1
|
Huang Y, Jiang K, He Y, Hu J, Dyer K, Chen S, Akinlabi E, Zhang D, Zhang X, Yu Y, Yu W, Xu BB. A Natural Lignification Inspired Super-Hard Wood-Based Composites with Extreme Resilience. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2502266. [PMID: 40143781 PMCID: PMC12075913 DOI: 10.1002/adma.202502266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/09/2025] [Indexed: 03/28/2025]
Abstract
The growing demand for high-strength, durable materials capable of enduring extreme environments presents a significant challenge, particularly in balancing performance with sustainability. Conventional materials such as alloys and ceramics are nonrenewable, expensive, and require energy-intensive production processes. Here, super-hard wood-based composites (WBC) inspired by the meso-scale homogeneous lignification process intrinsic to tree growth are designed and developed. This hybrid structure is achieved innovatively by leveraging the infusion of low-molecular-weight phenol formaldehyde resin into the cell walls of thin wood slices, followed by a unique multi-layer construction and high-temperature compression. The resulting composite exhibits remarkable properties, including a Janka hardness of 24 382 N and a Brinell hardness of 40.7 HB, along with exceptional antipiercing performance. The created super-hard, sustainable materials address the limitations of nonrenewable resources while providing enhanced protection, structural stability, and exceptional resilience. The WBC approach aligns with UN Sustainable Development Goals (SDGs) by offering extra values for improving personal safety and building integrity across various engineering applications.
Collapse
Affiliation(s)
- Yuxiang Huang
- Research Institute of Wood IndustryChinese Academy of ForestryBeijing100091China
| | - Kaixin Jiang
- Mechanical and Construction EngineeringNorthumbria UniversityNewcastle Upon TyneNE1 8STUK
| | - Yingqi He
- Research Institute of Wood IndustryChinese Academy of ForestryBeijing100091China
| | - Juan Hu
- Research Institute of Wood IndustryChinese Academy of ForestryBeijing100091China
| | - Kirsten Dyer
- Offshore Renewable Energy CatapultBlythNE24 1LZUK
| | - Sherry Chen
- Mechanical and Construction EngineeringNorthumbria UniversityNewcastle Upon TyneNE1 8STUK
| | - Esther Akinlabi
- Mechanical and Construction EngineeringNorthumbria UniversityNewcastle Upon TyneNE1 8STUK
| | - Daihui Zhang
- Institute of Chemical Industry of Forest ProductsChinese Academy of ForestryNanjingJiangsu210042China
| | - Xuehua Zhang
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonT6G 1H9Canada
| | - Yanglun Yu
- Research Institute of Wood IndustryChinese Academy of ForestryBeijing100091China
| | - Wenji Yu
- Research Institute of Wood IndustryChinese Academy of ForestryBeijing100091China
| | - Ben Bin Xu
- Mechanical and Construction EngineeringNorthumbria UniversityNewcastle Upon TyneNE1 8STUK
| |
Collapse
|
2
|
Zhen C, Sun H, Ma M, Mu T, Garcia-Vaquero M. Applications of modified lignocellulose and its composites prepared by different pretreatments in biomedicine: A review. Int J Biol Macromol 2025; 301:140347. [PMID: 39870275 DOI: 10.1016/j.ijbiomac.2025.140347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Lignocellulosic biomass represents one of the most abundant renewable biological resources on earth. Despite its current underutilization as a source of high-value chemicals, it has promising applications in biomedical and other fields. Presently, lignocellulose is predominantly transformed into high-value-added products, e.g. cellulose nanocrystals (CNCs), cellulose nanofibers (CNFs), etc., through a variety of physical, chemical and biological methods. The mechanical properties and biocompatibility of these products make them important as vital components in drug delivery agents and tissue engineering materials in the biomedical field. This review offers a comprehensive overview of the underexploited lignocellulosic biomass, the main pretreatment methods for converting it into valuable compounds, and the associated limitations. It also highlights the emerging applications of these compounds in the biomedical field, including sensors, wound dressings, excipients, and artificial skin. In addition, current commercialized products and related regulations are discussed, and future research advancements in this field are also envisaged.
Collapse
Affiliation(s)
- Cheng Zhen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China; School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hongnan Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China.
| | - Mengmei Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China.
| | - Taihua Mu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China.
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
3
|
Kim J, Choi W, Park H, Jo S, Park K, Cho H, Oh Y, Choi M, Choi B, Ryu DY, Koh WG, Woo S, Choi S, Kwak T, Kimm H, Hong J. Tunable Mechanical Properties in Biodegradable Cellulosic Bioplastics Achieved via Ring-Opening Polymerization. ACS NANO 2025; 19:11961-11972. [PMID: 40116392 DOI: 10.1021/acsnano.4c16563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
The development of bioplastics is advancing globally to promote a sustainable society. In this study, we designed cellulosic dual-network bioplastics to address the need for sustainable materials with balanced mechanical properties and biodegradability. Cellulose was used as the first network, and the second network was functionalized to enhance mechanical strength while preserving biodegradability. The dynamic covalent moieties within the second network were generated through dithiolane ring-opening polymerization. The ultimate tensile strength and flexural elongation were controlled within 8.8-193 MPa and 3.3-32.5%, respectively, depending on the degree of dynamic bonds. Moreover, the bioplastics exhibited gradual biodegradability, achieving approximately 30% degradation within 2 weeks. Interestingly, our bioplastics demonstrated the ability to coexist with plants, as their degradation did not negatively affect cell viability or plant growth. This study provides a promising approach to developing advanced bioplastics that reach sustainability goals while offering tunable mechanical properties.
Collapse
Affiliation(s)
- Jiyu Kim
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Woojin Choi
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hanbi Park
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungyun Jo
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kyungtae Park
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Heesu Cho
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yoogyeong Oh
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Moonhyun Choi
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Bumgyu Choi
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Du Yeol Ryu
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sangwook Woo
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- LG Display Co. Ltd., 30 MagokJungang 10-ro, Gangseo-gu, Seoul 07796, Republic of Korea
| | - Suk Choi
- LG Display Co. Ltd., 30 MagokJungang 10-ro, Gangseo-gu, Seoul 07796, Republic of Korea
| | - Taehyoung Kwak
- LG Display Co. Ltd., 30 MagokJungang 10-ro, Gangseo-gu, Seoul 07796, Republic of Korea
| | - Hyungsuk Kimm
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinkee Hong
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Zhang X, Zhou W, Xing W, Xu Y, Zhang G. Efficient Recovery of Waste Cotton Fabrics Using Ionic Liquid Methods. Polymers (Basel) 2025; 17:900. [PMID: 40219290 PMCID: PMC11991401 DOI: 10.3390/polym17070900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 04/14/2025] Open
Abstract
Cotton fiber, renewable natural cellulose, make up the largest portion of textile waste. The ionic liquid method has been successfully employed to regenerate waste colored cotton fabric in this study, offering a comprehensive approach to the recycling of waste cotton. The chemical recovery process for reclaimed cellulose materials is crucial for high-value recycling of waste cotton fabrics. In this study, waste and new, colored and white cotton fabrics were used as experimental subjects. The breaking strength, degree of polymerization, iodine adsorption equilibrium value, and crystallinity between old and new fabrics were investigated. Ionic liquid 1-allyl-3-methylimidazole chloride ([AMIM]Cl) and zinc chloride (ZnCl2) were selected to dissolve decolorized waste cotton fabric. Optimal conditions for dissolving the fabric using [AMIM]Cl were investigated. The best dissolution conditions identified were DMSO at a ratio of 1:1 with a dissolution temperature of 110 °C over a duration of 120 min. Additionally, the optimal film formation parameters included a solution concentration of 6%, solidification time of 3 min, and solidification bath temperature of 0 °C. Regenerated cellulose films from both the ionic liquid system (A-film) and zinc chloride system (Z-film) were prepared. The characteristics of the film produced using the most advanced technology were systematically investigated and evaluated. The results of this study provide a crucial theoretical foundation for the recovery and regeneration of waste cotton fabrics.
Collapse
Affiliation(s)
| | | | | | - Yingjun Xu
- College of Textile and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biomass Fibers Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China; (X.Z.); (W.Z.); (W.X.)
| | - Gangqiang Zhang
- College of Textile and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biomass Fibers Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China; (X.Z.); (W.Z.); (W.X.)
| |
Collapse
|
5
|
Liu Z, Liu T, Dong H, Yang B, Li X, Li X, Wu Y, Xu K. Diatom-Inspired Nanoscale Heterogeneous Assembly Strategy for Constructing Thermal Insulating Wood-Based Aerogels with Exceptional Strength, Resilience, Degradability, and Flame Retardancy. ACS NANO 2025; 19:6826-6839. [PMID: 39932134 DOI: 10.1021/acsnano.4c11549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The potential of thermally insulated wood aerogels in energy-efficient engineering is constrained by their mechanical weakness and inadequate environmental stability. Combining minerals with wood aerogels offers promise for enhancing their multifaceted performance. However, fabricating high-performance wood-based aerogels via organic-inorganic assembly remains challenging due to poor uniformity and weak interfacial bonding. Herein, inspired by diatoms, an ultrastrong and flame-retardant biomimetic polymethylsilsesquioxane-wood aerogel (MSQW) is fabricated by combining a nanoscale heterogeneous assembly strategy with sol-gel process to precisely engineer each level of the hierarchy. Meanwhile, the in situ mineralization of amorphous inorganic oligomers firmly welds the organic-inorganic interface, forming a continuous and homogeneous monolithic structure. The resulting MSQW aerogel exhibits ultrahigh stiffness in the axial direction (Young's modulus of 68.73 ± 3.20 MPa) and withstands over 60% strain at 6.97 MPa in the radial direction, recovering its original shape after stress release, due to its unique structural features. Additionally, the aerogel exhibits an excellent combination of properties, including outstanding fire resistance ( peak heat release rate of 91.13 kW/m2), hydrophobicity (water contact angle of 137.3°), and degradability. These advanced properties make MSQW an ideal material for thermal insulation in harsh environments.
Collapse
Affiliation(s)
- Zheying Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Tao Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Hongping Dong
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Bin Yang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xingong Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xianjun Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yiqiang Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Kang Xu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| |
Collapse
|
6
|
Ding J, Yu J, Zhu J, Han L, Guo H, Feng R, Dong W, Zhao X, Wang S, Li L, Li X. Exploring the Effects of Ionic Liquid on the Toughness of Palm Leaf Manuscripts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1625-1638. [PMID: 39801055 DOI: 10.1021/acs.langmuir.4c03660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Palm leaf manuscripts, crafted from specially treated palm leaves, are invaluable historical documents. However, they degrade and tend to become brittle over time. To date, plant essential oils and glycerin are the used materials to improve the flexibility of palm leaf manuscripts, but the effective duration of these materials is short due to their volatility. This work introduces ionic liquids, a nonvolatile and stable material, to achieve durable toughening of the palm leaf manuscripts. We select 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]), one of the most used ionic liquids, as the subject of research. We find that [BMIm][BF4] does not alter the palm leaf manuscripts' appearance and significantly improves their tensile strength and fracture toughness by 39.9 and 101.0%, respectively, while reducing the bending modulus by 25.7% and increasing the bending fracture deflection by 2.6 times. Notably, [BMIm][BF4]'s toughening effect for palm leaf manuscripts is sustainable for over 2 months, outperforming traditional methods that last only about 1 week. Even under harsh conditions, such as low humidity, high temperatures, alkalinity, and UV exposure, [BMIm][BF4] still maintains its effectiveness. Through the analysis of its composition, structure, and theoretical simulation, we reveal that [BMIm][BF4] penetrates the manuscripts, filling the pores between the inner structure of them and adsorbing strongly with cellulose. This enhances load transfer and reduces the stress concentration, resulting in increased toughness. This research provides innovative materials for palm leaf manuscript conservation and deepens our understanding of their mechanical properties.
Collapse
Affiliation(s)
- Jinghan Ding
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jiakang Yu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jinmeng Zhu
- NPU Institute of Culture and Heritage, Key Laboratory of Archaeological Exploration and Cultural Heritage Conservation Technology (NPU), Ministry of Education, Northwestern Polytechnical University, Xi'an 710072, China
| | - Liuyang Han
- Institute of Cultural Heritage and History of Science & Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Hong Guo
- Institute of Cultural Heritage and History of Science & Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Rui Feng
- NPU Institute of Culture and Heritage, Key Laboratory of Archaeological Exploration and Cultural Heritage Conservation Technology (NPU), Ministry of Education, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wenqiang Dong
- NPU Institute of Culture and Heritage, Key Laboratory of Archaeological Exploration and Cultural Heritage Conservation Technology (NPU), Ministry of Education, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xichen Zhao
- Shaanxi Provincial Institute of Archaeology, Xi'an 710054, China
| | - Shan Wang
- Chinese Academy of Cultural Heritage, Beijing 100029, China
| | - Li Li
- Chinese Academy of Cultural Heritage, Beijing 100029, China
| | - Xuanhua Li
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
7
|
Koshani R, Pitcher ML, Yu J, Mahajan CL, Kim SH, Sheikhi A. Plant Cell Wall-Like Soft Materials: Micro- and Nanoengineering, Properties, and Applications. NANO-MICRO LETTERS 2025; 17:103. [PMID: 39777633 PMCID: PMC11711842 DOI: 10.1007/s40820-024-01569-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/21/2024] [Indexed: 01/11/2025]
Abstract
Plant cell wall (CW)-like soft materials, referred to as artificial CWs, are composites of assembled polymers containing micro-/nanoparticles or fibers/fibrils that are designed to mimic the composition, structure, and mechanics of plant CWs. CW-like materials have recently emerged to test hypotheses pertaining to the intricate structure-property relationships of native plant CWs or to fabricate functional materials. Here, research on plant CWs and CW-like materials is reviewed by distilling key studies on biomimetic composites primarily composed of plant polysaccharides, including cellulose, pectin, and hemicellulose, as well as organic polymers like lignin. Micro- and nanofabrication of plant CW-like composites, characterization techniques, and in silico studies are reviewed, with a brief overview of current and potential applications. Micro-/nanofabrication approaches include bacterial growth and impregnation, layer-by-layer assembly, film casting, 3-dimensional templating microcapsules, and particle coating. Various characterization techniques are necessary for the comprehensive mechanical, chemical, morphological, and structural analyses of plant CWs and CW-like materials. CW-like materials demonstrate versatility in real-life applications, including biomass conversion, pulp and paper, food science, construction, catalysis, and reaction engineering. This review seeks to facilitate the rational design and thorough characterization of plant CW-mimetic materials, with the goal of advancing the development of innovative soft materials and elucidating the complex structure-property relationships inherent in native CWs.
Collapse
Affiliation(s)
- Roya Koshani
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mica L Pitcher
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jingyi Yu
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Christine L Mahajan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Seong H Kim
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Amir Sheikhi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA.
| |
Collapse
|
8
|
Xu Y, Liu YH, Xu LH, Sun SC, Wen JL, Yuan TQ. Multifunctional composite film of curcumin Pickering emulsion stabilized by lignocellulose nanofibrils isolated from bamboo shoot shells for monitoring shrimp freshness. Carbohydr Polym 2024; 346:122663. [PMID: 39245517 DOI: 10.1016/j.carbpol.2024.122663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Concerns about food safety and environmental impact from chemical surfactants have prompted interest in natural lignocellulosic materials as alternatives. In this study, we combined hydrated deep eutectic solvent (DES) pretreatment with ultrasound treatment to prepare lignocellulosic nanofibrils (LCNF) from bamboo shoot shells with appropriate surface properties for stabilizing Pickering emulsions. The pretreatment intensity effectively modulated the surface characteristics of LCNF, achieving desirable wettability through lignin retention and in-situ esterification. The resulting LCNF/curcumin Pickering emulsion (CPE) demonstrated curcumin protection and pH-responsive color changes, while the ensuing CPE/PVA composite film exhibited ultraviolet shielding, mechanical strength, oxygen barrier, and antioxidant properties. Furthermore, the CPE/PVA film showed promise as a real-time indicator for monitoring shrimp freshness, maintaining sensitivity to spoilage even after six months of storage. These findings advance the advancement of green LCNF technologies, providing eco-friendly solutions for valorizing bamboo shoot shells and enhancing the application of LCNF in Pickering emulsions.
Collapse
Affiliation(s)
- Ying Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Yi-Hui Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Ling-Hua Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Shao-Chao Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Jia-Long Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China.
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
9
|
Zhang D, Fang Z, Hu S, Qiu X. High aspect ratio cellulose nanofibrils with low crystallinity for strong and tough films. Carbohydr Polym 2024; 346:122630. [PMID: 39245498 DOI: 10.1016/j.carbpol.2024.122630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
Cellulose nanofibril (CNF) films with both high strength and high toughness are attractive for applications in energy, packaging, and flexible electronics. However, simultaneously achieving these mechanical properties remains a significant challenge. Herein, a multiscale structural optimization strategy is proposed to prepare high aspect ratio CNFs with reduced crystallinity for strong and tough films. Carboxymethylation coupled with mild mechanical disintegration is employed to modulate the multiscale structure of CNFs. The as-prepared CNFs feature an aspect ratio of >800 and a crystallinity of <60 %. The film prepared using CNFs with a high aspect ratio (~1100) and reduced crystallinity (~54 %) exhibits a tensile strength of 229.9 ± 9.9 MPa and toughness of 22.2 ± 1.4 MJ/m3. The underlying mechanism for balancing these mechanical properties is unveiled. The high aspect ratio of the CNFs facilitates the transfer and distribution of local stress, thus endowing the corresponding film with high strength and toughness. Moreover, the low crystallinity of the CNFs permits the movement of the cellulose chains in the amorphous regions, thereby dissipating energy and finally increasing the film toughness. This work introduces an innovative and straightforward method for producing strong and tough CNF films, paving the way for their broader applications.
Collapse
Affiliation(s)
- Dejian Zhang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, PR China
| | - Zhiqiang Fang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, PR China.
| | - Shuiqing Hu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, PR China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Panyu District, Guangzhou 510006, PR China.
| |
Collapse
|
10
|
Gao Y, Kong C, Lu P, Wu R. Hydrophobic bio-based foam prepared from recycled pulp fiber and its properties. Int J Biol Macromol 2024; 282:136989. [PMID: 39476889 DOI: 10.1016/j.ijbiomac.2024.136989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/16/2024] [Accepted: 10/26/2024] [Indexed: 11/07/2024]
Abstract
Compared with traditional petroleum-based foam materials, cellulosic foam materials have significant advantages in terms of economy and environmental protection. However, the traditional cellulose-based foams have some problems such as high energy consumption in the preparation process. In this study, the recycled pulp foam (RPF) with ultra-light density (12.69 kg/m3 ~ 13.83 kg/m3) and high porosity (99.07 % ~ 99.15 %) was prepared by mechanical stirring using waste corrugated cardboard as the main raw material and further hydrophobically modified using rosin. The prepared r-RPF foam has excellent hydrophobicity with the water contact angle remaining 132.9° after 20 s. In addition, the rosin coating enhances the mechanical properties of r-RPF, and the stress of r-RPF at 50 % strain is increased by 97 %. It should be noted that after rosin treatment, the compressive strength and elasticity of r-RPF were improved. The r-RPF was stable in water and had a high oil adsorption capacity (7.8 to 28.13 g/g), which had the potential to treat current oily wastewater.
Collapse
Affiliation(s)
- Yuting Gao
- Tianjin Key Laboratory of Pulp & Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, School of light industry science and engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chuikun Kong
- Tianjin Key Laboratory of Pulp & Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, School of light industry science and engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Peng Lu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Rina Wu
- Tianjin Key Laboratory of Pulp & Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, School of light industry science and engineering, Tianjin University of Science & Technology, Tianjin 300457, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
11
|
Sun X, Jiang F. Periodate oxidation-mediated nanocelluloses: Preparation, functionalization, structural design, and applications. Carbohydr Polym 2024; 341:122305. [PMID: 38876711 DOI: 10.1016/j.carbpol.2024.122305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/16/2024]
Abstract
In recent years, the remarkable progress in nanotechnology has ignited considerable interest in investigating nanocelluloses, an environmentally friendly and sustainable nanomaterial derived from cellulosic feedstocks. Current research primarily focuses on the preparation and applications of nanocelluloses. However, to enhance the efficiency of nanofibrillation, reduce energy consumption, and expand nanocellulose applications, chemical pre-treatments of cellulose fibers have attracted substantial interest and extensive exploration. Various chemical pre-treatment methods yield nanocelluloses with diverse functional groups. Among these methods, periodate oxidation has garnered significant attention recently, due to the formation of dialdehyde cellulose derived nanocellulose, which exhibits great promise for further modification with various functional groups. This review seeks to provide a comprehensive and in-depth examination of periodate oxidation-mediated nanocelluloses (PONCs), including their preparation, functionalization, hierarchical structural design, and applications. We believe that PONCs stand as highly promising candidates for the development of novel nano-cellulosic materials.
Collapse
Affiliation(s)
- Xia Sun
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
12
|
Park S, Song Y, Ryu B, Song Y, Lee H, Kim Y, Lim J, Lee D, Yoon H, Lee C, Yun C. Highly Conductive Ink Based on Self-Aligned Single-Walled Carbon Nanotubes through Inter-Fiber Sliding in Cellulose Fibril Networks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402854. [PMID: 39193666 PMCID: PMC11516057 DOI: 10.1002/advs.202402854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/05/2024] [Indexed: 08/29/2024]
Abstract
Carbon nanotubes (CNTs), owing to their superior electrical and mechanical properties, are a promising alternative to nonmetallic electrically conducting materials. In practice, cellulose as a low-cost sustainable matrix has been used to prepare the aqueous dispersion of cellulose-CNT (C-CNT) nanocomposites. However, the compatibility with conventional solution-processing and structural rearrangement for improving conductivity has yet to be determined. Herein, a straightforward route to prepare a conductive composite material from single-walled CNTs (SWCNTs) and natural pulp is reported. High-power shaking realizes the self-alignment of individual SWCNTs in a cellulose matrix, resulting from the structural change in molecular orientations owing to countless collisions of zirconia beads in the aqueous mixture. The structural analysis of the dried C-CNT films confirms that the entanglement and dispersion of C-CNT nanowires determine the mechanical and electrical properties. Moreover, the rheological behavior of C-CNT inks explains their coating and printing characteristics. By controlling shaking time, the electrical conductivity of the C-CNT films with only 9 wt.% of SWCNTs from 0.9 to 102.4 S cm-1 are adjusted. the optimized C-CNT ink is highly compatible with the conventional coating and printing processes on diverse substrates, thus finding potential applications in eco-friendly, highly flexible, and stretchable electrodes is also demonstrated.
Collapse
Affiliation(s)
- Sejung Park
- School of Polymer Science and EngineeringChonnam National UniversityGwangju61186Republic of Korea
| | - Yeeun Song
- School of Polymer Science and EngineeringChonnam National UniversityGwangju61186Republic of Korea
| | - Boeun Ryu
- School of Polymer Science and EngineeringChonnam National UniversityGwangju61186Republic of Korea
| | - Young‐Woong Song
- Department of Materials Science and EngineeringChonnam National UniversityGwangju61186Republic of Korea
- Korea Institute of Industrial Technology (KITECH)Gwangju61012Republic of Korea
| | - Haney Lee
- School of Polymer Science and EngineeringChonnam National UniversityGwangju61186Republic of Korea
| | - Yejin Kim
- School of Polymer Science and EngineeringChonnam National UniversityGwangju61186Republic of Korea
| | - Jinsub Lim
- Korea Institute of Industrial Technology (KITECH)Gwangju61012Republic of Korea
| | - Doojin Lee
- School of Polymer Science and EngineeringChonnam National UniversityGwangju61186Republic of Korea
| | - Hyeonseok Yoon
- School of Polymer Science and EngineeringChonnam National UniversityGwangju61186Republic of Korea
| | - Changkee Lee
- Korea Institute of Industrial Technology (KITECH)Ansan‐si15588Republic of Korea
| | - Changhun Yun
- School of Polymer Science and EngineeringChonnam National UniversityGwangju61186Republic of Korea
| |
Collapse
|
13
|
Hu F, Kui M, Zeng J, Li P, Wang T, Li J, Wang B, Wu C, Chen K. Ultrastrong Nanopapers with Aramid Nanofibers and Silver Nanowires Reinforced by Cellulose Nanofibril-Assisted Dispersed Graphene Nanoplates for Superior Electromagnetic Interference Shielding. ACS NANO 2024; 18:25852-25864. [PMID: 39231310 DOI: 10.1021/acsnano.4c09462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
High-strength, lightweight, ultrathin, and flexible electromagnetic interference (EMI) shielding materials with a high shielding effectiveness (SE) are essential for modern integrated electronics. Herein, cellulose nanofibrils (CNFs) are employed to homogeneously disperse graphene nanoplates (GNPs) into an aramid nanofiber (ANF) network and silver nanowire (AgNW) network, respectively, producing high-performance nanopapers. These nanopapers, featuring nacre-mimetic microstructures and layered architectures, exhibited high tensile strength (601.11 MPa) and good toughness (103.56 MJ m-3) with a thickness of only 24.58 μm. Their specific tensile strength reaches 447.59 MPa·g-1·cm3, which is 1.74 times that of titanium alloys (257 MPa·g-1·cm3). The AgNW/GNP composite conductive layers exhibit an electrical conductivity of 12010.00 S cm-1, providing the nanopapers with great EMI shielding performance, achieving an EMI SE of 63.87 dB and an EMI SE/t of 25978.80 dB cm-1. The nanopapers also show reliable durability, retaining a tensile strength of 500.96 MPa and an EMI SE of 57.59 dB after 120,000 folding cycles. Additionally, they have a good electrical heating performance with a fast response time, low driving voltage, effective deicing capability, and reliable heating capacity in water. This work presents a strategy to develop a high-performance nanopaper, showing great potential for applications in electromagnetic compatibility, national defense, smart electronics, and human health.
Collapse
Affiliation(s)
- Fugang Hu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, P. R. China
| | - Minghong Kui
- Guangdong Guanhao High-Tech Co., Ltd., Zhanjiang 524072, P. R. China
| | - Jinsong Zeng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, P. R. China
| | - Pengfei Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, P. R. China
- School of Environment and Energy, South China University of Technology, Guangzhou 510640, P. R. China
| | - Tianguang Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, P. R. China
| | - Jinpeng Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, P. R. China
| | - Bin Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, P. R. China
| | - Chen Wu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, P. R. China
| | - Kefu Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, P. R. China
| |
Collapse
|
14
|
Yang Y, Li D, Yan N, Guo F. A new 3D printing strategy by enhancing shear-induced alignment of gelled nanomaterial inks resulting in stronger and ductile cellulose films. Carbohydr Polym 2024; 340:122269. [PMID: 38858020 DOI: 10.1016/j.carbpol.2024.122269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024]
Abstract
Cellulose nanofibrils (CNFs) are derived from biomass and have significant potential as fossil-based plastic alternatives used in disposable electronics. Controlling the nanostructure of fibrils is the key to obtaining strong mechanical properties and high optical transparency. Vacuum filtration is usually used to prepare the CNFs film in the literature; however, such a process cannot control the structure of the CNFs film, which limits the transparency and mechanical strength of the film. Here, direct ink writing (DIW), a pressure-controlled extrusion process, is proposed to fabricate the CNFs film, which can significantly harness the alignment of fibrils by exerting shear stress force on the filaments. The printed films by DIW have a compact structure, and the degree of fibril alignment quantified by the small angle X-ray diffraction (SAXS) increases by 24 % compared to the vacuum filtration process. Such a process favors the establishment of the chemical bond (or interaction) between molecules, therefore leading to considerably high tensile strength (245 ± 8 MPa), elongation at break (2.2 ± 0.5 %), and good transparency. Thus, proposed DIW provides a new strategy for fabricating aligned CNFs films in a controlled manner with tunable macroscale properties. Moreover, this work provides theoretical guidance for employing CNFs as structural and reinforcing materials to design disposable electronics.
Collapse
Affiliation(s)
- Yunxia Yang
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China; Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Dan Li
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China; Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, People's Republic of China.
| | - Ning Yan
- Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, M5S 3E5, Canada
| | - Fu Guo
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China; Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, People's Republic of China; School of Mechanical Electrical Engineering, Beijing Information Science and Technology University, Beijing 100192, People's Republic of China
| |
Collapse
|
15
|
Wang J, Chen SP, Li DL, Zhou L, Ren JX, Jia LC, Zhong GJ, Huang HD, Li ZM. Structuring restricted amorphous molecular chains in the reinforced cellulose film by uniaxial stretching. Carbohydr Polym 2024; 337:122088. [PMID: 38710544 DOI: 10.1016/j.carbpol.2024.122088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 05/08/2024]
Abstract
The construction of the preferred orientation structure by stretching is an efficient strategy to fabricate high-performance cellulose film and it is still an open issue whether crystalline structure or amorphous molecular chain is the key factor in determining the enhanced mechanical performance. Herein, uniaxial stretching with constant width followed by drying in a stretching state was carried out to cellulose hydrogels with physical and chemical double cross-linking networks, achieving high-performance regenerated cellulose films (RCFs) with an impressive tensile strength of 154.5 MPa and an elastic modulus of 5.4 GPa. The hierarchical structure of RCFs during uniaxial stretching and drying was systematically characterized from micro- to nanoscale, including microscopic morphology, crystalline structure as well as relaxation behavior at a molecular level. The two-dimensional correlation spectra of dynamic mechanical analysis and Havriliak-Negami fitting results verified that the enhanced mechanical properties of RCFs were mainly attributed to the stretch-induced tight packing and restricted relaxation of amorphous molecular chains. The new insight concerning the contribution of molecular chains in the amorphous region to the enhancement of mechanical performance for RCFs is expected to provide valuable guidance for designing and fabricating high-performance eco-friendly cellulose-based films.
Collapse
Affiliation(s)
- Jing Wang
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shi-Peng Chen
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - De-Long Li
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Lin Zhou
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jia-Xin Ren
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Li-Chuan Jia
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China
| | - Gan-Ji Zhong
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hua-Dong Huang
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhong-Ming Li
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
16
|
Ramesh M, Ravikanth D, Selvan MT, Sahayaraj AF, Saravanakumar A. Extraction and characterization of Bougainvillea glabra fibers: A study on chemical, physical, mechanical and morphological properties. Int J Biol Macromol 2024; 275:133787. [PMID: 38992535 DOI: 10.1016/j.ijbiomac.2024.133787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/08/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Bougainvillea glabra fibers (BGFs) present a promising avenue for sustainable material development owing to their abundance and favorable properties. This study entails a thorough investigation into the composition, physical characteristics, mechanical behavior, structural properties, thermal stability, and hydrothermal absorption behavior of BGFs. Chemical analysis reveals the predominant presence of cellulose (68.92 %), accompanied by notable proportions of hemicellulose (12.64 %), lignin (9.56 %), wax (3.72 %), moisture (11.78 %), and ash (1.75 %). Physical measurements ascertain a mean fiber diameter of approximately 232.63 ± 8.59 μm, while tensile testing demonstrates exceptional strength, with stress values ranging from 120 ± 18.26 MPa to a maximum of 770 ± 23.19 MPa at varying strains. X-ray diffraction (XRD) elucidates a crystalline index (CI) of 68.17 % and a crystallite size (CS) of 9.42 nm, indicative of a well-defined crystalline structure within the fibers. Fourier-transform infrared spectroscopy (FTIR) confirms the presence of characteristic functional groups associated with cellulose, hemicellulose, wax, and water content. Thermogravimetric analysis (TGA) delineates distinct thermal degradation stages, with onset temperatures ranging from 102.76 °C for water loss to 567.55 °C for ash formation. Furthermore, hydrothermal absorption behavior exhibits temperature and time-dependent trends, with absorption percentages ranging from 15.26 % to 32.19 % at temperatures between 30 °C and 108 °C and varying exposure durations. These comprehensive findings provide essential insights into the properties and potential applications of BGFs in diverse fields such as bio-composites, textiles, and environmentally friendly packaging solutions.
Collapse
Affiliation(s)
- M Ramesh
- Department of Mechanical Engineering, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, Tamil Nadu 641402, India
| | - D Ravikanth
- Department of Mechanical Engineering, KSRM College of Engineering, Kadapa, Andhra Pradesh 516003, India
| | - M Tamil Selvan
- Department of Mechanical Engineering, Dhanalakshmi Srinivasan College of Engineering, Coimbatore, Tamil Nadu 641105, India
| | - A Felix Sahayaraj
- Department of Mechanical Engineering, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, Tamil Nadu 641402, India.
| | - A Saravanakumar
- Department of Mechanical Engineering, Dhanalakshmi Srinivasan College of Engineering, Coimbatore, Tamil Nadu 641105, India
| |
Collapse
|
17
|
Chen L, Yu X, Gao M, Xu C, Zhang J, Zhang X, Zhu M, Cheng Y. Renewable biomass-based aerogels: from structural design to functional regulation. Chem Soc Rev 2024; 53:7489-7530. [PMID: 38894663 DOI: 10.1039/d3cs01014g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Global population growth and industrialization have exacerbated the nonrenewable energy crises and environmental issues, thereby stimulating an enormous demand for producing environmentally friendly materials. Typically, biomass-based aerogels (BAs), which are mainly composed of biomass materials, show great application prospects in various fields because of their exceptional properties such as biocompatibility, degradability, and renewability. To improve the performance of BAs to meet the usage requirements of different scenarios, a large number of innovative works in the past few decades have emphasized the importance of micro-structural design in regulating macroscopic functions. Inspired by the ubiquitous random or regularly arranged structures of materials in nature ranging from micro to meso and macro scales, constructing different microstructures often corresponds to completely different functions even with similar biomolecular compositions. This review focuses on the preparation process, design concepts, regulation methods, and the synergistic combination of chemical compositions and microstructures of BAs with different porous structures from the perspective of gel skeleton and pore structure. It not only comprehensively introduces the effect of various microstructures on the physical properties of BAs, but also analyzes their potential applications in the corresponding fields of thermal management, water treatment, atmospheric water harvesting, CO2 absorption, energy storage and conversion, electromagnetic interference (EMI) shielding, biological applications, etc. Finally, we provide our perspectives regarding the challenges and future opportunities of BAs. Overall, our goal is to provide researchers with a thorough understanding of the relationship between the microstructures and properties of BAs, supported by a comprehensive analysis of the available data.
Collapse
Affiliation(s)
- Linfeng Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Xiaoxiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Mengyue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Chengjian Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Junyan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Xinhai Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| |
Collapse
|
18
|
Zhang T, Wang S, Yang K, Lin L, Yang P, Zhou K, Chen W, Chen M, Zhou X. Directly Converting Bulk Wood into Branch Micro-Nano Fibers to Synergistically Enhance the Strength and Toughness via Interface Engineering. NANO LETTERS 2024; 24:6576-6584. [PMID: 38775216 DOI: 10.1021/acs.nanolett.4c01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Hierarchical biobased micro/nanomaterials offer great potential as the next-generation building blocks for robust films or macroscopic fibers with high strength, while their capability in suppressing crack propagation when subject to damage is hindered by their limited length. Herein, we employed an approach to directly convert bulk wood into fibers with a high aspect ratio and nanosized branching structures. Particularly, the length of microfibers surpassed 1 mm with that of the nanosized branches reaching up to 300 μm. The presence of both interwoven micro- and nanofibers endowed the product with substantially improved tensile strength (393.99 MPa) and toughness (19.07 MJ m-3). The unique mechanical properties arose from mutual filling and the hierarchical deformation facilitated by branched nanofibers, which collectively contributed to effective energy dissipation. Hence, the nanotransformation strategy opens the door toward a facial, scalable method for building high-strength film or macroscopic fibers available in various advanced applications.
Collapse
Affiliation(s)
- Tao Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Shijun Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Kai Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Liangke Lin
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Pei Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Ke Zhou
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| | - Weimin Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Minzhi Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Xiaoyan Zhou
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| |
Collapse
|
19
|
Huang Z, Zhang Y, Xing T, He A, Luo Y, Wang M, Qiao S, Tong A, Shi Z, Liao X, Pan H, Liang Z, Chen F, Xu W. Advances in regenerated cellulosic aerogel from waste cotton textile for emerging multidimensional applications. Int J Biol Macromol 2024; 270:132462. [PMID: 38772470 DOI: 10.1016/j.ijbiomac.2024.132462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/22/2024] [Accepted: 05/11/2024] [Indexed: 05/23/2024]
Abstract
Rapid development of society and the improvement of people's living standards have stimulated people's keen interest in fashion clothing. This trend has led to the acceleration of new product innovation and the shortening of the lifespan for cotton fabrics, which has resulting in the accumulation of waste cotton textiles. Although cotton fibers can be degraded naturally, direct disposal not only causes a serious resource waste, but also brings serious environmental problems. Hence, it is significant to explore a cleaner and greener waste textile treatment method in the context of green and sustainable development. To realize the high-value utilization of cellulose II aerogel derived from waste cotton products, great efforts have been made and considerable progress has been achieved in the past few decades. However, few reviews systematically summarize the research progress and future challenges of preparing high-value-added regenerated cellulose aerogels via dissolving cotton and other cellulose wastes. Therefore, this article reviews the regenerated cellulose aerogels obtained through solvent methods, summarizes their structure, preparation strategies and application, aimed to promote the development of the waste textile industry and contributed to the realization of carbon neutrality.
Collapse
Affiliation(s)
- Zhiyu Huang
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, PR China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China
| | - Yu Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China
| | - Tonghe Xing
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China
| | - Annan He
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China
| | - Yuxin Luo
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China
| | - Mengqi Wang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China
| | - Sijie Qiao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China
| | - Aixin Tong
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China
| | - Zhicheng Shi
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China
| | - Xiaohong Liao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China
| | - Heng Pan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China.
| | - Zihui Liang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China.
| | - Fengxiang Chen
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China.
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China
| |
Collapse
|
20
|
Zhou M, Chen D, Chen Q, Chen P, Song G, Chang C. Reversible Surface Engineering of Cellulose Elementary Fibrils: From Ultralong Nanocelluloses to Advanced Cellulosic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312220. [PMID: 38288877 DOI: 10.1002/adma.202312220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/24/2024] [Indexed: 02/29/2024]
Abstract
Cellulose nanofibrils (CNFs) are supramolecular assemblies of cellulose chains that provide outstanding mechanical support and structural functions for cellulosic organisms. However, traditional chemical pretreatments and mechanical defibrillation of natural cellulose produce irreversible surface functionalization and adverse effects of morphology of the CNFs, respectively, which limit the utilization of CNFs in nanoassembly and surface functionalization. Herein, this work presents a facile and energetically efficient surface engineering strategy to completely exfoliate cellulose elementary fibrils from various bioresources, which provides CNFs with ultrahigh aspect ratios (≈1400) and reversible surface. During the mild process of swelling and esterification, the crystallinity and the morphology of the elementary fibrils are retained, resulting in high yields (98%) with low energy consumption (12.4 kJ g-1). In particular, on the CNF surface, the surface hydroxyl groups are restored by removal of the carboxyl moieties via saponification, which offers a significant opportunity for reconstitution of stronger hydrogen bonding interfaces. Therefore, the resultant CNFs can be used as sustainable building blocks for construction of multidimensional advanced cellulosic materials, e.g., 1D filaments, 2D films, and 3D aerogels. The proposed surface engineering strategy provides a new platform for fully utilizing the characteristics of the cellulose elementary fibrils in the development of high-performance cellulosic materials.
Collapse
Affiliation(s)
- Meng Zhou
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Dongzhi Chen
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, Wuhan Textile University, Wuhan, 430073, P. R. China
| | - Qianqian Chen
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Pan Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Guangjie Song
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chunyu Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| |
Collapse
|
21
|
Xie D, Zhang R, Song S, Yang S, Yang A, Zhang C, Song Y. Nacre-inspired starch-based bioplastic with excellent mechanical strength and electromagnetic interference shielding. Carbohydr Polym 2024; 331:121888. [PMID: 38388042 DOI: 10.1016/j.carbpol.2024.121888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/19/2024] [Accepted: 01/27/2024] [Indexed: 02/24/2024]
Abstract
Bioplastics have aroused significant interest in researchers to relieve the serious environmental pollution caused by the ubiquity of petroleum-based plastics. However, it remains a great challenge to construct functional bioplastics with excellent mechanical strength, water resistance, and heat resistance. Inspired by the interesting structure of nacre, a novel starch-based bioplastic was prepared via a self-assembly technique, using 2,2,6,6-tetramethylpiperidine-1-oxy-oxidized cellulose nanofibers modified starch, nano-montmorillonite, and reduced graphene oxide as raw materials. Due to the unique layered structure and rich interfacial interaction, the starch-based bioplastic exhibited excellent mechanical properties, while the tensile strength was up to 37.39 MPa. Furthermore, it represented outstanding water resistance, heat resistance, repairability, renewability and biodegradability. Especially, the starch-based bioplastic demonstrated a strong electromagnetic interference shielding effectiveness (EMI SE), which was higher than 35 dB with a thickness of 0.5 mm. These powerful properties provided the possibility for functional applications of starch-based bioplastics.
Collapse
Affiliation(s)
- Di Xie
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Rui Zhang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Shanshan Song
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Siwen Yang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - An Yang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Congcong Zhang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Yongming Song
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, China; College of Home and Art Design, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
22
|
Chen SM, Wang GZ, Hou Y, Yang XN, Zhang SC, Zhu Z, Li J, Gao HL, Zhu YB, Wu H, Yu SH. Hierarchical and reconfigurable interfibrous interface of bioinspired Bouligand structure enabled by moderate orderliness. SCIENCE ADVANCES 2024; 10:eadl1884. [PMID: 38579002 PMCID: PMC10997196 DOI: 10.1126/sciadv.adl1884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/05/2024] [Indexed: 04/07/2024]
Abstract
Introducing natural Bouligand structure into synthetics is expected to develop high-performance structural materials. Interfibrous interface is critical to load transfer, and mechanical functionality of bioinspired Bouligand structure yet receives little attention. Here, we propose one kind of hierarchical and reconfigurable interfibrous interface based on moderate orderliness to mechanically reinforce bioinspired Bouligand structure. The interface imparted by moderate alignment of adaptable networked nanofibers hierarchically includes nanofiber interlocking and hydrogen-bonding (HB) network bridging, being expected to facilitate load transfer and structural stability through dynamic adjustment in terms of nanofiber sliding and HB breaking-reforming. As one demonstration, the hierarchical and reconfigurable interfibrous interface is constructed based on moderate alignment of networked bacterial cellulose nanofibers. We show that the resultant bioinspired Bouligand structural material exhibits unusual strengthening and toughening mechanisms dominated by interface-microstructure multiscale coupling. The proposed interfibrous interface enabled by moderate orderliness would provide mechanical insight into the assembly of widely existing networked nanofiber building blocks toward high-performance macroscopic bioinspired structural assemblies.
Collapse
Affiliation(s)
- Si-Ming Chen
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Guang-Zhen Wang
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - YuanZhen Hou
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Xiao-Nian Yang
- Department of Dental Implant Center, Stomatologic Hospital and College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Si-Chao Zhang
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - ZiBo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - JiaHao Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Huai-Ling Gao
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Yin-Bo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - HengAn Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Shu-Hong Yu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Institute of Innovative Materials, Department of Materials Science and Engineering, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
23
|
Yu X, Ji J, Wu QY, Gu L. Direct-coating of cellulose hydrogel on PVDF membranes with superhydrophilic and antifouling properties for high-efficiency oil/water emulsion separation. Int J Biol Macromol 2024; 256:128579. [PMID: 38048931 DOI: 10.1016/j.ijbiomac.2023.128579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
As a well-known natural and innocuous plant constituent, cellulose consists of abundant hydroxyl groups and can tightly adsorb onto material surfaces hydrogen bonding, resulting in a superhydrophilic surface. In this work, the hydrophobic polyvinylidene fluoride (PVDF) membranes were modified by immersing them in cellulose hydrogel using a simple one-step process. The modified PVDF membrane exhibited excellent resistance to fouling and oil adhesion, making it highly effective in separating various oil-in-water emulsions. The cellulose-modified PVDF membranes achieved a high oil rejection rate (>99 %) and a maximum separation flux of 2675.2 L·m-2·h-1. Furthermore, even an oil-in-water emulsion containing bovine serum albumin maintained a steady permeation flux after four filtration cycles. Additionally, these cellulose-modified PVDF membranes demonstrated excellent underwater superoleophobicity across a wide range of pH levels and high saline conditions. Overall, these cellulose-modified superhydrophilic PVDF membranes are sustainable, environmentally friendly, easily scalable, and hold great promise for practical applications in oily wastewater treatment.
Collapse
Affiliation(s)
- Xiao Yu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Jing Ji
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangzhou Institute of Advanced Technology, Guangzhou 511458, China
| | - Qing-Yun Wu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| | - Lin Gu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| |
Collapse
|
24
|
Xie D, Zhang R, Zhang C, Yang S, Xu Z, Song Y. A novel, robust mechanical strength, and naturally degradable double crosslinking starch-based bioplastics for practical applications. Int J Biol Macromol 2023; 253:126959. [PMID: 37739289 DOI: 10.1016/j.ijbiomac.2023.126959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/27/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
The increasing number of petroleum-based plastics has caused severe environmental pollution, which has attracted great research interest in the development of low-cost, renewable, and degradable starch-based bioplastics. However, developing starch-based bioplastics with robust mechanical strength, excellent water resistance, and thermal resistance remains a great challenge. In this study, we presented a simple and efficient method for preparing high-performance novel starch-based bioplastics with chemical and physical double crosslinking network structures filled with 2,2,6,6-tetramethylpiperidine 1-oxy-oxidized cellulose nanofibers and zinc oxide nanoparticles. Compared with pure starch-based bioplastics, the tensile strength of the novel robust strength starch-based bioplastics increased by 431.2 %. The novel starch-based bioplastics exhibited excellent mechanical properties (tensile strength up to 24.54 MPa), water resistance, thermal resistance, and biodegradability. In addition, the novel starch-based bioplastics could be reused, crushed, dissolved, and re-poured after use. After recycling, the novel starch-based bioplastics could be discarded in the soil to achieve complete degradation within six weeks. Owing to these characteristics, the novel starch-based bioplastics are good alternatives used to replace traditional petroleum-based plastics and have great development prospects.
Collapse
Affiliation(s)
- Di Xie
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Rui Zhang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Congcong Zhang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Siwen Yang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Zesheng Xu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Yongming Song
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, Heilongjiang 150040, PR China.
| |
Collapse
|
25
|
Li M, Zhao K, Liu C, Liu Z, Li R, Cao Y. Construction of Poly(hydrophobic deep eutectic solvent)/Ethylcellulose Composite Films for Green Recyclable Tapes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13649-13655. [PMID: 37713388 DOI: 10.1021/acs.langmuir.3c01793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Constructing green recyclable cellulose-based tapes with high transparency, mechanical robustness, and strong wet adhesion using natural components is highly desirable but challenging. Herein, novel cellulose-based self-adhesive tapes were reported by coating a polymerizable hydrophobic deep eutectic solvent (DES) on ethylcellulose followed by photopolymerization. The prepared ethylcellulose-based self-adhesive tape (ECSAT) exhibited an optical transmittance of up to ∼88% and could provide strong adhesion by interfacial intermolecular interactions without obstructing information. Due to the hydrophobic nature of the overall structure, ECSAT does not exhibit significant adhesive strength and mechanical degradation under water, acid, and alkali environments. Notably, ECSAT can be completely dissolved in the resultant DES and furthermore reused as a self-adhesive coating. The recycled ECSAT still maintained good optical transparency, mechanical strength, and wet adhesion. We believe that ECSATs with all-around performances have a wide range of applications in packaging and other engineering fields.
Collapse
Affiliation(s)
- Mengqing Li
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Kai Zhao
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Chao Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Zhulan Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Ren'ai Li
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yunfeng Cao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, P. R. China
| |
Collapse
|
26
|
Dai Q, Li D, Sun Y, Wang H, Lu Y, Yang D. Low temperature-resistant superhydrophobic and elastic cellulose aerogels derived from seaweed solid waste as efficient oil traps for oil/water separation. CHEMOSPHERE 2023; 336:139179. [PMID: 37330065 DOI: 10.1016/j.chemosphere.2023.139179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023]
Abstract
Aerogel has excellent application potential in adsorption, heat preservation, and other areas due to its typical advantages of low density and high porosity. However, there are several issues with the use of aerogel in oil/water separation, including weak mechanical qualities and challenges in eliminating organic contaminants at low temperature. Inspired by cellulose Iα, which has excellent performance at low temperature, this study used cellulose Iα nanofibers extracted from seaweed solid waste as the skeleton, through covalent cross-linked with ethylene imine polymer (PEI) and hydrophobic modification of 1, 4-phenyl diisocyanate (MDI), supplemented by freeze-drying technology to form three-dimensional sheet, and successfully obtained cellulose aerogels derived from seaweed solid waste (SWCA). The compression test shows that the maximum compressive stress of SWCA is 61 kPa, and the initial performance still maintains 82% after 40 cryogenic compression cycles. In addition, the contact angles of water and oil on the surface of the SWCA were 153° and 0°, respectively, and the stable hydrophobic time in simulated seawater is more than 3 h. By combining the elasticity and superhydrophobicity/superoleophilicity, the SWCA with an oil absorption capacity of up to 11-30 times its mass, might be utilized repeatedly for the separation of an oil/water mixture.
Collapse
Affiliation(s)
- Qinglin Dai
- State Key Laboratory of Bio-fibers and Eco-textiles, School of Environmental Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao, 266071, China
| | - Daohao Li
- State Key Laboratory of Bio-fibers and Eco-textiles, School of Environmental Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao, 266071, China
| | - Yuanyuan Sun
- State Key Laboratory of Bio-fibers and Eco-textiles, School of Environmental Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao, 266071, China
| | - Hu Wang
- State Key Laboratory of Bio-fibers and Eco-textiles, School of Environmental Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao, 266071, China
| | - Yun Lu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Dongjiang Yang
- State Key Laboratory of Bio-fibers and Eco-textiles, School of Environmental Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
27
|
Li X, Jin X, Wu Y, Zhang D, Sun F, Ma H, Pugazhendhi A, Xia C. A comprehensive review of lignocellulosic biomass derived materials for water/oil separation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162549. [PMID: 36871707 DOI: 10.1016/j.scitotenv.2023.162549] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/23/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
With rapid socioeconomic development, oil is widely used in all aspects of modern society. However, the extraction, transport, and processing of oil inevitably lead to the production of large quantities of oily wastewater. Traditional oil/water separation strategies are often inefficient, costly, and cumbersome to operate. Therefore, new green, low-cost, and high-efficiency materials must be developed for oil/water separation. As widely sourced and renewable natural biocomposites, wood-based materials have become a hot field recently. This review will focus on the application of several wood-based materials in oil/water separation. The state of research on wood sponges, cotton fibers, cellulose aerogels, cellulose membranes, and some other wood-based materials for oil/water separation over the last few years and provide an outlook on their future development are summarized and investigated. It is expected to provide some direction for future research on the use of wood-based materials in oil/water separation.
Collapse
Affiliation(s)
- Xueyi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xin Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Daihui Zhang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hongzhi Ma
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali, India.
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
28
|
Qin S, Liu K, Wang Y, Ren D, Zhang S, Zhai Y, Ma H, Zhou X, Huang F. Constructing An All-Natural Bulk Structural Material from Surface-Charged Bamboo Cellulose Fibers with Enhanced Mechanical and Thermal Properties. CHEMSUSCHEM 2023; 16:e202202185. [PMID: 36807548 DOI: 10.1002/cssc.202202185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 05/20/2023]
Abstract
Bamboo is widely distributed, rapidly regenerable, and incorporates long cellulose fibers, which make it one of the most lightweight and strong natural materials. Processing bamboo into a high-performance structural material for plastic replacement is highly promising but challenging. In this study, an all-natural, high-performance structural material is derived from natural bamboo with superior mechanical and thermal properties that benefit from the introduction of surface charge and further layer-by-layer assembly of bamboo cellulose fibers. The obtained modified bamboo fiber plate (MBFP) transcends the constraints of the natural size and anisotropy of bamboo, showing high flexural strength (ca. 179 MPa) and flexural modulus (ca. 12 GPa). Moreover, the product has an extremely low coefficient of thermal expansion (ca. 11.3×10-6 K-1 ), high thermal stability, and superior fire resistance. The excellent mechanical and thermal properties combined with the efficient and rational manufacturing process make MBFP a powerful plastic alternative for furniture, construction, and automotive industries.
Collapse
Affiliation(s)
- Shizheng Qin
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, P. R. China
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Kun Liu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, 100049, Beijing, P. R. China
| | - Yuan Wang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, P. R. China
| | - Dayong Ren
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, P. R. China
| | - Shaoning Zhang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, P. R. China
| | - Yangzhou Zhai
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Huihuang Ma
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Xiaodong Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Fuqiang Huang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, P. R. China
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, Peking University, 100871, Beijing, P. R. China
| |
Collapse
|
29
|
Zhang Y, Deng W, Wu M, Rahmaninia M, Xu C, Li B. Tailoring Functionality of Nanocellulose: Current Status and Critical Challenges. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091489. [PMID: 37177034 PMCID: PMC10179792 DOI: 10.3390/nano13091489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Nanocellulose (NC) isolated from natural cellulose resources, which mainly includes cellulose nanofibril (CNF) and cellulose nanocrystal (CNC), has garnered increased attention in recent decades due to its outstanding physical and chemical properties. Various chemical modifications have been developed with the aim of surface-modifying NC for highly sophisticated applications. This review comprehensively summarizes the chemical modifications applied to NC so far in order to introduce new functionalities to the material, such as silanization, esterification, oxidation, etherification, grafting, coating, and others. The new functionalities obtained through such surface-modification methods include hydrophobicity, conductivity, antibacterial properties, and absorbability. In addition, the incorporation of NC in some functional materials, such as films, wearable sensors, cellulose nanospheres, aerogel, hydrogels, and nanocomposites, is discussed in relation to the tailoring of the functionality of NC. It should be pointed out that some issues need to be addressed during the preparation of NC and NC-based materials, such as the low reactivity of these raw materials, the difficulties involved in their scale-up, and their high energy and water consumption. Over the past decades, some methods have been developed, such as the use of pretreatment methods, the adaptation of low-cost starting raw materials, and the use of environmentally friendly chemicals, which support the practical application of NC and NC-based materials. Overall, it is believed that as a green, sustainable, and renewable nanomaterial, NC is will be suitable for large-scale applications in the future.
Collapse
Affiliation(s)
- Yidong Zhang
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, FI-20500 Turku, Finland
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Wangfang Deng
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, FI-20500 Turku, Finland
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Meiyan Wu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Mehdi Rahmaninia
- Wood and Paper Science and Technology Department, Faculty of Natural Resources, Tarbiat Modares University, Noor 46417-76489, Iran
| | - Chunlin Xu
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, FI-20500 Turku, Finland
| | - Bin Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| |
Collapse
|
30
|
Lan Z, Wang Y, Hu K, Shi S, Meng Q, Sun Q, Shen X. Anti-swellable cellulose hydrogel for underwater sensing. Carbohydr Polym 2023; 306:120541. [PMID: 36746563 DOI: 10.1016/j.carbpol.2023.120541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
Underwater sensing is of great significance in ocean exploration by divers to monitor their movements and keep in touch with the shore. However, unique sensors are required to apply in the marine environment that is quite different from the land circumstance. Herein, we reported a cellulose-skeleton-based composite hydrogel that is constraint to expand underwater under the effect of hydrogen bonds (H-bonds) and features advantages of high swelling resistance, structural durability, mechanical robustness, medium flexibility, high gauge factor (2.33) and long-term stability in water as a highly efficient wearable underwater sensor. This cellulose-based anti-swellable underwater hydrogel sensor showed tremendous potentials in underwater sensing applications for posture monitoring, communication, and marine biological research, etc.
Collapse
Affiliation(s)
- Zhuyue Lan
- College of Chemistry and Materials Engineering, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300, China
| | - Yuanyuan Wang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300, China
| | - Ke Hu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300, China
| | - Shitao Shi
- College of Chemistry and Materials Engineering, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300, China
| | - Qingyu Meng
- College of Chemistry and Materials Engineering, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300, China
| | - Qingfeng Sun
- College of Chemistry and Materials Engineering, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300, China.
| | - Xiaoping Shen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300, China.
| |
Collapse
|
31
|
Shape memory luminescent cellulose/chitosan hydrogel for high sensitive detection of formaldehyde. Int J Biol Macromol 2023; 233:123570. [PMID: 36758764 DOI: 10.1016/j.ijbiomac.2023.123570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Hybrid hydrogels containing biomacromolecules have been widely used in sensors, fluorescent probes, and other fields due to their high biocompatibility and nontoxicity. In this paper, tough hydrogels with interconnected macro-pores have been fabricated by freeze-induced chemical cross-linking of microfibrillated cellulose (MFC) and organic modified chitosan (CS). In this hydrogel materials, three-dimensional networks were formed by abundant hydrogen bonds and chemical cross-linking. Luminescent lanthanide complexes were covalently bonded to the hydrogel networks through coordination of Eu3+ ions with 2, 3-pyridine dicarboxylic acid modified chitosan. The luminescence of hydrogel materials was further improved by the replacement of coordination water with 2-thiophenyltrifluoroacetone (TTA). The prepared hydrogels showed excellent shape memory properties both under water and in air. The stress of the hybrid hydrogel at 80 % strain can reach 159 kPa, which is much higher than that of the traditional microfibrillated cellulose-based hydrogels. The obtained luminescent hybrid hydrogels exhibited an excellent fluorescence detection effect on formaldehyde. The detection limit for formaldehyde is 45.7 ppb, which is much lower than the WHO standard (80 ppb for indoor air). The novel, facile preparing procedure may extend the potential applications of hybrid lanthanide luminescent hydrogel as fluorescence probes for pollution monitoring, especially for formaldehyde and other organic aldehydes.
Collapse
|
32
|
Ding Y, Pang Z, Lan K, Yao Y, Panzarasa G, Xu L, Lo Ricco M, Rammer DR, Zhu JY, Hu M, Pan X, Li T, Burgert I, Hu L. Emerging Engineered Wood for Building Applications. Chem Rev 2023; 123:1843-1888. [PMID: 36260771 DOI: 10.1021/acs.chemrev.2c00450] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The building sector, including building operations and materials, was responsible for the emission of ∼11.9 gigatons of global energy-related CO2 in 2020, accounting for 37% of the total CO2 emissions, the largest share among different sectors. Lowering the carbon footprint of buildings requires the development of carbon-storage materials as well as novel designs that could enable multifunctional components to achieve widespread applications. Wood is one of the most abundant biomaterials on Earth and has been used for construction historically. Recent research breakthroughs on advanced engineered wood products epitomize this material's tremendous yet largely untapped potential for addressing global sustainability challenges. In this review, we explore recent developments in chemically modified wood that will produce a new generation of engineered wood products for building applications. Traditionally, engineered wood products have primarily had a structural purpose, but this review broadens the classification to encompass more aspects of building performance. We begin by providing multiscale design principles of wood products from a computational point of view, followed by discussion of the chemical modifications and structural engineering methods used to modify wood in terms of its mechanical, thermal, optical, and energy-related performance. Additionally, we explore life cycle assessment and techno-economic analysis tools for guiding future research toward environmentally friendly and economically feasible directions for engineered wood products. Finally, this review highlights the current challenges and perspectives on future directions in this research field. By leveraging these new wood-based technologies and analysis tools for the fabrication of carbon-storage materials, it is possible to design sustainable and carbon-negative buildings, which could have a significant impact on mitigating climate change.
Collapse
Affiliation(s)
- Yu Ding
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland20742, United States
| | - Zhenqian Pang
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland20742, United States
| | - Kai Lan
- Center for Industrial Ecology, Yale School of the Environment, Yale University, New Haven, Connecticut06511, United States
| | - Yuan Yao
- Center for Industrial Ecology, Yale School of the Environment, Yale University, New Haven, Connecticut06511, United States
| | - Guido Panzarasa
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093Zürich, Switzerland.,WoodTec Group, Cellulose & Wood Materials, Empa, 8600Dübendorf, Switzerland
| | - Lin Xu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland20742, United States
| | - Marco Lo Ricco
- US Department of Agriculture (USDA) Forest Products Laboratory, Madison, Wisconsin53726, United States
| | - Douglas R Rammer
- US Department of Agriculture (USDA) Forest Products Laboratory, Madison, Wisconsin53726, United States
| | - J Y Zhu
- US Department of Agriculture (USDA) Forest Products Laboratory, Madison, Wisconsin53726, United States
| | - Ming Hu
- School of Architecture, Planning and Preservation, University of Maryland, College Park, Maryland20742, United States
| | - Xuejun Pan
- Department of Biological Systems Engineering, University of Wisconsin─Madison, Madison, Wisconsin53706, United States
| | - Teng Li
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland20742, United States
| | - Ingo Burgert
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093Zürich, Switzerland.,WoodTec Group, Cellulose & Wood Materials, Empa, 8600Dübendorf, Switzerland
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland20742, United States.,Center for Materials Innovation, University of Maryland, College Park, Maryland20742, United States
| |
Collapse
|
33
|
Yang Y, Zhang L, Zhang J, Ren Y, Huo H, Zhang X, Huang K, Zhang Z. Reengineering Waste Boxwood Powder into Light and High-Strength Biodegradable Composites to Replace Petroleum-Based Synthetic Materials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4505-4515. [PMID: 36629909 DOI: 10.1021/acsami.2c19844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The preparation of biocomposites from renewable and sustainable forestry residues is an effective method to significantly reduce the environmental pollution caused by synthetic materials such as plastics and synthetic fibers. This study is aimed at developing a clean process for the large-scale production of high-performance green biocomposites without involving any chemical adhesive. Adhesive-free biocomposites with superior mechanical properties were prepared using HCl ball milling pretreatment and in situ synthesis. The nano-Fe3O4 was uniformly dispersed in the cellulose matrix, and when the matrix was subjected to external forces, the stress concentration effect around the particles absorbed energy, thus effectively improving the mechanical strength of the matrix. The flexural strength and tensile strength of BWP(Fe3O4) samples were increased by 159.04 and 175.34%, compared to that of regular wood powder control samples. The lignin melts under high temperature and pressure and then forms a carbonized layer on the surface of the biocomposites during the cooling process, which prevents the rapid penetration of water from the surface and also gives the biocomposites good thermal stability. The results of this research can avoid the harmful volatiles generated by chemical adhesive than that of the traditional fiberboard process and effectively replace petroleum-based synthetic materials prepared using the addition of various chemical additives, making it conform to the concept of environmental protection and sustainability.
Collapse
Affiliation(s)
- Yang Yang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
- Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha 410004, Hunan, China
- Green Home Engineering Technology Research Center in Hunan, Changsha 410004, Hunan, China
| | - Lei Zhang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
- Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha 410004, Hunan, China
- Green Home Engineering Technology Research Center in Hunan, Changsha 410004, Hunan, China
- Dongyang Furniture Institute, Dongyang 322100, China
| | - JiJuan Zhang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
- Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha 410004, Hunan, China
- Green Home Engineering Technology Research Center in Hunan, Changsha 410004, Hunan, China
| | - Yi Ren
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
- Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha 410004, Hunan, China
- Green Home Engineering Technology Research Center in Hunan, Changsha 410004, Hunan, China
| | - HongFei Huo
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
- Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha 410004, Hunan, China
- Green Home Engineering Technology Research Center in Hunan, Changsha 410004, Hunan, China
| | - Xu Zhang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
- Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha 410004, Hunan, China
- Green Home Engineering Technology Research Center in Hunan, Changsha 410004, Hunan, China
| | - Kai Huang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
- Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha 410004, Hunan, China
- Green Home Engineering Technology Research Center in Hunan, Changsha 410004, Hunan, China
- Dongyang Furniture Institute, Dongyang 322100, China
| | - Zhongfeng Zhang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
- Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha 410004, Hunan, China
- Green Home Engineering Technology Research Center in Hunan, Changsha 410004, Hunan, China
| |
Collapse
|
34
|
Kawano T, Wang MJ, Andou Y. Surface Modification of a Regenerated Cellulose Film Using Low-Pressure Plasma Treatment with Various Reactive Gases. ACS OMEGA 2022; 7:44085-44092. [PMID: 36506144 PMCID: PMC9730310 DOI: 10.1021/acsomega.2c05499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
There is a growing interest in the fabrication of membranes and packaging materials from natural resources for a sustainable society. A regenerated cellulose (RC) film composed solely of cellulose has outstanding advantages including biodegradability, transparency, mechanical strength, and thermal stability. To expand the application of the RC film, various surface modification methods have been proposed. However, conventional chemical methods have disadvantages such as environmental burden and difficulty in controlling the reaction. In this work, low-pressure plasma treatment, a green, solvent-free, and easily controllable approach, was performed for surface modification of the RC film. The effects of three different plasma species (O2, N2, and CF4) and treatment conditions on the surface properties of RC films were investigated based on water contact angle measurements, chemical composition analysis, and surface topography. O2 and N2 plasma treatment slightly enhanced the surface wettability of RC films due to the etching by the plasma reactive species and the formation of new hydrophilic functional groups. In CF4 plasma treatments, the hydrophobic surface with a contact angle of 120.6° was obtained in a short treatment time (60 s) owing to the deposition of fluorocarbon groups on the surface. However, the treated surface in a longer reaction time resulted in increased wettability due to the diffusion and degradation of fluorine-containing bonds. The new insights could be valuable for further studies of surface modification and functionalization of RC films.
Collapse
Affiliation(s)
- Tessei Kawano
- Department
of Life Science and Systems Engineering, Graduate School of Life Science
and Systems Engineering, Kyushu Institute
of Technology, 2-4 Hibikino Wakamatsu-ku, Kitakyushu, Fukuoka 808-0196, Japan
| | - Meng-Jiy Wang
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, 43, Keelung Rd., Sec. 4, Taipei 106, Taiwan
| | - Yoshito Andou
- Department
of Life Science and Systems Engineering, Graduate School of Life Science
and Systems Engineering, Kyushu Institute
of Technology, 2-4 Hibikino Wakamatsu-ku, Kitakyushu, Fukuoka 808-0196, Japan
- Collaborative
Research Centre for Green Materials on Environmental Technology, Kyushu Institute of Technology, 1-1 Sensui-chou, Tobata-ku, Kitakyushu, Fukuoka 804-8550, Japan
| |
Collapse
|
35
|
Chen C, Xi P, Zhang S, Zhang L, Sun Y, Yao J, Fang K, Jiang Y. Nanocellulose with unique character converted directly from plants without intensive mechanical disintegration. Carbohydr Polym 2022; 293:119730. [DOI: 10.1016/j.carbpol.2022.119730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/02/2022]
|
36
|
Li K, Zhao L, Ren J, He B. Interpretation of Strengthening Mechanism of Densified Wood from Supramolecular Structures. Molecules 2022; 27:molecules27134167. [PMID: 35807412 PMCID: PMC9268594 DOI: 10.3390/molecules27134167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, densified wood was prepared by hot pressing after partial lignin and hemicellulose were removed through alkaline solution cooking. The tensile strength and elastic modulus of densified wood were improved up to 398.5 MPa and 22.5 GPa as compared with the original wood, and the characterization of its supramolecular structures showed that the crystal plane spacing of the densified wood decreased, the crystallite size increased, and the maximum crystallinity (CI) of cellulose increased by 15.05%; outstandingly, the content of O(6)H⋯O(3′) intermolecular H-bonds increased by approximately one-fold at most. It was found that the intermolecular H-bond content was significantly positively correlated with the tensile strength and elastic modulus, and accordingly, their Pearson correlation coefficients were 0.952 (p < 0.01) and 0.822 (p < 0.05), respectively. This work provides a supramolecular explanation for the enhancement of tensile strength of densified wood.
Collapse
|
37
|
Zou P, Yao J, Cui YN, Zhao T, Che J, Yang M, Li Z, Gao C. Advances in Cellulose-Based Hydrogels for Biomedical Engineering: A Review Summary. Gels 2022; 8:364. [PMID: 35735708 PMCID: PMC9222388 DOI: 10.3390/gels8060364] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, hydrogel-based research in biomedical engineering has attracted more attention. Cellulose-based hydrogels have become a research hotspot in the field of functional materials because of their outstanding characteristics such as excellent flexibility, stimulus-response, biocompatibility, and degradability. In addition, cellulose-based hydrogel materials exhibit excellent mechanical properties and designable functions through different preparation methods and structure designs, demonstrating huge development potential. In this review, we have systematically summarized sources and types of cellulose and the formation mechanism of the hydrogel. We have reviewed and discussed the recent progress in the development of cellulose-based hydrogels and introduced their applications such as ionic conduction, thermal insulation, and drug delivery. Also, we analyzed and highlighted the trends and opportunities for the further development of cellulose-based hydrogels as emerging materials in the future.
Collapse
Affiliation(s)
- Pengfei Zou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (P.Z.); (J.Y.); (Y.-N.C.); (T.Z.); (J.C.); (M.Y.)
| | - Jiaxin Yao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (P.Z.); (J.Y.); (Y.-N.C.); (T.Z.); (J.C.); (M.Y.)
| | - Ya-Nan Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (P.Z.); (J.Y.); (Y.-N.C.); (T.Z.); (J.C.); (M.Y.)
| | - Te Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (P.Z.); (J.Y.); (Y.-N.C.); (T.Z.); (J.C.); (M.Y.)
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Junwei Che
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (P.Z.); (J.Y.); (Y.-N.C.); (T.Z.); (J.C.); (M.Y.)
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Meiyan Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (P.Z.); (J.Y.); (Y.-N.C.); (T.Z.); (J.C.); (M.Y.)
| | - Zhiping Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (P.Z.); (J.Y.); (Y.-N.C.); (T.Z.); (J.C.); (M.Y.)
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (P.Z.); (J.Y.); (Y.-N.C.); (T.Z.); (J.C.); (M.Y.)
| |
Collapse
|
38
|
Study on the Fracture Toughness of Softwood and Hardwood Estimated by Boundary Effect Model. MATERIALS 2022; 15:ma15114039. [PMID: 35683337 PMCID: PMC9182387 DOI: 10.3390/ma15114039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 11/17/2022]
Abstract
The tensile strength and fracture toughness of softwood and hardwood are measured by the Boundary Effect Model (BEM). The experimental results of single-edge notched three-point bending tests indicate that the BEM is an appropriate method to estimate the fracture toughness of the present fibrous and porous woods. In softwood with alternating earlywood and latewood layers, the variation in the volume percentage of different layers in a small range has no obvious influence on the mechanical properties of the materials. In contrast, the hardwood presents much higher tensile strength and fracture toughness simultaneously due to its complicated structure with crossed arrangement of the fibers and rays and big vessels diffused in the fibers. The present research findings are expected to provide a fundamental insight into the design of high-performance bionic materials with a highly fibrous and porous structure.
Collapse
|
39
|
Hu F, Zeng J, Li J, Wang B, Cheng Z, Wang T, Chen K. Mechanically Strong Electrically Insulated Nanopapers with High UV Resistance Derived from Aramid Nanofibers and Cellulose Nanofibrils. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14640-14653. [PMID: 35290013 DOI: 10.1021/acsami.2c01597] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Aramid nanofibers (ANFs) have great potential for civil and military applications due to their remarkable mechanical modulus, excellent chemical reliability, and superior thermostability. Unfortunately, the weak combination of neighboring ANFs limits the mechanical properties of ANF-based materials owing to their inherent rigidity and chemical inertness. Herein, high-performance nanopapers are fabricated by introducing a tiny amount of cellulose nanofibrils (CNFs) to serve as reinforcing blocks via vacuum filtration. As a result of the formation of nanosized building blocks and hydrogen-bonding interaction of CNFs, the resultant ANF/CNF nanopaper yields a record-high tensile strength (406.43 ± 16.93 MPa) and toughness (86.13 ± 5.22 MJ m-3), which are 1.8 and 4.3 times higher than those of the pure ANF nanopaper, respectively. When normalized by weight, the specific tensile strength of the nanopaper is as high as 307.90 MPa·g-1·cm3, which is even significantly superior to that of titanium alloys (257 MPa·g-1·cm3). The ANF/CNF nanopaper also possesses excellent dielectric strength (53.42 kV mm-1), superior UV-shielding performance (≥99.999% absorption for ultraviolet radiation), and a favorable thermostability (Tonset = 530 °C). This study proposes a new design strategy for developing ultrathin ANF-based nanopapers combined with high reliability and thermostability for application in high-end electrical insulation fields, such as 5G communication, wearable electronics, and artificial intelligence.
Collapse
Affiliation(s)
- Fugang Hu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| | - Jinsong Zeng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| | - Jinpeng Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| | - Bin Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| | - Zheng Cheng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tianguang Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| | - Kefu Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
40
|
Ge W, Shuai J, Wang Y, Zhou Y, Wang X. Progress on chemical modification of cellulose in “green” solvents. Polym Chem 2022. [DOI: 10.1039/d1py00879j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chemical modification of cellulose in "green" solvents.
Collapse
Affiliation(s)
- Wenjiao Ge
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jianbo Shuai
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuyuan Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuxi Zhou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
41
|
Song Y, Xu Y, Li D, Chen S, Xu F. Sustainable and Superhydrophobic Lignocellulose-Based Transparent Films with Efficient Light Management and Self-Cleaning. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49340-49347. [PMID: 34636231 DOI: 10.1021/acsami.1c14948] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Light-management (LM) films that can regulate transmitted light are significant to diverse fields, such as optoelectronics and energy-efficient buildings. However, for conventional LM films made from petroleum-based polymers, the nonbiodegradability and complicated fabrication process remain a challenge. Herein, we prepare sustainable lignocellulose-based films with excellent light-management capability by facile dissolution and regeneration of wood pulp and the corncob residue from xylitol production (CRXP). The obtained films exhibit high transparency (78%), high haze (61%), and especially remarkable UV-blocking performance (99.94% for UVB and 98.04% for UVA). They achieve consistent indoor light distribution and UV radiation shielding by light management for the application of smart buildings. Furthermore, by spray-coating with SiO2 nanoparticles to construct hierarchical networks, the films are endowed with a superhydrophobic surface with a self-cleaning function to mitigate dust accumulation. Our work provides novel insights into the conversion of lignocellulosic waste to desirable and sustainable functional materials.
Collapse
Affiliation(s)
- Yijia Song
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Yanglei Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Deqiang Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Sheng Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
42
|
Zhang J, Zhong T, Xiang Y, Zhang X, Feng X. Microfibrillated cellulose reinforced poly(vinyl imidazole) cryogels for continuous removal of heavy metals. J Appl Polym Sci 2021. [DOI: 10.1002/app.51456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jinmeng Zhang
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| | - Tianyi Zhong
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| | - Yun Xiang
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| | - Xufeng Zhang
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| | - Xiyun Feng
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| |
Collapse
|
43
|
Zhai L, Kim HC, Muthoka RM, Latif M, Alrobei H, Malik RA, Kim J. Environment-Friendly Zinc Oxide Nanorods-Grown Cellulose Nanofiber Nanocomposite and Its Electromechanical and UV Sensing Behaviors. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1419. [PMID: 34072222 PMCID: PMC8229228 DOI: 10.3390/nano11061419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022]
Abstract
This paper reports a genuine environment-friendly hybrid nanocomposite made by growing zinc oxide (ZnO) nanorods on cellulose nanofiber (CNF) film. The nanocomposite preparation, characterizations, electromechanical property, and ultraviolet (UV) sensing performance are explained. CNF was extracted from the pulp by combining the 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) oxidation and the aqueous counter collision (ACC) methods. The CNF film was fabricated using doctor blade casting, and ZnO nanorods were grown on the CNF film by seeding and by a hydrothermal method. Morphologies, optical transparency, mechanical and electromechanical properties, and UV sensing properties were examined. The nanocomposite's optical transparency was more than 80%, and the piezoelectric charge constant d31 was 200 times larger than the CNF film. The UV sensing performance of the prepared ZnO-CNF nanocomposites was tested in terms of ZnO concentration, UV irradiance intensity, exposure side, and electrode materials. A large aspect ratio of ZnO nanorods and a work function gap between ZnO nanorods and the electrode material are essential for improving the UV sensing performance. However, these conditions should be compromised with transparency. The use of CNF for ZnO-cellulose hybrid nanocomposite is beneficial not only for electromechanical and UV sensing properties but also for high mechanical properties, renewability, biocompatibility, flexibility, non-toxicity, and transparency.
Collapse
Affiliation(s)
- Lindong Zhai
- CRC for Nanocellulose Future Composites, Inha University, Incheon 22212, Korea; (L.Z.); (H.-C.K.); (R.M.M.); (M.L.)
| | - Hyun-Chan Kim
- CRC for Nanocellulose Future Composites, Inha University, Incheon 22212, Korea; (L.Z.); (H.-C.K.); (R.M.M.); (M.L.)
| | - Ruth M. Muthoka
- CRC for Nanocellulose Future Composites, Inha University, Incheon 22212, Korea; (L.Z.); (H.-C.K.); (R.M.M.); (M.L.)
| | - Muhammad Latif
- CRC for Nanocellulose Future Composites, Inha University, Incheon 22212, Korea; (L.Z.); (H.-C.K.); (R.M.M.); (M.L.)
| | - Hussein Alrobei
- Department of Mechanical Engineering, Prince Sattam bin Abdul Aziz University, AlKharj 11942, Saudi Arabia;
| | - Rizwan A. Malik
- Department of Metallurgy and Materials Engineering, University of Engineering and Technology, Taxila 47050, Pakistan;
| | - Jaehwan Kim
- CRC for Nanocellulose Future Composites, Inha University, Incheon 22212, Korea; (L.Z.); (H.-C.K.); (R.M.M.); (M.L.)
| |
Collapse
|
44
|
Ghamari Kargar P, Bagherzade G. The anchoring of a Cu(ii)-salophen complex on magnetic mesoporous cellulose nanofibers: green synthesis and an investigation of its catalytic role in tetrazole reactions through a facile one-pot route. RSC Adv 2021; 11:19203-19220. [PMID: 35478649 PMCID: PMC9033615 DOI: 10.1039/d1ra01913a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/24/2021] [Indexed: 01/12/2023] Open
Abstract
Today, most synthetic methods are aimed at carrying out reactions under more efficient conditions and the realization of the twelve principles of green chemistry. Due to the importance and widespread applications of tetrazoles in various industries, especially in the field of pharmaceutical chemistry, and the expansion of the use of nanocatalysts in the preparation of valuable chemical reaction products, we decided to use an (Fe3O4@NFC@NSalophCu)CO2H nanocatalyst in this project. In this study, the synthesis of the nanocatalyst (Fe3O4@NFC@NSalophCu)CO2H was explained in a step-by-step manner. Confirmation of the structure was obtained based on FT-IR, EDX, FE-SEM, TEM, XRD, VSM, DLS, TGA, H-NMR, and CHNO analyses. The catalyst was applied to the synthesis of 5-substituted-1H-tetrazole and 1-substituted-1H-tetrazole derivatives through multi-component reactions (MCRs), and the performance was assessed. With advances in science and technology and increasing environmental pollution, the use of reagents and methods that are less dangerous for the environment has received much attention. Therefore, following green chemistry principles, with the help of the (Fe3O4@NFC@NSalophCu)CO2H salen complex as a nanocatalyst that is recyclable, cheap, safe, and available, the use of water as a green solvent, and reduced reaction times, the synthesis of tetrazoles can be achieved.
Collapse
Affiliation(s)
- Pouya Ghamari Kargar
- Department of Chemistry, Faculty of Sciences, University of Birjand Birjand 97175-615 Iran
| | - Ghodsieh Bagherzade
- Department of Chemistry, Faculty of Sciences, University of Birjand Birjand 97175-615 Iran +98 56 32345192 +98 56 32345192
| |
Collapse
|
45
|
Recent Progress on the Characterization of Cellulose Nanomaterials by Nanoscale Infrared Spectroscopy. NANOMATERIALS 2021; 11:nano11051353. [PMID: 34065487 PMCID: PMC8190638 DOI: 10.3390/nano11051353] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 01/17/2023]
Abstract
Researches of cellulose nanomaterials have seen nearly exponential growth over the past several decades for versatile applications. The characterization of nanostructural arrangement and local chemical distribution is critical to understand their role when developing cellulose materials. However, with the development of current characterization methods, the simultaneous morphological and chemical characterization of cellulose materials at nanoscale resolution is still challenging. Two fundamentally different nanoscale infrared spectroscopic techniques, namely atomic force microscope based infrared spectroscopy (AFM-IR) and infrared scattering scanning near field optical microscopy (IR s-SNOM), have been established by the integration of AFM with IR spectroscopy to realize nanoscale spatially resolved imaging for both morphological and chemical information. This review aims to summarize and highlight the recent developments in the applications of current state-of-the-art nanoscale IR spectroscopy and imaging to cellulose materials. It briefly outlines the basic principles of AFM-IR and IR s-SNOM, as well as their advantages and limitations to characterize cellulose materials. The uses of AFM-IR and IR s-SNOM for the understanding and development of cellulose materials, including cellulose nanomaterials, cellulose nanocomposites, and plant cell walls, are extensively summarized and discussed. The prospects of future developments in cellulose materials characterization are provided in the final part.
Collapse
|
46
|
Hu J, Li R, Zhu S, Zhang G, Zhu P. Facile preparation and performance study of antibacterial regenerated cellulose carbamate fiber based on N-halamine. CELLULOSE (LONDON, ENGLAND) 2021; 28:4991-5003. [PMID: 33846673 PMCID: PMC8028583 DOI: 10.1007/s10570-021-03836-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/16/2021] [Indexed: 06/01/2023]
Abstract
With the outbreak of coronavirus disease (COVID-19) which has incalculable disasters and economic losses, people have given increasing attention to the health and safety of textile and fiber materials. In this study, an eco-friendly, facile, and cost-effective wet-spinning cellulose carbamate fiber technology was developed, and N-halamine regenerated cellulose fiber (RCC-Cl) with rechargeable and rapid bactericidal properties were prepared by the Lewis acid-assisted chlorination method. The chemical properties of the fibers were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetric analysis, and energy-dispersive X-ray spectroscopy. The mechanical and surface topography of the treated fiber was investigated by tensile testing and scanning electron microscopy. The results showed that the mechanical properties of RCC-Cl fibers can reach a breaking strength of 12.1 cN/tex and a breaking elongation of 41.4% with the optimized spinning process. Furthermore, RCC-Cl showed excellent antimicrobial activities, which can inactivate Escherichia coli and Staphylococcus aureus at a concentration of 107 CFU/mL within 1 min. This work provided a novel approach to produce regenerated cellulose fibers with antibacterial properties, showing great potential in the field of functional textiles.
Collapse
Affiliation(s)
- Jiewen Hu
- College of Textile and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biomass Fibers Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071 China
| | - Ruojia Li
- College of Textile and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biomass Fibers Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071 China
| | - Shaotong Zhu
- College of Textile and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biomass Fibers Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071 China
| | - Gangqiang Zhang
- College of Textile and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biomass Fibers Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071 China
| | - Ping Zhu
- College of Textile and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biomass Fibers Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071 China
| |
Collapse
|
47
|
Hou Y, Guan QF, Xia J, Ling ZC, He Z, Han ZM, Yang HB, Gu P, Zhu Y, Yu SH, Wu H. Strengthening and Toughening Hierarchical Nanocellulose via Humidity-Mediated Interface. ACS NANO 2021; 15:1310-1320. [PMID: 33372752 DOI: 10.1021/acsnano.0c08574] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Undoubtedly humidity is a non-negligible and sensitive problem for cellulose, which is usually regarded as one disadvantage to cellulose-based materials because of the uncontrolled deformation and mechanical decline. But the lack of an in-depth understanding of the interfacial behavior of nanocellulose in particular makes it challenging to maintain anticipated performance for cellulose-based materials under varied relative humidity (RH). Starting from multiscale mechanics, we herein carry out first-principles calculations and large-scale molecular dynamics simulations to demonstrate the humidity-mediated interface in hierarchical cellulose nanocrystals (CNCs) and associated deformation modes. More intriguingly, the simulations and subsequent experiments reveal that water molecules (moisture) as the interfacial media can strengthen and toughen nanocellulose simultaneously within a suitable range of RH. From the perspective of interfacial design in materials, the anomalous mechanical behavior of nanocellulose with humidity-mediated interfaces indicates that flexible hydrogen bonds (HBs) play a pivotal role in the interfacial sliding. The difference between CNC-CNC HBs and CNC-water-CNC HBs triggers the humidity-mediated interfacial slipping in nanocellulose, resulting in the arising of a pronounced strain hardening stage and the suppression of strain localization during uniaxial tension. This inelastic deformation of nanocellulose with humidity-mediated interfaces is similar to the Velcro-like behavior of a wet wood cell wall. Our investigations give evidence that the humidity-mediated interface can promote the mechanical enhancement of nanocellulose, which would provide a promising strategy for the bottom-up design of cellulose-based materials with tailored mechanical properties.
Collapse
Affiliation(s)
- YuanZhen Hou
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Qing-Fang Guan
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Comprehensive National Science Center, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jun Xia
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Zhang-Chi Ling
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Comprehensive National Science Center, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - ZeZhou He
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Zi-Meng Han
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Comprehensive National Science Center, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Huai-Bin Yang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Comprehensive National Science Center, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ping Gu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - YinBo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Shu-Hong Yu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Comprehensive National Science Center, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - HengAn Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
48
|
Xu X, Su Y, Zhang Y, Wu S, Wu K, Fu Q. A Dual-Crosslinked and Anisotropic Regenerated Cellulose/Boron Nitride Nanosheets Film With High Thermal Conductivity, Mechanical Strength, and Toughness. Front Bioeng Biotechnol 2020; 8:602318. [PMID: 33392169 PMCID: PMC7775592 DOI: 10.3389/fbioe.2020.602318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022] Open
Abstract
The highly thermo-conductive but electrically insulating film, with desirable mechanical performances, is extremely demanded for thermal management of portable and wearable electronics. The integration of boron nitride nanosheets (BNNSs) with regenerated cellulose (RC) is a sustainable strategy to satisfy these requirements, while its practical application is still restricted by the brittle fracture and loss of toughness of the composite films especially at the high BNNS addition. Herein, a dual-crosslinked strategy accompanied with uniaxial pre-stretching treatment was introduced to engineer the artificial RC/BNNS film, in which partial chemical bonding interactions enable the effective interfiber slippage and prevent any mechanical fracture, while non-covalent hydrogen bonding interactions serve as the sacrifice bonds to dissipate the stress energy, resulting in a simultaneous high mechanical strength (103.4 MPa) and toughness (10.2 MJ/m3) at the BNNS content of 45 wt%. More importantly, attributed to the highly anisotropic configuration of BNNS, the RC/BNNS composite film also behaves as an extraordinary in-plane thermal conductivity of 15.2 W/m·K. Along with additional favorable water resistance and bending tolerance, this tactfully engineered film ensures promised applications for heat dissipation in powerful electronic devices.
Collapse
Affiliation(s)
- Xuran Xu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Yichuan Su
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory for Soft Chemistry and Functional Materials of the Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Yongzheng Zhang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory for Soft Chemistry and Functional Materials of the Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Shuaining Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Kai Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory for Soft Chemistry and Functional Materials of the Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China.,Key Laboratory of Advanced Technologies of Materials, Ministry of Education China, Southwest Jiaotong University, Chengdu, China
| | - Qiang Fu
- Key Laboratory for Soft Chemistry and Functional Materials of the Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|