and Precise Tuning of their Optical Activity through Controlled Self-Assembly. Angew Chem Int Ed Engl 2023; 62:e202300461. [PMID: 36779825 DOI: 10.1002/anie.202300461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/14/2023]
Abstract
Fabrication and transmission of plasmonic chirality is a rapidly developing area of research. While nanoscale chirality is reasonably well explored, research on intrinsically chiral nanostructures, that has ramifications to origin of homochirality, is still in its infancy. Herein, we report the synthesis of dog-bone shaped chiral gold nanostructures using a chiral cationic surfactant with excess ascorbic acid. Chiral growth is attributed to the specific binding and structure breaking ability of chiral surfactant and ascorbic acid. The controlled assembly of particles facilitated tuning and enhancement of chiral signals. Experimental observations were validated with theoretical simulations modelled in frequency domain with a surface integral-equation parameterization. Work highlighting the generation and tuning of plasmonic chirality provides new insights into the understanding of intrinsic chirality and paves way for their application in enantioselective catalysis and biosensing.
Collapse
Affiliation(s)
- Sonia Maniappan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, India
| | - Camelia Dutta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, India
| | - Diego M Solís
- Departamento de Tecnología de los Computadores y de las Comunicaciones, University of Extremadura, 10003, Cáceres, Spain
| | - José M Taboada
- Departamento de Tecnología de los Computadores y de las Comunicaciones, University of Extremadura, 10003, Cáceres, Spain
| | - Jatish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, India
| |
Collapse
|
18
|
Orzechowski K, Tupikowska M, Strzeżysz O, Feng TM, Chen WY, Wu LY, Wang CT, Otón E, Wójcik MM, Bagiński M, Lesiak P, Lewandowski W, Woliński TR. Achiral Nanoparticle-Enhanced Chiral Twist and Thermal Stability of Blue Phase Liquid Crystals. ACS NANO 2022; 16:20577-20588. [PMID: 36475617 PMCID: PMC9798865 DOI: 10.1021/acsnano.2c07321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Blue phase liquid crystals (BPLCs) are chiral mesophases with 3D order, which makes them a promising template for doping nanoparticles (NPs), yielding tunable nanomaterials attractive for microlasers and numerous microsensor applications. However, doping NPs to BPLCs causes BP lattice extension, which translates to elongation of operating wavelengths of light reflection. Here, it is demonstrated that small (2.4 nm diameter) achiral gold (Au) NPs decorated with designed LC-like ligands can enhance the chiral twist of BPLCs (i.e., reduce cell size of the single BP unit up to ∼14% and ∼7% for BPI and BPII, respectively), translating to a blue-shift of Bragg reflection. Doping NPs also significantly increases the thermal stability of BPs from 5.5 °C (for undoped BPLC) up to 22.8 °C (for doped BPLC). In line with our expectations, both effects are saturated, and their magnitude depends on the concentration of investigated nanodopants as well the BP phase type. Our research highlights the critical role of functionalization of Au NPs on the phase sequence of BPLCs. We show that inappropriate selection of surface ligands can destabilize BPs. Our BPLC and Au NPs are photochemically stable and exhibit great miscibility, preventing NP aggregation in the BPLC matrix over the long term. We believe that our findings will improve the fabrication of advanced nanomaterials into 3D periodic soft photonic structures.
Collapse
Affiliation(s)
- Kamil Orzechowski
- Faculty
of Physics, Warsaw University of Technology, Koszykowa 75, 00-662Warsaw, Poland
| | - Martyna Tupikowska
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093Warsaw, Poland
| | - Olga Strzeżysz
- Institute
of Chemistry, Military University of Technology, Kaliskiego 2, 00-908Warsaw, Poland
| | - Ting-Mao Feng
- Department
of Photonics, National Sun Yat-sen University, No. 70 Lien-hai Road, Kaohsiung80424, Taiwan
| | - Wei-Yuan Chen
- Department
of Photonics, National Sun Yat-sen University, No. 70 Lien-hai Road, Kaohsiung80424, Taiwan
| | - Liang-Ying Wu
- Department
of Photonics, National Sun Yat-sen University, No. 70 Lien-hai Road, Kaohsiung80424, Taiwan
| | - Chun-Ta Wang
- Department
of Photonics, National Sun Yat-sen University, No. 70 Lien-hai Road, Kaohsiung80424, Taiwan
| | - Eva Otón
- Institute
of Applied Physics, Military University
of Technology, Kaliskiego 2, 00-908Warsaw, Poland
| | - Michał M. Wójcik
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093Warsaw, Poland
| | - Maciej Bagiński
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093Warsaw, Poland
| | - Piotr Lesiak
- Faculty
of Physics, Warsaw University of Technology, Koszykowa 75, 00-662Warsaw, Poland
| | - Wiktor Lewandowski
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093Warsaw, Poland
| | - Tomasz R. Woliński
- Faculty
of Physics, Warsaw University of Technology, Koszykowa 75, 00-662Warsaw, Poland
| |
Collapse
|
19
|
Parzyszek S, Tessarolo J, Pedrazo-Tardajos A, Ortuño AM, Bagiński M, Bals S, Clever GH, Lewandowski W. Tunable Circularly Polarized Luminescence via Chirality Induction and Energy Transfer from Organic Films to Semiconductor Nanocrystals. ACS NANO 2022; 16:18472-18482. [PMID: 36342742 PMCID: PMC9706675 DOI: 10.1021/acsnano.2c06623] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/28/2022] [Indexed: 06/03/2023]
Abstract
Circularly polarized luminescent (CPL) films with high dissymmetry factors hold great potential for optoelectronic applications. Herein, we propose a strategy for achieving strongly dissymetric CPL in nanocomposite films based on chirality induction and energy transfer to semiconductor nanocrystals. First, focusing on a purely organic system, aggregation-induced emission (AIE) and CPL activity of organic liquid crystals (LCs) forming helical nanofilaments was detected, featuring green emission with high dissymmetry factors glum ∼ 10-2. The handedness of helical filaments, and thus the sign of CPL, was controlled via minute amounts of a small chiral organic dopant. Second, nanocomposite films were fabricated by incorporating InP/ZnS semiconductor quantum dots (QDs) into the LC matrix, which induced the chiral assembly of QDs and endowed them with chiroptical properties. Due to the spectral matching of the components, energy transfer (ET) from LC to QDs was possible enabling a convenient way of tuning CPL wavelengths by varying the LC/QD ratio. As obtained, composite films exhibited absolute glum values up to ∼10-2 and thermally on/off switchable luminescence. Overall, we demonstrate the induction of chiroptical properties by the assembly of nonchiral building QDs on the chiral organic template and energy transfer from organic films to QDs, representing a simple and versatile approach to tune the CPL activity of organic materials.
Collapse
Affiliation(s)
- Sylwia Parzyszek
- Faculty
of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland
| | - Jacopo Tessarolo
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn Straße 6, 44227 Dortmund, Germany
| | - Adrián Pedrazo-Tardajos
- Electron
Microscopy for Materials Research, University
of Antwerp, Groenenborgerlaan, 171, 2020 Antwerp, Belgium
- NANOlab
Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Ana M. Ortuño
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn Straße 6, 44227 Dortmund, Germany
| | - Maciej Bagiński
- Faculty
of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland
| | - Sara Bals
- Electron
Microscopy for Materials Research, University
of Antwerp, Groenenborgerlaan, 171, 2020 Antwerp, Belgium
- NANOlab
Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Guido H. Clever
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn Straße 6, 44227 Dortmund, Germany
| | - Wiktor Lewandowski
- Faculty
of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland
| |
Collapse
|
20
|
Zhuo X, Mychinko M, Heyvaert W, Larios D, Obelleiro-Liz M, Taboada JM, Bals S, Liz-Marzán LM. Morphological and Optical Transitions during Micelle-Seeded Chiral Growth on Gold Nanorods. ACS NANO 2022; 16:19281-19292. [PMID: 36288463 DOI: 10.1021/acsnano.2c08668] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chiral plasmonics is a rapidly developing field where breakthroughs and unsolved problems coexist. We have recently reported binary surfactant-assisted seeded growth of chiral gold nanorods (Au NRs) with high chiroptical activity. Such a seeded-growth process involves the use of a chiral cosurfactant that induces micellar helicity, in turn driving the transition from achiral to chiral Au NRs, from both the morphological and the optical points of view. We report herein a detailed study on both transitions, which reveals intermediate states that were hidden so far. The correlation between structure and optical response is carefully analyzed, including the (linear and CD) spectral evolution over time, electron tomography, the impact of NR dimensions on their optical response, the variation of the absorption-to-scattering ratio during the evolution from achiral to chiral Au NRs, and the near-field enhancement related to chiral plasmon modes. Our findings provide further understanding of the growth process of chiral Au NRs and the associated optical changes, which will facilitate further study and applications of chiral nanomaterials.
Collapse
Affiliation(s)
- Xiaolu Zhuo
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia-San, Sebastián, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 182, 20014 Donostia-San, Sebastián, Spain
| | - Mikhail Mychinko
- Electron Microscopy for Materials Research (EMAT) and NANOlab Centre of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Wouter Heyvaert
- Electron Microscopy for Materials Research (EMAT) and NANOlab Centre of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - David Larios
- Departamento de Tecnología de los Computadores y de las Comunicaciones, University of Extremadura, 10003 Cáceres, Spain
| | - Manuel Obelleiro-Liz
- EM3 Works, Spin-off of the University of Vigo and the University of Extremadura, PTL Valladares, 36315 Vigo, Spain
| | - José M Taboada
- Departamento de Tecnología de los Computadores y de las Comunicaciones, University of Extremadura, 10003 Cáceres, Spain
| | - Sara Bals
- Electron Microscopy for Materials Research (EMAT) and NANOlab Centre of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia-San, Sebastián, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 182, 20014 Donostia-San, Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
21
|
Strójwąs K, Dąbrowski R, Drzewiński W, Szarek M, Bubnov A, Czerwiński M. The comparison of self-assembling behaviour of phenyl biphenylcarboxylate and biphenyl benzoate compounds with the different length and shape of chiral terminal chain. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Kowalska N, Bandalewicz F, Kowalski J, Gómez-Graña S, Bagiński M, Pastoriza-Santos I, Grzelczak M, Matraszek J, Pérez-Juste J, Lewandowski W. Hydrophobic Gold Nanoparticles with Intrinsic Chirality for the Efficient Fabrication of Chiral Plasmonic Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50013-50023. [PMID: 36305423 PMCID: PMC9650650 DOI: 10.1021/acsami.2c11925] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/17/2022] [Indexed: 05/27/2023]
Abstract
The development of plasmonic nanomaterials with chiral geometry has drawn extensive attention owing to their practical implications in chiral catalysis, chiral metamaterials, or enantioselective biosensing and medicine. However, due to the lack of effective synthesis methods of hydrophobic nanoparticles (NPs) showing intrinsic, plasmonic chirality, their applications are currently limited to aqueous systems. In this work, we resolve the problem of achieving hydrophobic Au NPs with intrinsic chirality by efficient phase transfer of water-soluble NPs using low molecular weight, liquid crystal-like ligands. We confirmed that, after the phase transfer, Au NPs preserve strong, far-field circular dichroism (CD) signals, attesting their chiral geometry. The universality of the method is exemplified by using different types of NPs and ligands. We further highlight the potential of the proposed approach to realize chiral plasmonic, inorganic/organic nanocomposites with block copolymers, liquid crystals, and compounds forming physical gels. All soft matter composites sustain plasmonic CD signals with electron microscopies confirming well-dispersed nanoinclusions. The developed methodology allows us to expand the portfolio of plasmonic NPs with intrinsic structural chirality, thereby broadening the scope of their applications toward soft-matter based systems.
Collapse
Affiliation(s)
- Natalia Kowalska
- Laboratory
of Organic Nanomaterials and Biomolecules, Faculty of Chemistry University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland
| | - Filip Bandalewicz
- Laboratory
of Organic Nanomaterials and Biomolecules, Faculty of Chemistry University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland
| | - Jakub Kowalski
- Laboratory
of Organic Nanomaterials and Biomolecules, Faculty of Chemistry University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland
| | - Sergio Gómez-Graña
- Departamento
de Química Física, CINBIO,
Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Instituto
de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Maciej Bagiński
- Laboratory
of Organic Nanomaterials and Biomolecules, Faculty of Chemistry University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland
| | - Isabel Pastoriza-Santos
- Departamento
de Química Física, CINBIO,
Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Instituto
de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Marek Grzelczak
- Centro
de Física de Materiales (CSIC-UPV/EHU) and Donostia International
Physics Center, 20018 Donostia − San Sebastián, Spain
| | - Joanna Matraszek
- Laboratory
of Organic Nanomaterials and Biomolecules, Faculty of Chemistry University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland
| | - Jorge Pérez-Juste
- Departamento
de Química Física, CINBIO,
Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Instituto
de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Wiktor Lewandowski
- Laboratory
of Organic Nanomaterials and Biomolecules, Faculty of Chemistry University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland
| |
Collapse
|
23
|
Zhang X, Xu Y, Valenzuela C, Zhang X, Wang L, Feng W, Li Q. Liquid crystal-templated chiral nanomaterials: from chiral plasmonics to circularly polarized luminescence. LIGHT, SCIENCE & APPLICATIONS 2022; 11:223. [PMID: 35835737 PMCID: PMC9283403 DOI: 10.1038/s41377-022-00913-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 05/15/2023]
Abstract
Chiral nanomaterials with intrinsic chirality or spatial asymmetry at the nanoscale are currently in the limelight of both fundamental research and diverse important technological applications due to their unprecedented physicochemical characteristics such as intense light-matter interactions, enhanced circular dichroism, and strong circularly polarized luminescence. Herein, we provide a comprehensive overview of the state-of-the-art advances in liquid crystal-templated chiral nanomaterials. The chiroptical properties of chiral nanomaterials are touched, and their fundamental design principles and bottom-up synthesis strategies are discussed. Different chiral functional nanomaterials based on liquid-crystalline soft templates, including chiral plasmonic nanomaterials and chiral luminescent nanomaterials, are systematically introduced, and their underlying mechanisms, properties, and potential applications are emphasized. This review concludes with a perspective on the emerging applications, challenges, and future opportunities of such fascinating chiral nanomaterials. This review can not only deepen our understanding of the fundamentals of soft-matter chirality, but also shine light on the development of advanced chiral functional nanomaterials toward their versatile applications in optics, biology, catalysis, electronics, and beyond.
Collapse
Affiliation(s)
- Xuan Zhang
- School of Materials Science and Engineering, Tianjin University, 300350, Tianjin, China
| | - Yiyi Xu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
| | - Cristian Valenzuela
- School of Materials Science and Engineering, Tianjin University, 300350, Tianjin, China
| | - Xinfang Zhang
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, 300350, Tianjin, China.
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, 300350, Tianjin, China.
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China.
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
24
|
Guan Z, Wang L, Bae J. Advances in 4D printing of liquid crystalline elastomers: materials, techniques, and applications. MATERIALS HORIZONS 2022; 9:1825-1849. [PMID: 35504034 DOI: 10.1039/d2mh00232a] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Liquid crystalline elastomers (LCEs) are polymer networks exhibiting anisotropic liquid crystallinity while maintaining elastomeric properties. Owing to diverse polymeric forms and self-alignment molecular behaviors, LCEs have fascinated state-of-the-art efforts in various disciplines other than the traditional low-molar-mass display market. By patterning order to structures, LCEs demonstrate reversible high-speed and large-scale actuations in response to external stimuli, allowing for close integration with 4D printing and architectures of digital devices, which is scarcely observed in homogeneous soft polymer networks. In this review, we collect recent advances in 4D printing of LCEs, with emphases on synthesis and processing methods that enable microscopic changes in the molecular orientation and hence macroscopic changes in the properties of end-use objects. Promising potentials of printed complexes include fields of soft robotics, optics, and biomedical devices. Within this scope, we elucidate the relationships among external stimuli, tailorable morphologies in mesophases of liquid crystals, and programmable topological configurations of printed parts. Lastly, perspectives and potential challenges facing 4D printing of LCEs are discussed.
Collapse
Affiliation(s)
- Zhecun Guan
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Jinhye Bae
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA.
- Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
25
|
Liu J, Molard Y, Prévôt ME, Hegmann T. Highly Tunable Circularly Polarized Emission of an Aggregation-Induced Emission Dye Using Helical Nano- and Microfilaments as Supramolecular Chiral Templates. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29398-29411. [PMID: 35713169 DOI: 10.1021/acsami.2c05012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aggregation-induced emission (AIE)-based circularly polarized luminescence (CPL) has been recognized as a promising pathway for developing chiroptical materials with high luminescence dissymmetry factors (|glum|). Here, we propose a method for the construction of a thermally tunable CPL-active system based on a supramolecular self-assembly approach that utilizes helical nano- or microfilament templates in conjunction with an AIE dye. The CPL properties of the ensuing ensembles are predominantly determined by the intrinsic geometric differences among the various filament templates such as their overall dimensions (width, height, and helical pitch) and the area fraction of the exposed aromatic segments or sublayers. The proposed mechanism is based on the collective data acquired by absorption, steady state and time-resolved fluorescence, absolute quantum yield, and CPL measurements. The highest |glum| value for the most promising dual-modulated helical nanofilament templates in the present series was further enhanced, reaching up to |glum| = 0.25 by confinement in the appropriate diameter of anodized aluminum oxide (AAO) nanochannels. It is envisioned that this methodology will afford new insights into the design of temperature-rate indicators or anti-counterfeiting tags using a combination of structural color by the nano- and microfilament templates and the AIE property of the guest dye.
Collapse
Affiliation(s)
- Jiao Liu
- Materials Science Graduate Program, Kent State University, Kent, Ohio 44242-0001, United States
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242-0001, United States
| | - Yann Molard
- Univ Rennes, ISCR - UMR 6226, ScanMAT - UAR 2025, F-35000 Rennes, France
| | - Marianne E Prévôt
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242-0001, United States
| | - Torsten Hegmann
- Materials Science Graduate Program, Kent State University, Kent, Ohio 44242-0001, United States
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242-0001, United States
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242-0001, United States
- Brain Health Research Institute, Kent State University, Kent, Ohio 44242-0001, United States
| |
Collapse
|
26
|
Chen J, Fu W, Xiong J, Zhang W, Jiang FL, Zheng L, Liu Y, Jiang P. Reversible Zn 2+-induced 3D self-assembled aerogel of carboxyl modified copper indium diselenide quantum dots: mechanism and application for inkjet printing anti-counterfeiting. SOFT MATTER 2022; 18:3762-3770. [PMID: 35506885 DOI: 10.1039/d2sm00168c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Three-dimensional (3D) self-assembled quantum dot (QD) aerogels have attracted attention due to the combined properties of both QDs and porous materials. However, the difficulty and complexity of structural composition control limit the practical application of 3D self-assembled QDs. Hence, convenient, available and multifunction QD aerogels need to be explored to promote broader practical applications. Herein, we propose a universal and facile self-assembly method of copper indium selenium (CISe) QD aerogels based on coordination interaction between Zn2+ and carboxyl. Both experiments and Monte Carlo simulations indicate that QDs are aggregated into oligomers by Zn2+, and then the oligomers are gradually interconnected to each other to form a 3D network as the concentration of Zn2+ increases. Moreover, Zn2+-induced 3D self-assembled aerogel could be depolymerized by EDTA reversibly. In combination with CISe QDs, Zn-CISe aerogel has been successfully applied in green pollution-free environment-friendly anti-counterfeiting and encryption systems.
Collapse
Affiliation(s)
- Jilei Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Wenrong Fu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430072, P. R. China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430072, P. R. China
| | - Feng-Lei Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Liuchun Zheng
- State Key Laboratory of Separation Membranes and Membrane Process, School of Textile and School of Chemistry, Tiangong University, Tianjin 300387, P. R. China.
| | - Yi Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, P. R. China.
- State Key Laboratory of Separation Membranes and Membrane Process, School of Textile and School of Chemistry, Tiangong University, Tianjin 300387, P. R. China.
- Institute of Advanced Materials and Nanotechnology & Hubei Province Key Laboratory for Coal Conversion and New Carbon Materials, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Peng Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
27
|
Fan X, Walther A. 1D Colloidal chains: recent progress from formation to emergent properties and applications. Chem Soc Rev 2022; 51:4023-4074. [PMID: 35502721 DOI: 10.1039/d2cs00112h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrating nanoscale building blocks of low dimensionality (0D; i.e., spheres) into higher dimensional structures endows them and their corresponding materials with emergent properties non-existent or only weakly existent in the individual building blocks. Constructing 1D chains, 2D arrays and 3D superlattices using nanoparticles and colloids therefore continues to be one of the grand goals in colloid and nanomaterial science. Amongst these higher order structures, 1D colloidal chains are of particular interest, as they possess unique anisotropic properties. In recent years, the most relevant advances in 1D colloidal chain research have been made in novel synthetic methodologies and applications. In this review, we first address a comprehensive description of the research progress concerning various synthetic strategies developed to construct 1D colloidal chains. Following this, we highlight the amplified and emergent properties of the resulting materials, originating from the assembly of the individual building blocks and their collective behavior, and discuss relevant applications in advanced materials. In the discussion of synthetic strategies, properties, and applications, particular attention will be paid to overarching concepts, fresh trends, and potential areas of future research. We believe that this comprehensive review will be a driver to guide the interdisciplinary field of 1D colloidal chains, where nanomaterial synthesis, self-assembly, physical property studies, and material applications meet, to a higher level, and open up new research opportunities at the interface of classical disciplines.
Collapse
Affiliation(s)
- Xinlong Fan
- Institute for Macromolecular Chemistry, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 31, 79104, Freiburg, Germany.
| | - Andreas Walther
- A3BMS Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
28
|
King ME, Fonseca Guzman MV, Ross MB. Material strategies for function enhancement in plasmonic architectures. NANOSCALE 2022; 14:602-611. [PMID: 34985484 DOI: 10.1039/d1nr06049j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasmonic materials are promising for applications in enhanced sensing, energy, and advanced optical communications. These applications, however, often require chemical and physical functionality that is suited and designed for the specific application. In particular, plasmonic materials need to access the wide spectral range from the ultraviolet to the mid-infrared in addition to having the requisite surface characteristics, temperature dependence, or structural features that are not intrinsic to or easily accessed by the noble metals. Herein, we describe current progress and identify promising strategies for further expanding the capabilities of plasmonic materials both across the electromagnetic spectrum and in functional areas that can enable new technology and opportunities.
Collapse
Affiliation(s)
- Melissa E King
- Department of Chemistry, University of Massachusetts, Lowell, Lowell, MA 01854, USA.
| | | | - Michael B Ross
- Department of Chemistry, University of Massachusetts, Lowell, Lowell, MA 01854, USA.
| |
Collapse
|
29
|
Vila-Liarte D, Kotov NA, Liz-Marzán LM. Template-assisted self-assembly of achiral plasmonic nanoparticles into chiral structures. Chem Sci 2022; 13:595-610. [PMID: 35173926 PMCID: PMC8768870 DOI: 10.1039/d1sc03327a] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
The acquisition of strong chiroptical activity has revolutionized the field of plasmonics, granting access to novel light-matter interactions and revitalizing research on both the synthesis and application of nanostructures. Among the different mechanisms for the origin of chiroptical properties in colloidal plasmonic systems, the self-assembly of achiral nanoparticles into optically active materials offers a versatile route to control the structure-optical activity relationships of nanostructures, while simplifying the engineering of their chiral geometries. Such unconventional materials include helical structures with a precisely defined morphology, as well as large scale, deformable substrates that can leverage the potential of periodic patterns. Some promising templates with helical structural motifs like liquid crystal phases or confined block co-polymers still need efficient strategies to direct preferential handedness, whereas other templates such as silica nanohelices can be grown in an enantiomeric form. Both types of chiral structures are reviewed herein as platforms for chiral sensing: patterned substrates can readily incorporate analytes, while helical assemblies can form around structures of interest, like amyloid protein aggregates. Looking ahead, current knowledge and precedents point toward the incorporation of semiconductor emitters into plasmonic systems with chiral effects, which can lead to plasmonic-excitonic effects and the generation of circularly polarized photoluminescence.
Collapse
Affiliation(s)
- David Vila-Liarte
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA) Paseo de Miramon 194 20014 Donostia San Sebastián Spain
- Centro de Investigación Biomédica en Red, Biomateriales, Bioingeniería y Nanomedicina (CIBER-BBN) Spain
| | - Nicholas A Kotov
- Department of Chemical Engineering, Materials Science, Department of Biomedical Engineering, University of Michigan Ann Arbor USA
- Biointerfaces Institute, University of Michigan Ann Arbor USA
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA) Paseo de Miramon 194 20014 Donostia San Sebastián Spain
- Centro de Investigación Biomédica en Red, Biomateriales, Bioingeniería y Nanomedicina (CIBER-BBN) Spain
- Ikerbasque, Basque Foundation for Science 48013 Bilbao Spain
| |
Collapse
|
30
|
Pawlak M, Bagiński M, Llombart P, Beutel D, Gonzalez-Rubio G, Gorecka E, Rockstuhl C, Mieczkowski J, Pociecha D, Lewandowski W. Tuneable helices of plasmonic nanoparticles using liquid crystal templates: molecular dynamics investigation of an unusual odd-even effect in liquid crystalline dimers. Chem Commun (Camb) 2022; 58:7364-7367. [DOI: 10.1039/d2cc00560c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Liquid crystalline (LC) dimers formed helical nanofilaments depending on the parity of the alkyl linker, revealing an unusual odd-even effect. Molecular dynamics simulations were used to investigate the observed tendency....
Collapse
|
31
|
Affiliation(s)
- Jun Lu
- Department of Chemical Engineering University of Michigan Ann Arbor MI 48109 USA
- Biointerfaces Institute University of Michigan Ann Arbor MI 48109 USA
| | - Yao Xue
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun China
| | - Nicholas A. Kotov
- Department of Chemical Engineering University of Michigan Ann Arbor MI 48109 USA
- Biointerfaces Institute University of Michigan Ann Arbor MI 48109 USA
- Department of Materials Science University of Michigan Ann Arbor Michigan 48109 United States
| |
Collapse
|
32
|
Shao Y, Yang G, Lin J, Fan X, Guo Y, Zhu W, Cai Y, Huang H, Hu D, Pang W, Liu Y, Li Y, Cheng J, Xu X. Shining light on chiral inorganic nanomaterials for biological issues. Theranostics 2021; 11:9262-9295. [PMID: 34646370 PMCID: PMC8490512 DOI: 10.7150/thno.64511] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/28/2021] [Indexed: 12/15/2022] Open
Abstract
The rapid development of chiral inorganic nanostructures has greatly expanded from intrinsically chiral nanoparticles to more sophisticated assemblies made by organics, metals, semiconductors, and their hybrids. Among them, lots of studies concerning on hybrid complex of chiral molecules with achiral nanoparticles (NPs) and superstructures with chiral configurations were accordingly conducted due to the great advances such as highly enhanced biocompatibility with low cytotoxicity and enhanced penetration and retention capability, programmable surface functionality with engineerable building blocks, and more importantly tunable chirality in a controlled manner, leading to revolutionary designs of new biomaterials for synergistic cancer therapy, control of enantiomeric enzymatic reactions, integration of metabolism and pathology via bio-to nano or structural chirality. Herein, in this review our objective is to emphasize current research state and clinical applications of chiral nanomaterials in biological systems with special attentions to chiral metal- or semiconductor-based nanostructures in terms of the basic synthesis, related circular dichroism effects at optical frequencies, mechanisms of induced optical chirality and their performances in biomedical applications such as phototherapy, bio-imaging, neurodegenerative diseases, gene editing, cellular activity and sensing of biomarkers so as to provide insights into this fascinating field for peer researchers.
Collapse
Affiliation(s)
- Yining Shao
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Guilin Yang
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Jiaying Lin
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xiaofeng Fan
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Yue Guo
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Wentao Zhu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Ying Cai
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Huiyu Huang
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Die Hu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Wei Pang
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Yanjun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yiwen Li
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Jiaji Cheng
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xiaoqian Xu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| |
Collapse
|
33
|
Sobczak K, Turczyniak-Surdacka S, Lewandowski W, Baginski M, Tupikowska M, González-Rubio G, Wójcik M, Carlsson A, Donten M. STEM Tomography of Au Helical Assemblies. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 28:1-5. [PMID: 34169809 DOI: 10.1017/s1431927621012009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Composite, helical nanostructures formed using cooperative interactions of liquid crystals and Au nanoparticles were studied using a scanning transmission electron microscopy (STEM) mode. The investigated helical assemblies exhibit long-range hierarchical order across length scales, as a result of the crystallization (freezing) directed growth mechanism of nanoparticle-coated twisted nanoribbons and their ability to form organized bundles. Here, STEM methods were used to reproduce the 3D structure of the Au nanoparticle double helix.
Collapse
Affiliation(s)
- Kamil Sobczak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089Warsaw, Poland
| | - Sylwia Turczyniak-Surdacka
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089Warsaw, Poland
| | - Wiktor Lewandowski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093Warsaw, Poland
| | - Maciej Baginski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093Warsaw, Poland
| | - Martyna Tupikowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093Warsaw, Poland
| | | | - Michał Wójcik
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093Warsaw, Poland
| | - Anna Carlsson
- Thermo Fisher Scientific, Materials & Structural Analysis, Eindhoven, The Netherlands
| | - Mikołaj Donten
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093Warsaw, Poland
| |
Collapse
|
34
|
Hamon C, Beaudoin E, Launois P, Paineau E. Doping Liquid Crystals of Colloidal Inorganic Nanotubes by Additive-Free Metal Nanoparticles. J Phys Chem Lett 2021; 12:5052-5058. [PMID: 34019414 DOI: 10.1021/acs.jpclett.1c01311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Doping liquid-crystal phases with nanoparticles is a fast-growing field with potential breakthroughs due to the combination of the properties brought by the two components. One of the main challenges remains the long-term stability of the hybrid system, requiring complex functionalization of the nanoparticles at the expense of their self-assembly properties. Here we demonstrate the successful synthesis of additive-free noble-metal nanoparticles at the surface of charged inorganic nanotubes. Transmission electron microscopy and UV-visible spectroscopy confirm the stabilization of metallic nanoparticles on nanotubes. Meanwhile, the spontaneous formation of liquid-crystals phases induced by the nanotubes is observed, even after surface modification with metallic nanoparticles. Small-angle X-ray scattering experiments reveal that the average interparticle distance in the resulting hybrids can be easily modulated by controlling electrostatic interactions. As a proof-of-concept, we demonstrate the effectiveness of our method for the preparation of homogeneous transparent hybrid films with a high degree of alignment.
Collapse
Affiliation(s)
- Cyrille Hamon
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France
| | - Emmanuel Beaudoin
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France
| | - Pascale Launois
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France
| | - Erwan Paineau
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France
| |
Collapse
|
35
|
Liu J, Huang J, Niu W, Tan C, Zhang H. Unconventional-Phase Crystalline Materials Constructed from Multiscale Building Blocks. Chem Rev 2021; 121:5830-5888. [PMID: 33797882 DOI: 10.1021/acs.chemrev.0c01047] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Crystal phase, an intrinsic characteristic of crystalline materials, is one of the key parameters to determine their physicochemical properties. Recently, great progress has been made in the synthesis of nanomaterials with unconventional phases that are different from their thermodynamically stable bulk counterparts via various synthetic methods. A nanocrystalline material can also be viewed as an assembly of atoms with long-range order. When larger entities, such as nanoclusters, nanoparticles, and microparticles, are used as building blocks, supercrystalline materials with rich phases are obtained, some of which even have no analogues in the atomic and molecular crystals. The unconventional phases of nanocrystalline and supercrystalline materials endow them with distinctive properties as compared to their conventional counterparts. This Review highlights the state-of-the-art progress of nanocrystalline and supercrystalline materials with unconventional phases constructed from multiscale building blocks, including atoms, nanoclusters, spherical and anisotropic nanoparticles, and microparticles. Emerging strategies for engineering their crystal phases are introduced, with highlights on the governing parameters that are essential for the formation of unconventional phases. Phase-dependent properties and applications of nanocrystalline and supercrystalline materials are summarized. Finally, major challenges and opportunities in future research directions are proposed.
Collapse
Affiliation(s)
- Jiawei Liu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jingtao Huang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy Sciences, Changchun, Jilin 130022, P.R. China
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China.,Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| |
Collapse
|
36
|
Yang Y, Wang L, Yang H, Li Q. 3D Chiral Photonic Nanostructures Based on Blue‐Phase Liquid Crystals. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yanzhao Yang
- School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Ling Wang
- School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Huai Yang
- Department of Materials Science and Engineering College of Engineering Peking University Beijing 100871 China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program Kent State University Kent OH 44242 USA
| |
Collapse
|
37
|
Liu J, Shadpour S, Prévôt ME, Chirgwin M, Nemati A, Hegmann E, Lemieux RP, Hegmann T. Molecular Conformation of Bent-Core Molecules Affected by Chiral Side Chains Dictates Polymorphism and Chirality in Organic Nano- and Microfilaments. ACS NANO 2021; 15:7249-7270. [PMID: 33734664 DOI: 10.1021/acsnano.1c00527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The coupling between molecular conformation and chirality is a cornerstone in the construction of supramolecular helical structures of small molecules across various length scales. Inspired by biological systems, conformational preselection and control in artificial helical molecules, polymers, and aggregates has guided various applications in optics, photonics, and chiral sorting among others, which are frequently based on an inherent chirality amplification through processes such as templating and self-assembly. The so-called B4 nano- or microfilament phase formed by some bent-shaped molecules is an exemplary case for such chirality amplification across length scales, best illustrated by the formation of distinct nano- or microscopic chiral morphologies controlled by molecular conformation. Introduction of one or more chiral centers in the aliphatic side chains led to the discovery of homochiral helical nanofilament, helical microfilament, and heliconical-layered nanocylinder morphologies. Herein, we demonstrate how a priori calculations of the molecular conformation affected by chiral side chains are used to design bent-shaped molecules that self-assemble into chiral nano- and microfilament as well as nanocylinder conglomerates despite the homochiral nature of the molecules. Furthermore, relocation of the chiral center leads to formation of helical as well as flat nanoribbons. Self-consistent data sets from polarized optical as well as scanning and transmission electron microscopy, thin-film and solution circular dichroism spectropolarimetry, and synchrotron-based X-ray diffraction experiments support the progressive and predictable change in morphology controlled by structural changes in the chiral side chains. The formation of these morphologies is discussed in light of the diminishing effects of molecular chirality as the chain length increases or as the chiral center is moved away from the core-chain juncture. The type of phase (B1-columnar or B4) and morphology of the nano- or microfilaments generated can further be controlled by sample treatment conditions such as by the cooling rate from the isotropic melt or by the presence of an organic solvent in the ensuing colloidal dispersions. We show that these nanoscale morphologies can then organize into a wealth of two- and three-dimensional shapes and structures ranging from flower blossoms to fiber mats formed by intersecting flat nanoribbons.
Collapse
Affiliation(s)
- Jiao Liu
- Materials Science Graduate Program, Kent State University, Kent (Ohio) 44242-0001, United States
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent (Ohio) 44242-0001, United States
| | - Sasan Shadpour
- Materials Science Graduate Program, Kent State University, Kent (Ohio) 44242-0001, United States
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent (Ohio) 44242-0001, United States
| | - Marianne E Prévôt
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent (Ohio) 44242-0001, United States
| | - Michael Chirgwin
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent (Ohio) 44242-0001, United States
| | - Ahlam Nemati
- Materials Science Graduate Program, Kent State University, Kent (Ohio) 44242-0001, United States
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent (Ohio) 44242-0001, United States
| | - Elda Hegmann
- Materials Science Graduate Program, Kent State University, Kent (Ohio) 44242-0001, United States
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent (Ohio) 44242-0001, United States
- Department of Biological Sciences, Kent State University, Kent, Ohio 44242-0001, United States
- Brain Health Research Institute, Kent State University, Kent, Ohio 44242-0001, United States
| | - Robert P Lemieux
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Torsten Hegmann
- Materials Science Graduate Program, Kent State University, Kent (Ohio) 44242-0001, United States
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent (Ohio) 44242-0001, United States
- Department of Biological Sciences, Kent State University, Kent, Ohio 44242-0001, United States
- Brain Health Research Institute, Kent State University, Kent, Ohio 44242-0001, United States
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242-0001, United States
| |
Collapse
|
38
|
Park W, Yang M, Park H, Wolska JM, Ahn H, Shin TJ, Pociecha D, Gorecka E, Yoon DK. Directing Polymorphism in the Helical Nanofilament Phase. Chemistry 2021; 27:7108-7113. [PMID: 33464673 DOI: 10.1002/chem.202005221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/13/2021] [Indexed: 12/19/2022]
Abstract
Herein, it is reported that the polymorphism in the helical nanofilament (HNF, B4 ) liquid-crystalline phase depends on the fabrication methods, that is, UV-driven formation and template-assisted self-assembly in the nanoconfined geometry. As a result, uniaxially oriented HNFs with different helical structures were obtained, in which generation of the twisted-ribbon and cylindrical-ribbon polymorphs showed that even the molecular lattice has a different orientation. The detailed structures were directly observed by SEM and grazing-incidence X-ray diffraction with synchrotron radiation. The resultant polymorphs could be used in chiro-optical applications due to the capability for fine control of the helical structures.
Collapse
Affiliation(s)
- Wongi Park
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Minyong Yang
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Hyewon Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Joanna M Wolska
- Faculty of Chemistry, University of Warsaw, Warsaw, 02-089, Poland
| | - Hyungju Ahn
- Pohang Accelerator Laboratory, POSTECH, Pohang, 37673, Republic of Korea
| | - Tae Joo Shin
- UNIST Central Research Facilities & School of Natural Science, UNIST, Ulsan, 44919, Republic of Korea
| | - Damian Pociecha
- Faculty of Chemistry, University of Warsaw, Warsaw, 02-089, Poland
| | - Ewa Gorecka
- Faculty of Chemistry, University of Warsaw, Warsaw, 02-089, Poland
| | - Dong Ki Yoon
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.,KAIST Institute for Nanocentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| |
Collapse
|
39
|
Bagiński M, Pedrazo-Tardajos A, Altantzis T, Tupikowska M, Vetter A, Tomczyk E, Suryadharma RN, Pawlak M, Andruszkiewicz A, Górecka E, Pociecha D, Rockstuhl C, Bals S, Lewandowski W. Understanding and Controlling the Crystallization Process in Reconfigurable Plasmonic Superlattices. ACS NANO 2021; 15:4916-4926. [PMID: 33621046 PMCID: PMC8028333 DOI: 10.1021/acsnano.0c09746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The crystallization of nanomaterials is a primary source of solid-state, photonic structures. Thus, a detailed understanding of this process is of paramount importance for the successful application of photonic nanomaterials in emerging optoelectronic technologies. While colloidal crystallization has been thoroughly studied, for example, with advanced in situ electron microscopy methods, the noncolloidal crystallization (freezing) of nanoparticles (NPs) remains so far unexplored. To fill this gap, in this work, we present proof-of-principle experiments decoding a crystallization of reconfigurable assemblies of NPs at a solid state. The chosen material corresponds to an excellent testing bed, as it enables both in situ and ex situ investigation using X-ray diffraction (XRD), transmission electron microscopy (TEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), atomic force microscopy (AFM), and optical spectroscopy in visible and ultraviolet range (UV-vis) techniques. In particular, ensemble measurements with small-angle XRD highlighted the dependence of the correlation length in the NPs assemblies on the number of heating/cooling cycles and the rate of cooling. Ex situ TEM imaging further supported these results by revealing a dependence of domain size and structure on the sample preparation route and by showing we can control the domain size over 2 orders of magnitude. The application of HAADF-STEM tomography, combined with in situ thermal control, provided three-dimensional single-particle level information on the positional order evolution within assemblies. This combination of real and reciprocal space provides insightful information on the anisotropic, reversibly reconfigurable assemblies of NPs. TEM measurements also highlighted the importance of interfaces in the polydomain structure of nanoparticle solids, allowing us to understand experimentally observed differences in UV-vis extinction spectra of the differently prepared crystallites. Overall, the obtained results show that the combination of in situ heating HAADF-STEM tomography with XRD and ex situ TEM techniques is a powerful approach to study nanoparticle freezing processes and to reveal the crucial impact of disorder in the solid-state aggregates of NPs on their plasmonic properties.
Collapse
Affiliation(s)
- Maciej Bagiński
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
| | - Adrián Pedrazo-Tardajos
- Electron
Microscopy for Materials Research, University
of Antwerp, Groenenborgerlaan, 171, 2020 Antwerp, Belgium
| | - Thomas Altantzis
- Electron
Microscopy for Materials Research, University
of Antwerp, Groenenborgerlaan, 171, 2020 Antwerp, Belgium
| | - Martyna Tupikowska
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
| | - Andreas Vetter
- Institute
of Theoretical Solid State Physics, Karlsruhe
Institute of Technology, 76131 Karlsruhe, Germany
| | - Ewelina Tomczyk
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
| | - Radius N.S. Suryadharma
- Institute
of Theoretical Solid State Physics, Karlsruhe
Institute of Technology, 76131 Karlsruhe, Germany
| | - Mateusz Pawlak
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
| | - Aneta Andruszkiewicz
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
- Department
of Chemistry, Uppsala Universitet, Lägerhyddsvägen 1, 751 20 Uppsala, Sweden
| | - Ewa Górecka
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
| | - Damian Pociecha
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
| | - Carsten Rockstuhl
- Institute
of Theoretical Solid State Physics, Karlsruhe
Institute of Technology, 76131 Karlsruhe, Germany
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, 76021 Karlsruhe, Germany
| | - Sara Bals
- Electron
Microscopy for Materials Research, University
of Antwerp, Groenenborgerlaan, 171, 2020 Antwerp, Belgium
- (S.B.)
| | - Wiktor Lewandowski
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
- (W.L.)
| |
Collapse
|
40
|
Castillo-Vallés M, Romero P, Sebastián V, Ros MB. Microfluidics for the rapid and controlled preparation of organic nanotubes of bent-core based dendrimers. NANOSCALE ADVANCES 2021; 3:1682-1689. [PMID: 36132558 PMCID: PMC9418585 DOI: 10.1039/d0na00744g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/05/2021] [Indexed: 06/15/2023]
Abstract
Recently, bent-core molecules have emerged as excellent building blocks for the obtaining of nanostructures in solvents. Herein, we report the use of a coaxial microfluidic system as a promising tool to control the self-assembly of non-conventional bent-core amphiphiles. Moreover, a TEM study to comprehend the hierarchical self-assembly process in solution was carried out. The proposed tool provides both a cost-effective platform to save hard-to-synthesise reagents and a rapid method to screen a plethora of different parameters, i.e., THF/water ratio, residence time, concentration of the amphiphile, temperature and pH. The experiments allowed to test for the first time the suitability of microfluidics for the self-assembly of bent-core molecules, as well as the study of a range of conditions to control the assembly of different nanostructures in a rapid and controlled manner. Additionally, organic nanostructures were combined with gold nanoparticles to prepare nanocomposites with enhanced properties. Both organic and hybrid nanostructures were also obtained in the solid state. These results may inspire scientists working on supramolecular chemistry and bent-core molecules expanding the scope of microfluidic systems for the self-assembly of other low-molecular-weight compounds.
Collapse
Affiliation(s)
- Martín Castillo-Vallés
- Department of Organic Chemistry, Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
| | - Pilar Romero
- Department of Organic Chemistry, Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
| | - Víctor Sebastián
- Department of Chemical Engineering and Environmental Technology, Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN 28029-Madrid Spain
| | - M Blanca Ros
- Department of Organic Chemistry, Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
| |
Collapse
|
41
|
Wolska JM, Błażejewska A, Tupikowska M, Pociecha D, Górecka E. Gold nanoparticles grafted with chemically incompatible ligands. RSC Adv 2021; 11:9568-9571. [PMID: 35423469 PMCID: PMC8695456 DOI: 10.1039/d1ra00547b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/05/2021] [Accepted: 02/22/2021] [Indexed: 01/25/2023] Open
Abstract
Janus-type structures were obtained from gold nanoparticles grafted with two types of chemically incompatible mesogenic ligands with a strong tendency for nano-segregation. A lamellar arrangement, in which metallic nanoparticle-rich sublayers are separated by organic ligand-rich sublayers of various composition, was formed due to the ligand segregation process. The layers could be easily aligned by mechanical shearing; for most materials the layer normal was parallel to the shearing direction but perpendicular to the shearing gradient, such transverse mode is only rarely observed for lamellar materials. Reversible changes of layer thickness under UV light were observed due to the presence of an azo-moiety in the organic ligand molecules.
Collapse
Affiliation(s)
- Joanna M Wolska
- Department of Chemistry, Warsaw University Pasteura 1 02-093 Warsaw Poland +48 22 822 0211
| | - Aleksandra Błażejewska
- Department of Chemistry, Warsaw University Pasteura 1 02-093 Warsaw Poland +48 22 822 0211
| | - Martyna Tupikowska
- Department of Chemistry, Warsaw University Pasteura 1 02-093 Warsaw Poland +48 22 822 0211
| | - Damian Pociecha
- Department of Chemistry, Warsaw University Pasteura 1 02-093 Warsaw Poland +48 22 822 0211
| | - Ewa Górecka
- Department of Chemistry, Warsaw University Pasteura 1 02-093 Warsaw Poland +48 22 822 0211
| |
Collapse
|
42
|
Szustakiewicz P, Kowalska N, Grzelak D, Narushima T, Góra M, Bagiński M, Pociecha D, Okamoto H, Liz-Marzán LM, Lewandowski W. Supramolecular Chirality Synchronization in Thin Films of Plasmonic Nanocomposites. ACS NANO 2020; 14:12918-12928. [PMID: 32886482 PMCID: PMC7596782 DOI: 10.1021/acsnano.0c03964] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Mirror symmetry breaking in materials is a fascinating phenomenon that has practical implications for various optoelectronic technologies. Chiral plasmonic materials are particularly appealing due to their strong and specific interactions with light. In this work we broaden the portfolio of available strategies toward the preparation of chiral plasmonic assemblies, by applying the principles of chirality synchronization-a phenomenon known for small molecules, which results in the formation of chiral domains from transiently chiral molecules. We report the controlled cocrystallization of 23 nm gold nanoparticles and liquid crystal molecules yielding domains made of highly ordered, helical nanofibers, preferentially twisted to the right or to the left within each domain. We confirmed that such micrometer sized domains exhibit strong, far-field circular dichroism (CD) signals, even though the bulk material is racemic. We further highlight the potential of the proposed approach to realize chiral plasmonic thin films by using a mechanical chirality discrimination method. Toward this end, we developed a rapid CD imaging technique based on the use of polarized light optical microscopy (POM), which enabled probing the CD signal with micrometer-scale resolution, despite of linear dichroism and birefringence in the sample. The developed methodology allows us to extend intrinsically local effects of chiral synchronization to the macroscopic scale, thereby broadening the available tools for chirality manipulation in chiral plasmonic systems.
Collapse
Affiliation(s)
- Piotr Szustakiewicz
- Laboratory
of Organic Nanomaterials and Biomolecules, Faculty of Chemistry, University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland
| | - Natalia Kowalska
- Laboratory
of Organic Nanomaterials and Biomolecules, Faculty of Chemistry, University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland
| | - Dorota Grzelak
- Laboratory
of Organic Nanomaterials and Biomolecules, Faculty of Chemistry, University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland
| | - Tetsuya Narushima
- Institute
for Molecular Science (IMS) and The Graduate University for Advanced
Studies (SOKENDAI), 38
Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Monika Góra
- Laboratory
of Organic Nanomaterials and Biomolecules, Faculty of Chemistry, University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland
| | - Maciej Bagiński
- Laboratory
of Organic Nanomaterials and Biomolecules, Faculty of Chemistry, University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland
| | - Damian Pociecha
- Faculty
of Chemistry, University of Warsaw, 101 Żwirki i Wigury, 02-089 Warsaw, Poland
| | - Hiromi Okamoto
- Institute
for Molecular Science (IMS) and The Graduate University for Advanced
Studies (SOKENDAI), 38
Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE, Basque Research and Technology
Alliance (BRTA), Paseo
de Miramón 182, Donostia-San Sebastián 20014, Spain
- Ikerbasque,
Basque Foundation for Science, 48013 Bilbao, Spain
- Centro
de Investigación en Biomédica Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
| | - Wiktor Lewandowski
- Laboratory
of Organic Nanomaterials and Biomolecules, Faculty of Chemistry, University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland
- (W.L.)
| |
Collapse
|
43
|
Lewandowski W, Vaupotič N, Pociecha D, Górecka E, Liz-Marzán LM. Chirality of Liquid Crystals Formed from Achiral Molecules Revealed by Resonant X-Ray Scattering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905591. [PMID: 32529663 DOI: 10.1002/adma.201905591] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 05/21/2023]
Abstract
Intensive research on chiral liquid crystals (LCs) has been fueled by their actively tunable physicochemical properties and structural complexity, comparable to those of sophisticated natural materials. Herein, recent progress in the discovery of new classes of chiral LCs, enabled by a combination of nano- and macroscale investigations is reviewed. First, an overview is provided of liquid crystalline phases, made of chiral and achiral low-weight molecules, that exhibit chiral structure and/or chiral morphology. Then, recent progress in the discovery of new classes of chiral LCs, particularly enabled by the application of resonant X-ray scattering is described. It is shown that the method is sensitive to modulations of molecular orientation and therefore provides information hardly accessible by means of other techniques, such as the sense of helical structures or chirality transfer across length scales. Finally, a perspective is presented on the future scope, opportunities, and challenges in the field of chiral LCs, in particular related to nanocomposites.
Collapse
Affiliation(s)
- Wiktor Lewandowski
- Faculty of Chemistry, University of Warsaw, Pasteura 1 St., Warsaw, 02-093, Poland
| | - Nataša Vaupotič
- Department of Physics, University of Maribor, Koroška 160, Maribor, 2000, Slovenia
- Jozef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia
| | - Damian Pociecha
- Faculty of Chemistry, University of Warsaw, Pasteura 1 St., Warsaw, 02-093, Poland
| | - Ewa Górecka
- Faculty of Chemistry, University of Warsaw, Pasteura 1 St., Warsaw, 02-093, Poland
| | - Luis M Liz-Marzán
- CIC biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| |
Collapse
|
44
|
Orientation Control of Helical Nanofilament Phase and Its Chiroptical Applications. CRYSTALS 2020. [DOI: 10.3390/cryst10080675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chiral liquid crystal phases show fascinating structural and optical properties due to their inherent helical characteristics. Among the various chiral liquid crystal phases, the helical nanofilament phase, made of achiral bent-shaped molecules, has been of keen research interest due to its unusual polar and chiral properties. This review is intended to introduce the recent progress in orientation control and its application to the helical nanofilament phase, which includes topographic confinement, photoalignment, and chiroptical applications such as photonic crystal and chirality sensor.
Collapse
|
45
|
Hu Y, Yuan H, Liu S, Ni J, Lao Z, Xin C, Pan D, Zhang Y, Zhu W, Li J, Wu D, Chu J. Chiral Assemblies of Laser-Printed Micropillars Directed by Asymmetrical Capillary Force. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002356. [PMID: 32567083 DOI: 10.1002/adma.202002356] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Artificial microstructures composed of chiral building blocks are of great significance in the fields of optics and mechanics. Here, it is shown that highly ordered chiral structures can be spontaneously assembled by a meniscus-directed capillary force arising in an evaporating liquid. The chirality is facilitated by rationally breaking the intrinsic symmetry in the unit cells through cooperative control of the geometry and spatial topology of the micropillars. The interfacial dynamics of the assembly process are studied to show that the sequential self-organization of the micropillars is influenced by the geometries, stiffness, and spatial arrangements. A diversity of chiral assemblies with controlled handedness is yielded by varying the pillar number, height, cross-section, laser power, and spatial topology. Lastly, the differential reflectance of light carrying opposite orbital angular momentums on the assembled chiral architectures are investigated, showcasing their potential in the field of chiral photonics concerning enantioselective response and exceptional optical functions.
Collapse
Affiliation(s)
- Yanlei Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Hongwei Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Shunli Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jincheng Ni
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Zhaoxin Lao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Chen Xin
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Deng Pan
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Yiyuan Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Wulin Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jiawen Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Dong Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jiaru Chu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| |
Collapse
|
46
|
Size-Dependent Thermo- and Photoresponsive Plasmonic Properties of Liquid Crystalline Gold Nanoparticles. MATERIALS 2020; 13:ma13040875. [PMID: 32075278 PMCID: PMC7078723 DOI: 10.3390/ma13040875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 12/19/2022]
Abstract
Achieving remotely controlled, reversibly reconfigurable assemblies of plasmonic nanoparticles is a prerequisite for the development of future photonic technologies. Here, we obtained a series of gold-nanoparticle-based materials which exhibit long-range order, and which are controlled with light or thermal stimuli. The influence of the metallic core size and organic shell composition on the switchability is considered, with emphasis on achieving light-responsive behavior at room temperature and high yield production of nanoparticles. The latter translates to a wide size distribution of metallic cores but does not prevent their assembly into various, switchable 3D and 2D long-range ordered structures. These results provide clear guidelines as to the impact of size, size distribution, and organic shell composition on self-assembly, thus enhancing the smart design process of multi-responsive nanomaterials in a condensed state, hardly attainable by other self-assembly methods which usually require solvents.
Collapse
|