1
|
Ghasemi M, Lu J, Jia B, Wen X. Steady state and transient absorption spectroscopy in metal halide perovskites. Chem Soc Rev 2025; 54:1644-1683. [PMID: 39801268 DOI: 10.1039/d4cs00985a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Metal halide perovskites (MHPs) have emerged as the most promising materials due to superior optoelectronic properties and great applications spanning from photovoltaics to photonics. Absorption spectroscopy provides a broad and deep insight into the carrier dynamics of MHPs, and is a critical complement to fluorescence and scattering spectroscopy. However, absorption spectroscopy is often misunderstood or underestimated, being seen as UV-vis spectroscopy only, which can lead to various misinterpretations. In fact, absorption spectroscopy is one of the most important branches of spectroscopic techniques (others including fluorescence and scattering), which plays a critical role in understanding the electronic structure and optoelectrical dynamics of MHPs. In this tutorial, the basic principles of various types of absorption spectroscopy as well as their recent developments and applications in MHP materials and devices are summarized, covering comprehensive advances in steady state and transient absorption spectroscopy. Given the significance of absorption spectroscopy in directing the design of different optoelectronic applications of MHPs, this tutorial will comprehensively discuss absorption spectroscopy, covering wavelengths from optical to terahertz (THz) and microwave, and timescales from femtoseconds to hours, and it specifically focuses on time-dependent steady-state and transient absorption spectroscopy under light illumination bias to study MHP materials and devices, allowing researchers to select suitable characterization techniques.
Collapse
Affiliation(s)
- Mehri Ghasemi
- School of Science, RMIT University, Melbourne, 3000, Australia.
| | - Junlin Lu
- School of Science, RMIT University, Melbourne, 3000, Australia.
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, 3000, Australia.
| | - Xiaoming Wen
- School of Science, RMIT University, Melbourne, 3000, Australia.
| |
Collapse
|
2
|
Han Y, Seo J, Lee DH, Yoo H. IGZO-Based Electronic Device Application: Advancements in Gas Sensor, Logic Circuit, Biosensor, Neuromorphic Device, and Photodetector Technologies. MICROMACHINES 2025; 16:118. [PMID: 40047564 PMCID: PMC11857157 DOI: 10.3390/mi16020118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/14/2025] [Accepted: 01/19/2025] [Indexed: 03/09/2025]
Abstract
Metal oxide semiconductors, such as indium gallium zinc oxide (IGZO), have attracted significant attention from researchers in the fields of liquid crystal displays (LCDs) and organic light-emitting diodes (OLEDs) for decades. This interest is driven by their high electron mobility of over ~10 cm2/V·s and excellent transmittance of more than ~80%. Amorphous IGZO (a-IGZO) offers additional advantages, including compatibility with various processes and flexibility making it suitable for applications in flexible and wearable devices. Furthermore, IGZO-based thin-film transistors (TFTs) exhibit high uniformity and high-speed switching behavior, resulting in low power consumption due to their low leakage current. These advantages position IGZO not only as a key material in display technologies but also as a candidate for various next-generation electronic devices. This review paper provides a comprehensive overview of IGZO-based electronics, including applications in gas sensors, biosensors, and photosensors. Additionally, it emphasizes the potential of IGZO for implementing logic gates. Finally, the paper discusses IGZO-based neuromorphic devices and their promise in overcoming the limitations of the conventional von Neumann computing architecture.
Collapse
Affiliation(s)
- Youngmin Han
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea;
| | - Juhyung Seo
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Dong Hyun Lee
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea;
| | - Hocheon Yoo
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
3
|
Yan Y, Zhou B, Lin X, Shi J, Wang S, Qu D, Tu Y, Luo X, Huang W. High Performance Perovskite Photodiodes via Molecule-Assisted Interfacial and Bulk Modulations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407015. [PMID: 39580695 DOI: 10.1002/smll.202407015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/07/2024] [Indexed: 11/26/2024]
Abstract
Metal halide perovskites have attracted significant attention in photodetection due to their superior photophysical properties and improved stability. However, the performance of their photodiodes is predominantly limited by non-radiative recombination within the perovskite layer or at interfaces. Here, molecular engineering via phenylethylammonium chloride for interfacial modulation and methylenediammonium dichloride for bulk modulation is introduced into vertical perovskite photodiodes to boost the photodetection performance. The responsivity at 635 nm excitation increased from 0.09 to 0.33 A W-1 with interfacial modulation, compared to the original perovskite device, and is further improved to 0.40 A W-1 with the combined effects of interfacial and bulk modulations (i.e., synergistic bimolecular engineering). The optimized photodiodes demonstrated high detectivity of over 1011 Jones, a rapid response time of ≈1 µs, and a linear dynamic range of ≈100 dB. Furthermore, the photocurrent exhibited a U-shaped dependence on temperature ranging from 10 to 300 K, with linearity breaking under strong illumination at low temperatures. These results confirmed that molecular engineering is the promising strategy for achieving high-performance perovskite photodetectors.
Collapse
Affiliation(s)
- Yuting Yan
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, 710129, China
| | - Bin Zhou
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, 710129, China
| | - Xi Lin
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, 710129, China
| | - Jian Shi
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, 710129, China
| | - Shasha Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, 710129, China
| | - Duo Qu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yongguang Tu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, 710129, China
| | - Xiaoguang Luo
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, 710129, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, 710129, China
| |
Collapse
|
4
|
Son H, Choi DH, Park K, Chung J, Kang BH, Kim HJ. Pseudologic Optical Circuit Method for Advanced Color Sensing in IGZO Phototransistor Arrays with Chlorophyll Absorption Layers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67909-67920. [PMID: 39620403 DOI: 10.1021/acsami.4c12979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Recently, the elimination of color filters has become a key focus in photodetector research because of the potential to create more compact and cost-effective sensor systems. In this study, a novel concept of a filter-free color-discrimination photosensor using an indium gallium zinc oxide (IGZO, In/Ga/Zn = 3.1:2.6:1.0)-based phototransistor with an integrated chlorophyll absorption layer (CAL) and a solution-processed oxide absorption layer (SAL) was developed. Chlorophyll, known for its role in photosynthesis as a natural light absorber, offers distinct characteristics compared to conventional photodetectors (i.e., SAL/IGZO), whereby the photoresponsivity decreases with increasing wavelength. Using the ability of chlorophyll to absorb blue and red light, the proposed CAL/IGZO phototransistor exhibited a higher photoresponsivity to red light than to green light. The device achieved a photoresponsivity of 1570 A/W for red light and 681 A/W for green light, with a photosensitivity of 8.35 × 105 and 8.96 × 104 and a detectivity of 8.47 × 1011 and 6.80 × 1010 Jones, respectively, under an illumination intensity of 1 mW/mm2. Furthermore, by integrating the proposed CAL/IGZO phototransistor with a SAL/IGZO phototransistor, which exhibited a different order of photoresponse across RGB wavelengths, an innovative color-discrimination pixel pseudologic circuit was successfully developed. The capability of this circuit to distinguish colors across various light intensities was validated through experimental data and SPICE simulations, with the output voltage ranges confirmed as -2.61 to -3.51 V for red, 1.56 to 2.69 V for green, and -0.22 to -0.68 V for blue over light intensities from 0.1 to 3 mW/mm2. This innovative approach allows effective color detection without conventional color filters, providing an advanced solution for photodetection technologies.
Collapse
Affiliation(s)
- Hyunji Son
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- LG Display Co., Ltd. 245, LG-ro, Wollong-myeon, Paju-si, Gyeonggi-do 10845, Republic of Korea
| | - Dong Hyun Choi
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kyungho Park
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jusung Chung
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Byung Ha Kang
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyun Jae Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
5
|
Li D, Chen Y, Ren H, Tang Y, Zhang S, Wang Y, Xing L, Huang Q, Meng L, Zhu B. An Active-Matrix Synaptic Phototransistor Array for In-Sensor Spectral Processing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406401. [PMID: 39166499 PMCID: PMC11497057 DOI: 10.1002/advs.202406401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Indexed: 08/23/2024]
Abstract
The human retina perceives and preprocesses the spectral information of incident light, enabling fast image recognition and efficient chromatic adaptation. In comparison, it is reluctant to implement parallel spectral preprocessing and temporal information fusion in current complementary metal-oxide-semiconductor (CMOS) image sensors, requiring intricate circuitry, frequent data transmission, and color filters. Herein, an active-matrix synaptic phototransistor array (AMSPA) is developed based on organic/inorganic semiconductor heterostructures. The AMSPA provides wavelength-dependent, bidirectional photoresponses, enabling dynamic imaging and in-sensor spectral preprocessing functions. Specifically, near-infrared light induces inhibitory photoresponse while UV light results in exhibitory photoresponse. With rational structural design of the organic/inorganic hybrid heterostructures, the current dynamic range of phototransistor is improved to over 90 dB. Finally, a 32 × 64 AMSPA (128 pixels per inch) is demonstrated with one-switch-transistor and one-synaptic phototransistor (1-T-1-PT) structure, achieving spatial chromatic enhancement and temporal trajectory imaging. These results reveal the feasibility of AMSPA for constructing artificial vision systems.
Collapse
Affiliation(s)
- Dingwei Li
- Westlake Institute for OptoelectronicsHangzhou311421China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang ProvinceSchool of EngineeringWestlake UniversityHangzhou310024China
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027China
| | - Yitong Chen
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang ProvinceSchool of EngineeringWestlake UniversityHangzhou310024China
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027China
| | - Huihui Ren
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang ProvinceSchool of EngineeringWestlake UniversityHangzhou310024China
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027China
| | - Yingjie Tang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang ProvinceSchool of EngineeringWestlake UniversityHangzhou310024China
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027China
| | - Siyu Zhang
- Westlake Institute for OptoelectronicsHangzhou311421China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang ProvinceSchool of EngineeringWestlake UniversityHangzhou310024China
| | - Yan Wang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang ProvinceSchool of EngineeringWestlake UniversityHangzhou310024China
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027China
| | - Lixiang Xing
- Westlake Institute for OptoelectronicsHangzhou311421China
| | - Qi Huang
- Westlake Institute for OptoelectronicsHangzhou311421China
| | - Lei Meng
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Bowen Zhu
- Westlake Institute for OptoelectronicsHangzhou311421China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang ProvinceSchool of EngineeringWestlake UniversityHangzhou310024China
- Institute of Advanced TechnologyWestlake Institute for Advanced StudyHangzhou310024China
| |
Collapse
|
6
|
Zhang H, Liang F, Yang L, Gao Z, Liang K, Liu S, Ye Y, Yu H, Chen W, Kang Y, Sun H. Superior AlGaN/GaN-Based Phototransistors and Arrays with Reconfigurable Triple-Mode Functionalities Enabled by Voltage-Programmed Two-Dimensional Electron Gas for High-Quality Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405874. [PMID: 38924239 DOI: 10.1002/adma.202405874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/13/2024] [Indexed: 06/28/2024]
Abstract
High-quality imaging units are indispensable in modern optoelectronic systems for accurate recognition and processing of optical information. To fulfill massive and complex imaging tasks in the digital age, devices with remarkable photoresponsive characteristics and versatile reconfigurable functions on a single-device platform are in demand but remain challenging to fabricate. Herein, an AlGaN/GaN-based double-heterostructure is reported, incorporated with a unique compositionally graded AlGaN structure to generate a channel of polarization-induced two-dimensional electron gas (2DEGs). Owing to the programmable feature of the 2DEGs by the combined gate and drain voltage inputs, with a particular capability of electron separation, collection and storage under different light illumination, the phototransistor shows reconfigurable multifunctional photoresponsive behaviors with superior characteristics. A self-powered mode with a responsivity over 100 A W-1 and a photoconductive mode with a responsivity of ≈108 A W-1 are achieved, with the ultimate demonstration of a 10 × 10 device array for imaging. More intriguingly, the device can be switched to photoelectric synapse mode, emulating synaptic functions to denoise the imaging process while prolonging the image storage ability. The demonstration of three-in-one operational characteristics in a single device offers a new path toward future integrated and multifunctional imaging units.
Collapse
Affiliation(s)
- Haochen Zhang
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Fangzhou Liang
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Lei Yang
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Zhixiang Gao
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Kun Liang
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Si Liu
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Yankai Ye
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Huabin Yu
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Wei Chen
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Kang
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Haiding Sun
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
7
|
Yao J, Wang Q, Zhang Y, Teng Y, Li J, Zhao P, Zhao C, Hu Z, Shen Z, Liu L, Tian D, Qiu S, Wang Z, Kang L, Li Q. Ultra-low power carbon nanotube/porphyrin synaptic arrays for persistent photoconductivity and neuromorphic computing. Nat Commun 2024; 15:6147. [PMID: 39034334 PMCID: PMC11271480 DOI: 10.1038/s41467-024-50490-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024] Open
Abstract
Developing devices with a wide-temperature range persistent photoconductivity (PPC) and ultra-low power consumption remains a significant challenge for optical synaptic devices used in neuromorphic computing. By harnessing the PPC properties in materials, it can achieve optical storage and neuromorphic computing, surpassing the von Neuman architecture-based systems. However, previous research implemented PPC required additional gate voltages and low temperatures, which need additional energy consumption and PPC cannot be achieved across a wide temperature range. Here, we fabricated a simple heterojunctions using zinc(II)-meso-tetraphenyl porphyrin (ZnTPP) and single-walled carbon nanotubes (SWCNTs). By leveraging the strong binding energy at the heterojunction interface and the unique band structure, the heterojunction achieved PPC over an exceptionally wide temperature range (77 K-400 K). Remarkably, it demonstrated nonvolatile storage for up to 2×104 s, without additional gate voltage. The minimum energy consumption for each synaptic event is as low as 6.5 aJ. Furthermore, we successfully demonstrate the feasibility to manufacture a flexible wafer-scale array utilizing this heterojunction. We applied it to autonomous driving under extreme temperatures and achieved as a high impressive accuracy rate as 94.5%. This tunable and stable wide-temperature PPC capability holds promise for ultra-low-power neuromorphic computing.
Collapse
Affiliation(s)
- Jian Yao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Qinan Wang
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Yong Zhang
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yu Teng
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jing Li
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Pin Zhao
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Chun Zhao
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| | - Ziyi Hu
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zongjie Shen
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Liwei Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Dan Tian
- College of Materials Science and Engineering, Co-Innovation Center of Effiicient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Song Qiu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhongrui Wang
- Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, China
| | - Lixing Kang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Qingwen Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
8
|
Jeong YJ, Kim GB, Kim MJ, Oh J, Chang JH, Jeong JK. Improvement in Performance and Stability of PbS QD/IGZO Phototransistors Through the Introduction of Ga 2O 3 Film for Broadband Sensor Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36527-36538. [PMID: 38961586 DOI: 10.1021/acsami.4c02346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The development of broadband photosensors has become crucial in various fields. Indium-gallium-zinc oxide (IGZO, In:Ga:Zn = 1:1:1) phototransistors with PbS quantum dots (QDs) have shown promising features for such sensors, such as reasonable mobility, low leakage current, good photosensitivity, and low-cost fabrication. However, the instability of PbS QD/IGZO phototransistors under an air atmosphere and prolonged storage remain serious concerns. In this article, two concepts to improve the reliability of PbS QD/IGZO phototransistors were implemented. P-type doping in the PbS QD layer through oxidation allows increasing the built-in potential between IGZO and PbS QDs, leading to enhancement in photoinduced electron-hole pair creation. Second, agglomeration and fusion of a PbS QDs layer were controlled via thermal annealing, which facilitated the transport of photocreated carriers. The p-type doping and interconnection of a PbS QD layer can be achieved by deposition and subsequent thermal annealing of gallium oxide (Ga2O3) on PbS QD/IGZO stacks. The resulting Ga2O3/PbS QD/IGZO phototransistors exhibited high-performance switching characteristics under dark conditions. Notably, they showed a remarkable photoresponsivity of 196.69 ± 4.05 A/W and a detectivity of (5.47 ± 1.4) × 1012 Jones even at a long-wavelength illumination of 1550 nm. While the unpassivated PbS/IGZO phototransistor suffered serious degradation in optical performance after 2 weeks of storage, the Ga2O3/PbS QD/IGZO phototransistor demonstrated enhanced stability, maintaining high performance for over 5 weeks. These findings suggest that Ga2O3/PbS QD/IGZO phototransistors offer a feasible approach for the fabrication of large-scale active matrix broadband photosensor arrays, potentially revolutionizing optical sensing in various cutting-edge applications.
Collapse
Affiliation(s)
- Yong Jun Jeong
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Gwang-Bok Kim
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Min Jae Kim
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jinwook Oh
- Department of Display Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Joon-Hyuk Chang
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jae Kyeong Jeong
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Department of Display Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
9
|
Cui X, Xu L, Shan Y, Li J, Ji J, Wang E, Zhang B, Wen X, Bai Y, Luo D, Chen C, Li Z. Piezocatalytically-induced controllable mineralization scaffold with bone-like microenvironment to achieve endogenous bone regeneration. Sci Bull (Beijing) 2024; 69:1895-1908. [PMID: 38637224 DOI: 10.1016/j.scib.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024]
Abstract
Orderly hierarchical structure with balanced mechanical, chemical, and electrical properties is the basis of the natural bone microenvironment. Inspired by nature, we developed a piezocatalytically-induced controlled mineralization strategy using piezoelectric polymer poly-L-lactic acid (PLLA) fibers with ordered micro-nano structures to prepare biomimetic tissue engineering scaffolds with a bone-like microenvironment (pcm-PLLA), in which PLLA-mediated piezoelectric catalysis promoted the in-situ polymerization of dopamine and subsequently regulated the controllable growth of hydroxyapatite crystals on the fiber surface. PLLA fibers, as analogs of mineralized collagen fibers, were arranged in an oriented manner, and ultimately formed a bone-like interconnected pore structure; in addition, they also provided bone-like piezoelectric properties. The uniformly sized HA nanocrystals formed by controlled mineralization provided a bone-like mechanical strength and chemical environment. The pcm-PLLA scaffold could rapidly recruit endogenous stem cells, and promote their osteogenic differentiation by activating cell membrane calcium channels and PI3K signaling pathways through ultrasound-responsive piezoelectric signals. In addition, the scaffold also provided a suitable microenvironment to promote macrophage M2 polarization and angiogenesis, thereby enhancing bone regeneration in skull defects of rats. The proposed piezocatalytically-induced controllable mineralization strategy provides a new idea for the development of tissue engineering scaffolds that can be implemented for multimodal physical stimulation therapy.
Collapse
Affiliation(s)
- Xi Cui
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Xu
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yizhu Shan
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxuan Li
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianying Ji
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Engui Wang
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Baokun Zhang
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Xiaozhou Wen
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Bai
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Dan Luo
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chunying Chen
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Zhou Li
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Lai J, Shi K, Qiu B, Liang J, Liu H, Zhang W, Yu G. Spacer Engineering Enables Fine-Tuned Thin Film Microstructure and Efficient Charge Transport for Ultrasensitive 2D Perovskite-Based Heterojunction Phototransistors and Optoelectronic Synapses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310002. [PMID: 38109068 DOI: 10.1002/smll.202310002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Indexed: 12/19/2023]
Abstract
2D Ruddlesden-Popper phase layered perovskites (RPLPs) hold great promise for optoelectronic applications. In this study, a series of high-performance heterojunction phototransistors (HPTs) based on RPLPs with different organic spacer cations (namely butylammonium (BA+), cyclohexylammonium (CyHA+), phenethylammonium (PEA+), p-fluorophenylethylammonium (p-F-PEA+), and 2-thiophenethylammonium (2-ThEA+)) are fabricated successfully, in which high-mobility organic semiconductor 2,7-dioctyl[1]benzothieno[3,2-b]benzothiophene is adopted to form type II heterojunction channels with RPLPs. The 2-ThEA+-RPLP-based HPTs show the highest photosensitivity of 3.18 × 107 and the best detectivity of 9.00 × 1018 Jones, while the p-F-PEA+-RPLP-based ones exhibit the highest photoresponsivity of 5.51 × 106 A W-1 and external quantum efficiency of 1.32 × 109%, all of which are among the highest reported values to date. These heterojunction systems also mimicked several optically controllable fundamental characteristics of biological synapses, including excitatory postsynaptic current, paired-pulse facilitation, and the transition from short-term memory to long-term memory states. The device based on 2-ThEA+-RPLP film shows an ultra-high PPF index of 234%. Moreover, spacer engineering brought fine-tuned thin film microstructures and efficient charge transport/transfer, which contributes to the superior photodetection performance and synaptic functions of these RPLP-based HPTs. In-depth structure-property correlations between the organic spacer cations/RPLPs and thin film microstructure/device performance are systematically investigated.
Collapse
Affiliation(s)
- Jing Lai
- Key Laboratory of Solid-State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Keli Shi
- Key Laboratory of Solid-State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Beibei Qiu
- Key Laboratory of Solid-State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Jufang Liang
- Key Laboratory of Solid-State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Haicui Liu
- Key Laboratory of Solid-State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Li JC, Ma YX, Wu SH, Liu ZC, Ding PF, Dai D, Ding YT, Zhang YY, Huang Y, Lai PT, Wang YL. 1-Selector 1-Memristor Configuration with Multifunctional a-IGZO Memristive Devices Fabricated at Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17766-17777. [PMID: 38534058 DOI: 10.1021/acsami.3c18328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Serving as neuromorphic hardware accelerators, memristors play a crucial role in large-scale neuromorphic computing. Herein, two-terminal memristors utilizing amorphous indium-gallium-zinc oxide (a-IGZO) are fabricated through room-temperature sputtering. The electrical characteristics of these memristors are effectively modulated by varying the oxygen flow during the deposition process. The optimized a-IGZO memristor, fabricated under 3 sccm oxygen flow, presents a 5 × 103 ratio between its high- and low-resistance states, which can be maintained over 1 × 104 s with minimal degradation. Meanwhile, desirable properties such as electroforming-free and self-compliance, crucial for low-energy consumption, are also obtained in the a-IGZO memristor. Moreover, analog conductance switching is observed, demonstrating an interface-type behavior, as evidenced by its device-size-dependent performance. The coexistence of negative differential resistance with analog switching is attributed to the migration of oxygen vacancies and the trapping/detrapping of charges. Furthermore, the device demonstrates optical storage capabilities by exploiting the optical properties of a-IGZO, which can stably operate for up to 50 sweep cycles. Various synaptic functions have been demonstrated, including paired-pulse facilitation and spike-timing-dependent plasticity. These functionalities contribute to a simulated recognition accuracy of 90% for handwritten digits. Importantly, a one-selector one-memristor (1S1M) architecture is successfully constructed at room temperature by integrating a-IGZO memristor on a TaOx-based selector. This architecture exhibits a 107 on/off ratio, demonstrating its potential to suppress sneak currents among adjacent units in a memristor crossbar.
Collapse
Affiliation(s)
- Jia Cheng Li
- The School of Integrated Circuits and Electronics, and Yangtze Delta Region Academy, Beijing Institute of Technology, Beijing 100081, China
| | - Yuan Xiao Ma
- The School of Integrated Circuits and Electronics, and Yangtze Delta Region Academy, Beijing Institute of Technology, Beijing 100081, China
| | - Song Hao Wu
- The School of Integrated Circuits and Electronics, and Yangtze Delta Region Academy, Beijing Institute of Technology, Beijing 100081, China
- R&D Center for Solid-State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Zi Chun Liu
- The School of Integrated Circuits and Electronics, and Yangtze Delta Region Academy, Beijing Institute of Technology, Beijing 100081, China
| | - Peng Fei Ding
- The School of Integrated Circuits and Electronics, and Yangtze Delta Region Academy, Beijing Institute of Technology, Beijing 100081, China
| | - De Dai
- The School of Integrated Circuits and Electronics, and Yangtze Delta Region Academy, Beijing Institute of Technology, Beijing 100081, China
| | - Ying Tao Ding
- The School of Integrated Circuits and Electronics, and Yangtze Delta Region Academy, Beijing Institute of Technology, Beijing 100081, China
| | - Yi Yun Zhang
- R&D Center for Solid-State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Yuan Huang
- The School of Integrated Circuits and Electronics, and Yangtze Delta Region Academy, Beijing Institute of Technology, Beijing 100081, China
| | - Peter To Lai
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, Hong Kong
| | - Ye Liang Wang
- The School of Integrated Circuits and Electronics, and Yangtze Delta Region Academy, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
12
|
Kim T, Yun KS. Photonic synaptic transistors with new electron trapping layer for high performance and ultra-low power consumption. Sci Rep 2023; 13:12583. [PMID: 37537256 PMCID: PMC10400596 DOI: 10.1038/s41598-023-39646-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023] Open
Abstract
Photonic synaptic transistors are being investigated for their potential applications in neuromorphic computing and artificial vision systems. Recently, a method for establishing a synaptic effect by preventing the recombination of electron-hole pairs by forming an energy barrier with a double-layer consisting of a channel and a light absorption layer has shown effective results. We report a triple-layer device created by coating a novel electron-trapping layer between the light-absorption layer and the gate-insulating layer. Compared to the conventional double-layer photonic synaptic structure, our triple-layer device significantly reduces the recombination rate, resulting in improved performance in terms of the output photocurrent and memory characteristics. Furthermore, our photonic synaptic transistor possesses excellent synaptic properties, such as paired-pulse facilitation (PPF), short-term potentiation (STP), and long-term potentiation (LTP), and demonstrates a good response to a low operating voltage of - 0.1 mV. The low power consumption experiment shows a very low energy consumption of 0.01375 fJ per spike. These findings suggest a way to improve the performance of future neuromorphic devices and artificial vision systems.
Collapse
Affiliation(s)
- Taewoo Kim
- Department of Electronic Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Korea
| | - Kwang-Seok Yun
- Department of Electronic Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Korea.
| |
Collapse
|
13
|
Ma F, Huang Z, Ziółek M, Yue S, Han X, Rong D, Guo Z, Chu K, Jia X, Wu Y, Zhao J, Liu K, Xing J, Wang Z, Qu S. Template-Assisted Synthesis of a Large-Area Ordered Perovskite Nanowire Array for a High-Performance Photodetector. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12024-12031. [PMID: 36812095 DOI: 10.1021/acsami.2c20887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
One-dimensional (1D) organic-inorganic hybrid perovskite nanowires (NWs) with well-defined structures possess superior optical and electrical properties for optoelectronic applications. However, most of the perovskite NWs are synthesized in air, which makes the NWs susceptible to water vapor, resulting in large amounts of grain boundaries or surface defects. Here, a template-assisted antisolvent crystallization (TAAC) method is designed to fabricate CH3NH3PbBr3 NWs and arrays. It is found that the as-synthesized NW array has designable shapes, low crystal defects, and ordered alignment, which is attributed to the sequestration of water and oxygen in air by the introduction of acetonitrile vapor. The photodetector based on the NWs exhibits an excellent response to light illumination. Under the illumination of a 532 nm laser with 0.1 μW and a bias of -1 V, the responsivity and detectivity of the device reach 1.55 A/W and 1.21 × 1012 Jones, respectively. The transient absorption spectrum (TAS) shows a distinct ground state bleaching signal only at 527 nm, which corresponds to the absorption peak induced by the interband transition of CH3NH3PbBr3. Narrow absorption peaks (a few nanometers) indicate that the energy-level structures of CH3NH3PbBr3 NWs only have a few impurity-level-induced transitions leading to additional optical loss. This work provides an effective and simple strategy to achieve high-quality CH3NH3PbBr3 NWs, which exhibit potential application in photodetection.
Collapse
Affiliation(s)
- Fangyuan Ma
- School of Science, China University of Geosciences, Beijing 100083, China
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
| | - Zhitao Huang
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Marcin Ziółek
- Faculty of Physics, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland
| | - Shizhong Yue
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Han
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Dongke Rong
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Zihao Guo
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Kaiwen Chu
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohao Jia
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulin Wu
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhao
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kong Liu
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Xing
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Zhijie Wang
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengchun Qu
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
| |
Collapse
|
14
|
Zhang X, Li Z, Yan T, Su L, Fang X. Phase-Modulated Multidimensional Perovskites for High-Sensitivity Self-Powered UV Photodetectors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206310. [PMID: 36587965 DOI: 10.1002/smll.202206310] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Indexed: 06/17/2023]
Abstract
2D Ruddlesden-Popper perovskites (PVKs) have recently shown overwhelming potential in various optoelectronic devices on account of enhanced stability to their 3D counterparts. So far, regulating the phase distribution and orientation of 2D perovskite thin films remains challenging to achieve efficient charge transport. This work elucidates the balance struck between sufficient gradient sedimentation of perovskite colloids and less formation of small-n phases, which results in the layered alignment of phase compositions and thus in enhanced photoresponse. The solvent engineering strategy, together with the introduction of poly(3,4-ethylene-dioxythiophene):polystyrene sulfonate (PEDOT:PSS) and PC71 BM layer jointly contribute to outstanding self-powered performance of indium tin oxide/PEDOT:PSS/PVK/PC71 BM/Ag device, with a photocurrent of 18.4 µA and an on/off ratio up to 2800. The as-fabricated photodetector exhibits high sensitivity characteristics with the peak responsivity of 0.22 A W-1 and the detectivity up to 1.3 × 1012 Jones detected at UV-A region, outperforming most reported perovskite-based UV photodetectors and maintaining high stability over a wide spectrum ranging from UV to visible region. This discovery supplies deep insights into the control of ordered phases and crystallinity in quasi-2D perovskite films for high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Ziqing Li
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, P. R. China
| | - Tingting Yan
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Li Su
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
15
|
Yan X, Zhao Y, Cao G, Li X, Gao C, Liu L, Ahmed S, Altaf F, Tan H, Ma X, Xie Z, Zhang H. 2D Organic Materials: Status and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203889. [PMID: 36683257 PMCID: PMC9982583 DOI: 10.1002/advs.202203889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/31/2022] [Indexed: 06/17/2023]
Abstract
In the past few decades, 2D layer materials have gradually become a central focus in materials science owing to their uniquely layered structural qualities and good optoelectronic properties. However, in the development of 2D materials, several disadvantages, such as limited types of materials and the inability to synthesize large-scale materials, severely confine their application. Therefore, further exploration of new materials and preparation methods is necessary to meet technological developmental needs. Organic molecular materials have the advantage of being customizable. Therefore, if organic molecular and 2D materials are combined, the resulting 2D organic materials would have excellent optical and electrical properties. In addition, through this combination, the free design and large-scale synthesis of 2D materials can be realized in principle. Furthermore, 2D organic materials exhibit excellent properties and unique functionalities along with great potential for developing sensors, biomedicine, and electronics. In this review, 2D organic materials are divided into five categories. The preparation methods and material properties of each class of materials are also described in detail. Notably, to comprehensively understand each material's advantages, the latest research applications for each material are presented in detail and summarized. Finally, the future development and application prospects of 2D organic materials are briefly discussed.
Collapse
Affiliation(s)
- Xiaobing Yan
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Ying Zhao
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Gang Cao
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Xiaoyu Li
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Chao Gao
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Luan Liu
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Shakeel Ahmed
- Collaborative Innovation Center for Optoelectronic Science and TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Faizah Altaf
- Department of ChemistryWomen University Bagh Azad KashmirBagh Azad KashmirBagh12500Pakistan
- School of Materials Science and EngineeringGeorgia Institute of Technology North AvenueAtlantaGA30332USA
| | - Hui Tan
- Department of RespiratoryShenzhen Children's HospitalShenzhen518036P. R. China
| | - Xiaopeng Ma
- Department of RespiratoryShenzhen Children's HospitalShenzhen518036P. R. China
| | - Zhongjian Xie
- Institute of PediatricsShenzhen Children's HospitalShenzhenGuangdong518038P. R. China
- Shenzhen International Institute for Biomedical ResearchShenzhenGuangdong518116China
| | - Han Zhang
- Collaborative Innovation Center for Optoelectronic Science and TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| |
Collapse
|
16
|
Shin J, Yoo H. Photogating Effect-Driven Photodetectors and Their Emerging Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:882. [PMID: 36903759 PMCID: PMC10005329 DOI: 10.3390/nano13050882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Rather than generating a photocurrent through photo-excited carriers by the photoelectric effect, the photogating effect enables us to detect sub-bandgap rays. The photogating effect is caused by trapped photo-induced charges that modulate the potential energy of the semiconductor/dielectric interface, where these trapped charges contribute an additional electrical gating-field, resulting in a shift in the threshold voltage. This approach clearly separates the drain current in dark versus bright exposures. In this review, we discuss the photogating effect-driven photodetectors with respect to emerging optoelectrical materials, device structures, and mechanisms. Representative examples that reported the photogating effect-based sub-bandgap photodetection are revisited. Furthermore, emerging applications using these photogating effects are highlighted. The potential and challenging aspects of next-generation photodetector devices are presented with an emphasis on the photogating effect.
Collapse
|
17
|
Tong T, Gan Y, Li W, Zhang W, Song H, Zhang H, Liao K, Deng J, Li S, Xing Z, Yu Y, Tu Y, Wang W, Chen J, Zhou J, Song X, Zhang L, Wang X, Qin S, Shi Y, Huang W, Wang L. Boosting the Sensitivity of WSe 2 Phototransistor via Janus Interfaces with 2D Perovskite and Ferroelectric Layers. ACS NANO 2023; 17:530-538. [PMID: 36547249 DOI: 10.1021/acsnano.2c09284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hybrid systems have recently attracted increasing attention, which combine the special attributes of each constitute and create interesting functionalities through multiple heterointerface interactions. Here, we design a two-dimensional (2D) hybrid phototransistor utilizing Janus-interface engineering, in which the WSe2 channel combines light-sensitive perovskite and spontaneously polarized ferroelectrics, achieving collective ultrasensitive detection performance. The top perovskite (BA2(MA)3Pb4I13) layer can absorb the light efficiently and provide generous photoexcited holes to WSe2. WSe2 exhibit p-type semiconducting states of different degrees due to the selective light-operated doping effect, which also enables the ultrahigh photocurrent of the device. The bottom ferroelectric (Hf0.5Zr0.5O2) layer dramatically decreases the dark current, which should be attributed to the ferroelectric polarization assisted charge trapping effect and improved gate control. As a whole, our phototransistors show excellent photoelectric performances across the ultraviolet to near-infrared range (360-1050 nm), including an ultrahigh ON/OFF current ratio > 109 and low noise-equivalent power of 1.3 fW/Hz1/2, all of which are highly competitive in 2D semiconductor-based optoelectronic devices. In particular, the devices show excellent weak light detection ability, where the distinguishable photoswitching signal is obtained even under a record-low light intensity down to 1.6 nW/cm2, while showing a high responsivity of 2.3 × 105 A/W and a specific detectivity of 4.1 × 1014 Jones. Our work demonstrates that Janus-interface design makes the upper and lower interfaces complement each other for the joint advancement into high-performance optoelectronic applications, providing a picture to realize the integrated engineering on carrier dynamics by light irradiation, electric field, interfacial trapping, and band alignment.
Collapse
Affiliation(s)
- Tong Tong
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, Nanjing211816, China
| | - Yuquan Gan
- School of Physical Science and Information Engineering, Liaocheng University, Liaocheng252059, China
| | - Weisheng Li
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Nanjing University, Nanjing210023, China
| | - Wei Zhang
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing211816, China
| | - Haizeng Song
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Nanjing University, Nanjing210023, China
| | - Hehe Zhang
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing211816, China
| | - Kan Liao
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Nanjing University, Nanjing210023, China
| | - Jie Deng
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai200083, China
| | - Si Li
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Nanjing University, Nanjing210023, China
| | - Ziyue Xing
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an710072, China
| | - Yu Yu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai200083, China
| | - Yudi Tu
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen518060, China
| | - Wenhui Wang
- School of Physics, Southeast University, Nanjing211189, China
| | - Jinlian Chen
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing211816, China
| | - Jing Zhou
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai200083, China
| | - Xuefen Song
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing211816, China
| | - Linghai Zhang
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing211816, China
| | - Xiaoyong Wang
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Nanjing University, Nanjing210023, China
| | - Shuchao Qin
- School of Physical Science and Information Engineering, Liaocheng University, Liaocheng252059, China
| | - Yi Shi
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Nanjing University, Nanjing210023, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an710072, China
| | - Lin Wang
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing211816, China
| |
Collapse
|
18
|
Huang H, Yang Y, Chen H, Qin F, Yu B, Wang R, Cao Q, Wang T, Lin Q. Interfacial Engineering of High-Performance, Solution-Processed Sb 2S 3 Phototransistors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57419-57427. [PMID: 36511611 DOI: 10.1021/acsami.2c18158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Antimony sulfide, as a binary chalcogenide, has attracted great attention in the field of optoelectronics in recent years, particularly in photovoltaics, because of its striking merits such as earth elements abundance, excellent stability, chemical versatility, and solution processability. With the rapid development of fabrication techniques and device engineering, the device performance of Sb2S3 solar cells has experienced an unprecedented success. However, photodetectors based on Sb2S3 were barely reported, especially based on the transistor configuration. In this work, we prepared high quality Sb2S3 thin films via a sol-gel method, and Sb2S3 thin films were deposited on zinc-tin oxide based field-effect transistors. Furthermore, an additional electron transport layer was inserted between the Sb2S3 layers and the zinc-tin oxide channels and archived high-performance phototransistors with proper interfacial engineering. The optimized devices exhibited extremely high photosensitivity (106), low dark current (∼10 pA) and noise (∼11 fA Hz-1/2), high detectivity (1 × 1013 Jones), and superior device stability, indicating great potential for next generation solution-processed photodetectors.
Collapse
Affiliation(s)
- Huihuang Huang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan430072, P. R. China
- Hubei Luojia Laboratory, Wuhan430072, P. R. China
| | - Yujie Yang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan430072, P. R. China
- Hubei Luojia Laboratory, Wuhan430072, P. R. China
| | - Hongyi Chen
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan430072, P. R. China
| | - Fanglu Qin
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan430072, P. R. China
| | - Bin Yu
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan430072, P. R. China
- Hubei Luojia Laboratory, Wuhan430072, P. R. China
| | - Ruonan Wang
- The Institute of Technological Sciences, Wuhan University, Wuhan430072, P. R. China
| | - Qiang Cao
- The Institute of Technological Sciences, Wuhan University, Wuhan430072, P. R. China
| | - Ti Wang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan430072, P. R. China
| | - Qianqian Lin
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan430072, P. R. China
- Hubei Luojia Laboratory, Wuhan430072, P. R. China
- Suzhou Institute of Wuhan University, Suzhou255123, P. R. China
| |
Collapse
|
19
|
Guan X, Lei Z, Yu X, Lin CH, Huang JK, Huang CY, Hu L, Li F, Vinu A, Yi J, Wu T. Low-Dimensional Metal-Halide Perovskites as High-Performance Materials for Memory Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203311. [PMID: 35989093 DOI: 10.1002/smll.202203311] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Metal-halide perovskites have drawn profuse attention during the past decade, owing to their excellent electrical and optical properties, facile synthesis, efficient energy conversion, and so on. Meanwhile, the development of information storage technologies and digital communications has fueled the demand for novel semiconductor materials. Low-dimensional perovskites have offered a new force to propel the developments of the memory field due to the excellent physical and electrical properties associated with the reduced dimensionality. In this review, the mechanisms, properties, as well as stability and performance of low-dimensional perovskite memories, involving both molecular-level perovskites and structure-level nanostructures, are comprehensively reviewed. The property-performance correlation is discussed in-depth, aiming to present effective strategies for designing memory devices based on this new class of high-performance materials. Finally, the existing challenges and future opportunities are presented.
Collapse
Affiliation(s)
- Xinwei Guan
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Zhihao Lei
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Xuechao Yu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Science, 398 Ruoshui Road, Suzhou, 215123, China
| | - Chun-Ho Lin
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Jing-Kai Huang
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Chien-Yu Huang
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Feng Li
- School of Physics, Nano Institute, ACMM, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| |
Collapse
|
20
|
Co-assembled perylene/graphene oxide photosensitive heterobilayer for efficient neuromorphics. Nat Commun 2022; 13:4996. [PMID: 36008407 PMCID: PMC9411554 DOI: 10.1038/s41467-022-32725-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022] Open
Abstract
Neuromorphic electronics, which use artificial photosensitive synapses, can emulate biological nervous systems with in-memory sensing and computing abilities. Benefiting from multiple intra/interactions and strong light-matter coupling, two-dimensional heterostructures are promising synaptic materials for photonic synapses. Two primary strategies, including chemical vapor deposition and physical stacking, have been developed for layered heterostructures, but large-scale growth control over wet-chemical synthesis with comprehensive efficiency remains elusive. Here we demonstrate an interfacial coassembly heterobilayer films from perylene and graphene oxide (GO) precursors, which are spontaneously formed at the interface, with uniform bilayer structure of single-crystal perylene and well-stacked GO over centimeters in size. The planar heterostructure device exhibits an ultrahigh specific detectivity of 3.1 × 1013 Jones and ultralow energy consumption of 10−9 W as well as broadband photoperception from 365 to 1550 nm. Moreover, the device shows outstanding photonic synaptic behaviors with a paired-pulse facilitation (PPF) index of 214% in neuroplasticity, the heterosynapse array has the capability of information reinforcement learning and recognition. Layered heterostructures are promising photosensitive materials for advanced optoelectronics. Here, the authors introduce an interfacial coassembly method to construct large-scale perylene/grahene oxide (GO) heterobilayer for broadband photoreception and efficient neuromorphics.
Collapse
|
21
|
Li D, Jia Z, Tang Y, Song C, Liang K, Ren H, Li F, Chen Y, Wang Y, Lu X, Meng L, Zhu B. Inorganic-Organic Hybrid Phototransistor Array with Enhanced Photogating Effect for Dynamic Near-Infrared Light Sensing and Image Preprocessing. NANO LETTERS 2022; 22:5434-5442. [PMID: 35766590 DOI: 10.1021/acs.nanolett.2c01496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Narrow-band-gap organic semiconductors have emerged as appealing near-infrared (NIR) sensing materials by virtue of their unique optoelectronic properties. However, their limited carrier mobility impedes the implementation of large-area, dynamic NIR sensor arrays. In this work, high-performance inorganic-organic hybrid phototransistor arrays are achieved for NIR sensing, by taking advantage of the high electron mobility of In2O3 and the strong NIR absorption of a BTPV-4F:PTB7-Th bulk heterojunction (BHJ) with an enhanced photogating effect. As a result, the hybrid phototransistors reach a high responsivity of 1393.0 A W-1, a high specific detectivity of 4.8 × 1012 jones, and a fast response of 0.72 ms to NIR light (900 nm). Meanwhile, an integrated 16 × 16 phototransistor array with a one-transistor-one-phototransistor (1T1PT) architecture is achieved. On the basis of the enhanced photogating effect, the phototransistor array can not only achieve real-time, dynamic NIR light mapping but also implement image preprocessing, which is promising for advanced NIR image sensors.
Collapse
Affiliation(s)
- Dingwei Li
- Zhejiang University, Hangzhou 310027, People's Republic of China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, People's Republic of China
| | - Zhenrong Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yingjie Tang
- Zhejiang University, Hangzhou 310027, People's Republic of China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, People's Republic of China
| | - Chunyan Song
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, People's Republic of China
| | - Kun Liang
- Zhejiang University, Hangzhou 310027, People's Republic of China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, People's Republic of China
| | - Huihui Ren
- Zhejiang University, Hangzhou 310027, People's Republic of China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, People's Republic of China
| | - Fanfan Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, People's Republic of China
| | - Yitong Chen
- Zhejiang University, Hangzhou 310027, People's Republic of China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, People's Republic of China
| | - Yan Wang
- Zhejiang University, Hangzhou 310027, People's Republic of China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, People's Republic of China
| | - Xingyu Lu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou 310024, People's Republic of China
| | - Lei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Bowen Zhu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, People's Republic of China
| |
Collapse
|
22
|
Sen A, Park H, Pujar P, Bala A, Cho H, Liu N, Gandla S, Kim S. Probing the Efficacy of Large-Scale Nonporous IGZO for Visible-to-NIR Detection Capability: An Approach toward High-Performance Image Sensor Circuitry. ACS NANO 2022; 16:9267-9277. [PMID: 35696345 DOI: 10.1021/acsnano.2c01773] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The technological ability to detect a wide spectrum range of illuminated visible-to-NIR is substantially improved for an amorphous metal oxide semiconductor, indium gallium zinc oxide (IGZO), without employing an additional photoabsorber. The fundamentally tuned morphology via structural engineering results in the creation of nanopores throughout the entire thickness of ∼30 nm. See-through nanopores have edge functionalization with vacancies, which leads to a large density of substates near the conduction band minima and valence band maxima. The presence of nanoring edges with a high concentration of vacancies is investigated using chemical composition analysis. The process of creating a nonporous morphology is sophisticated and is demonstrated using a wafer-scale phototransistor array. The performance of the phototransistors is assessed in terms of photosensitivity (S) and photoresponsivity (R); both are of high magnitudes (S = 8.6 × 104 at λex = 638 nm and Pinc = 512 mW cm2-; R = 120 A W1- at Pinc = 2 mW cm2- for the same λex). Additionally, the 7 × 5 array of 35 phototransistors is effective in sensing and reproducing the input image by responding to selectively illuminated pixels.
Collapse
Affiliation(s)
- Anamika Sen
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Heekyeong Park
- Harvard Institute of Medicine, Harvard Medical School, Harvard University, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
| | - Pavan Pujar
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Arindam Bala
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Haewon Cho
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Na Liu
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Srinivas Gandla
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Sunkook Kim
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
23
|
Li X, Zhang J, Yue C, Tang X, Gao Z, Jiang Y, Du C, Deng Z, Jia H, Wang W, Chen H. High performance visible-SWIR flexible photodetector based on large-area InGaAs/InP PIN structure. Sci Rep 2022; 12:7681. [PMID: 35538226 PMCID: PMC9090829 DOI: 10.1038/s41598-022-11946-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/03/2022] [Indexed: 11/11/2022] Open
Abstract
Mechanically flexible optoelectronic devices and systems can enable a much broader range of applications than what their rigid counterparts can do, especially for novel bio-integrated optoelectronic systems, flexible consumer electronics and wearable sensors. Inorganic semiconductor could be a good candidate for the flexible PD when it can keep its high performance under the bending condition. Here, we demonstrate a III–V material-based flexible photodetector operating wavelength from 640 to 1700 nm with the high detectivity of 5.18 × 1011 cm‧Hz1/2/W and fast response speed @1550 nm by using a simply top-to-down fabrication process. The optoelectrical performances are stable as the PDs are exposed to bending cycles with a radius of 15 mm up to 1000 times. Furthermore, the mechanical failure mode of the PD is also investigated, which suggests that the cracking and delamination failure mode are dominant in bending up and bending down direction, respectively. Such a flexible III–V material-based PD and design with stable and high performance could be a promising strategy for the application of the flexible broad spectrum detection.
Collapse
Affiliation(s)
- Xuanzhang Li
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junyang Zhang
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Yue
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiansheng Tang
- Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Zhendong Gao
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Jiang
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunhua Du
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.,The Yangtze River Delta Physics Research Center, Liyang, 213000, China
| | - Zhen Deng
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China. .,Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China. .,The Yangtze River Delta Physics Research Center, Liyang, 213000, China.
| | - Haiqiang Jia
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.,Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Wenxin Wang
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.,Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Hong Chen
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.,The Yangtze River Delta Physics Research Center, Liyang, 213000, China.,Songshan Lake Materials Laboratory, Dongguan, 523808, China
| |
Collapse
|
24
|
Liu Q, Gao S, Xu L, Yue W, Zhang C, Kan H, Li Y, Shen G. Nanostructured perovskites for nonvolatile memory devices. Chem Soc Rev 2022; 51:3341-3379. [PMID: 35293907 DOI: 10.1039/d1cs00886b] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Perovskite materials have driven tremendous advances in constructing electronic devices owing to their low cost, facile synthesis, outstanding electric and optoelectronic properties, flexible dimensionality engineering, and so on. Particularly, emerging nonvolatile memory devices (eNVMs) based on perovskites give birth to numerous traditional paradigm terminators in the fields of storage and computation. Despite significant exploration efforts being devoted to perovskite-based high-density storage and neuromorphic electronic devices, research studies on materials' dimensionality that has dominant effects on perovskite electronics' performances are paid little attention; therefore, a review from the point of view of structural morphologies of perovskites is essential for constructing perovskite-based devices. Here, recent advances of perovskite-based eNVMs (memristors and field-effect-transistors) are reviewed in terms of the dimensionality of perovskite materials and their potentialities in storage or neuromorphic computing. The corresponding material preparation methods, device structures, working mechanisms, and unique features are showcased and evaluated in detail. Furthermore, a broad spectrum of advanced technologies (e.g., hardware-based neural networks, in-sensor computing, logic operation, physical unclonable functions, and true random number generator), which are successfully achieved for perovskite-based electronics, are investigated. It is obvious that this review will provide benchmarks for designing high-quality perovskite-based electronics for application in storage, neuromorphic computing, artificial intelligence, information security, etc.
Collapse
Affiliation(s)
- Qi Liu
- School of Information Science and Engineering & Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China.
| | - Song Gao
- School of Information Science and Engineering & Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China.
| | - Lei Xu
- School of Information Science and Engineering & Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China.
| | - Wenjing Yue
- School of Information Science and Engineering & Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China.
| | - Chunwei Zhang
- School of Information Science and Engineering & Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China.
| | - Hao Kan
- School of Information Science and Engineering & Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China.
| | - Yang Li
- School of Information Science and Engineering & Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China. .,State Key Laboratory for Superlattices and Microstructures Institute of Semiconductors & Chinese Academy of Sciences and Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100083, China.
| | - Guozhen Shen
- State Key Laboratory for Superlattices and Microstructures Institute of Semiconductors & Chinese Academy of Sciences and Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100083, China.
| |
Collapse
|
25
|
Wang H, Ling F, Luo C, Li D, Xiao Y, Chang Z, Xu Z, Zeng Y, Wang W, Yao J. Active terahertz modulator based on optically controlled organometal halide perovskite MAPbI 2Br. APPLIED OPTICS 2022; 61:1171-1176. [PMID: 35201169 DOI: 10.1364/ao.444667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
In this paper, an active terahertz modulator based on optically controlled organometal halide perovskite MAPbI2Br is proposed. The terahertz wave time-domain transmission of the MAPbI2Br/Al2O3 sample was measured by a terahertz time-domain spectrometer. Experimental results indicate that the MAPbI2Br/Al2O3 sample showed an obvious optical-power-dependent modulation effect on transmission of the terahertz wave; the maximum modulation depth of the modulator can reach 59.99% at 0.3 THz when the external pump optical power is up to 1500 mW.
Collapse
|
26
|
Ji Y, Zhou D, Wang N, Ding N, Xu W, Song H. Flexible double narrowband near-infrared photodetector based on PMMA/core–shell upconversion nanoparticle composites. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2020.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Xu H, Kim T, Han H, Kim MJ, Hur JS, Choi CH, Chang JH, Jeong JK. High-Performance Broadband Phototransistor Based on TeO x/IGTO Heterojunctions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3008-3017. [PMID: 35000384 DOI: 10.1021/acsami.1c18576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ultraviolet to infrared broadband spectral detection capability is a technological challenge for sensing materials being developed for high-performance photodetection. In this work, we stacked 9 nm-thick tellurium oxide (TeOx) and 8 nm-thick InGaSnO (IGTO) into a heterostructure at a low temperature of 150 °C. The superior photoelectric characteristics we achieved benefit from the intrinsic optical absorption range (300-1500 nm) of the hexagonal tellurium (Te) phase in the TeOx film, and photoinduced electrons are driven effectively by band alignment at the TeOx/IGTO interface under illumination. A photosensor based on our optimized heterostructure exhibited a remarkable detectivity of 1.6 × 1013 Jones, a responsivity of 84 A/W, and a photosensitivity of 1 × 105, along with an external quantum efficiency of 222% upon illumination by blue light (450 nm). Simultaneously, modest detection properties (responsivity: ∼31 A/W, detectivity: ∼6 × 1011 Jones) for infrared irradiation at 970 nm demonstrate that this heterostructure can be employed as a broadband phototransistor. Furthermore, its low-temperature processability suggests that our proposed concept might be used to design array optoelectronic devices for wide band detection with high sensitivity, flexibility, and stability.
Collapse
Affiliation(s)
- Hongwei Xu
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Taikyu Kim
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - HeeSung Han
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Min Jae Kim
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jae Seok Hur
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Cheol Hee Choi
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Joon-Hyuk Chang
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jae Kyeong Jeong
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
28
|
Tian Q, Hong R, Liu C, Hong X, Zhang S, Wang L, Lv Y, Liu X, Zou X, Liao L. Flexible SnO Optoelectronic Memory Based on Light-Dependent Ionic Migration in Ruddlesden-Popper Perovskite. NANO LETTERS 2022; 22:494-500. [PMID: 34964627 DOI: 10.1021/acs.nanolett.1c04402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nonvolatile optoelectronic memories based on organic-inorganic hybrid perovskites have appeared as powerful candidates for next-generation soft electronics. Here, ambipolar SnO transistor-based nonvolatile memories with multibit memory behavior (11 storage states, 120 nC state-1) and ultralong retention time (>105 s) are demonstrated for which an Al2O3/two-dimensional Ruddlesden-Popper perovskite (2D PVK) heterostructure dielectric architecture is employed. The unique storage features are attributed to suppressed gate leakage by Al2O3 layer and hopping-like ionic transport in 2D PVK with varying activation energy under different light intensities. The photoinduced field-effect mechanism enables top-gated transistor operation under illumination, which would not be achieved under dark. As a result, the device exhibits remarkable photoresponsive characteristics, including ultrahigh specific detectivity (2.7 × 1015 Jones) and broadband spectrum distinction capacity (375-1064 nm). This study offers valuable insight on the PVK-based dielectric engineering for information storage and paves the way toward multilevel broadband-response optoelectronic memories.
Collapse
Affiliation(s)
- Qianlei Tian
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Ruohao Hong
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Chang Liu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Xitong Hong
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Sen Zhang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Liming Wang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yawei Lv
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Xingqiang Liu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Xuming Zou
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Lei Liao
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| |
Collapse
|
29
|
A preliminary animal study of thermal rheology fluid as a new temperature-dependent liquid intravascular embolic material. Jpn J Radiol 2021; 40:613-623. [PMID: 34851500 PMCID: PMC9162979 DOI: 10.1007/s11604-021-01232-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/24/2021] [Indexed: 11/07/2022]
Abstract
Purpose Thermal rheology (TR) fluid, which comprises polyethylene (PE) particles, their dispersant, and solvent, is a material that increases in viscosity to various degrees depending on the type and ratio of these constituents when its temperature rises. The viscosity of type 1 (TRF-1) increases more than that of type 2 (TRF-2) near rabbit body temperature. This preliminary animal study aimed to determine the basic characteristics and embolic effect of TR fluid by comparing TRF-1 and TRF-2. Materials and methods Twenty-four Japanese white rabbits underwent unilateral renal artery embolization using TRF-1 or TRF-2 and follow-up angiography at 7 or 28 days (4 subgroups, n = 6 each). Subsequently, the rabbits were euthanized, and the embolized kidneys were removed for pathological examination. The primary and final embolization rates were defined as the ratio of renal artery area not visible immediately after embolization and follow-up angiography, respectively, to visualized renal artery area before embolization. The final embolization rate and maximum vessel diameter filled with PE particles were compared between materials. Moreover, the embolic effect was determined to be persistent when a two-sided 95% confidence interval (CI) for the difference in means between the embolization rates was < 5%. Results The final embolization rate was significantly higher for the TRF-1 than for the TRF-2 at both 7 (mean 80.7% [SD 18.7] vs. 28.4% [19.9], p = 0.001) and 28 days (94.0% [3.5] vs. 37.8% [15.5], p < 0.001). The maximum occluded vessel diameter was significantly larger for TRF-1 than for TRF-2 (870 µm [417] vs. 270 µm [163], p < 0.001). The embolic effect of TRF-1 was persistent until 28 days (difference between rates − 3.3 [95% CI − 10.0–3.4]). Conclusion The embolic effect of TRF-1 was more persistent than that of TRF-2, and the persistency depended on the type and ratio of TR fluid constituents.
Collapse
|
30
|
Huang X, Guo Y, Liu Y. Perovskite photodetectors and their application in artificial photonic synapses. Chem Commun (Camb) 2021; 57:11429-11442. [PMID: 34642713 DOI: 10.1039/d1cc04447h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Organic-inorganic hybrid perovskites exhibit superior optoelectrical properties and have been widely used in photodetectors. Perovskite photodetectors with excellent detectivity have great potential for developing artificial photonic synapses which can merge data transmission and storage. They are highly desired for next generation neuromorphic computing. The recent progress of perovskite photodetectors and their application in artificial photonic synapses are summarized in this review. Firstly, the key performance parameters of photodetectors are briefly introduced. Secondly, the recent research progress of photodetectors including photoconductors, photodiodes, and phototransistors is summarized. Finally, the applications of perovskite photodetectors in artificial photonic synapses in recent years are highlighted. All these demonstrate the great potential of perovskite photonic synapses for the development of artificial intelligence.
Collapse
Affiliation(s)
- Xin Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| |
Collapse
|
31
|
Kwon SM, Kwak JY, Song S, Kim J, Jo C, Cho SS, Nam SJ, Kim J, Park GS, Kim YH, Park SK. Large-Area Pixelized Optoelectronic Neuromorphic Devices with Multispectral Light-Modulated Bidirectional Synaptic Circuits. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105017. [PMID: 34553426 DOI: 10.1002/adma.202105017] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Indexed: 06/13/2023]
Abstract
The complete hardware implementation of an optoelectronic neuromorphic computing system is considered as one of the most promising solutions to realize energy-efficient artificial intelligence. Here, a fully light-driven and scalable optoelectronic neuromorphic circuit with metal-chalcogenide/metal-oxide heterostructure phototransistor and photovoltaic divider is proposed. To achieve wavelength-selective neural operation and hardware-based pattern recognition, multispectral light modulated bidirectional synaptic circuits are utilized as an individual pixel for highly accurate and large-area neuromorphic computing system. The wavelength selective control of photo-generated charges at the heterostructure interface enables the bidirectional synaptic modulation behaviors including the excitatory and inhibitory modulations. More importantly, a 7 × 7 neuromorphic pixel circuit array is demonstrated to show the viability of implementing highly accurate hardware-based pattern training. In both the pixel training and pattern recognition simulation, the neuromorphic circuit array with the bidirectional synaptic modulation exhibits lower training errors and higher recognition rates, respectively.
Collapse
Affiliation(s)
- Sung Min Kwon
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, Korea
| | - Jee Young Kwak
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, Korea
| | - Seungho Song
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jeehoon Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chanho Jo
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, Korea
| | - Sung Soo Cho
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, Korea
| | - Seung-Ji Nam
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, Korea
| | - Jaehyun Kim
- Department of Chemistry and Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Gyeong-Su Park
- Department of Material Science and Engineering, Seoul National University, Seoul, 08826, Korea
| | - Yong-Hoon Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sung Kyu Park
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, Korea
| |
Collapse
|
32
|
Zhang C, Wang X, Qiu L. Circularly Polarized Photodetectors Based on Chiral Materials: A Review. Front Chem 2021; 9:711488. [PMID: 34568276 PMCID: PMC8455893 DOI: 10.3389/fchem.2021.711488] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Circularly polarized light (CPL) plays an important role in many photonic techniques, including tomographic scanning based on circular polarization ellipsometry, optical communication and information of spin, and quantum-based optical calculation and information processing. To fully exploit the functions of CPL in these fields, integrated photoelectric sensors capable of detecting CPL are essential. Photodetectors based on chiral materials can directly detect CPL due to their intrinsic optical activity, without the need to be coupled with polarizers and quarter-wave plates as in conventional photodetectors. This review summarizes the recent research progress in CPL photodetectors based on chiral materials. We first briefly introduce the CPL photodetectors based on different types of chiral materials and their working principles. Finally, current challenges and future opportunities in the development of CPL photodetectors are prospected.
Collapse
Affiliation(s)
- Can Zhang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, China
| | - Xiaohong Wang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, China
- Anhui Key Laboratory of Advanced Functional Materials and Devices, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, China
- Anhui Key Laboratory of Advanced Functional Materials and Devices, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
- Key Laboratory of Measuring Theory and Precision Instrument, Hefei University of Technology, Hefei, China
| |
Collapse
|
33
|
Etching Characteristics and Changes in Surface Properties of IGZO Thin Films by O2 Addition in CF4/Ar Plasma. COATINGS 2021. [DOI: 10.3390/coatings11080906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plasma etching processes for multi-atomic oxide thin films have become increasingly important owing to the excellent material properties of such thin films, which can potentially be employed in next-generation displays. To fabricate high-performance and reproducible devices, the etching mechanism and surface properties must be understood. In this study, we investigated the etching characteristics and changes in the surface properties of InGaZnO4 (IGZO) thin films with the addition of O2 gases based on a CF4/Ar high-density-plasma system. A maximum etch rate of 32.7 nm/min for an IGZO thin film was achieved at an O2/CF4/Ar (=20:25:75 sccm) ratio. The etching mechanism was interpreted in detail through plasma analysis via optical emission spectroscopy and surface analysis via X-ray photoelectron microscopy. To determine the performance variation according to the alteration in the surface composition of the IGZO thin films, we investigated the changes in the work function, surface energy, and surface roughness through ultraviolet photoelectron spectroscopy, contact angle measurement, and atomic force microscopy, respectively. After the plasma etching process, the change in work function was up to 280 meV, the thin film surface became slightly hydrophilic, and the surface roughness slightly decreased. This work suggests that plasma etching causes various changes in thin-film surfaces, which affects device performance.
Collapse
|
34
|
Li H, Xu P, Liu D, He J, Zu H, Song J, Zhang J, Tian F, Yun M, Wang F. Low-voltage and fast-response SnO 2nanotubes/perovskite heterostructure photodetector. NANOTECHNOLOGY 2021; 32:375202. [PMID: 34044373 DOI: 10.1088/1361-6528/ac05e7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
One-dimensional metal-oxides (1D-MO) nanostructure has been regarded as one of the most promising candidates for high-performance photodetectors due to their outstanding electronic properties, low-cost and environmental stability. However, the current bottlenecks are high energy consumption and relatively low sensitivity. Here, Schottky junctions between nanotubes (NTs) and FTO were fabricated by electrospinning SnO2NTs on FTO glass substrate, and the bias voltage of SnO2NTs photodetectors was as low as ∼1.76 V, which can effectively reduce energy consumption. Additionally, for improving the response and recovery speed of SnO2NTs photodetectors, the NTs were covered with organic/inorganic hybrid perovskite. SnO2NTs/perovskite heterostructure photodetectors exhibit fast response/recovery speed (∼0.075/0.04 s), and a wide optical response range (∼220-800 nm). At the same time, the bias voltage of heterostructure photodetectors was further reduced to 0.42 V. The outstanding performance is mainly attributed to the formation of type-II heterojunctions between SnO2NTs and perovskite, which can facilitate the separation of photogenerated carriers, as well as Schottky junction between SnO2NTs and FTO, which reduce the bias voltage. All the results indicate that the rational design of 1D-MO/perovskite heterostructure is a facile and efficient way to achieve high-performance photodetectors.
Collapse
Affiliation(s)
- Hao Li
- College of Physics and State Key Laboratory of Bio Fibers and Eco Textiles, Qingdao University, Qingdao 266071, People's Republic of China
| | - Peilong Xu
- College of Physics and State Key Laboratory of Bio Fibers and Eco Textiles, Qingdao University, Qingdao 266071, People's Republic of China
| | - Di Liu
- College of Physics and State Key Laboratory of Bio Fibers and Eco Textiles, Qingdao University, Qingdao 266071, People's Republic of China
| | - Junyu He
- College of Physics and State Key Laboratory of Bio Fibers and Eco Textiles, Qingdao University, Qingdao 266071, People's Republic of China
| | - Hongliang Zu
- College of Physics and State Key Laboratory of Bio Fibers and Eco Textiles, Qingdao University, Qingdao 266071, People's Republic of China
| | - Jianjun Song
- College of Physics and State Key Laboratory of Bio Fibers and Eco Textiles, Qingdao University, Qingdao 266071, People's Republic of China
| | - Jun Zhang
- College of Physics and State Key Laboratory of Bio Fibers and Eco Textiles, Qingdao University, Qingdao 266071, People's Republic of China
| | - Fenghui Tian
- College of Physics and State Key Laboratory of Bio Fibers and Eco Textiles, Qingdao University, Qingdao 266071, People's Republic of China
| | - Maojin Yun
- College of Physics and State Key Laboratory of Bio Fibers and Eco Textiles, Qingdao University, Qingdao 266071, People's Republic of China
| | - Fengyun Wang
- College of Physics and State Key Laboratory of Bio Fibers and Eco Textiles, Qingdao University, Qingdao 266071, People's Republic of China
| |
Collapse
|
35
|
Yokota T, Fukuda K, Someya T. Recent Progress of Flexible Image Sensors for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004416. [PMID: 33527511 DOI: 10.1002/adma.202004416] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/29/2020] [Indexed: 06/12/2023]
Abstract
Flexible image sensors have attracted increasing attention as new imaging devices owing to their lightness, softness, and bendability. Since light can measure inside information from outside of the body, optical-imaging-based approaches, such as X-rays, are widely used for disease diagnosis in hospitals. Unlike conventional sensors, flexible image sensors are soft and can be directly attached to a curved surface, such as the skin, for continuous measurement of biometric information with high accuracy. Therefore, they are expected to gain wide application to wearable devices, as well as home medical care. Herein, the application of such sensors to the biomedical field is introduced. First, their individual components, photosensors, and switching elements, are explained. Then, the basic parameters used to evaluate the performance of each of these elements and the image sensors are described. Finally, examples of measuring the dynamic and static biometric information using flexible image sensors, together with relevant real-world measurement cases, are presented. Furthermore, recent applications of the flexible image sensors in the biomedical field are introduced.
Collapse
Affiliation(s)
- Tomoyuki Yokota
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kenjiro Fukuda
- Center for Emergent Matter Science & Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Center for Emergent Matter Science & Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
36
|
Liu J, Yang Z, Gong Z, Shen Z, Ye Y, Yang B, Qiu Y, Ye B, Xu L, Guo T, Xu S. Weak Light-Stimulated Synaptic Hybrid Phototransistors Based on Islandlike Perovskite Films Prepared by Spin Coating. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13362-13371. [PMID: 33689288 DOI: 10.1021/acsami.0c22604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An artificial synaptic device that can provide color discrimination, image storage, and image recognition is highly required to mimic the human vision for biological robots. All-inorganic halide perovskites have attracted extensive attention for the reason of their high stability and favorable photoelectric properties. In this study, a light-stimulated synaptic phototransistor based on a CsPbBr3/organic semiconductor hybrid film is reported. The fabricated CsPbBr3 film exhibits an island structure, which reduces the hysteresis effectively and at the same time achieves a high specific detectivity of up to 2 × 1015 Jones. The decay of the photocurrent can be delayed by changing the gate bias, which is essential for achieving high-performance light-stimulated synaptic devices. Due to the outstanding detectivity of the device, the obvious synaptic functions can be observed when triggered by a light signal with a power of 1.6 nW that is much weaker than previous most perovskite-based hybrid synaptic phototransistors under a low operating voltage of -1 V. The electrical power consumption of the device could be as low as 0.076 pJ when the power of light spike was 7.36 nW. Taking into account this characterization, with changing of light intensity or wavelength, the contrast of the image was enlarged, which can further promote the image recognition accuracy. More significantly, this CsPbBr3/TIPS hybrid film can be fabricated by facile and low-cost solution processes. This study indicates the great potential of solution-processed perovskite-based light-stimulated synapses for future artificial visual systems.
Collapse
Affiliation(s)
- Jiahui Liu
- National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zunxian Yang
- National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, P. R. China
- Mindu Innovation Laboratory, Fujian Science & Technology Innovation Laboratory For Optoelectronic Information of China, Fuzhou 350108, P. R. China
| | - Zhipeng Gong
- National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zihong Shen
- National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yuliang Ye
- National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, P. R. China
| | - Baoyong Yang
- National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yinglin Qiu
- National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, P. R. China
| | - Bingqing Ye
- National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, P. R. China
| | - Lei Xu
- National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, P. R. China
| | - Tailiang Guo
- National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, P. R. China
- Mindu Innovation Laboratory, Fujian Science & Technology Innovation Laboratory For Optoelectronic Information of China, Fuzhou 350108, P. R. China
| | - Sheng Xu
- National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, P. R. China
- Mindu Innovation Laboratory, Fujian Science & Technology Innovation Laboratory For Optoelectronic Information of China, Fuzhou 350108, P. R. China
| |
Collapse
|
37
|
Yin Z, Leng J, Wang S, Liang G, Tian W, Wu K, Jin S. Auger-Assisted Electron Transfer between Adjacent Quantum Wells in Two-Dimensional Layered Perovskites. J Am Chem Soc 2021; 143:4725-4731. [DOI: 10.1021/jacs.1c00424] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zixi Yin
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Leng
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shiping Wang
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guijie Liang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei, 441053, China
| | - Wenming Tian
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
38
|
Du J, Yu H, Liu B, Hong M, Liao Q, Zhang Z, Zhang Y. Strain Engineering in 2D Material-Based Flexible Optoelectronics. SMALL METHODS 2021; 5:e2000919. [PMID: 34927808 DOI: 10.1002/smtd.202000919] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/22/2020] [Indexed: 06/14/2023]
Abstract
Flexible optoelectronics, as promising components hold shape-adaptive features and dynamic strain response under strain engineering for various intelligent applications. 2D materials with atomically thin layers are ideal for flexible optoelectronics because of their high flexibility and strain sensitivity. However, how the strain affects the performance of 2D materials-based flexible optoelectronics is confused due to their hypersensitive features to external strain changes. It is necessary to establish an evaluation system to comprehend the influence of the external strain on the intrinsic properties of 2D materials and the photoresponse performance of their flexible optoelectronics. Here, a focused review of strain engineering in 2D materials-based flexible optoelectronics is provided. The first attention is on the mechanical properties and the strain-engineered electronic properties of 2D semiconductors. An evaluation system with relatively comprehensive parameters in functionality and service capability is summarized to develop 2D materials-based flexible optoelectronics in practical application. Based on the parameters, some strategies to improve the functionality and service capability are proposed. Finally, combining with strain engineering in future intelligence devices, the challenges and future perspective developing 2D materials-based flexible optoelectronics are expounded.
Collapse
Affiliation(s)
- Junli Du
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Huihui Yu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Baishan Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Mengyu Hong
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Qingliang Liao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zheng Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Municipal Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yue Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Municipal Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
39
|
Loi H, Cao J, Guo X, Liu C, Wang N, Song J, Tang G, Zhu Y, Yan F. Gradient 2D/3D Perovskite Films Prepared by Hot-Casting for Sensitive Photodetectors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000776. [PMID: 32714769 PMCID: PMC7375231 DOI: 10.1002/advs.202000776] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/09/2020] [Indexed: 05/31/2023]
Abstract
2D Ruddlesden-Popper perovskites have attracted wide attention recently because of tunable optoelectronic properties and have been used as alternatives to their 3D counterparts in various optoelectronic devices. Here, a series of (PEA)2(MA) n -1Pb n I3 n +1 perovskite thin films is designed and fabricated by a convenient hot-casting method to obtain gradient n in the films, which leads to the formation of vertical heterojunctions that can enhance charge separation in the films under light illumination. Based on a single gradient perovskite film, a highly sensitive and stable photodetector with a responsivity up to 149 AW-1 and a specific detectivity of 2 × 1012 Jones is obtained. This work paves a way to realizing high-performance optoelectronic devices with enhanced charge separation by introducing compositional gradient in a perovskite film.
Collapse
Affiliation(s)
- Hok‐Leung Loi
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Jiupeng Cao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Xuyun Guo
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Chun‐Ki Liu
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Naixiang Wang
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Jiajun Song
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Guanqi Tang
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Ye Zhu
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Feng Yan
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| |
Collapse
|
40
|
Lee D, Chun MC, Ko H, Kang BS, Kim J. Highly stable, solution-processed quaternary oxide thin film-based resistive switching random access memory devices via global and local stoichiometric manipulation strategy. NANOTECHNOLOGY 2020; 31:245202. [PMID: 32155592 DOI: 10.1088/1361-6528/ab7e71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Optimization and performance enhancement of a low-cost, solution-processed InGaZnO (IGZO) resistance random access memory (ReRAM) device using the manipulation of global and local oxygen vacancy (Vo) stoichiometry in metal oxide thin films was demonstrated. Control of the overall Ga composition within the IGZO thin film reduced the excessive formation of oxygen vacancies allowing for a reproducible resistance switching mechanism. Furthermore, sophisticated local control of stoichiometric Vo is achieved using a 5 nm Ni layer at the IGZO interface to serve as an oxygen capturing layer through the formation of NiOx, consequently facilitating the formation of conductive filaments (CFs) and preventing abrupt degradation of device performance. Additionally, reducing the cell dimension of the IGZO-based ReRAMs using a cross-bar electrode structure appeared to drastically improve their performances parameters, including operating voltage and resistance distribution due to the suppression of excessive CFs formation. The optimized ReRAM devices exhibited stable unipolar resistive switching behavior with an endurance of >200 cycles, a retention time of 104 s at 85 °C and an on/off ratio greater than about 102. Therefore, our findings address the demand for low-cost memory devices with high stability and endurance for next-generation data storage technology.
Collapse
Affiliation(s)
- Dongyun Lee
- Department of Photonics and Nanoelectronics, Hanyang University, Ansan 15588, Republic of Korea
| | | | | | | | | |
Collapse
|