1
|
Wu X, Ni S, Wang CH, Zhu W, Chou PT. Comprehensive Review on the Structural Diversity and Versatility of Multi-Resonance Fluorescence Emitters: Advance, Challenges, and Prospects toward OLEDs. Chem Rev 2025. [PMID: 40344420 DOI: 10.1021/acs.chemrev.5c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Fluorescence emitters with a multiple-resonant (MR) effect have become a research hotspot. These MR emitters mainly consist of polycyclic aromatic hydrocarbons with boron/nitrogen, nitrogen/carbonyl, and indolocarbazole frameworks. The staggered arrangement of the highest occupied molecular orbital and the lowest unoccupied molecular orbital facilitates MR, resulting in smaller internal reorganization energy and a narrower emission bandwidth. Optimal charge separation suppresses the energy gap between singlet and triplet excited states, favoring thermally activated delayed fluorescence (TADF). These MR-TADF materials, due to color purity and high emission efficiency, are excellent candidates for organic light-emitting diodes. Nevertheless, significant challenges remain; in particular, the limitation imposed by the alternated core configuration hinders their diversity and versatility. Most existing MR-TADF materials are concentrated in the blue-green range, with only a few in red and near-infrared spectra. This review provides a timely and comprehensive screening of MR emitters from their pioneering work to the present. Our goal is to gain understandings of the MR-TADF structure-performance relationship from both basic and advanced perspectives. Special emphasis is placed on exploring the correlations between chemical structure, photophysical properties and electroluminescent performance in both depth and breadth with an aim to promote the future development of MR emitters.
Collapse
Affiliation(s)
- Xiugang Wu
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, China
| | - Songqian Ni
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, China
| | - Chih-Hsing Wang
- National Taiwan University, Department of Chemistry, Taipei 10617, Taiwan
| | - Weiguo Zhu
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, China
| | - Pi-Tai Chou
- National Taiwan University, Department of Chemistry, Taipei 10617, Taiwan
| |
Collapse
|
2
|
Shen S, Pang Z, Gao H, Xie X, Lv X, Liu J, Wang Y. Intramolecular Hydrogen Bond Modulated the Formation of Exciplex for Highly Efficient Organic Light-Emitting Diodes. J Phys Chem Lett 2025; 16:4277-4284. [PMID: 40261815 DOI: 10.1021/acs.jpclett.5c00876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Although exciplexes with thermally activated delayed fluorescence (TADF) properties have been applied in high-efficiency organic electroluminescent devices, the development of exciplexes has been hindered due to the limited material systems and unclear formation mechanisms. Inspired by the unusual exciplex emission discovered in the pyridine solution of 2,12-di-tert-butyl-5,9-dithia-13b-boranaphtho[3,2,1-de]anthracene (TSBA) in this work, the formation mechanism of exciplexes based on two groups of pyridine-based derivative isomeric acceptors 26DCzPPy, 35DCzPPy and B2PyPB, B3PyPB and B4PyPB was explored accordingly. The difference in the position of the substituted pyridine in the isomeric acceptors can effectively regulate the formation of intramolecular N···H hydrogen bonds, which further affects their interaction with the electron-donating unit in TSBA through a conformational locking effect-induced topological rigidification of the molecule, ultimately determining the formation of the exciplex. Based on this mechanism, 35DCzPPy, B3PyPB and B4PyPB acceptors, combined with the TSBA donor, display TADF exciplex emission as expected. Among these, 35DCzPPy:TSBA shows the excellent TADF property with a high photoluminescent quantum yield reaching 78%, and the corresponding device achieves a high external quantum efficiency of 18.72% along with a small efficiency roll-off. An in-depth investigation into the influence mechanisms of intramolecular interactions on exciplex construction in this work will provide crucial theoretical guidance and design strategies for developing novel, highly efficient exciplex materials.
Collapse
Affiliation(s)
- Shaogang Shen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, and TIPC-CityU Joint Laboratory of Functional Materials and Device, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Pang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, and TIPC-CityU Joint Laboratory of Functional Materials and Device, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honglei Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, and TIPC-CityU Joint Laboratory of Functional Materials and Device, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xin Xie
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, and TIPC-CityU Joint Laboratory of Functional Materials and Device, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyi Lv
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, and TIPC-CityU Joint Laboratory of Functional Materials and Device, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianjun Liu
- College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao 266100, China
- Engineering Research Center of Advanced Marine Physical Instruments and Equipment of Ministry of Education, Ocean University of China, Qingdao 266100, China
- Qingdao Key Laboratory of Optics and Optoelectronics, Ocean University of China, Qingdao 266100, China
| | - Ying Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, and TIPC-CityU Joint Laboratory of Functional Materials and Device, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Yan D, Zhang M, Wang J, Jing X, Sun J, Zhang Y, Yang L, Sheng R, Chen P. Blue Exciplexes in Organic Light-Emitting Diodes: Opportunities and Challenges. Molecules 2025; 30:1556. [PMID: 40286180 PMCID: PMC11990462 DOI: 10.3390/molecules30071556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Blue exciplexes, a critical innovative component in organic light-emitting diodes (OLEDs) technology, exhibit substantial potential for enhancing device efficiency, reducing driving voltage, and simplifying structural designs. This article reviews the pivotal role of blue exciplexes in OLEDs, analyzing their unique advantages and challenges as emitters and host materials. Through optimized molecular design, blue exciplexes achieve high color purity and emission efficiency, surpassing conventional fluorescent materials. Additionally, their wide energy bands and high triplet energy provide opportunities to improve the performance of sky-blue, deep-blue, and white OLEDs. However, limitations in deep-blue efficiency, material degradation due to high-energy excitons, and spectral red-shift pose significant challenges to their development. This review offers a comprehensive perspective and research reference on the photophysical mechanisms of blue exciplexes and their applications in display and lighting fields.
Collapse
Affiliation(s)
- Duxu Yan
- Institute of Physics and Electronic Information, Yantai University, Yantai 264005, China; (D.Y.); (M.Z.); (X.J.); (J.S.); (Y.Z.)
| | - Mengmeng Zhang
- Institute of Physics and Electronic Information, Yantai University, Yantai 264005, China; (D.Y.); (M.Z.); (X.J.); (J.S.); (Y.Z.)
| | - Jintao Wang
- School of Information Engineering, Yantai Institute of Technology, Yantai 264005, China;
| | - Xiaoqing Jing
- Institute of Physics and Electronic Information, Yantai University, Yantai 264005, China; (D.Y.); (M.Z.); (X.J.); (J.S.); (Y.Z.)
| | - Jun Sun
- Institute of Physics and Electronic Information, Yantai University, Yantai 264005, China; (D.Y.); (M.Z.); (X.J.); (J.S.); (Y.Z.)
| | - Yongan Zhang
- Institute of Physics and Electronic Information, Yantai University, Yantai 264005, China; (D.Y.); (M.Z.); (X.J.); (J.S.); (Y.Z.)
| | - Liping Yang
- School of Information Engineering, Yantai Institute of Technology, Yantai 264005, China;
| | - Ren Sheng
- Institute of Physics and Electronic Information, Yantai University, Yantai 264005, China; (D.Y.); (M.Z.); (X.J.); (J.S.); (Y.Z.)
| | - Ping Chen
- Institute of Physics and Electronic Information, Yantai University, Yantai 264005, China; (D.Y.); (M.Z.); (X.J.); (J.S.); (Y.Z.)
| |
Collapse
|
4
|
Dinnocenzo JP, Haze O, Fleming C, Farid S. Effect of Alkyl- vs Alkoxy-Arene Substituents on the Deactivation Processes and Fluorescence Quantum Yields of Exciplexes. J Phys Chem A 2024; 128:10986-10992. [PMID: 39670671 DOI: 10.1021/acs.jpca.4c06279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Decay processes of exciplexes of cyanoanthracenes with alkylbenzene donors were compared to those with alkoxybenzenes. For the three decay processes of exciplexes, the radiative rate constant (kf) of alkoxy derivatives is slightly lower than those of alkylbenzenes at the same average exciplex energy. However, the corresponding deactivation rate constants, intersystem crossing (kisc) and nonradiative decay (knr), are considerably higher. Consequently, the fluorescence quantum yields of the alkoxybenzene exciplexes are one-half to one-fifth of the corresponding alkylbenzenes at comparable emission energies. This trend is solvent-independent. The results can be rationalized in terms of the differing electronic character of the donor radical cation moieties in the alkoxy- vs alkylbenzene exciplexes and differences in their reorganization energies. The impact of these results for the design of exciplexes that emit more efficiently is discussed.
Collapse
Affiliation(s)
- Joseph P Dinnocenzo
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Olesya Haze
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Cavan Fleming
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Samir Farid
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| |
Collapse
|
5
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024; 124:13736-14110. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
6
|
Xu H, Yan H, Chen J, Zhang X, Zhang P, Li H, Meng H. Superior Hole Injection Material PEGDT/TPF/PVDF with p-Doping Capability for Highly Efficient Solution-Processed Organic Light-Emitting Diode. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54574-54586. [PMID: 39327980 DOI: 10.1021/acsami.4c11124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The ability to charge injection is a key factor in determining the performance of the organic light-emitting diode (OLED) devices. Improving the work function of the anode surface via interface modification, thus lowering the hole injection barrier, stands as a crucial strategy for enhancing the performance of the OLED device. Herein, we propose an innovative p-doping hole injection material, namely, PEGDT/TPF/PVDF that exhibits excellent performance in OLED devices with the value of maximum current efficiency at 56.4 Cd A-1, maximum luminescence at 25,564 Cd m-2, and a high EQE of 19.8%. The results for PEGDT/TPF/PVDF showed good conductivity, excellent film-forming property, and high transmittance over 98% in the spectrum range of 500-700 nm. Changes in the hole-injection energy barriers observed from the surface of the anode suggest a modified anode with PEGDT/TPF/PVDF deepened the work function at a value of 0.2 eV, which dramatically improves the hole-injection properties. This work not only provides novel structural materials with exceptional hole-injection properties but also proposes a promising alternative to PEDOT/PSS.
Collapse
Affiliation(s)
- Hong Xu
- School of Advanced Materials and School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Hao Yan
- School of Advanced Materials and School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Junmin Chen
- Tsinghua-Berkeley Shenzhen Institute Tsinghua University, Shenzhen 518055, Guangdong, P. R. China
- Institute of Materials Research (iMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, P. R. China
| | - Xiaopeng Zhang
- School of Advanced Materials and School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Pengli Zhang
- School of Advanced Materials and School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Hongyang Li
- School of Advanced Materials and School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Hong Meng
- School of Advanced Materials and School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| |
Collapse
|
7
|
Deori U, Nanda GP, Murawski C, Rajamalli P. A perspective on next-generation hyperfluorescent organic light-emitting diodes. Chem Sci 2024:d4sc05489j. [PMID: 39444559 PMCID: PMC11494416 DOI: 10.1039/d4sc05489j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Hyperfluorescence, also known as thermally activated delayed fluorescence (TADF) sensitized fluorescence, is known as a next-generation efficient and innovative process for high-performance organic light-emitting diodes (OLEDs). High external quantum efficiency (EQE) and good color purity are crucial parameters for display applications. Hyperfluorescent OLEDs (HF-OLEDs) take the lead in this respect as they utilize the advantages of both TADF emitters and fluorescent dopants, realizing high EQE with color saturation and long-term stability. Hyperfluorescence is mediated through Förster resonance energy transfer (FRET) from a TADF sensitizer to the final fluorescent emitter. However, competing loss mechanisms such as Dexter energy transfer (DET) of triplet excitons and direct charge trapping on the final emitter need to be mitigated in order to achieve fluorescence emission with high efficiency. Despite tremendous progress, appropriate guidelines and fine optimization are still required to address these loss channels and to improve the device operational lifetime. This perspective aims to provide an overview of the evolution of HF-OLEDs by reviewing both molecular and device design pathways for highly efficient narrowband devices covering all colors of the visible spectrum. Existing challenges and potential solutions, such as molecules with peripheral inert substitution, multi-resonant (MR) TADF emitters as final dopants, and exciplex-sensitized HF-OLEDs, are discussed. Furthermore, the operational device lifetime is reviewed in detail before concluding with suggestions for future device development.
Collapse
Affiliation(s)
- Upasana Deori
- Materials Research Centre, Indian Institute of Science Bangalore 560012 Karnataka India
| | - Gyana Prakash Nanda
- Materials Research Centre, Indian Institute of Science Bangalore 560012 Karnataka India
| | - Caroline Murawski
- Kurt-Schwabe-Institut für Mess- und Sensortechnik Meinsberg e.V. Kurt-Schwabe-Straße 4 04736 Waldheim Germany
- Faculty of Chemistry and Food Chemistry, Faculty of Electrical and Computer Engineering, Technische Universität Dresden 01062 Dresden Germany
| | | |
Collapse
|
8
|
Liu D, Yang GX, Chen Z, Xie W, Li D, Li W, Lin J, Nie X, Li Z, Liang B, Yang Z, Wang Z, Pu J, Sun G, Shen C, Li M, Su SJ. Highly Horizontal Oriented Tricomponent Exciplex Host with Multiple Reverse Intersystem Crossing Channels for High-Performance Narrowband Electroluminescence and Eye-Protection White Organic Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403584. [PMID: 38897229 DOI: 10.1002/adma.202403584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Despite multiple-resonance thermally activated delayed fluorescence (MR-TADF) emitters with small full-width at half maximum are attractive for wide color-gamut display and eye-protection lighting applications, their inefficient reverse intersystem crossing (RISC) process and long exciton lifetime induce serious efficiency roll-off, which significantly limits their development. Herein, a novel device concept of building highly efficient tricomponent exciplex with multiple RISC channels is proposed to realize reduced exciton quenching and enhanced upconversion of nonradiative triplet excitons, and subsequently used as a host for high-performance MR-TADF organic light-emitting diodes (OLEDs). Compared with traditional binary exciplex, the tricomponent exciplex exhibits obviously improved photoluminescence quantum yield, emitting dipole orientation and RISC rate constant, and a record-breaking external quantum efficiency (EQE) of 30.4% is achieved for tricomponent exciplex p-PhBCzPh: PO-T2T: DspiroAc-TRZ (50: 20: 30) based OLED. Remarkably, maximum EQEs of 36.2% and 40.3% and ultralow efficiency roll-off with EQEs of 26.1% and 30.0% at 1000 cd m-2 are respectively achieved for its sky-blue and pure-green MR-TADF doped OLEDs. Additionally, the blue emission unit hosted by tricomponent exciplex is combined with an orange-red TADF emission unit to achieve a double-emission-layer blue-hazard-free warm white OLED with an EQEmax of 30.3% and stable electroluminescence spectra over a wide brightness range.
Collapse
Affiliation(s)
- Denghui Liu
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Guo-Xi Yang
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Zijian Chen
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Wentao Xie
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Deli Li
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Wei Li
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Jianying Lin
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Xuewei Nie
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Zhizhi Li
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | | | - Zhihai Yang
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Zhiheng Wang
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
- Ji Hua Laboratory, Foshan, 528200, P. R. China
| | - Junrong Pu
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Guanwei Sun
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Chenyang Shen
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Mengke Li
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Shi-Jian Su
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| |
Collapse
|
9
|
Park JY, Lee S, Bi JC, Lee JS, Hwang YH, Kang B, Seok J, Park S, Lim D, Park YW, Ju BK. Selective Enhancement of Viewing Angle Characteristics and Light Extraction Efficiency of Blue Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes through an Easily Tailorable Si 3N 4 Nanofiber Structure. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27566-27575. [PMID: 38743438 DOI: 10.1021/acsami.4c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
We selectively improved the viewing angle characteristics and light extraction efficiency of blue thermally activated delayed fluorescence (TADF) organic light-emitting diodes (OLEDs) by tailoring a nanofiber-shaped Si3N4 layer, which was used as an internal scattering layer. The diameter of the polymer nanofibers changed according to the mass ratio of polyacrylonitrile (PAN) and poly(methyl methacrylate) (PMMA) in the polymer solution for electrospinning. The Si3N4 nanofiber (SNF) structure was fabricated by etching an Si3N4 film using the PAN/PMMA nanofiber as a mask, making it easier to adjust parameters, such as the diameter, open ratio, and height, even though the SNF structure was randomly shaped. The SNF structures exhibited lower transmittance and higher haze with increasing diameter, showing little correlation with their height. However, all the structures demonstrated a total transmittance of over 80%. Finally, by applying the SNF structures to the blue TADF OLEDs, the external quantum efficiency was increased by 15.6%. In addition, the current and power efficiencies were enhanced by 23.0% and 25.6%, respectively. The internal light-extracting SNF structure also exhibited a synergistic effect with the external light-extracting structure. Furthermore, when the viewing angle changed from 0° to 60°, the peak wavelength and CIE coordinate shift decreased from 20 to 6 nm and from 0.0561 to 0.0243, respectively. These trends were explained by the application of Snell's law to the light path and were ultimately validated through finite-difference time-domain simulations.
Collapse
Affiliation(s)
- Jun-Young Park
- Display and Nanosensor Laboratory, Department of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seungwon Lee
- Display and Nanosensor Laboratory, Department of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jian Cheng Bi
- Display and Nanosensor Laboratory, Department of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ji-Sung Lee
- Display and Nanosensor Laboratory, Department of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Young Hyun Hwang
- Display and Nanosensor Laboratory, Department of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Byeongwoo Kang
- Display and Nanosensor Laboratory, Department of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jiwon Seok
- Display and Nanosensor Laboratory, Department of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seonghyeon Park
- Display and Nanosensor Laboratory, Department of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Dogi Lim
- Display and Nanosensor Laboratory, Department of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
- Samsung Display Co., 1, Samsung-ro, Giheung-gu, Yongin-si, Gyeonggi-do 17113, Republic of Korea
| | - Young Wook Park
- Department of Semiconductor and Display Engineering, Sun Moon University Asan-si 31460, Republic of Korea
| | - Byeong-Kwon Ju
- Display and Nanosensor Laboratory, Department of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
10
|
Yin Y, Lai X, Ma Q, Ma H, Zhu W, Lee JY, Wang Y. HLCT-Type Acceptor Molecule-Based Exciplex System for Highly Efficient Solution-Processable OLEDs with Suppressed Efficiency Roll-Offs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313656. [PMID: 38315898 DOI: 10.1002/adma.202313656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Exciplex systems are promising candidates for thermally activated delayed fluorescence (TADF) molecules because of the small energy difference between the lowest singlet and triplet excited states (ΔEST). However, realizing high-efficiency and low-external-quantum-efficiency (EQE) roll-off in solution-processed organic light-emitting diodes (OLEDs) using an exciplex system remains a formidable challenge. In this study, two (HLCT)-type isomers with a spiro skeleton, 2-tBuspoCz-TRZ and 10-tBuspoCz-TRZ, are designed and synthesized as acceptors of exciplexes, where tert-butylspirofluorene indole is regarded as a donor and the triazine unit as an acceptor. Green exciplex emissions are observed for the 2-tBuspoCz-TRZ:TAPC and 10-tBuspoCz-TRZ:TAPC exciplexes, indicating distinct TADF characteristics with a very small ΔEST of 35 ± 5 meV. By using the TADF exciplex system based on the HLCT acceptor as an emitter, solution-processable OLEDs achieve a maximum external quantum efficiency (EQEmax) of 20.8%. Furthermore, a high EQEmax > 25% with a very low-efficiency roll-off (≈3.5% at 1000 cd m-2) is obtained for solution-processable phosphorescent devices using HLCT-based exciplexes as the host matrix of phosphors. This study paves the way for a novel strategy for designing acceptor exciplex molecules for effective TADF molecules and host matrices in solution-processable OLEDs.
Collapse
Affiliation(s)
- Yixiao Yin
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Xiaoyi Lai
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Qian Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Weiguo Zhu
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Suwon, 16419, South Korea
- SKKU Institute of Energy Science and Technology, Sungkyunkwan University, 2066 Seobu-ro, Suwon, 16419, South Korea
| | - Yafei Wang
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| |
Collapse
|
11
|
Tankelevičiūtė E, Samuel IDW, Zysman-Colman E. The Blue Problem: OLED Stability and Degradation Mechanisms. J Phys Chem Lett 2024; 15:1034-1047. [PMID: 38259039 PMCID: PMC10839906 DOI: 10.1021/acs.jpclett.3c03317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
OLED technology has revolutionized the display industry and is promising for lighting. Despite its maturity, there remain outstanding device and materials challenges to address. Particularly, achieving stable and highly efficient blue OLEDs is still proving to be difficult; the vast array of degradation mechanisms at play, coupled with the precise balance of device parameters needed for blue high-performance OLEDs, creates a unique set of challenges in the quest for a suitably stable yet high-performance device. Here, we discuss recent progress in the understanding of device degradation pathways and provide an overview of possible strategies to increase device lifetimes without a significant efficiency trade-off. Only careful consideration of all variables that go into OLED development, from the choice of materials to a deep understanding of which degradation mechanisms need to be suppressed for the particular structure, can lead to a meaningful positive change toward commercializable blue devices.
Collapse
Affiliation(s)
- Eglė Tankelevičiūtė
- Organic
Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, U.K., KY16 9ST
- Organic
Semiconductor Centre, School of Physics & Astronomy, University of St Andrews, St Andrews, U.K., KY16 9SS
| | - Ifor D. W. Samuel
- Organic
Semiconductor Centre, School of Physics & Astronomy, University of St Andrews, St Andrews, U.K., KY16 9SS
| | - Eli Zysman-Colman
- Organic
Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, U.K., KY16 9ST
| |
Collapse
|
12
|
Zhang K, Wang X, Chang Y, Wu Y, Wang S, Wang L. Carbazole-Decorated Organoboron Emitters with Low-Lying HOMO Levels for Solution-Processed Narrowband Blue Hyperfluorescence OLED Devices. Angew Chem Int Ed Engl 2023; 62:e202313084. [PMID: 37775994 DOI: 10.1002/anie.202313084] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/01/2023]
Abstract
The hyperfluorescence has drawn great attention in achieving efficient narrowband emitting devices based on multiple resonance thermally activated delayed fluorescence (MR-TADF) emitters. However, achieving efficient solution-processed pure blue hyperfluorescence devices is still a challenge, due to the unbalanced charge transport and serious exciton quenching caused by that the holes are easily trapped on the high-lying HOMO (the highest occupied molecular orbital) level of traditional diphenylamine-decorated emitters. Here, we developed two narrowband blue organoboron emitters with low-lying HOMO levels by decorating the MR-TADF core with weakly electron-donating carbazoles, which could suppress the hole trapping effect by reducing the hole traps between host and MR-TADF emitter from deep (0.40 eV) to shallow (0.14/0.20 eV) ones for facilitating hole transport and exciton formation, as well as avoiding exciton quenching. And the large dihedral angle between the carbazole and MR-TADF core makes the carbazole act as a steric hindrance to inhibit molecular aggregation. Accordingly, the optimized solution-processed pure blue hyperfluorescence devices simultaneously realize record external quantum efficiency of 29.2 %, narrowband emission with a full-width at half-maximum of 16.6 nm, and pure blue color with CIE coordinates of (0.139, 0.189), which is the best result for the solution-processed organic light-emitting diodes based on MR-TADF emitters.
Collapse
Affiliation(s)
- Kaiyuan Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Xingdong Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
| | - Yufei Chang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Yuliang Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Shumeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| |
Collapse
|
13
|
Lee SH, Kim TJ, Lee E, Kwon D, Kim J, Joo J. Observation of aligned dipoles and angular chromism of exciplexes in organic molecular heterostructures. Nat Commun 2023; 14:7190. [PMID: 37938244 PMCID: PMC10632441 DOI: 10.1038/s41467-023-42976-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
The dipole characteristics of Frenkel excitons and charge-transfer excitons between donor and acceptor molecules in organic heterostructures such as exciplexes are important in organic photonics and optoelectronics. For the bilayer of the organic donor 4,4',4''-tris[(3-methylphenyl)phenylamino]triphenylamine and acceptor 2,4,6-tris(biphenyl-3-yl)-1,3,5-triazine molecules, the exciplexes form aligned dipoles perpendicular to the Frenkel excitons, as observed in back focal plane photoluminescence images. The angular chromism of exciplexes observed in the 100 meV range indicates possible delocalization and angle-sensing photonic applications. The blue shift of the peak position and increase in the linewidth of photoluminescene spectra with increasing excitation power are caused by the repulsive aligned exciplex dipole moments with a long lifetime (4.65 μs). Electroluminescence spectra of the exciplex from organic light-emitting diodes using the bilayer are blue-shifted with increasing bias, suggesting unidirectional alignment of the exciplex dipole moments. The observation of exciplex dipole moment alignments across molecular interfaces can facilitate the controlled coupling of exciton species and increase efficiency of organic light-emitting diodes.
Collapse
Affiliation(s)
- Sang-Hun Lee
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
| | - Taek Joon Kim
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
| | - Eunji Lee
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Dayeong Kwon
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
| | - Jeongyong Kim
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jinsoo Joo
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
14
|
Meng G, Zhou J, Huang T, Dai H, Li X, Jia X, Wang L, Zhang D, Duan L. B-N/B-O Contained Heterocycles as Fusion Locker in Multi-Resonance Frameworks towards Highly-efficient and Stable Ultra-Narrowband Emission. Angew Chem Int Ed Engl 2023; 62:e202309923. [PMID: 37584379 DOI: 10.1002/anie.202309923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023]
Abstract
Fusing condensed aromatics into multi-resonance (MR) frameworks has been an exquisite strategy to modulate the optoelectronic properties, which, however, always sacrifices the small full width at half maxima (FWHM). Herein, we strategically embed B-N/B-O contained heterocycles as fusion locker into classical MR prototypes, which could enlarge the π-extension and alleviate the steric repulsion for an enhanced planar skeleton to suppress the high-frequency stretching/ scissoring vibrations for ultra-narrowband emissions. Sky-blue emitters with extremely small FWHMs of 17-18 nm are thereafter obtained for the targeted emitters, decreased by (1.4-1.9)-fold compared with the prototypes. Benefiting from their high photoluminescence quantum yields of >90 % and fast radiative decay rates of >108 s-1 , one of those emitters shows a high maximum external quantum efficiency of 31.9 % in sensitized devices, which remains 25.8 % at a practical luminance of 1,000 cd m-2 with a small FWHM of merely 19 nm. Notably a long operation half-lifetime of 1,278 h is also recorded for the same device, representing one of the longest lifetimes among sky-blue devices based on MR emitters.
Collapse
Affiliation(s)
- Guoyun Meng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Jianping Zhou
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Tianyu Huang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Hengyi Dai
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiao Li
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaoqin Jia
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lu Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
15
|
Liu Q, Deng Y, Ren B, Lan X, Zhang Y, Guo R, Li C, Xiong G, Sun Y, Zhao Z. Unraveling the Position Effect of Spiroxanthene-Based n-Type Hosts for High-Performance TADF-OLEDs. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2517. [PMID: 37764546 PMCID: PMC10537283 DOI: 10.3390/nano13182517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
For developing high-performance organic light-emitting diodes (OLEDs) with thermally activated delayed fluorescent (TADF) emitters, the diphenyltriazine (TRZ) unit was introduced onto the 2'- and 3'-positions of xanthene moiety of spiro[fluorene-9,9'-xanthene] (SFX) to construct n-type host molecules, namely 2'-TRZSFX and 3'-TRZSFX. The outward extension of the TRZ unit, induced by the meta-linkage, resulted in a higher planarity between the TRZ unit and xanthene moiety in the corresponding 3'-TRZSFX. Additionally, this extension led to a perched T1 level, as well as a lower unoccupied molecular orbital (LUMO) level when compared with 2'-TRZSFX. Meanwhile, the 3'-TRZSFX molecules in the crystalline state presented coherent packing along with the interaction between TRZ units; the similar packing motif was spaced apart from xanthene moieties in the 2'-TRZSFX crystal. These endowed 3'-TRZSFX superior electron transport capacity in single-carrier devices relative to the 2'-TRZSFX-based device. Hence, the 3'-TRZSFX-based TADF-OLED showed remarkable electroluminescent (EL) performance under the operating luminance from turn-on to ca. 1000 cd·m-2 with a maximum external quantum efficiency (EQEmax) of 23.0%, thanks to its matched LUMO level with 4CzIPN emitter and better electron transport capacity. Interestingly, the 2'-TRZSFX-based device, with an EQEmax of 18.8%, possessed relatively low roll-off and higher efficiency when the operating luminance exceeded 1000 cd·m-2, which was attributed to the more balanced carrier transport under high operating voltage. These results were elucidated by the analysis of single-crystal structures and the measurements of single-carrier devices, combined with EL performance. The revealed position effect of the TRZ unit on xanthene moiety provides a more informed strategy to develop SFX-based hosts for highly efficient TADF-OLEDs.
Collapse
Affiliation(s)
- Qinglin Liu
- College of Science, Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China; (Q.L.); (X.L.); (Y.Z.); (C.L.); (G.X.); (Y.S.)
| | - Yun Deng
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics and Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Baoyi Ren
- College of Science, Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China; (Q.L.); (X.L.); (Y.Z.); (C.L.); (G.X.); (Y.S.)
| | - Xia Lan
- College of Science, Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China; (Q.L.); (X.L.); (Y.Z.); (C.L.); (G.X.); (Y.S.)
| | - Yuehong Zhang
- College of Science, Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China; (Q.L.); (X.L.); (Y.Z.); (C.L.); (G.X.); (Y.S.)
| | - Runda Guo
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, South China University of Technology, Guangzhou 510640, China;
| | - Chensheng Li
- College of Science, Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China; (Q.L.); (X.L.); (Y.Z.); (C.L.); (G.X.); (Y.S.)
| | - Gang Xiong
- College of Science, Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China; (Q.L.); (X.L.); (Y.Z.); (C.L.); (G.X.); (Y.S.)
| | - Yaguang Sun
- College of Science, Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China; (Q.L.); (X.L.); (Y.Z.); (C.L.); (G.X.); (Y.S.)
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, South China University of Technology, Guangzhou 510640, China;
| |
Collapse
|
16
|
Gawale Y, Ansari R, Naveen KR, Kwon JH. Forthcoming hyperfluorescence display technology: relevant factors to achieve high-performance stable organic light emitting diodes. Front Chem 2023; 11:1211345. [PMID: 37377883 PMCID: PMC10291061 DOI: 10.3389/fchem.2023.1211345] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Over the decade, there have been developments in purely organic thermally activated delayed fluorescent (TADF) materials for organic light-emitting diodes (OLEDs). However, achieving narrow full width at half maximum (FWHM) and high external quantum efficiency (EQE) is crucial for real display industries. To overcome these hurdles, hyperfluorescence (HF) technology was proposed for next-generation OLEDs. In this technology, the TADF material was considered a sensitizing host, the so-called TADF sensitized host (TSH), for use of triplet excitons via the reverse intersystem crossing (RISC) pathway. Since most of the TADF materials show bipolar characteristics, electrically generated singlet and triplet exciton energies can be transported to the final fluorescent emitter (FE) through Förster resonance energy transfer (FRET) rather than Dexter energy transfer (DET). This mechanism is possible from the S1 state of the TSH to the S1 state of the final fluorescent dopant (FD) as a long-range energy transfer. Considering this, some reports are available based on hyperfluorescence OLEDs, but the detailed analysis for highly efficient and stable devices for commercialization was unclear. So herein, we reviewed the relevant factors based on recent advancements to build a highly efficient and stable hyperfluorescence system. The factors include an energy transfer mechanism based on spectral overlapping, TSH requirements, electroluminescence study based on exciplex and polarity system, shielding effect, DET suppression, and FD orientation. Furthermore, the outlook and future positives with new directions were discussed to build high-performance OLEDs.
Collapse
Affiliation(s)
| | | | | | - Jang Hyuk Kwon
- *Correspondence: Kenkera Rayappa Naveen, ; Jang Hyuk Kwon,
| |
Collapse
|
17
|
Zhang D, Jiang S, Tao X, Lin F, Meng L, Chen XL, Lu CZ. Efficient Spin-Flip between Charge-Transfer States for High-Performance Electroluminescence, without an Intermediate Locally Excited State. RESEARCH (WASHINGTON, D.C.) 2023; 6:0155. [PMID: 37250955 PMCID: PMC10214979 DOI: 10.34133/research.0155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023]
Abstract
Thermally activated delayed fluorescence (TADF) materials with both high photoluminescence quantum yield (PLQY) and fast reverse intersystem crossing (RISC) are strongly desired to realize efficient and stable organic light-emitting diodes (OLEDs). Control of excited-state dynamics via molecular design plays a central role in optimizing the PLQY and RISC rate of TADF materials but remains challenging. Here, 3 TADF emitters possessing similar molecular structures, similar high PLQYs (89.5% to 96.3%), and approximate energy levels of the lowest excited singlet states (S1), but significantly different spin-flipping RISC rates (0.03 × 106 s-1 vs. 2.26 × 106 s-1) and exciton lifetime (297.1 to 332.8 μs vs. 6.0 μs) were systematically synthesized to deeply investigate the feasibility of spin-flip between charge-transfer excited states (3CT-1CT) transition. Experimental and theoretical studies reveal that the small singlet-triplet energy gap together with low RISC reorganization energy between the 3CT and 1CT states could provide an efficient RISC through fast spin-flip 3CT-1CT transition, without the participation of an intermediate locally excited state, which has previously been recognized as being necessary for realizing fast RISC. Finally, the OLED based on the champion TADF emitter achieves a maximum external quantum efficiency of 27.1%, a tiny efficiency roll-off of 4.1% at 1,000 cd/m2, and a high luminance of 28,150 cd/m2, which are markedly superior to those of the OLEDs employing the other 2 TADF emitters.
Collapse
Affiliation(s)
- Donghai Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes,
Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanshan Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes,
Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Xiaodong Tao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes,
Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fulin Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes,
Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Lingyi Meng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes,
Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Xu-Lin Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes,
Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Can-Zhong Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes,
Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Kim JM, Lee KH, Lee JY. Extracting Polaron Recombination from Electroluminescence in Organic Light-Emitting Diodes by Artificial Intelligence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209953. [PMID: 36788120 DOI: 10.1002/adma.202209953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Direct exploring the electroluminescence (EL) of organic light-emitting diodes (OLEDs) is a challenge due to the complicated processes of polarons, excitons, and their interactions. This study demonstrated the extraction of the polaron dynamics from transient EL by predicting the recombination coefficient via artificial intelligence, overcoming multivariable kinetics problems. The performance of a machine learning (ML) model trained by various EL decay curves is significantly improved using a novel featurization method and input node optimization, achieving an R2 value of 0.947. The optimized ML model successfully predicts the recombination coefficients of actual OLEDs based on an exciplex-forming cohost, enabling the quantitative understanding of the overall polaron behavior under various electrical excitation conditions.
Collapse
Affiliation(s)
- Jae-Min Kim
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Kyung Hyung Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of korea
- SKKU Institute of Energy Science and Technology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of korea
| |
Collapse
|
19
|
Hayakawa M, Kameda M, Kawasumi R, Nakatsuka S, Yasuda N, Hatakeyama T. Spiroborate-Based Host Materials with High Triplet Energies and Ambipolar Charge-Transport Properties. Angew Chem Int Ed Engl 2023; 62:e202217512. [PMID: 36718823 DOI: 10.1002/anie.202217512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Organic light-emitting diodes (OLEDs) receive considerable attention because of their commercial use in flat panel displays. Herein, highly efficient spiroborate-based host materials are reported for use in blue OLEDs. Our designed spiroborates (SBOX) were simple to synthesize and exhibited high triplet excitation energies, narrow S-T gaps, and balanced charge carrier mobilities. A blue OLED containing one of the designed spiroborates, SBON, as a host exhibited a high external quantum efficiency (27.6 %) and low turn-on voltage (3.7 V) compared to those observed using 3,3'-di(9H-carbazol-9-yl)-1,1'-biphenyl (17.6 % and 4.5 V, respectively), indicating their potential as host materials in OLEDs.
Collapse
Affiliation(s)
- Masahiro Hayakawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Mayu Kameda
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Ryosuke Kawasumi
- SK JNC Japan Co., Ltd., 5-1 Goi Kaigan, Ichihara, Chiba, 290-8551, Japan
| | - Soichiro Nakatsuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.,Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Nobuhiro Yasuda
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Takuji Hatakeyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.,Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| |
Collapse
|
20
|
Chen J, Zhang W, Wang L, Yu G. Recent Research Progress of Organic Small-Molecule Semiconductors with High Electron Mobilities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210772. [PMID: 36519670 DOI: 10.1002/adma.202210772] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Organic electronics has made great progress in the past decades, which is inseparable from the innovative development of organic electronic devices and the diversity of organic semiconductor materials. It is worth mentioning that both of these great advances are inextricably linked to the development of organic high-performance semiconductor materials, especially the representative n-type organic small-molecule semiconductor materials with high electron mobilities. The n-type organic small molecules have the advantages of simple synthesis process, strong intermolecular stacking, tunable molecular structure, and easy to functionalize structures. Furthermore, the n-type semiconductor is a remarkable and important component for constructing complementary logic circuits and p-n heterojunction structures. Therefore, n-type organic semiconductors play an extremely important role in the field of organic electronic materials and are the basis for the industrialization of organic electronic functional devices. This review focuses on the modification strategies of organic small molecules with high electron mobility at molecular level, and discusses in detail the applications of n-type small-molecule semiconductor materials with high mobility in organic field-effect transistors, organic light-emitting transistors, organic photodetectors, and gas sensors.
Collapse
Affiliation(s)
- Jiadi Chen
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
21
|
Wu X, Wang R, Chen WC, Liu B, Yang Q, Ji S, Huo Y. Design, synthesis and photophysical properties of a (quinolin-3-yl)methanone-based thermally activated delayed fluorescence emitter. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
22
|
Cao HT, Hou PF, Yu WJ, Gao Y, Li B, Feng QY, Zhang H, Wang SS, Su ZM, Xie LH. Enhanced Efficiency of Exciplex Emission from a 9-Phenylfluorene Derivative. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7236-7246. [PMID: 36700822 DOI: 10.1021/acsami.2c22266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The exciplex-thermally activated delayed fluorescence (exciplex-TADF) system is an excellent candidate for the fabrication of high-efficiency organic light-emitting diodes (OLEDs) because of its more easily achieved small singlet-triplet energy splitting (ΔEST) and doping control. However, exciplex-TADF is still faced with the problems of low external quantum efficiency (ηext) and unclear effect of structure modification in electron acceptors. Herein, we provide a steric hindrance increase strategy to obtain high-efficiency exciplex emissions. Through introducing a 9-phenylfluorene group into N-ethylcarbazole of the dicyano-substituted 9-phenylfluorene, an electron acceptor material with increased steric hindrance is obtained, which helps the exciplex harvest a larger driving force and higher emission efficiencies. Encouragingly, the obtained OLED displays a maximum ηext of 25.8%, which is one of the best efficiency values among reported exciplex-OLEDs, simultaneously possessing excellent current efficiency of 83.6 cd A-1 and power efficiency of 93.7 lm W-1. It is expected that this work will offer a new avenue for designing electron acceptors for highly efficient exciplex emissions.
Collapse
Affiliation(s)
- Hong-Tao Cao
- Center for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China
| | - Peng-Fei Hou
- Center for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China
| | - Wen-Jing Yu
- Center for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China
| | - Ying Gao
- Institute of Biomass Functional Materials Interdisciplinary Studies, Jilin Engineering Normal University, 3050 Kaixuan Road, Changchun 130052, P.R. China
| | - Bo Li
- Center for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China
| | - Quan-You Feng
- Center for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China
| | - He Zhang
- Center for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China
| | - Sha-Sha Wang
- Center for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China
| | - Zhong-Min Su
- College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, P.R. China
| | - Ling-Hai Xie
- Center for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China
| |
Collapse
|
23
|
Cheon HJ, Woo SJ, Baek SH, Lee JH, Kim YH. Dense Local Triplet States and Steric Shielding of a Multi-Resonance TADF Emitter Enable High-Performance Deep-Blue OLEDs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207416. [PMID: 36222388 DOI: 10.1002/adma.202207416] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/26/2022] [Indexed: 05/12/2023]
Abstract
Multi-resonance thermally activated delayed fluorescence (MR-TADF) molecules based on boron and nitrogen atoms are emerging as next-generation blue emitters for organic light-emitting diodes (OLEDs) due to their narrow emission spectra and triplet harvesting properties. However, intermolecular aggregation stemming from the planar structure of typical MR-TADF molecules that leads to concentration quenching and broadened spectra limits the utilization of the full potential of MR-TADF emitters. Herein, a deep-blue MR-TADF emitter, pBP-DABNA-Me, is developed to suppress intermolecular interactions effectively. Furthermore, photophysical investigation and theoretical calculations reveal that adding biphenyl moieties to the core body creates dense local triplet states in the vicinity of S1 and T1 energetically, letting the emitter harvest excitons efficiently. OLEDs based on pBP-DABNA-Me show a high external quantum efficiency (EQE) of 23.4% and a pure-blue emission with a Commission Internationale de L'Eclairage (CIE) coordinate of (0.132, 0.092), which are maintained even at a high doping concentration of 100 wt%. Furthermore, by incorporating a conventional TADF sensitizer, deep-blue OLEDs with a CIE value of (0.133, 0.109) and an extremely high EQE of 30.1% are realized. These findings provide insight into design strategies for developing efficient deep-blue MR-TADF emitters with fast triplet upconversion and suppressed self-aggregation.
Collapse
Affiliation(s)
- Hyung-Jin Cheon
- Department of Chemistry and RINS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Seung-Je Woo
- Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung-Hyun Baek
- Department of Materials Science and Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Jeong-Hwan Lee
- Department of Materials Science and Engineering, Inha University, Incheon, 22212, Republic of Korea
- 3D Convergence Center, Inha University, Incheon, 22212, Republic of Korea
| | - Yun-Hi Kim
- Department of Chemistry and RINS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| |
Collapse
|
24
|
He X, Lou J, Li B, Wang H, Peng X, Li G, Liu L, Huang Y, Zheng N, Xing L, Huo Y, Yang D, Ma D, Zhao Z, Wang Z, Tang BZ. An Ultraviolet Fluorophore with Narrowed Emission via Coplanar Molecular Strategy. Angew Chem Int Ed Engl 2022; 61:e202209425. [DOI: 10.1002/anie.202209425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Xin He
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Jingli Lou
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Baoxi Li
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Han Wang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Xiaoluo Peng
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Ganggang Li
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Lu Liu
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Yu Huang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Nan Zheng
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Longjiang Xing
- School of Chemical Engineering & Light Industry Guangdong University of Technology Guangzhou 510006 China
| | - Yanping Huo
- School of Chemical Engineering & Light Industry Guangdong University of Technology Guangzhou 510006 China
| | - Dezhi Yang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Dongge Ma
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Zhiming Wang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology School of Science and Engineering The Chinese University of Hong Kong, Shenzhen Shenzhen 518172 China
| |
Collapse
|
25
|
Kim E, Park J, Jun M, Shin H, Baek J, Kim T, Kim S, Lee J, Ahn H, Sun J, Ko SB, Hwang SH, Lee JY, Chu C, Kim S. Highly efficient and stable deep-blue organic light-emitting diode using phosphor-sensitized thermally activated delayed fluorescence. SCIENCE ADVANCES 2022; 8:eabq1641. [PMID: 36240272 PMCID: PMC9565789 DOI: 10.1126/sciadv.abq1641] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Phosphorescent and thermally activated delayed fluorescence (TADF) blue organic light-emitting diodes (OLEDs) have been developed to overcome the low efficiency of fluorescent OLEDs. However, device instability, originating from triplet excitons and polarons, limits blue OLED applications. Here, we develop a phosphor-sensitized TADF emission system with TADF emitters to achieve high efficiency and long operational lifetime. Peripheral carbazole moieties are introduced in conventional multi-resonance-type emitters containing one boron atom. The triplet exciton density of the TADF emitter is reduced by facilitating reverse intersystem crossing, and the Förster resonant energy transfer rate from phosphor sensitizer is enhanced by high absorption coefficient of the emitters. The emitter exhibited an operational lifetime of 72.9 hours with Commission Internationale de L'Eclairage chromaticity coordinate y = 0.165, which was 6.6 times longer than those of devices using conventional TADF emitters.
Collapse
Affiliation(s)
- Eungdo Kim
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Junha Park
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Mieun Jun
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Hyosup Shin
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Jangyeol Baek
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Taeil Kim
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Seran Kim
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Jiyoung Lee
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Heechoon Ahn
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Jinwon Sun
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Soo-Byung Ko
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Seok-Hwan Hwang
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - Changwoong Chu
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Sunghan Kim
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| |
Collapse
|
26
|
Liu J, Zhu Y, Tsuboi T, Deng C, Lou W, Wang D, Liu T, Zhang Q. Toward a BT.2020 green emitter through a combined multiple resonance effect and multi-lock strategy. Nat Commun 2022; 13:4876. [PMID: 35985994 PMCID: PMC9391368 DOI: 10.1038/s41467-022-32607-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/03/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractColor-saturated green-emitting molecules with high Commission Internationale de L’Eclairage (CIE) y values have great potential applications for displays and imaging. Here, we linked the outer phenyl groups in multiple-resonance (MR)-type blue-emitting B (boron)-N (nitrogen) molecules through bonding and spiro-carbon bridges, resulting in rigid green emitters with thermally activated delayed fluorescence. The MR effect and multiple interlocking strategy greatly suppressed the high-frequency vibrations in the molecules, which emit green light with a full-width at half-maximum of 14 nm and a CIE y value of 0.77 in cyclohexane. These were the purest green molecules with quantum efficiency and color purity that were comparable with current best quantum dots. Doping these emitters into a traditional green-emitting phosphorescence organic light-emitting diode (OLED) endowed the device with a Broadcast Service Television 2020 color-gamut, 50% improved external quantum efficiency, and an extremely high luminescence of 5.1 × 105 cd/m2, making it the greenest and brightest OLED ever reported.
Collapse
|
27
|
Oda S, Sugitani T, Tanaka H, Tabata K, Kawasumi R, Hatakeyama T. Development of Pure Green Thermally Activated Delayed Fluorescence Material by Cyano Substitution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201778. [PMID: 35726390 DOI: 10.1002/adma.202201778] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Multiple resonance (MR)-effect-induced thermally activated delayed fluorescence (TADF) materials have garnered significant attention because they can achieve both high color purity and high external quantum efficiency (EQE). However, the reported green-emitting MR-TADF materials exhibit broader emission compared to those of blue-emitting ones and suffer from severe efficiency roll-off due to insufficient rate constants of reverse intersystem crossing process (kRISC ). Herein, a pure green MR-TADF material (ν-DABNA-CN-Me) with high kRISC of 105 s-1 is reported. The key to success is introduction of cyano groups into a blue-emitting MR-TADF material (ν-DABNA), which causes remarkable bathochromic shift without a loss of color purity. The organic light-emitting diode employing it as an emitter exhibits green emission at 504 nm with a small full-width at half-maximum of 23 nm, corresponding to Commission Internationale d'Éclairage coordinates of (0.13, 0.65). The device achieves a high maximum EQE of 31.9% and successfully suppresses the efficiency roll-off at a high luminance.
Collapse
Affiliation(s)
- Susumu Oda
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Takumi Sugitani
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Hiroyuki Tanaka
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Keita Tabata
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Ryosuke Kawasumi
- SK JNC Japan Co., Ltd., 25-1 Goi Kaigan, Ichihara, Chiba, 290-8551, Japan
| | - Takuji Hatakeyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
28
|
Liu T, Deng C, Duan K, Tsuboi T, Niu S, Wang D, Zhang Q. Zero-Zero Energy-Dominated Degradation in Blue Organic Light-Emitting Diodes Employing Thermally Activated Delayed Fluorescence. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22332-22340. [PMID: 35511443 DOI: 10.1021/acsami.2c02623] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Blue-emitting organic light-emitting diodes (OLEDs) fall significantly behind other OLEDs in operational stability. To better understand the key factors governing the stability of blue OLEDs employing thermally activated delayed fluorescence (TADF), nine efficient sky-blue to green TADF emitters with different frontier orbital energy levels and different TADF lifetimes have been designed and synthesized on the basis of charge-transfer (CT) acridine/phenyltriazine derivatives. Among them, ToDMAC-TRZ, a molecule composed of a 9,9-dimethyl-2,7-di-o-tolyl-9,10-dihydroacridine donor and a 2,4,6-triphenyl-1,3,5-triazine acceptor, shows a quantum yield of nearly 1 and a TADF lifetime as short as 0.59 μs in thin film. However, the stability of OLEDs is independent of the frontier orbital energy levels and TADF lifetime of the emitter. In contrast, the device half-life is found to decrease by five-sixths as the 0-0 energy of the singlet excitons increases by about 0.06 eV, which can be well-explained by the Arrhenius equation employing a photoreaction model. Whether in photoluminescence or electroluminescence, the contribution of long-lifetime triplet excitons to degradation is much lower than expected, which can be accounted for by how the solid-state solvation effect reduces the energy of the 3CT state and how most molecules have a low-lying locally excited triplet state.
Collapse
Affiliation(s)
- Tiangeng Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chao Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ke Duan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Taiju Tsuboi
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sheng Niu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Dan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qisheng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
29
|
Monkman A. Why Do We Still Need a Stable Long Lifetime Deep Blue OLED Emitter? ACS APPLIED MATERIALS & INTERFACES 2022; 14:20463-20467. [PMID: 34232627 PMCID: PMC9100479 DOI: 10.1021/acsami.1c09189] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/22/2021] [Indexed: 05/10/2023]
Abstract
The need for a high efficiency deep blue organic emitter with narrow emission line width has never been so great. This is driven by the need to simplify the complex OLED stack for displays to enable larger substrate sizes to be used and greatly increase production yields. Here, the merits of using the hyperfluorescence scheme based around new multiresonance boron nitrogen molecules typified by DABNA type emitters are discussed and key requirements for suitable sensitizer hosts described, especially the photophysical requirements for optimal performance.
Collapse
Affiliation(s)
- Andrew Monkman
- OEM Research Group, Dept. of Physics, Durham University, Durham, DH1 2UE, U.K.
| |
Collapse
|
30
|
Zhang Y, Wei J, Zhang D, Yin C, Li G, Liu Z, Jia X, Qiao J, Duan L. Sterically Wrapped Multiple Resonance Fluorophors for Suppression of Concentration Quenching and Spectrum Broadening. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuewei Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
- Center for Flexible Electronics Technology Tsinghua University Beijing 100084 P. R. China
| | - Jinbei Wei
- Beijing National Laboratory for molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Chen Yin
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Guomeng Li
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Ziyang Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Xiaoqin Jia
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Juan Qiao
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
- Center for Flexible Electronics Technology Tsinghua University Beijing 100084 P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
- Center for Flexible Electronics Technology Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
31
|
Cao H, Hou P, Cao Q, Li Y, Wang S, Xie L. Exciplex Emission and Property Investigation Based on Cyano-substituted 9-Phenylfluorene Derivative. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22070335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Cho S, Kwon NY, Kim CW, Lee H, Ha JM, Kim HJ, Woo HY, Park S, Cho MJ, Choi DH. High Efficiency Solution-Processed Green Thermally Activated Delayed Fluorescence OLEDs using Polymer-Small Molecule Mixed Host. Polym Chem 2022. [DOI: 10.1039/d1py01700d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Development of suitable host materials for application to an emitter is of significant importance for the high-efficiency organic light-emitting diodes (OLEDs). In this study, we successfully synthesized poly(9,9-diphenyl-10-(4-vinylbenzyl)-9,10-dihydroacridine) (P(Bn-DPAc)) as...
Collapse
|
33
|
Sumsalee P, Abella L, Kasemthaveechok S, Vanthuyne N, Cordier M, Pieters G, Autschbach J, Crassous J, Favereau L. Luminescent Chiral Exciplexes with Sky-Blue and Green Circularly Polarized-Thermally Activated Delayed Fluorescence. Chemistry 2021; 27:16505-16511. [PMID: 34599776 DOI: 10.1002/chem.202102765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Indexed: 11/08/2022]
Abstract
Luminescent exciplexes based on a chiral electron donor and achiral acceptors are reported as a new approach to design circularly polarized (CP) and thermally activated delayed fluorescence (TADF) emitters. This strategy results in rather high CP luminescence (CPL) values with glum up to 7×10-3 , one order of magnitude higher in comparison to the CPL signal recorded for the chiral donor alone (glum ∼7×10-4 ). This increase occurs concomitantly with a CPL sign inversion, as a result of the strong charge-transfer emission character, as experimentally and theoretically rationalized by using a covalent chiral donor-acceptor model. Interestingly, blue, green-yellow and red chiral luminescent exciplexes can be obtained by modifying with the electron accepting character of the achiral unit while keeping the same chiral donor unit. These results bring new (inter)molecular guidelines to obtain simply and efficiently multi-color CP-TADF emitters.
Collapse
Affiliation(s)
| | - Laura Abella
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York, 14260, USA
| | | | - Nicolas Vanthuyne
- Aix Marseille University, CNRS Centrale Marseille, iSm2, 13284, Marseille, France
| | - Marie Cordier
- Univ. Rennes, CNRS, ISCR - UMR 6226, 35000, Rennes, France
| | - Grégory Pieters
- Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE, 91191, Gif-sur-Yvette, France
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York, 14260, USA
| | | | | |
Collapse
|
34
|
Usuba J, Fukazawa A. Thiophene-Fused 1,4-Diazapentalene: A Stable C=N-Containing π-Conjugated System with Restored Antiaromaticity. Chemistry 2021; 27:16127-16134. [PMID: 34605567 DOI: 10.1002/chem.202103122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Indexed: 11/07/2022]
Abstract
A thiophene-fused 1,4-diazapentalene (TAP) was rationally designed and synthesized as a C=N-containing 4n π-electron system that exhibits restored antiaromaticity impaired by the doping with C=N bonds. X-ray crystallographic analysis and quantum chemical calculations revealed that the annulation of thiophene rings with the 1,4-diazapentalene moiety resulted in a much higher antiaromaticity than the pristine 1,4-diazapentalene. These effects can be ascribed to the reduced bond alternation of the eight-membered-ring periphery caused by stabilization of the less-stable bond-shifted resonance structure upon increasing the degree of substitution of imine moieties. Consequently, TAP underwent facile hydrogenation even under mild conditions because of its pronounced antiaromaticity and the high aromaticity of the corresponding hydrogenated product H2 -TAP. In addition, the electrophilic C=N moieties in TAP led to the formation of a dense π-stacked structure. These results highlight the effect of partial replacement of C=C bonds with C=N bonds in antiaromatic π-electron systems.
Collapse
Affiliation(s)
- Junichi Usuba
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Institute for Advanced Study, Kyoto University Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan.,Department of Chemistry Graduate School of Science, Nagoya University Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Aiko Fukazawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Institute for Advanced Study, Kyoto University Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
35
|
Zhang Y, Wei J, Zhang D, Yin C, Li G, Liu Z, Jia X, Qiao J, Duan L. Sterically Wrapped Multiple Resonance Fluorophors for Suppression of Concentration Quenching and Spectrum Broadening. Angew Chem Int Ed Engl 2021; 61:e202113206. [PMID: 34636127 DOI: 10.1002/anie.202113206] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Indexed: 11/07/2022]
Abstract
Multiple resonance (MR) emitters are promising for highly efficient organic light-emitting diodes (OLEDs) with narrowband emission; however, they still face intractable challenges with concentration-caused emission quenching, exciton annihilation, and spectral broadening. In this study, sterically wrapped MR dopants with a fluorescent MR core sandwiched by bulk substituents were developed to address the intractable challenges by reducing intermolecular interactions. Consequently, high photo-luminance quantum yields of ≥90 % and small full width at half maximums (FWHMs) of ≤25 nm over a wide range of dopant concentrations (1-20 wt %) were recorded. In addition, we demonstrated that the sandwiched MR emitter can effectively suppress Dexter interaction when doped in a thermally activated delayed fluorescence sensitizer, eliminating exciton loss through dopant triplet. Within the above dopant concentration range, the optimal emitter realizes remarkably high maximum external quantum efficiencies of 36.3-37.2 %, identical small FWHMs of 24 nm, and alleviated efficiency roll-offs in OLEDs.
Collapse
Affiliation(s)
- Yuewei Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Jinbei Wei
- Beijing National Laboratory for molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Chen Yin
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Guomeng Li
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ziyang Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaoqin Jia
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Juan Qiao
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
36
|
Vasilopoulou M, Mohd Yusoff ARB, Daboczi M, Conforto J, Gavim AEX, da Silva WJ, Macedo AG, Soultati A, Pistolis G, Schneider FK, Dong Y, Jacoutot P, Rotas G, Jang J, Vougioukalakis GC, Chochos CL, Kim JS, Gasparini N. High efficiency blue organic light-emitting diodes with below-bandgap electroluminescence. Nat Commun 2021; 12:4868. [PMID: 34381038 PMCID: PMC8357948 DOI: 10.1038/s41467-021-25135-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/20/2021] [Indexed: 11/09/2022] Open
Abstract
Blue organic light-emitting diodes require high triplet interlayer materials, which induce large energetic barriers at the interfaces resulting in high device voltages and reduced efficiencies. Here, we alleviate this issue by designing a low triplet energy hole transporting interlayer with high mobility, combined with an interface exciplex that confines excitons at the emissive layer/electron transporting material interface. As a result, blue thermally activated delay fluorescent organic light-emitting diodes with a below-bandgap turn-on voltage of 2.5 V and an external quantum efficiency (EQE) of 41.2% were successfully fabricated. These devices also showed suppressed efficiency roll-off maintaining an EQE of 34.8% at 1000 cd m−2. Our approach paves the way for further progress through exploring alternative device engineering approaches instead of only focusing on the demanding synthesis of organic compounds with complex structures. Thermally activated delayed fluorescence organic light-emitting diodes (TADF-OLEDs) rely on high triplet energy interlayers to confine excitons, which results in reduced performance. Here, the authors report high-performance blue TADF-OLEDs with below bandgap electroluminescence.
Collapse
Affiliation(s)
- Maria Vasilopoulou
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research Demokritos, Terma Patriarchou Grigoriou, Agia Paraskevi, Greece.
| | - Abd Rashid Bin Mohd Yusoff
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea.
| | - Matyas Daboczi
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, UK
| | - Julio Conforto
- Universidade Tecnologica Federal do Parana, GPGEI, Curitiba, Parana, Brazil
| | | | | | | | - Anastasia Soultati
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research Demokritos, Terma Patriarchou Grigoriou, Agia Paraskevi, Greece
| | - George Pistolis
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research Demokritos, Terma Patriarchou Grigoriou, Agia Paraskevi, Greece
| | | | - Yifan Dong
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, UK
| | - Polina Jacoutot
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, UK
| | - Georgios Rotas
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Jin Jang
- Advanced Display Research Center, Department of Information Display, Kyung Hee University, Dongdaemoon-gu, Seoul, South Korea
| | | | - Christos L Chochos
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.
| | - Ji-Seon Kim
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, UK
| | - Nicola Gasparini
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, UK.
| |
Collapse
|
37
|
Tanaka H, Oda S, Ricci G, Gotoh H, Tabata K, Kawasumi R, Beljonne D, Olivier Y, Hatakeyama T. Hypsochromic Shift of Multiple-Resonance-Induced Thermally Activated Delayed Fluorescence by Oxygen Atom Incorporation. Angew Chem Int Ed Engl 2021; 60:17910-17914. [PMID: 34038618 DOI: 10.1002/anie.202105032] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/15/2021] [Indexed: 11/07/2022]
Abstract
Herein, we reported an ultrapure blue multiple-resonance-induced thermally activated delayed fluorescence (MR-TADF) material (ν-DABNA-O-Me) with a high photoluminescence quantum yield and a large rate constant for reverse intersystem crossing. Because of restricted π-conjugation of the HOMO rather than the LUMO induced by oxygen atom incorporation, ν-DABNA-O-Me shows a hypsochromic shift compared to the parent MR-TADF material (ν-DABNA). An organic light-emitting diode based on this material exhibits an emission at 465 nm, with a small full-width at half-maximum of 23 nm and Commission Internationale de l'Eclairage coordinates of (0.13, 0.10), and a high maximum external quantum efficiency of 29.5 %. Moreover, ν-DABNA-O-Me facilitates a drastically improved efficiency roll-off and a device lifetime compared to ν-DABNA, which demonstrates significant potential of the oxygen atom incorporation strategy.
Collapse
Affiliation(s)
- Hiroyuki Tanaka
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
- JNC Petrochemical Corporation, 5-1 Goi Kaigan, Ichihara, Chiba, 290-8551, Japan
| | - Susumu Oda
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Gaetano Ricci
- Unité de Chimie Physique Théorique et Structurale & Laboratoire de Physique du Solide, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000, Namur, Belgium
| | - Hajime Gotoh
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Keita Tabata
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
- JNC Petrochemical Corporation, 5-1 Goi Kaigan, Ichihara, Chiba, 290-8551, Japan
| | - Ryosuke Kawasumi
- JNC Petrochemical Corporation, 5-1 Goi Kaigan, Ichihara, Chiba, 290-8551, Japan
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, Université de Mons, Place du Parc 20, 7000, Mons, Belgium
| | - Yoann Olivier
- Unité de Chimie Physique Théorique et Structurale & Laboratoire de Physique du Solide, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000, Namur, Belgium
| | - Takuji Hatakeyama
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| |
Collapse
|
38
|
Nam S, Kim JW, Bae HJ, Maruyama YM, Jeong D, Kim J, Kim JS, Son W, Jeong H, Lee J, Ihn S, Choi H. Improved Efficiency and Lifetime of Deep-Blue Hyperfluorescent Organic Light-Emitting Diode using Pt(II) Complex as Phosphorescent Sensitizer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100586. [PMID: 34137208 PMCID: PMC8373157 DOI: 10.1002/advs.202100586] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/20/2021] [Indexed: 05/19/2023]
Abstract
Although the organic light-emitting diode (OLED) has been successfully commercialized, the development of deep-blue OLEDs with high efficiency and long lifetime remains a challenge. Here, a novel hyperfluorescent OLED that incorporates the Pt(II) complex (PtON7-dtb) as a phosphorescent sensitizer and a hydrocarbon-based and multiple resonance-based fluorophore as an emitter (TBPDP and ν-DABNA) in the device emissive layer (EML), is proposed. Such an EML system can promote efficient energy transfer from the triplet excited states of the sensitizer to the singlet excited states of the fluorophore, thus significantly improving the efficiency and lifetime of the device. As a result, a deep-blue hyperfluorescent OLED using a multiple resonance-based fluorophore (ν-DABNA) with Commission Internationale de L'Eclairage chromaticity coordinate y below 0.1 is demonstrated, which attains a narrow full width at half maximum of ≈17 nm, fourfold increased maximum current efficiency of 48.9 cd A-1 , and 19-fold improved half-lifetime of 253.8 h at 1000 cd m-2 compared to a conventional phosphorescent OLED. The findings can lead to better understanding of the hyperfluorescent OLEDs with high performance.
Collapse
Affiliation(s)
- Sungho Nam
- Samsung Advanced Institute of TechnologySamsung Electronics Co., Ltd.130 Samsung‐roSuwon‐siGyeonggi‐do16678Republic of Korea
| | - Ji Whan Kim
- Samsung Advanced Institute of TechnologySamsung Electronics Co., Ltd.130 Samsung‐roSuwon‐siGyeonggi‐do16678Republic of Korea
| | - Hye Jin Bae
- Samsung Advanced Institute of TechnologySamsung Electronics Co., Ltd.130 Samsung‐roSuwon‐siGyeonggi‐do16678Republic of Korea
| | - Yusuke Makida Maruyama
- Samsung Advanced Institute of TechnologySamsung Electronics Co., Ltd.130 Samsung‐roSuwon‐siGyeonggi‐do16678Republic of Korea
| | - Daun Jeong
- Data and Information Technology CenterSamsung Electronics Co., Ltd.1 Samsungjeonja‐roHwaseong‐siGyeonggi‐do18448Republic of Korea
| | - Joonghyuk Kim
- Samsung Advanced Institute of TechnologySamsung Electronics Co., Ltd.130 Samsung‐roSuwon‐siGyeonggi‐do16678Republic of Korea
| | - Jong Soo Kim
- Samsung Advanced Institute of TechnologySamsung Electronics Co., Ltd.130 Samsung‐roSuwon‐siGyeonggi‐do16678Republic of Korea
| | - Won‐Joon Son
- Data and Information Technology CenterSamsung Electronics Co., Ltd.1 Samsungjeonja‐roHwaseong‐siGyeonggi‐do18448Republic of Korea
| | - Hyein Jeong
- Display Research CenterSamsung Display Co.1 Samsung‐roYongin‐siGyeonggi‐do17113Republic of Korea
| | - Jaesang Lee
- Department of Electrical and Computer EngineeringInter‐University Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Soo‐Ghang Ihn
- Samsung Advanced Institute of TechnologySamsung Electronics Co., Ltd.130 Samsung‐roSuwon‐siGyeonggi‐do16678Republic of Korea
| | - Hyeonho Choi
- Samsung Advanced Institute of TechnologySamsung Electronics Co., Ltd.130 Samsung‐roSuwon‐siGyeonggi‐do16678Republic of Korea
| |
Collapse
|
39
|
Tanaka H, Oda S, Ricci G, Gotoh H, Tabata K, Kawasumi R, Beljonne D, Olivier Y, Hatakeyama T. Hypsochromic Shift of Multiple‐Resonance‐Induced Thermally Activated Delayed Fluorescence by Oxygen Atom Incorporation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105032] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hiroyuki Tanaka
- Department of Chemistry School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
- JNC Petrochemical Corporation 5-1 Goi Kaigan Ichihara Chiba 290-8551 Japan
| | - Susumu Oda
- Department of Chemistry School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| | - Gaetano Ricci
- Unité de Chimie Physique Théorique et Structurale & Laboratoire de Physique du Solide Namur Institute of Structured Matter Université de Namur Rue de Bruxelles, 61 5000 Namur Belgium
| | - Hajime Gotoh
- Department of Chemistry School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| | - Keita Tabata
- Department of Chemistry School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
- JNC Petrochemical Corporation 5-1 Goi Kaigan Ichihara Chiba 290-8551 Japan
| | - Ryosuke Kawasumi
- JNC Petrochemical Corporation 5-1 Goi Kaigan Ichihara Chiba 290-8551 Japan
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials Université de Mons Place du Parc 20 7000 Mons Belgium
| | - Yoann Olivier
- Unité de Chimie Physique Théorique et Structurale & Laboratoire de Physique du Solide Namur Institute of Structured Matter Université de Namur Rue de Bruxelles, 61 5000 Namur Belgium
| | - Takuji Hatakeyama
- Department of Chemistry School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| |
Collapse
|
40
|
Dai G, Zhang M, Wang K, Fan X, Shi Y, Sun D, Liu W, Chen J, Yu J, Ou X, Xiong S, Zheng C, Zhang X. Nonconjugated Triptycene-Spaced Donor-Acceptor-Type Emitters Showing Thermally Activated Delayed Fluorescence via Both Intra- and Intermolecular Charge-Transfer Transitions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25193-25201. [PMID: 34013735 DOI: 10.1021/acsami.1c05646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thermally activated delayed fluorescence (TADF) emitters have aroused considerable attention, particularly for their great potential in organic light-emitting diodes (OLEDs). In typical TADF molecules, intramolecular charge transfer (CT) between electron-donor (D) and electron-acceptor (A) moieties is the dominant transition. Actually, CT transitions can possibly occur between different molecules as well. Herein, we used a nonconjugated triptycene (TPE) moiety to space D and A moieties and developed two novel emitters tBuDMAC-TPE-TRZ and tBuDMAC-TPE-TTR to explore the roles of intra- and intermolecular CT transitions. Along with weak intramolecular CT transitions, intermolecular CT transitions are dominant for tBuDMAC-TPE-TRZ and tBuDMAC-TPE-TTR neat films. Particularly, tBuDMAC-TPE-TRZ showed a high maximum external quantum efficiency of 10.0% in a nondoped solution-processed OLED, which was evidently higher than that of a corresponding 10 wt % tBuDMAC-TPE-TRZ-doped OLED with 4,4',4″-tris(carbazol-9-yl)triphenylamine (TCTA) as the host matrix. The results prove that intermolecular CT transitions indeed participate in the CT transition process in these systems and they are helpful to enhance the electroluminescence performance of emitting systems with weak intramolecular CT transitions.
Collapse
Affiliation(s)
- Gaole Dai
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Ming Zhang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan 610054, P. R. China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xiaochun Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yizhong Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Dianming Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Wei Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Jiaxiong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xuemei Ou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Shiyun Xiong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Caijun Zheng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan 610054, P. R. China
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
41
|
Wu Y, Zhang Y, Ran C, Lan J, Bin Z, You J. Management of Locally Excited States for Purine-based TADF Emitters: A Method to Reduce Device Efficiency Roll-Off. Org Lett 2021; 23:3839-3843. [PMID: 33960193 DOI: 10.1021/acs.orglett.1c00918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The programmed arylation of purine has been developed to construct a series of efficient thermally activated delayed fluorescent (TADF) materials. The corresponding organic light-emitting diodes (OLEDs) exhibit external quantum efficiency as high as 16.0% alongside small efficiency roll-off. Intriguingly, this work proves that the good management of localized states is an efficient way to reduce device efficiency roll-off and is crucial for the future design of high-performance OLEDs.
Collapse
Affiliation(s)
- Yangbo Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Yuming Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Chunhao Ran
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Jingbo Lan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Zhengyang Bin
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| |
Collapse
|
42
|
Nakanotani H, Tsuchiya Y, Adachi C. Thermally-activated Delayed Fluorescence for Light-emitting Devices. CHEM LETT 2021. [DOI: 10.1246/cl.200915] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hajime Nakanotani
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
| | - Youichi Tsuchiya
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
| |
Collapse
|
43
|
Wu P, Xie FM, Wei HX, Li YQ, Dai GL, Wang Y, Tang JX, Zhao X. Thermally activated delayed fluorescent emitters based on 3-(phenylsulfonyl)pyridine. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Oda S, Hatakeyama T. Development of One-Shot/One-Pot Borylation Reactions toward Organoboron-Based Materials. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200372] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Susumu Oda
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Takuji Hatakeyama
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
45
|
Stavrou K, Danos A, Hama T, Hatakeyama T, Monkman A. Hot Vibrational States in a High-Performance Multiple Resonance Emitter and the Effect of Excimer Quenching on Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8643-8655. [PMID: 33555850 PMCID: PMC8023512 DOI: 10.1021/acsami.0c20619] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/28/2021] [Indexed: 05/23/2023]
Abstract
The photophysics of multiple resonance thermally activated delayed fluorescence molecule ν-DABNA is described. We show coupling of a 285 cm-1 stretching/scissoring vibrational mode of peripheral phenyl rings to the S1 state, which dictates the ultimate emission full-width at half maximum. However, a separate high amplitude mode, 945 cm-1 of the N-biphenyl units, mediates the reverse intersystem crossing (rISC) mechanism. Concentration-dependent studies in solution and solid state reveal a second emission band that increases nonlinearly with concentration, independent of the environment assigned to excimer emission. Even at concentrations well below those used in devices, the excimer contribution affects performance. Using different solvents and solid hosts, rISC rates between 3-6 × 105 s-1 are calculated, which show negligible dependence on environmental polarity or host packing. At 20 K over the first 10 ns, we observe a broad Gaussian excimer emission band with energy on-set above the S1 exciton band. An optical singlet-triplet gap (ΔEST) of 70 meV is measured, agreeing with previous thermal estimates; however, the triplet energy is also found to be temperature-dependent. A monotonic increase of the exciton emission band full-width at half maximum with temperature indicates the role of hot transitions in forming vibrational excited states at room temperature (RT), and combined with an observed temperature dependency of ΔEST, we deduce that the rISC mechanism is that of thermally activated reverse internal conversion of T1 to TN (n ≥ 2) followed by rapid rISC of TN to S1. Organic light-emitting diodes with ν-DABNA as a hyperfluorescent emitter (0.5 wt % and 1 wt %) exhibit an increase of maximum external quantum efficiency, reaching 27.5% for the lower ν-DABNA concentration. On the contrary, a Förster radius analysis indicated that the energy transfer ratio is smaller because of higher donor-acceptor separation (>2.4 nm) with weak sensitizer emission observed in the electroluminescence. This indicates excimer quenching in 1 wt % devices.
Collapse
Affiliation(s)
- Kleitos Stavrou
- Department
of Physics, Durham University, South Road, Durham, DH1 3LE, United
Kingdom
| | - Andrew Danos
- Department
of Physics, Durham University, South Road, Durham, DH1 3LE, United
Kingdom
| | - Toshiki Hama
- Department
of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Takuji Hatakeyama
- Department
of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Andrew Monkman
- Department
of Physics, Durham University, South Road, Durham, DH1 3LE, United
Kingdom
| |
Collapse
|
46
|
Zhang M, Zheng CJ, Lin H, Tao SL. Thermally activated delayed fluorescence exciplex emitters for high-performance organic light-emitting diodes. MATERIALS HORIZONS 2021; 8:401-425. [PMID: 34821262 DOI: 10.1039/d0mh01245a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Owing to their natural thermally activated delayed fluorescence (TADF) characteristics, the development of exciplex emitters for organic light-emitting diodes (OLEDs) has witnessed booming progress in recent years. Formed between electron-donating and electron-accepting molecules, exciplexes with intermolecular charge transfer processes have unique advantages compared with unimolecular TADF materials, offering a new way to develop high-performance TADF emitters. In this review, a comprehensive overview of TADF exciplex emitters is presented with a focus on the relationship between the constituents of exciplexes and their electroluminescence performance. We summarize and discuss the latest and most significant developments of TADF exciplex emitters. Notably, the design principles of efficient TADF exciplex emitters are systematically categorized into three systems within this review. These progressive achievements of TADF exciplex emitters point out future challenges to trigger more research endeavors in this growing field.
Collapse
Affiliation(s)
- Ming Zhang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China.
| | | | | | | |
Collapse
|
47
|
Lv X, Xu L, Cui W, Yu Y, Zhou H, Cang M, Sun Q, Pan Y, Xu Y, Hu D, Xue S, Yang W. High-Efficiency, Non-doped, Pure-Blue Fluorescent Organic Light-Emitting Diodes via Molecular Tuning Regulation of Hot Exciton Excited States. ACS APPLIED MATERIALS & INTERFACES 2021; 13:970-980. [PMID: 33356101 DOI: 10.1021/acsami.0c15876] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tremendous efforts have been made on researching triplet-triplet annihilation (TTA) and thermally activated delayed fluorescence (TADF) materials for realizing high-efficiency blue organic light-emitting diodes (OLEDs) through utilizing triplet exciton conversion to the lowest singlet excited state (S1) from the lowest triplet excited state (T1). However, hot exciton conversion from the upper triplet energy level state (Tn, n > 1) to the lowest singlet excited state (S1) is an increasingly promising method for realizing pure-blue non-doped OLEDs with performances comparable to those of TTA and TADF materials. Herein, two pure-blue fluorescent emitters of donor (D)-π-acceptor (A) type, PIAnCz and PIAnPO, were designed and synthesized. The excited-state characteristics of PIAnCz and PIAnPO, confirmed by theoretical calculations and photophysical experiments, demonstrated these materials' hot exciton properties. Based on PIAnCz and PIAnPO as emission layer materials, the fabricated non-doped devices exhibited pure-blue emission with Commission Internationale de l'Eclairage (CIE) coordinates of (0.16, 0.12) and (0.16, 0.15), maximum luminescences of 10,484 and 15,485 cd m-2, and maximum external quantum efficiencies (EQEs) of 10.9 and 8.3%. Besides, at a luminescence of 1000 cd m-2, the EQEs of PIAnPO-based devices can still be high at 7.7%, and the negligible efficiency roll-off was 6.0%. The device performance of both materials demonstrates their outstanding potential for commercial application.
Collapse
Affiliation(s)
- Xianhao Lv
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao 266042, P. R. China
| | - Lei Xu
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao 266042, P. R. China
| | - Wei Cui
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao 266042, P. R. China
| | - Yuan Yu
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao 266042, P. R. China
| | - Huayi Zhou
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao 266042, P. R. China
| | - Miao Cang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao 266042, P. R. China
| | - Qikun Sun
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao 266042, P. R. China
| | - Yuyu Pan
- School of Petrochemical Engineering, Shenyang University of Technology, 30 Guanghua Street, Liaoyang 111003, P. R. China
| | - Yuwei Xu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Dehua Hu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shanfeng Xue
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao 266042, P. R. China
| | - Wenjun Yang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao 266042, P. R. China
| |
Collapse
|
48
|
Peng CC, Yang SY, Li HC, Xie GH, Cui LS, Zou SN, Poriel C, Jiang ZQ, Liao LS. Highly Efficient Thermally Activated Delayed Fluorescence via an Unconjugated Donor-Acceptor System Realizing EQE of Over 30. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003885. [PMID: 33118645 DOI: 10.1002/adma.202003885] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/24/2020] [Indexed: 06/11/2023]
Abstract
In this work, two novel thermally activated delayed fluorescence (TADF) emitters, 2tDMG and 3tDMG, are synthesized for high-efficiency organic light-emitting diodes (OLEDs), The two emitters have a tilted face-to-face alignment of donor (D)/acceptor (A) units presenting intramolecular noncovalent interactions. The two TADF materials are deposited either by an evaporation-process or by a solution-process, both of them leading to high OLED performance. 2tDMG used as the emitter in evaporation-processed OLEDs achieves a high external quantum efficiency (EQE) of 30.8% with a very flat efficiency roll-off of 7% at 1000 cd m-2 . The solution-processed OLEDs also display an interesting EQE of 16.2%. 3tDMG shows improved solubility and solution processability as compared to 2tDMG, and thus a high EQE of 20.2% in solution-processed OLEDs is recorded. The corresponding evaporation-processed OLEDs also reach a reasonably high EQE of 26.3%. Encouragingly, this work provides a novel strategy to address the imperious demands for OLEDs with high EQE and low roll-off.
Collapse
Affiliation(s)
- Chen-Chen Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Sheng-Yi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Hong-Cheng Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Guo-Hua Xie
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Lin-Song Cui
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Sheng-Nan Zou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Cyril Poriel
- Univ Rennes, CNRS, ISCR-UMR 6226, Rennes, 35000, France
| | - Zuo-Quan Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Institute of Organic Optoelectronics, Jiangsu Industrial Technology Research Institute (JITRI), Suzhou, Jiangsu, 215211, P. R. China
| |
Collapse
|
49
|
Tanaka M, Nagata R, Nakanotani H, Adachi C. Precise Exciton Management of Quaternary Emission Layers for Highly Stable Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50668-50674. [PMID: 33099997 DOI: 10.1021/acsami.0c15208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Simultaneous achievement of both high electroluminescence efficiency and high operational stability in organic light-emitting diodes (OLEDs) is required for their use in various practical applications. Although OLEDs based on thermally activated delayed fluorescence-assisted fluorescence (TAF) are considered to possess a promising device architecture to exploit the full potential of OLEDs, the operational stability of such systems still requires further improvement. In this study, a quaternary emission layer consisting of a combination of TAF and mixed-host systems is developed. OLEDs containing this emission layer show improved operational stability through the management of exciton generation processes while maintaining high electroluminescence efficiency. Furthermore, a gradient of the mixed ratio of the co-host matrix is used to optimize the recombination zone profile in the emission layer, leading to 17 times improvement of the operational lifetime compared with that of the corresponding single-host-based device. This research provides a simple and general method to develop highly stable TAF-OLEDs.
Collapse
Affiliation(s)
- Masaki Tanaka
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryo Nagata
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hajime Nakanotani
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
50
|
Ikeda N, Oda S, Matsumoto R, Yoshioka M, Fukushima D, Yoshiura K, Yasuda N, Hatakeyama T. Solution-Processable Pure Green Thermally Activated Delayed Fluorescence Emitter Based on the Multiple Resonance Effect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004072. [PMID: 32864797 DOI: 10.1002/adma.202004072] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/19/2020] [Indexed: 05/28/2023]
Abstract
Thermally activated delayed fluorescence (TADF) materials based on the multiple resonance (MR) effect are applied in organic light-emitting diodes (OLEDs), combining high color purity and efficiency. However, they are not fabricated via solution-processing, which is an economical approach toward the mass production of OLED displays. Here, a solution-processable MR-TADF material (OAB-ABP-1), with an extended π-skeleton and bulky substituents, is designed. OAB-ABP-1 is synthesized from commercially available starting materials via a four-step process involving one-shot double borylation. OAB-ABP-1 presents attractive photophysical properties, a narrow emission band, a high photoluminescence quantum yield, a small energy gap between S1 and T1 , and low activation energy for reverse intersystem crossing. These properties are attributed to the alternating localization of the highest occupied and lowest unoccupied molecular orbitals induced by the boron, nitrogen, and oxygen atoms. Furthermore, to facilitate charge recombination, two novel semiconducting polymers with similar ionization potentials to that of OAB-ABP-1 are synthesized for use as interlayer and emissive layer materials. A solution-processed OLED device is fabricated using OAB-ABP-1 and the aforementioned polymers; it exhibits pure green electroluminescence with a small full-width at half-maximum and a high external quantum efficiency with minimum efficiency roll-off.
Collapse
Affiliation(s)
- Naoya Ikeda
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Susumu Oda
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Ryuji Matsumoto
- Advanced Material Development Laboratory, Sumitomo Chemical Co., Ltd., 6 Kitahara, Tsukuba, Ibaraki, 300-3294, Japan
| | - Mayu Yoshioka
- Advanced Material Development Laboratory, Sumitomo Chemical Co., Ltd., 6 Kitahara, Tsukuba, Ibaraki, 300-3294, Japan
| | - Daisuke Fukushima
- Advanced Material Development Laboratory, Sumitomo Chemical Co., Ltd., 6 Kitahara, Tsukuba, Ibaraki, 300-3294, Japan
| | - Kazuki Yoshiura
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Nobuhiro Yasuda
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Takuji Hatakeyama
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| |
Collapse
|