1
|
Chen F, Zhou Q, Yu S, Guo S, Guo M, Zhang C, Guan Z, Xie H, Li C. High loading of atomically exposed edge nickel sites embedded in hollow porous carbon nanofibers for enhanced methanol electrooxidation in direct methanol fuel cells. J Colloid Interface Sci 2025; 692:137488. [PMID: 40188793 DOI: 10.1016/j.jcis.2025.137488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/20/2025] [Accepted: 03/30/2025] [Indexed: 05/02/2025]
Abstract
The enhancement of catalytic activity and durability for atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts in methanol oxidation reaction (MOR) anodes within direct methanol fuel cells presents a significant challenge. Here, we developed hollow porous nanofiber catalysts featuring edge Ni-N4 atomic sites through coaxial electrostatic spinning with domain-restricted Ni atoms embedded within a zeolitic imidazolium ester backbone, thereby increasing the exposure of accessible active sites (Ni: 4.96 %). The distinctive hollow porous fiber morphology and hierarchical structure facilitate convenient electronic conductivity and mass transport of reactants. Theoretical findings indicate that the surface adsorption of methanol at the edge Ni-N4 atomic sites exhibits negative free energy, promoting the adsorption and activation of reactants. Furthermore, the initial dehydrogenation step demonstrates a low free energy change, favoring reaction kinetics. The membrane electrode assembly achieved a power density of 42.2 mW cm-2 in single-cell application tests while displaying improved durability. This research provides valuable insights for future advancements in single-atom catalyst development for fuel cells or other energy applications.
Collapse
Affiliation(s)
- Fei Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Quan Zhou
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shuyan Yu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shiquan Guo
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Man Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chong Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ziyu Guan
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou 310003, China
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
2
|
Wu Y, Sun Z, Wang C, Ran R, Zhou W, Liao K. Enabling High-Power-Density Zn-Air Batteries via Oxygen Trapping in Lotus-Effect-Inspired Hydrophobic Air Electrodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2504245. [PMID: 40411874 DOI: 10.1002/smll.202504245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 05/17/2025] [Indexed: 05/26/2025]
Abstract
The sluggish oxygen diffusion kinetics at the triple-phase boundary of the air cathode significantly limit the optimal power output of Zn-air batteries (ZABs). Inspired by the "lotus effect", this study developed a bifunctional electrocatalyst, Co─NCNTs, featuring a lotus leaf-like structure, and constructed a 3D hydrophobic architecture to expand the triple-phase boundaries. Consequently, the hydrophobic Co─NCNTs electrode (contact angle >140°) demonstrated enhanced oxygen adsorption on the air cathode surface compared to the hydrophilic Co─NC electrode (contact angle <70°). The assembled ZABs incorporating the lotus-effect-inspired bionic Co─NCNTs achieved a remarkable power density of 341 mW cm-2, nearly double that of the hydrophilic Co─NC-based battery (178 mW cm-2), and exhibited exceptional cycling stability, operating continuously for 700 h at a current density of 10 mA cm-2. This work highlights the efficacy of hydrophobic interface engineering in improving the reaction kinetics of air cathodes in ZABs through bionic design, offering a promising strategy for enhancing the power density of oxygen-involved energy storage systems.
Collapse
Affiliation(s)
- Yue Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhenyu Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Cuie Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Ran Ran
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Kaiming Liao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
3
|
Batsaikhan E, Hayashi M, Sainbileg B. Spin: an essential factor in advancing the oxygen evolution reaction on 2D Fe-MOF. Phys Chem Chem Phys 2025. [PMID: 40396575 DOI: 10.1039/d5cp01173f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
The oxygen evolution reaction (OER) is a crucial component in oxygen-involving reactions and plays a vital role in developing sustainable energy conversion technologies. However, it still requires developing efficient catalysts that can overcome the sluggish reaction kinetics. Recent studies on oxygen electrocatalysis predominantly focussed on the thermodynamic viewpoint of oxygen adsorption, while the catalytic role of spin remains greatly elusive. In this work, we investigated the impact of spin on the OER performance of a two-dimensional iron-based metal-organic framework (2D Fe-MOF) using spin-polarized first-principles calculations. Our results reveal that the pristine Fe-MOF in the high spin state exhibits electronic properties suitable for an OER electrocatalyst. Even after adsorption, the Fe-MOF preserves its high spin state; such magnetic stability ensures the consistent application of the OER. Moreover, adsorption on a 2D Fe-MOF is spin-dependent. It validates that the spin states can regulate the adsorption strength for the OER. Remarkably, the spin-sensitive 2D Fe-MOF yields a significantly low overpotential of 0.49 V, comparable to precious catalysts. Furthermore, the spin-related charge transfer and orbital interaction originate from the overlapping between the O pz of the oxygen intermediates and the Fe dz2 of the Fe active site. This reveals that the OER on the Fe-MOF is dependent on the selective spin-orbital. Overall, the spin is inevitable in enhancing the OER process, making our work valuable in the development of MOF catalysts. Our finding enriches the atomistic understanding of the OER in the development of noble-metal-free MOF catalysts.
Collapse
Affiliation(s)
- Erdembayalag Batsaikhan
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan.
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei 106, Taiwan
| | - Michitoshi Hayashi
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan.
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei 106, Taiwan
- National Center for Theoretical Sciences, Taipei 106, Taiwan
| | - Batjargal Sainbileg
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan.
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
4
|
Chen Y, Li J, Chen Y, Cheng Y, Tian X, Xiao D, Wang HT, Lu YR, Zhang L, Lin W, Luo J, Han L. Nitrogen-doping-induced electron spin polarization activates scandium oxide as high-performance zinc-air battery cathode. J Colloid Interface Sci 2025; 686:96-106. [PMID: 39892013 DOI: 10.1016/j.jcis.2025.01.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
Platinum (Pt) is the most active catalyst for the oxygen reduction reaction (ORR). However, the scarcity, high cost, and susceptibility to deactivation of Pt constrain its large-scale applications. Transition metal oxide (TMO) materials have emerged as promising alternatives due to their abundant availability and catalytic potential. Herein, we report a dissolution-and-carbonization strategy to synthesize a carbon-supported nitrogen-doped Sc2O3 catalyst (N-Sc2O3/C). Nitrogen doping significantly enhances the conductivity of the otherwise poor-conductivity Sc2O3, transforming it into a superior ORR catalyst. The synthesized N-Sc2O3/C exhibits remarkable ORR performance in 0.1 M KOH, achieving a half-wave potential of 0.92 V, which is 55 mV higher than the state-of-the-art commercial Pt/C (0.87 V). Moreover, as a cathode for a zinc-air battery, N-Sc2O3/C achieves a peak power density of 150.7 mW cm-2 and a specific capacity of 766.4 mAh gZn-1. Density functional theory calculations reveal that nitrogen doping induces electron spin polarization within Sc2O3, narrowing the bandgap. This enhanced electronic structure improves conductivity and optimizes the adsorption of oxygen intermediates, thereby facilitating the ORR process. Our study demonstrates that nitrogen doping activates the wide-bandgap Sc2O3 semiconductor, converting it into a highly efficient ORR electrocatalyst and highlighting the potential of wide-bandgap TMO materials in energy applications.
Collapse
Affiliation(s)
- Yuhui Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 China; Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 China
| | - Jun Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 China
| | - Yiqing Chen
- Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A0C9, Canada
| | - Ying Cheng
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xinxin Tian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 China
| | - Dongdong Xiao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hsiao-Tsu Wang
- Department of Physics, Tamkang University, New Taipei City 251301, Taiwan
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Linjie Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 China.
| | - Wenlie Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 China.
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study University of Electronic Science and Technology of China, Longhua District, Shenzhen 518110, China
| | - Lili Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 China.
| |
Collapse
|
5
|
Liu M, Hu C, Shen K, Chen L, Li Y. Edge-hosted Fe single-atomic sites fabricated by a Bi-assisted pyrolysis strategy for electroreduction of CO 2. Chem Commun (Camb) 2025; 61:7081-7084. [PMID: 40237156 DOI: 10.1039/d5cc01134e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
We develop a Bi-assisted pyrolysis method to fabricate rich-edge N-doped carbon anchored with Fe active sites using Fe-doped Bi-MOF as a precursor. During pyrolysis, Bi aggregation forms edge-rich nanobelts, while the subsequent Bi evaporation generates mesopores, increasing edge-hosted Fe site density. The resulting catalyst exhibits superior intrinsic activity and selectivity for CO2-to-CO, outperforming in-plane Fe single sites.
Collapse
Affiliation(s)
- Miaoling Liu
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Chenghong Hu
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Kui Shen
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Liyu Chen
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yingwei Li
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
6
|
Cheng X, Yin S, Zhang J, Yang J, Chen L, Wang W, Liao H, Huang R, Jiang Y, Zhang B, Sun S. Low-Temperature Pyrolysis: A Universal Route to High-Loading Single-Atom Catalysts for Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2501707. [PMID: 40181648 DOI: 10.1002/adma.202501707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/18/2025] [Indexed: 04/05/2025]
Abstract
High-temperature pyrolysis (HTP, ≥900 °C) is a widely used method for synthesizing single-atom catalysts (SACs). However, the high operational temperatures required for HTP pose significant challenges in achieving high single-atom loading, primarily due to the Ostwald ripening effect. In this work, a low-temperature trans-metalation synthesis approach is developed which involves the exchange of cation between transition metal ions (M = Fe, Co, Cu, Ni, Mn, etc) and Zn2+ ions on a nitrogen-doped carbon (NC) matrix within a molten salt medium. This strategy effectively avoids phase transformations and enables the direct formation of high mass loading (3.7-4.7 wt.%) of atomically dispersed M-N4 sites. Both experimental and theoretical analyses confirm that this cation-exchange occurs at a lower temperature threshold of 450 °C, significantly reducing the energy barriers for SACs synthesis. Furthermore, the synthesized catalyst with atomically dispersed Fe sites demonstrate excellent performance toward oxygen reduction reaction and fuel cell with a peak power density of 1.12 W cm-2 in an H2─O2 fuel cell at 1.0 bar and 80 °C.
Collapse
Affiliation(s)
- Xiaoyang Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering Xiamen University, Xiamen, 361005, China
| | - Shuhu Yin
- School of Microelectronics and School of Integrated Circuits, Nantong University, Nantong, 226019, China
| | - Jianing Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering Xiamen University, Xiamen, 361005, China
| | - Jian Yang
- Center of Advanced Electrochemical Energy, Institute of Advanced Interdisciplinary Studies, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Long Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering Xiamen University, Xiamen, 361005, China
| | - Wu Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering Xiamen University, Xiamen, 361005, China
| | - Honggang Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering Xiamen University, Xiamen, 361005, China
| | - Rui Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering Xiamen University, Xiamen, 361005, China
| | - Yanxia Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering Xiamen University, Xiamen, 361005, China
| | - Binwei Zhang
- Center of Advanced Electrochemical Energy, Institute of Advanced Interdisciplinary Studies, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Shigang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering Xiamen University, Xiamen, 361005, China
- Center of Advanced Electrochemical Energy, Institute of Advanced Interdisciplinary Studies, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
7
|
Zhao ZH, Ma D, Zhuang Z, Wang K, Xu C, Sun K, Deng SQ, Yan W, Zhang J. Atomically dispersed iron-zinc dual-metal sites to boost catalytic oxygen reduction activities for efficient zinc-air batteries. NANOSCALE 2025; 17:9515-9524. [PMID: 40130302 DOI: 10.1039/d5nr00302d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Developing asymmetric heteronuclear dual-atom catalysts (DACs) through coordination microenvironment regulation and investigating their structure-activity relationship for the catalytic oxygen reduction reaction (ORR) are crucial for energy conversion and storage devices such as zinc-air batteries (ZABs). In this work, a novel catalyst with its Fe and Zn diatomic sites atomically dispersed on nitrogen-doped hierarchical porous carbon (FeZn-NC-800) was designed and synthesized under a cyanamide-assisted sintering atmosphere to stabilize Zn single atoms in the structure. Benefiting from specific synergy between the Fe and Zn atoms and the hierarchical porous carbon substrate, the obtained FeZn-NC-800 catalyst exhibits remarkable ORR performance with a positive half-wave potential of 0.89 V and good durability, outstripping the performance of most state-of-the-art catalysts and commercial precious metal catalysts. Moreover, the ZABs assembled with the FeZn-NC-800 cathodes exhibit an excellent peak power density of 218.6 mW cm-2 and achieve stable cycling for over 200 hours at a current density of 10 mA cm-2. This study provides a fresh new insight into the development of stable and highly active DAC materials, advancing the design of next-generation energy technologies.
Collapse
Affiliation(s)
- Zi-Han Zhao
- School of Materials Science and Engineering, Fuzhou University, Fuzhou City, Fujian Province, 350108, P.R. China.
- Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment & Systems, Fuzhou University, Fuzhou City, Fujian Province, 350108, P.R. China
| | - Dakai Ma
- School of Materials Science and Engineering, Fuzhou University, Fuzhou City, Fujian Province, 350108, P.R. China.
- Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment & Systems, Fuzhou University, Fuzhou City, Fujian Province, 350108, P.R. China
| | - Zewen Zhuang
- School of Materials Science and Engineering, Fuzhou University, Fuzhou City, Fujian Province, 350108, P.R. China.
- Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment & Systems, Fuzhou University, Fuzhou City, Fujian Province, 350108, P.R. China
| | - Kaili Wang
- School of Materials Science and Engineering, Fuzhou University, Fuzhou City, Fujian Province, 350108, P.R. China.
- Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment & Systems, Fuzhou University, Fuzhou City, Fujian Province, 350108, P.R. China
| | - Chenhui Xu
- School of Materials Science and Engineering, Fuzhou University, Fuzhou City, Fujian Province, 350108, P.R. China.
- Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment & Systems, Fuzhou University, Fuzhou City, Fujian Province, 350108, P.R. China
| | - Kaian Sun
- School of Materials Science and Engineering, Fuzhou University, Fuzhou City, Fujian Province, 350108, P.R. China.
- Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment & Systems, Fuzhou University, Fuzhou City, Fujian Province, 350108, P.R. China
| | - Shu-Qi Deng
- School of Materials Science and Engineering, Fuzhou University, Fuzhou City, Fujian Province, 350108, P.R. China.
- Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment & Systems, Fuzhou University, Fuzhou City, Fujian Province, 350108, P.R. China
| | - Wei Yan
- School of Materials Science and Engineering, Fuzhou University, Fuzhou City, Fujian Province, 350108, P.R. China.
- Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment & Systems, Fuzhou University, Fuzhou City, Fujian Province, 350108, P.R. China
| | - Jiujun Zhang
- School of Materials Science and Engineering, Fuzhou University, Fuzhou City, Fujian Province, 350108, P.R. China.
- Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment & Systems, Fuzhou University, Fuzhou City, Fujian Province, 350108, P.R. China
| |
Collapse
|
8
|
Ma Q, Liao Y, Zhao Q, Gan R, Ran Y, Cheng G, Wang L, Zhang Y. Triggering Synergistic Electronic Effect via Electron-Directed Transfer within Pt NPs-Fe/NC Oxygen Reduction Catalyst for Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500344. [PMID: 40018764 DOI: 10.1002/smll.202500344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/03/2025] [Indexed: 03/01/2025]
Abstract
Rationally tuning Fe-N-C catalysts with synergistic nanoparticles for efficient oxygen reduction reaction (ORR) still remains challenging. Here, a nitrogen-doped carbon-supported bimetallic catalyst (PtNPs-Fe/NC), combining atomically dispersed Fe-N-C sites with Pt nanoparticles, is synthesized. Experimental results reveal a directional electron transfer between Pt nanoparticles and Fe sites, which induces an electron synergistic effect, effectively modulating the electron density around the Fe sites. The modulation significantly enhances the ORR catalytic activity of PtNPs-Fe/NC. As a result, PtNPs-Fe/NC displays a half-wave potential of 0.901 V (versus RHE) and a Tafel slope of 59 mV dec-1, surpassing the performance of commercial Pt/C and demonstrating accelerated reaction kinetics. In the meantime, PtNPs-Fe/NC maintains excellent durability in terms of stability as well. When assembled into liquid zinc-air batteries (ZABs), PtNPs-Fe/NC delivers a peak power density of 201.48 mW cm-2 and a specific capacity of 809 mAh g-1. Additionally, PtNPs-Fe/NC-based flexible ZABs display outstanding discharge performance and cycling stability. This work highlights the effectiveness of multiscale catalytic sites in advancing ORR catalyst performance and provides valuable insights into the construction strategies of catalysts for energy storage applications.
Collapse
Affiliation(s)
- Quanlei Ma
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yijing Liao
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Qin Zhao
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Rong Gan
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yiling Ran
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Guidan Cheng
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Lixiang Wang
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yan Zhang
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
9
|
Li C, Yang H, He H, Yu J, Wang J, Zhang S, Deng C. Simultaneous modulation of double-coordination shells at cobalt atomic site towards superior oxygen electrocatalysis. J Colloid Interface Sci 2025; 682:804-813. [PMID: 39644750 DOI: 10.1016/j.jcis.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/01/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Engineering the coordination microenvironment surrounding the single atom sites (SA) presents a great opportunity to enhance their catalytic performance. In this work, we report the rational design of the cobalt SA sites with simultaneous modifications to the double coordination shells of the Co atom. In the first coordination shell, a vacancy is introduced to create the asymmetric Co-N3-V configuration, where V denotes the vacancy. Meanwhile, phosphorus (P) atoms are doped into the carbon substrate to regulate the local environment of the second shell surrounding the Co site. These simultaneous modifications to the double-shell coordination influence the charge density of the active centers, and ultimately improve their activities. Additionally, the one-dimensional (1D) carbon substrate, that is composed of connected bubbles (BCF), provides a conductive and porous framework that facilitates fast kinetics. Taking these advantages, the Co-N-V/P@BCF catalyst demonstrates exceptional bifunctional oxygen catalytic behavior. Furthermore, the robust mechanical properties of Co-N-V/P@BCF, as evidenced by finite element analysis (FEA), endow the full Zn-air battery (ZAB) with remarkable reliability, flexibility, and stable high-rate long-term performance under diverse operating conditions. Therefore, this work not only offers new insights into regulating the electronic structure of single-atomic sites, but also promotes the development of ZAB for various applications.
Collapse
Affiliation(s)
- Caiyun Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China
| | - Hongrui Yang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China
| | - Hanwen He
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China
| | - Jiabei Yu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China
| | - Jin Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China
| | - Sen Zhang
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang, China.
| | - Chao Deng
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China.
| |
Collapse
|
10
|
Ma C, Xiao Q, Wang Y, Zhou Y, Yang Z, Che H. Efficient photocatalytic in-situ Fenton degradation of 2,4-dichlorophenol via anthraquinone-modified carbon nitride for 2e - oxygen reduction. J Colloid Interface Sci 2025; 678:180-190. [PMID: 39293362 DOI: 10.1016/j.jcis.2024.09.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Constructing a photocatalytic in-situ Fenton system (PISFs) is a promising strategy to address the need for continuous hydrogen peroxide (H2O2) addition and the low efficiency of H2O2 activation for hydroxyl radical generation in the traditional Fenton reaction. In this study, we constructed a photocatalytic in-situ Fenton system using anthraquinone-modified carbon nitride (AQ-C3N4) for efficient pollutant degradation. The resultant AQ-C3N4 not only enhanced the production of H2O2 but also increased the generation of hydroxyl radical (·OH). Experimental results demonstrated that, the apparent rate constant for the degradation of 2,4-Dichlorophenol (2,4-DCP) by AQ-C3N4-PISFs was 0.145 min-1, which is 2.74 times higher than that of C3N4 under visible light. Density functional theory (DFT) calculations indicate that AQ modification promotes electron-hole separation while increasing the adsorption energy of O2. Independent gradient model (IGM) analysis based on Hirshfeld Partition revealed that van der Waals interactions between AQ-C3N4 and 2,4-DCP promoted the degradation process. This work provides new ideas to overcome the problems of continuous addition of H2O2 and low utilization of ·OH that exist in conventional Fenton system.
Collapse
Affiliation(s)
- Chenwei Ma
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing 210098, China
| | - Quanxi Xiao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing 210098, China
| | - Yufei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing 210098, China
| | - Yundi Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing 210098, China
| | - Zihe Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing 210098, China
| | - Huinan Che
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing 210098, China.
| |
Collapse
|
11
|
Lu S, Zhang Z, Cheng C, Zhang B, Shi Y. Unveiling the Aggregation of M-N-C Single Atoms into Highly Efficient MOOH Nanoclusters during Alkaline Water Oxidation. Angew Chem Int Ed Engl 2025; 64:e202413308. [PMID: 39191657 DOI: 10.1002/anie.202413308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
M-N-C-type single-atom catalysts (SACs) are highly efficient for the electrocatalytic oxygen evolution reaction (OER). And the isolated metal atoms are usually considered real active sites. However, the oxidative structural evolution of coordinated N during the OER will probably damage the structure of M-N-C, hence resulting in a completely different reaction mechanism. Here, we reveal the aggregation of M-N-C materials during the alkaline OER. Taking Ni-N-C as an example, multiple characterizations show that the coordinated N on the surface of Ni-N-C is almost completely dissolved in the form of NO3 -, accompanied by the generation of abundant O functional groups on the surface of the carbon support. Accordingly, the Ni-N bonds are broken. Through a dissolution-redeposition mechanism and further oxidation, the isolated Ni atoms are finally converted to NiOOH nanoclusters supported by carbon as the real active sites for the enhanced OER. Fe-N-C and Co-N-C also have similar aggregation mechanism. Our findings provide unique insight into the structural evolution and activity origin of M-N-C-based catalysts under electrooxidative conditions.
Collapse
Affiliation(s)
- Shanshan Lu
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, 300072, Tianjin, China
| | - Zhipu Zhang
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, 300072, Tianjin, China
| | - Chuanqi Cheng
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, 300072, Tianjin, China
| | - Bin Zhang
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, 300072, Tianjin, China
| | - Yanmei Shi
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, 300072, Tianjin, China
| |
Collapse
|
12
|
Dessalle A, Quílez-Bermejo J, Hounfodji JW, Badawi M, Zitolo A, Emo M, Izquierdo MT, Xu F, Fierro V, Celzard A. Modulating the Iron Microenvironment for a Cooperative Interplay Between Fe-N-C Single Atoms and Fe 3C Nanoclusters on the Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409474. [PMID: 39593271 DOI: 10.1002/smll.202409474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/12/2024] [Indexed: 11/28/2024]
Abstract
The coexistence of single atoms and nanoparticles is shown to increase the oxygen reduction performance in Fe-N-C electrocatalysts, but the mechanisms underlying this synergistic effect remain elusive. In this study, model Fe-N-C electrocatalysts with controlled ratios of FeN4 sites and Fe3C nanoclusters is systematically designed and synthesized. Experiments and density functional theory (DFT) computations reveal that Fe3C nanoclusters near FeN4 sites modulate the electron density of the Fe single-atom microenvironment through an electron withdrawing effect. This substantially alters the oxygen reduction reaction (ORR) mechanisms and boosts the catalytic performance of FeN4 sites. This study provides fundamental insights into the dynamic catalytic impact of single atoms and nanoparticle coexistence in advanced Fe-N-C electrocatalysts for the ORR, paving the way for further refinement through various combinations.
Collapse
Affiliation(s)
- Anthony Dessalle
- Centre National de la Recherche Scientifique (CNRS), Institut Jean Lamour (IJL), Université de Lorraine, Épinal, F-88000, France
- CNRS, Laboratoire Énergies et Mécanique Théorique et Appliquée (LEMTA), Université de Lorraine, Vandœuvre-lès-Nancy, F-54500, France
| | - Javier Quílez-Bermejo
- Centre National de la Recherche Scientifique (CNRS), Institut Jean Lamour (IJL), Université de Lorraine, Épinal, F-88000, France
| | - Jean Wilfried Hounfodji
- CNRS, Laboratoire Lorrain de Chimie Moléculaire (L2CM), Université de Lorraine, Metz, F-57000, France
| | - Michael Badawi
- CNRS, Laboratoire Lorrain de Chimie Moléculaire (L2CM), Université de Lorraine, Metz, F-57000, France
| | - Andrea Zitolo
- Synchrotron SOLEIL, Départementale 128, Saint Aubin, 91190, France
| | - Mélanie Emo
- Institut Jean Lamour (IJL), Université de Lorraine, Nancy, 54011, France
| | - María T Izquierdo
- Instituto de Carboquímica (ICB-CSIC), Miguel Luesma Castán 4, Zaragoza, E-50018, Spain
| | - Feina Xu
- CNRS, Laboratoire Énergies et Mécanique Théorique et Appliquée (LEMTA), Université de Lorraine, Vandœuvre-lès-Nancy, F-54500, France
| | - Vanessa Fierro
- Centre National de la Recherche Scientifique (CNRS), Institut Jean Lamour (IJL), Université de Lorraine, Épinal, F-88000, France
| | - Alain Celzard
- Centre National de la Recherche Scientifique (CNRS), Institut Jean Lamour (IJL), Université de Lorraine, Épinal, F-88000, France
- Institut Universitaire de France (IUF), Paris, F-75231, France
| |
Collapse
|
13
|
Xu Z, Xiao T, Li Y, Pan Y, Li C, Liu P, Xu Q, Tian F, Wu L, Xu F, Mai Y. Assessing the Effect of a Schwarz P Surface on the Oxygen Electroreduction Performance of Porous Single-Atom Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416204. [PMID: 39570097 DOI: 10.1002/adma.202416204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Indexed: 11/22/2024]
Abstract
The surface curvature of catalysts has a decisive impact on their catalytic performance. However, the influence of a negative-Gaussian-curvature surface on the catalytic performance of porous catalysts has remained unexplored due to the lack of suitable samples. Bicontinuous-structured porous structures can serve as ideal models, but they are known as "Plumber's nightmare" due to their highly difficult preparation. Here, using metal-organic frameworks as the precursor and polymer cubosomes as the template, a bicontinuous mesoporous Fe single-atom catalyst (named bmFeSAC) with a Schwarz P surface is synthesized. The bmFeSAC catalyst has a large specific surface area of 916 m2 g-1 and uniformly distributed Fe-N4 active sites with a 1.80 wt.% Fe content. The continuous channels enabled high utilization efficiency of the Fe-N4 catalytic sites, while the negative-Gaussian-curvature surface enabled low reaction energy barrier. As an electrocatalyst of the oxygen reduction reaction, bmFeSAC delivered a high half-wave potential of 0.931 V versus. RHE in alkaline electrolyte, reaching the leading level among those of the reported state-of-the-art electrocatalysts. Furthermore, the bmFeSAC-based Zn-air batteries exhibited excellent performance, demonstrating the potential application of bmFeSAC. This study revealed that a bicontinuous-structured porous structure can improve catalytic activity by increasing the utilization ratio of catalytic sites and, more importantly, by regulating the electronic structure of catalyst surfaces through the negative-Gaussian-curvature.
Collapse
Affiliation(s)
- Zhi Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianyu Xiao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yinghua Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Pan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pan Liu
- School of Materials Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Feng Tian
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
14
|
Zou H, Shu S, Yang W, Chu YC, Cheng M, Dong H, Liu H, Li F, Hu J, Wang Z, Liu W, Chen HM, Duan L. Steering acidic oxygen reduction selectivity of single-atom catalysts through the second sphere effect. Nat Commun 2024; 15:10818. [PMID: 39737986 DOI: 10.1038/s41467-024-55116-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
Natural enzymes feature distinctive second spheres near their active sites, leading to exquisite catalytic reactivity. However, incumbent synthetic strategies offer limited versatility in functionalizing the second spheres of heterogeneous catalysts. Here, we prepare an enzyme-mimetic single Co-N4 atom catalyst with an elaborately configured pendant amine group in the second sphere via 1,3-dipolar cycloaddition, which switches the oxygen reduction reaction selectivity from the 4e- to the 2e- pathway under acidic conditions. Proton inventory studies and theoretical calculations reveal that the introduced pendant amine acts as a proton relay and promotes the protonation of *O2 to *OOH on the Co-N4 active site, facilitating H2O2 production. The second sphere-tailored Co-N4 sites reach optima H2O2 selectivity of 97% ± 1.13%, showing a 3.46-fold enhancement to bare Co-N4 catalyst (28% ± 1.75%). This work provides an appealed approach for enzyme-like catalyst design, bridging the gap between enzymatic and heterogeneous catalysis.
Collapse
Affiliation(s)
- Haiyuan Zou
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Siyan Shu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, China
| | - Wenqiang Yang
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, Lyngby, Denmark
| | - You-Chiuan Chu
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, Taiwan
| | - Minglun Cheng
- Hebei Key Laboratory of Active Components and Functions in Natural Products, College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Shanghai, China
| | - Hong Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Fan Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Junhui Hu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Zhenbin Wang
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, Lyngby, Denmark
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR, China
| | - Wei Liu
- School of Chemistry, Dalian University of Technology, Dalian, China
| | - Hao Ming Chen
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, Taiwan
| | - Lele Duan
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, China.
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co. Ltd, Hangzhou, Zhejiang, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
15
|
Liu Y, Su X, Ding J, Zhou J, Liu Z, Wei X, Yang HB, Liu B. Progress and challenges in structural, in situ and operando characterization of single-atom catalysts by X-ray based synchrotron radiation techniques. Chem Soc Rev 2024; 53:11850-11887. [PMID: 39434695 DOI: 10.1039/d3cs00967j] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Single-atom catalysts (SACs) represent the ultimate size limit of nanoscale catalysts, combining the advantages of homogeneous and heterogeneous catalysts. SACs have isolated single-atom active sites that exhibit high atomic utilization efficiency, unique catalytic activity, and selectivity. Over the past few decades, synchrotron radiation techniques have played a crucial role in studying single-atom catalysis by identifying catalyst structures and enabling the understanding of reaction mechanisms. The profound comprehension of spectroscopic techniques and characteristics pertaining to SACs is important for exploring their catalytic activity origins and devising high-performance and stable SACs for industrial applications. In this review, we provide a comprehensive overview of the recent advances in X-ray based synchrotron radiation techniques for structural characterization and in situ/operando observation of SACs under reaction conditions. We emphasize the correlation between spectral fine features and structural characteristics of SACs, along with their analytical limitations. The development of IMST with spatial and temporal resolution is also discussed along with their significance in revealing the structural characteristics and reaction mechanisms of SACs. Additionally, this review explores the study of active center states using spectral fine characteristics combined with theoretical simulations, as well as spectroscopic analysis strategies utilizing machine learning methods to address challenges posed by atomic distribution inhomogeneity in SACs while envisaging potential applications integrating artificial intelligence seamlessly with experiments for real-time monitoring of single-atom catalytic processes.
Collapse
Affiliation(s)
- Yuhang Liu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xiaozhi Su
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Jie Ding
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China.
| | - Jing Zhou
- College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Zhen Liu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Xiangjun Wei
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China.
- Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
16
|
Hu C, Hong X, Liu M, Shen K, Chen L, Li Y. Hierarchically Ordered Pore Engineering of Carbon Supports with High-Density Edge-Type Single-Atom Sites to Boost Electrochemical CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409531. [PMID: 39361258 DOI: 10.1002/adma.202409531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/01/2024] [Indexed: 11/29/2024]
Abstract
Metal sites at the edge of the carbon matrix possess unique geometric and electronic structures, exhibiting higher intrinsic activity than in-plane sites. However, creating single-atom catalysts with high-density edge sites remains challenging. Herein, the hierarchically ordered pore engineering of metal-organic framework-based materials to construct high-density edge-type single-atomic Ni sites for electrochemical CO2 reduction reaction (CO2RR) is reported. The created ordered macroporous structure can expose enriched edges, further increased by hollowing the pore walls, which overcomes the low edge percentage in the traditional microporous substrates. The prepared single-atomic Ni sites on the ordered macroporous carbon with ultra-thin hollow walls (Ni/H-OMC) exhibit Faraday efficiencies of CO above 90% in an ultra-wide potential window of 600 mV and a turnover frequency of 3.4 × 104 h-1, much superior than that of the microporous material with dominant plane-type sites. Theory calculations reveal that NiN4 sites at the edges have a significantly disrupted charge distribution, forming electron-rich Ni centers with enhanced adsorption ability with *COOH, thereby boosting CO2RR efficiency. Furthermore, a Zn-CO2 battery using the Ni/H-OMC cathode shows an unprecedentedly high power density of 15.9 mW cm-2 and maintains an exceptionally stable charge-discharge performance over 100 h.
Collapse
Affiliation(s)
- Chenghong Hu
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Ximeng Hong
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Miaoling Liu
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Kui Shen
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Liyu Chen
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yingwei Li
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
17
|
Pollet BG, Kalanur SS. Applications of Ferric Oxide in Water Splitting by Electrolysis: A Comprehensive Review. Molecules 2024; 29:4990. [PMID: 39519631 PMCID: PMC11547600 DOI: 10.3390/molecules29214990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
In water electrolysis, the use of an efficient catalyst derived from earth-abundant materials which is cost-effective and stable is essential for the economic sustainability of hydrogen production. A wide range of catalytic materials have been reported upon so far, among which Fe2O3 stands out as one of the most credible candidates in terms of cost and abundance. However, Fe2O3 faces several limitations due to its poor charge transfer properties and catalytic ability; thus, significant modifications are essential for its effective utilization. Considering the future of water electrolysis, this review provides a detailed summary of Fe2O3 materials employed in electrolytic applications with a focus on critically assessing the key electrode modifications that are essential for the materials' utilization as efficient electrocatalysts. With this in mind, Fe2O3 was implemented in a heterojunction/composite, doped, carbon supported, crystal facet tuned system, as well as in metal organic framework (MOF) systems. Furthermore, Fe2O3 was utilized in alkaline, seawater, anion exchange membrane, and solid oxide electrolysis systems. Recently, magnetic field-assisted water electrolysis has also been explored. This comprehensive review highlights the fact that the applicability of Fe2O3 in electrolysis is limited, and hence, intense and strategically focused research is vital for converting Fe2O3 into a commercially viable, cost-effective, and efficient catalyst material.
Collapse
Affiliation(s)
| | - Shankara S. Kalanur
- Green Hydrogen Lab (GH2Lab), Hydrogen Research Institute (HRI), Université du Québec à Trois Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G9A 5H7, Canada;
| |
Collapse
|
18
|
Li B, Liu J, Zhao C, Hu A, Sun X, Mei B, Long J. Carbothermal Reduction-Assisted Synthesis of a Carbon-Supported Highly Dispersed PtSn Nanoalloy for the Oxygen Reduction Reaction. Inorg Chem 2024; 63:19322-19331. [PMID: 39361814 DOI: 10.1021/acs.inorgchem.4c03099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Exploring high-performance and low-platinum-based electrocatalysts to accelerate the oxygen reduction reaction (ORR) at the air cathode of zinc-air batteries remains crucial. Herein, by combining electroless deposition and carbothermal reduction, a nitrogen-doped carbon-supported highly dispersed PtSn alloy nanocatalyst (PtSn/NC) was prepared for a high-efficiency ORR process. Electrochemical measurements show that PtSn/NC exhibits excellent electrocatalytic ORR activity with a half-wave potential of 0.850 V versus reversible hydrogen electrode (RHE), which is higher than that of commercial Pt/C (0.815 V). The PtSn/NC-based (20 μgPt cm-2) rechargeable Zn-air battery exhibited astonishing performance with a maximum power density of up to 150.1 mW cm-2, as well as excellent rate performance and charge/discharge stability. Physical characterization reveals that carbothermal reduction could compel the transformation of Sn oxide into metallic Sn, which then alloys with the deposited Pt atoms to form the PtSn nanoalloy, in which electrons are transferred from Sn atoms to neighboring Pt atoms, thereby improving the ability of Pt-based active sites to catalyze the ORR process in PtSn/NC by optimizing the unoccupied d-band of Pt atoms. This work provides a reliable and innovative route for the rational design of highly dispersed Pt-based alloy ORR electrocatalysts.
Collapse
Affiliation(s)
- Bin Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Jing Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Chuan Zhao
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Anjun Hu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Xuping Sun
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bingbao Mei
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Jianping Long
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| |
Collapse
|
19
|
Pang R, Xia H, Dong X, Zeng Q, Li J, Wang E. Zinc Assisted Thermal Etching for Rich Edge-Located Fe-N 4 Active Sites in Defective Carbon Nanofiber for Activity Enhancement of Oxygen Electroreduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407294. [PMID: 39159137 PMCID: PMC11496982 DOI: 10.1002/advs.202407294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/08/2024] [Indexed: 08/21/2024]
Abstract
Single-atom catalysts (SACs) with edge-located metal active sites exhibit superior oxygen reduction reaction (ORR) performance due to their narrower energy gap and higher electron density. However, controllably designing such active sites to fully reveal their advantages remains challenging. Herein, rich edge-located Fe-N4 active sites anchored in hierarchically porous carbon nanofibers (denoted as e1-Fe-N-C) are fabricated via an in situ zinc-assisted thermal etching strategy. The e1-Fe-N-C catalyst demonstrates superior alkaline ORR activity compared to counterparts with fewer edge-located Fe-N4 sites and commercial Pt/C. Density functional theory calculations show that the accumulation of more negative charges near the Fe-N and the formation of partially reduced Fe state in the edge-located Fe-N4 sites reduce the energy barrier for the ORR process. Additionally, the unique hierarchically porous structures with mesopores and macropores facilitate full utilization of the active sites and enhance long-range mass transfer. The zinc-air battery (ZAB) assembled with e1-Fe-N-C has a peak power density of 198.9 mW cm-2, superior to commercial Pt/C (152.3 mW cm-2). The present strategy by facile controlling the amount of the zinc acetate template systematically demonstrates the superiority of edge-located Fe-N4 sites, providing a new design avenue for rational defect engineering to achieve high-performance ORR.
Collapse
Affiliation(s)
- Ruoyu Pang
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Hongyin Xia
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Xieyiming Dong
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Qian Zeng
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Jing Li
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| |
Collapse
|
20
|
Ruan QD, Zhao YC, Feng R, Haq MU, Zhang L, Feng JJ, Gao YJ, Wang AJ. Bimetal Oxides Anchored on Carbon Nanotubes/Nanosheets as High-Efficiency and Durable Bifunctional Oxygen Catalyst for Advanced Zn-Air Battery: Experiments and DFT Calculations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402104. [PMID: 38949416 DOI: 10.1002/smll.202402104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/13/2024] [Indexed: 07/02/2024]
Abstract
To meet increasing requirement for innovative energy storage and conversion technology, it is urgent to prepare effective, affordable, and long-term stable oxygen electrocatalysts to replace precious metal-based counterparts. Herein, a two-step pyrolysis strategy is developed for controlled synthesis of Fe2O3 and Mn3O4 anchored on carbon nanotubes/nanosheets (Fe2O3-Mn3O4-CNTs/NSs). The typical catalyst has a high half-wave potential (E1/2 = 0.87 V) for oxygen reduction reaction (ORR), accompanied with a smaller overpotential (η10 = 290 mV) for oxygen evolution reaction (OER), showing substantial improvement in the ORR and OER performances. As well, density functional theory calculations are performed to illustrate the catalytic mechanism, where the in situ generated Fe2O3 directly correlates to the reduced energy barrier, rather than Mn3O4. The Fe2O3-Mn3O4-CNTs/NSs-based Zn-air battery exhibits a high-power density (153 mW cm-2) and satisfyingly long durability (1650 charge/discharge cycles/550 h). This work provides a new reference for preparation of highly reversible oxygen conversion catalysts.
Collapse
Affiliation(s)
- Qi-Dong Ruan
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Yun-Cai Zhao
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Rui Feng
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Mahmood Ul Haq
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Lu Zhang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Jiu-Ju Feng
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Yi-Jing Gao
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Ai-Jun Wang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| |
Collapse
|
21
|
Díaz-Patiño L, Guerra-Balcázar M, Álvarez-Contreras L, Arjona N. Poly(Vinyl Alcohol)/Poly(Acrylic Acid) Gel Polymer Electrolyte Modified with Multi-Walled Carbon Nanotubes and SiO 2 Nanospheres to Increase Rechargeability of Zn-Air Batteries. Gels 2024; 10:587. [PMID: 39330189 PMCID: PMC11431819 DOI: 10.3390/gels10090587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/01/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Zn-air batteries (ZABs) are a promising technology; however, their commercialization is limited by challenges, including those occurring in the electrolyte, and thus, gel polymer electrolytes (GPEs) and hydrogels have emerged as substitutes for traditional aqueous electrolytes. In this work, PVA/PAA membranes were synthesized by the solvent casting method and soaked in 6 M KOH to act as GPEs. The thickness of the membrane was modified (50, 100, and 150 μm), and after determining the best thickness, the membrane was modified with synthesized SiO2 nanospheres and multi-walled carbon nanotubes (CNTs). SEM micrographs revealed that the CNTs displayed lengths of tens of micrometers, having a narrow diameter (95 ± 7 nm). In addition, SEM revealed that the SiO2 nanospheres had homogeneous shapes with sizes of 110 ± 10 nm. Physicochemical experiments revealed that SiO2 incorporation at 5 wt.% increased the water uptake of the PVA/PAA membrane from 465% to 525% and the ionic conductivity to 170 mS cm-1. The further addition of 0.5 wt.% CNTs did not impact the water uptake but it promoted a porous structure, increasing the power density and the stability, showing three-times-higher rechargeability than the ZAB operated with the PVA/PAA GPE.
Collapse
Affiliation(s)
- Lucia Díaz-Patiño
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Sanfandila, Pedro Escobedo, Querétaro 76703, Mexico
| | - Minerva Guerra-Balcázar
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico
| | - Lorena Álvarez-Contreras
- Centro de Investigación en Materiales Avanzados S.C., Complejo Industrial Chihuahua, Chihuahua 31136, Mexico
| | - Noé Arjona
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Sanfandila, Pedro Escobedo, Querétaro 76703, Mexico
| |
Collapse
|
22
|
Li X, Ye G, Zhu W, Tian M, Wang R, Liu S, He Z. Directional Construction of Low-Coordination Fe-N 3 Coupled with Intrinsic Carbon Defects for High-Efficiency Oxygen Reduction. ACS NANO 2024; 18:24505-24514. [PMID: 39167730 DOI: 10.1021/acsnano.4c08695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Regulating the coordination environment of Fe-Nx sites is an efficient but challenging approach for promoting the intrinsic catalytic activity of single-atom Fe/N-codoped carbon (Fe-N-C) toward the oxygen reduction reaction (ORR). Herein, low-coordination Fe-N3 sites coupled with carbon vacancies (Fe-N3/CV) are directionally constructed in Fe-N-C via pyrolysis of a metal-organic framework (MOF) precursor with N3-Zn-O-Fe moieties, which are delicately prefabricated by chemically anchoring Fe3+ onto a H2O-etching induced linker-missing Zn-N3 site in the MOF precursor. The optimized Fe-N-C with the Fe-N3/CV sites displays a high ORR half-wave potential of 0.92 V (vs RHE), which is attributed to the optimized electronic structure and binding strengths of the active Fe center toward the ORR intermediates stemming from the synergy of the asymmetric configuration of Fe-N3 as well as the adjacent carbon vacancies. This work could be enlightening for the design and construction of high-activity coupling sites in metal and nitrogen-codoped carbon catalysts.
Collapse
Affiliation(s)
- Xinrui Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Guanying Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Weiwei Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Min Tian
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Ruiting Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Suqin Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
- Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan 410083, P. R. China
| | - Zhen He
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
- Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan 410083, P. R. China
| |
Collapse
|
23
|
Yang X, Zhu B, Gao Z, Yang C, Zhou J, Han A, Liu J. A Vacuum Vapor Deposition Strategy to Fe Single-Atom Catalysts with Densely Active Sites for High-Performance Zn-Air Battery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306594. [PMID: 38751152 PMCID: PMC11425844 DOI: 10.1002/advs.202306594] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Indexed: 09/27/2024]
Abstract
Iron single-atom catalysts (SACs) have garnered increasing attention as highly efficient catalysts for the oxygen reduction reaction (ORR), yet their performance in practical devices remains suboptimal due to the low density of accessible active sites. Anchoring iron single atoms on 2D support is a promising way to increase the accessible active sites but remains difficult attributing to the high aggregation tendency of iron atoms on the 2D support. Herein, a vacuum vapor deposition strategy is presented to fabricate an iron SAC supported on ultrathin N-doped carbon nanosheets with densely active sites (FeSAs-UNCNS). Experimental analyses confirm that the FeSAs-UNCNS achieves densely accessible active sites (1.11 × 1020 sites g-1) in the configuration of Fe─N4O. Consequently, the half-wave potential of FeSAs-UNCNS in 0.1 m KOH reaches a remarkable value of 0.951 V versus RHE. Moreover, when employed as the cathode of various kinds of Zn-air batteries, FeSAs-UNCNS exhibits boosting performances by achieving a maximum power density of 306 mW cm-2 and long cycle life (>180 h) at room temperature, surpassing both Pt/C and reported SACs. Further investigations reveal that FeSAs-UNCNS facilitates the mass and charge transfer during catalysis and the atomic configuration favors the desorption of *OH kinetically.
Collapse
Affiliation(s)
- Xiang Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Baohui Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhiyang Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Can Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jingbo Zhou
- Baidu Research, Haidian District, Beijing, 100193, P. R. China
| | - Aijuan Han
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Junfeng Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
24
|
Kharabe GP, Barik S, Veeranmaril SK, Nair A, Illathvalappil R, Yoyakki A, Joshi K, Vinod CP, Kurungot S. Aluminium, Nitrogen-Dual-Doped Reduced Graphene Oxide Co-Existing with Cobalt-Encapsulated Graphitic Carbon Nanotube as an Activity Modulated Electrocatalyst for Oxygen Electrocatalyst for Oxygen Electrochemistry Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400012. [PMID: 38651508 DOI: 10.1002/smll.202400012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/05/2024] [Indexed: 04/25/2024]
Abstract
There is a rising need to create high-performing, affordable electrocatalysts in the new field of oxygen electrochemistry. Here, a cost-effective, activity-modulated electrocatalyst with the capacity to trigger both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in an alkaline environment is presented. The catalyst (Al, Co/N-rGCNT) is made up of aluminium, nitrogen-dual-doped reduced graphene oxide sheets co-existing with cobalt-encapsulated carbon nanotube units. Based on X-ray Absorption Spectroscopy (XAS) studies, it is established that the superior reaction kinetics in Al, Co/N-rGCNT over their bulk counterparts can be attributed to their electronic regulation. The Al, Co/N-rGCNT performs as a versatile bifunctional electrocatalyst for zinc-air battery (ZAB), delivering an open circuit potential ≈1.35 V and peak power density of 106.3 mW cm-2, which are comparable to the system based on Pt/C. The Al, Co/N-rGCNT-based system showed a specific capacity of 737 mAh gZn -1 compared to 696 mAh gZn -1 delivered by the system based on Pt/C. The DFT calculations indicate that the adsorption of Co in the presence of Al doping in NGr improves the electronic properties favoring ORR. Thus, the Al, Co/N-rGCNT-based rechargeable ZAB (RZAB) emerges as a highly viable and affordable option for the development of RZAB for practical applications.
Collapse
Affiliation(s)
- Geeta Pandurang Kharabe
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sidharth Barik
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sudheesh Kumar Veeranmaril
- Physical Sciences and Engineering Division (PSE), KAUST Catalysis Centre (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Aathira Nair
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajith Illathvalappil
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Athira Yoyakki
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kavita Joshi
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chathakudath Prabhakaran Vinod
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
| | - Sreekumar Kurungot
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
25
|
Chi K, Wang Z, Sun T, He P, Xiao F, Lu J, Wang S. Simultaneously Engineering the First and Second Coordination Shells of Single Iron Catalysts for Enhanced Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311817. [PMID: 38461534 DOI: 10.1002/smll.202311817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/01/2024] [Indexed: 03/12/2024]
Abstract
The atomically dispersed Fe-N4 active site presents enormous potential for various renewable energy conversions. Despite its already remarkable catalytic performance, the local atomic microenvironment of each Fe atom can be regulated to further enhance its efficiency. Herein, a novel conceptual strategy that utilizes a simple salt-template polymerization method to simultaneously adjust the first coordination shell (Fe-N3S1) and second coordination shell (C-S-C, a structure similar to thiophene) of Fe-N4 isolated atoms is proposed. Theoretical studies suggest that this approach can redistribute charge density in the MN4 moiety, lowering the d-band center of the metal site. This weakens the binding of oxygenated intermediates, enhancing oxygen reduction reaction (ORR) activity when compared to only implementing coordination shell regulation. Based on the above discovery, a single Fe atom electrocatalyst with the optimal Fe-N3S1-S active moiety incorporated in nitrogen, sulfur co-doped graphene (Fe-SAc/NSG) is designed and synthesized. The Fe-SAc/NSG catalyst exhibits excellent alkaline ORR activity, exceeding benchmark Pt/C and most Fe-SAc ORR electrocatalysts, as well as superior stability in Zn-air battery. This work aims to pave the way for creating highly active single metal atom catalysts through the localized regulation of their atomic structure.
Collapse
Affiliation(s)
- Kai Chi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Department of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhuoping Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Department of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tao Sun
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Peng He
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Fei Xiao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Department of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Shuai Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Department of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
26
|
Qu W, Tang Z, Wen H, Tang S, Lian Q, Zhao H, Tian S, Shu D, He C. Optimization of Carbon-Defect Engineering to Boost Catalytic Ozonation Efficiency of Single Fe─N 4 Coordination Motif. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311879. [PMID: 38461527 DOI: 10.1002/smll.202311879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/27/2024] [Indexed: 03/12/2024]
Abstract
Carbon-defect engineering in single-atom metal-nitrogen-carbon (M─N─C) catalysts by straightforward and robust strategy, enhancing their catalytic activity for volatile organic compounds, and uncovering the carbon vacancy-catalytic activity relationship are meaningful but challenging. In this study, an iron-nitrogen-carbon (Fe─N─C) catalyst is intentionally designed through a carbon-thermal-diffusion strategy, exposing extensively the carbon-defective Fe─N4 sites within a micro-mesoporous carbon matrix. The optimization of Fe─N4 sites results in exceptional catalytic ozonation efficiency, surpassing that of intact Fe─N4 sites and commercial MnO2 by 10 and 312 times, respectively. Theoretical calculations and experimental data demonstrated that carbon-defect engineering induces selective cleavage of C─N bond neighboring the Fe─N4 motif. This induces an increase in non-uniform charges and Fermi density, leading to elevated energy levels at the center of Fe d-band. Compared to the intact atomic configuration, carbon-defective Fe─N4 site is more activated to strengthen the interaction with O3 and weaken the O─O bond, thereby reducing the barriers for highly active surface atomic oxygen (*O/*OO), ultimately achieving efficient oxidation of CH3SH and its intermediates. This research not only offers a viable approach to enhance the catalytic ozonation activity of M─N─C but also advances the fundamental comprehension of how periphery carbon environment influences the characteristics and efficacy of M─N4 sites.
Collapse
Affiliation(s)
- Wei Qu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhuoyun Tang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hailin Wen
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Su Tang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qiyu Lian
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Huinan Zhao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shuanghong Tian
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dong Shu
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Chun He
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
27
|
Guo H, Raj J, Wang Z, Zhang T, Wang K, Lin L, Hou W, Zhang J, Wu M, Wu J, Wang L. Synergistic Effects of Amine Functional Groups and Enriched-Atomic-Iron Sites in Carbon Dots for Industrial-Current-Density CO 2 Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311132. [PMID: 38511553 DOI: 10.1002/smll.202311132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/12/2024] [Indexed: 03/22/2024]
Abstract
Metal phthalocyanine molecules with Me-N4 centers have shown promise in electrocatalytic CO2 reduction (eCO2R) for CO generation. However, iron phthalocyanine (FePc) is an exception, exhibiting negligible eCO2R activity due to a higher CO2 to *COOH conversion barrier and stronger *CO binding energy. Here, amine functional groups onto atomic-Fe-rich carbon dots (Af-Fe-CDs) are introduced via a one-step solvothermal molecule fusion approach. Af-Fe-CDs feature well-defined Fe-N4 active sites and an impressive Fe loading (up to 8.5 wt%). The synergistic effect between Fe-N4 active centers and electron-donating amine functional groups in Af-Fe-CDs yielded outstanding CO2-to-CO conversion performance. At industrial-relevant current densities exceeding 400 mA cm-2 in a flow cell, Af-Fe-CDs achieved >92% selectivity, surpassing state-of-the-art CO2-to-CO electrocatalysts. The in situ electrochemical FTIR characterization combined with theoretical calculations elucidated that Fe-N4 integration with amine functional groups in Af-Fe-CDs significantly reduced energy barriers for *COOH intermediate formation and *CO desorption, enhancing eCO2R efficiency. The proposed synergistic effect offers a promising avenue for high-efficiency catalysts with elevated atomic-metal loadings.
Collapse
Affiliation(s)
- Huazhang Guo
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jithu Raj
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Zeming Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Tianyu Zhang
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Kang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Lili Lin
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Weidong Hou
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jiye Zhang
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Minghong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jingjie Wu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Liang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
28
|
Wang F, Zhou L, Mu D, Zhang H, Zhang G, Huang X, Xiong P. Current research on ecotoxicity of metal-based nanoparticles: from exposure pathways, ecotoxicological effects to toxicity mechanisms. Front Public Health 2024; 12:1390099. [PMID: 39076413 PMCID: PMC11284070 DOI: 10.3389/fpubh.2024.1390099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Metal-based nanoparticles have garnered significant usage across industries, spanning catalysis, optoelectronics, and drug delivery, owing to their diverse applications. However, their potential ecological toxicity remains a crucial area of research interest. This paper offers a comprehensive review of recent advancements in studying the ecotoxicity of these nanoparticles, encompassing exposure pathways, toxic effects, and toxicity mechanisms. Furthermore, it delves into the challenges and future prospects in this research domain. While some progress has been made in addressing this issue, there is still a need for more comprehensive assessments to fully understand the implications of metal-based nanoparticles on the environment and human well-being.
Collapse
Affiliation(s)
- Fang Wang
- Department of Ophthalmology, Chengdu First People's Hospital, Chengdu, China
| | - Li Zhou
- Department of Torhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dehong Mu
- Department of Torhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Zhang
- Department of Torhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gang Zhang
- Department of Oncology, Chengdu Second People's Hospital, Chengdu, China
| | - Xiangming Huang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Peizheng Xiong
- Department of Torhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
29
|
Liu T, Lei C, Wang H, Xu C, Ma W, He X, Liang X. Practical four-electron zinc-iodine aqueous batteries enabled by orbital hybridization induced adsorption-catalysis. Sci Bull (Beijing) 2024; 69:1674-1685. [PMID: 38395648 DOI: 10.1016/j.scib.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/04/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
The successive I-/I0/I+ redox couples in the four-electron zinc-iodine aqueous battery (4eZIB) is plagued by the instability of the electrophilic I+ species, which could either be hydrolyzed or be neutralized by the I3- redox intermediates. We present an adsorption-catalysis approach that effectively suppresses the hydrolysis of ICl species and also provides an enhanced reaction kinetics to surpass the formation of triiodide ions. We elucidate that the improved stability is attributed to the pronounced orbital hybridization between the d orbitals of Fe-N4 moieties (atomic Fe supported on nitrogen doped carbon) and the p orbitals of iodine species (I2 and ICl). Such d-p orbital hybridization leads to enhanced adsorption for iodine species, increased energy barrier for proton detachment from the ICl·HOH intermediate during hydrolysis, and efficient catalysis of the iodine redox reactions with high conversion efficiency. The proposed 4eZIB demonstrates practical areal capacity (>3 mAh cm-2) with a near-unity coulombic efficiency, high energy density of 420 Wh kg-1 (based on cathode mass), and long-term stability (over 10,000 cycles). Even at -20 °C, the battery exhibits stable performance for over 1000 cycles with high iodine utilization ratio.
Collapse
Affiliation(s)
- Tingting Liu
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chengjun Lei
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Huijian Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chen Xu
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Wenjiao Ma
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xin He
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao Liang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
30
|
Chen G, Liu Y, Xue S, Zhang R, Lv H, Zhang J, Wu L, Che R. Exceptionally Bifunctional ORR/OER Performance via Synergistic Atom-Cluster Interaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308192. [PMID: 38072794 DOI: 10.1002/smll.202308192] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/13/2023] [Indexed: 05/12/2024]
Abstract
The single-atom sites (SAs) have achieved enhanced performance toward oxygen reduction reaction (ORR) with the effective utilization of the active sites. However, the excess adsorption of the intermediates and the limited stability hinders performance improvement. Metal clusters with promising stability and weak adsorption can be used as potential substitutions, but the lack of active sites is considered undesirable for catalytic reactions. Herein, a framework of Fe nanoclusters combined with SAs on One dimensional (1D) carbon nanotubes (Fe3C-NCNTs 90 min CC-1) is synthesized to confirm the synergistic atom-cluster interaction. The composite exhibits strong polarization and electron redistribution between nanocluster and SAs. The electron redistribution will significantly boost the electron transport and the desorption of the intermediates, which is confirmed by off-axis holography and DFT calculation. The electrocatalytic performance is significantly enhanced as the half-wave potential of ORR increased 75 mV and the potential of OER increased 133 mV compared with the sample without nanoclusters. Furthermore, such a bifunctional catalyst endows homemade Zn-air batteries (ZABs) with high power density and long-term stability. This work paves a facile route to design bifunctional ORR/OER electrocatalysts consisting of 0D composite structures.
Collapse
Affiliation(s)
- Guanyu Chen
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Yihao Liu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Shuyan Xue
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
| | | | - Hualiang Lv
- Institute of Optoelectronics, Fudan University, Shanghai, 200438, P. R. China
| | | | - Limin Wu
- Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
- Zhejiang Laboratory, Hangzhou, 311100, P. R. China
| |
Collapse
|
31
|
Zhou Q, Min M, Song M, Cui S, Ding N, Wang M, Lei S, Xiong C, Peng X. In Situ Construction of Zinc-Mediated Fe, N-Codoped Hollow Carbon Nanocages with Boosted Oxygen Reduction for Zn-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307943. [PMID: 38037480 DOI: 10.1002/smll.202307943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/05/2023] [Indexed: 12/02/2023]
Abstract
The rational design of bifunctional oxygen electrocatalysts with unique morphology and luxuriant porous structure is significant but challenging for accelerating the reaction kinetics of rechargeable Zn-air batteries (ZABs). Herein, zinc-mediated Fe, N-codoped carbon nanocages (Zn-FeNCNs) are synthesized by pyrolyzing the polymerized iron-doped polydopamine on the surface of the ZIF-8 crystal polyhedron. The formation of the chelate between polydopamine and Fe serves as the covering layer to prevent the porous carbon nanocages from collapsing and boosts enough exposure and utilization of metal-based active species during carbonization. Furthermore, both the theoretical calculation and experimental results show that the strong interaction between polyhedron and polydopamine facilitates the evolution of high-activity zinc-modulated FeNx sites and electron transportation and then stimulates the excellent bifunctional catalytic activity for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). As expected, the Zn-air battery with Zn-FeNCNs as an air cathode displays a superior power density (256 mW cm-2) and a high specific capacity (813.3 mA h gZn-1), as well as long-term stability over 1000 h. Besides, when this catalyst is applied to the solid-state battery, the device exhibited outstanding mechanical stability and a high round-trip efficiency under different bending angles.
Collapse
Affiliation(s)
- Qiusheng Zhou
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Shaanxi, 710021, China
| | - Min Min
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Shaanxi, 710021, China
| | - Minmin Song
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Shaanxi, 710021, China
| | - Shiqiang Cui
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Shaanxi, 710021, China
| | - Nan Ding
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Shaanxi, 710021, China
| | - Mingyuan Wang
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electrical Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Shuangying Lei
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electrical Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Chuanyin Xiong
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Shaanxi, 710021, China
| | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
32
|
Li JY, Du XY, Wang XX, Yuan XY, Guan DH, Xu JJ. Photo-Assisted Li-N 2 Batteries with Enhanced Nitrogen Fixation and Energy Conversion. Angew Chem Int Ed Engl 2024; 63:e202319211. [PMID: 38198190 DOI: 10.1002/anie.202319211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/11/2024]
Abstract
Li-N2 batteries have received widespread attention for their potential to integrate N2 fixation, energy storage, and conversion. However, because of the low activity and poor stability of cathode catalysts, the electrochemical performance of Li-N2 batteries is suboptimal, and their electrochemical reversibility has rarely been proven. In this study, a novel bifunctional photo-assisted Li-N2 battery system was established by employing a plasmonic Au nanoparticles (NPs)-modified defective carbon nitride (Au-Nv -C3 N4 ) photocathode. The Au-Nv -C3 N4 exhibits strong light-harvesting, N2 adsorption, and N2 activation abilities, and the photogenerated electrons and hot electrons are remarkably beneficial for accelerating the discharge and charge reaction kinetics. These advantages enable the photo-assisted Li-N2 battery to achieve a low overpotential of 1.32 V, which is the lowest overpotential reported to date, as well as superior rate capability and prolonged cycle stability (≈500 h). Remarkably, a combination of theoretical and experimental results demonstrates the high reversibility of the photo-assisted Li-N2 battery. The proposed novel strategy for developing efficient cathode catalysts and fabricating photo-assisted battery systems breaks through the overpotential bottleneck of Li-N2 batteries, providing important insights into the mechanism underlying N2 fixation and storage.
Collapse
Affiliation(s)
- Jian-You Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Xing-Yuan Du
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiao-Xue Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Xin-Yuan Yuan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - De-Hui Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Ji-Jing Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
33
|
Zhang P, Chen HC, Zhu H, Chen K, Li T, Zhao Y, Li J, Hu R, Huang S, Zhu W, Liu Y, Pan Y. Inter-site structural heterogeneity induction of single atom Fe catalysts for robust oxygen reduction. Nat Commun 2024; 15:2062. [PMID: 38453927 PMCID: PMC10920901 DOI: 10.1038/s41467-024-46389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
Metal-nitrogen-carbon catalysts with hierarchically dispersed porosity are deemed as efficient geometry for oxygen reduction reaction (ORR). However, catalytic performance determined by individual and interacting sites originating from structural heterogeneity is particularly elusive and yet remains to be understood. Here, an efficient hierarchically porous Fe single atom catalyst (Fe SAs-HP) is prepared with Fe atoms densely resided at micropores and mesopores. Fe SAs-HP exhibits robust ORR performance with half-wave potential of 0.94 V and turnover frequency of 5.99 e-1s-1site-1 at 0.80 V. Theoretical simulations unravel a structural heterogeneity induced optimization, where mesoporous Fe-N4 acts as real active centers as a result of long-range electron regulation by adjacent microporous sites, facilitating O2 activation and desorption of key intermediate *OH. Multilevel operando characterization results identify active Fe sites undergo a dynamic evolution from basic Fe-N4 to active Fe-N3 under working conditions. Our findings reveal the structural origin of enhanced intrinsic activity for hierarchically porous Fe-N4 sites.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Hsiao-Chien Chen
- Center for Reliability Science and Technologies, Chang Gung University, Taoyuan, 33302, Taiwan
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan
| | - Houyu Zhu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Kuo Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Tuya Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yilin Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiaye Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Ruanbo Hu
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Siying Huang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Wei Zhu
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China.
| |
Collapse
|
34
|
Wang Y, Katyal N, Tang Y, Li H, Shin K, Liu W, He R, Xu M, Henkelman G, Bao SJ. One-Step Pyrolysis Construction of Bimetallic Atom-Cluster Sites for Boosting Bifunctional Catalytic Activity in Zn-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306504. [PMID: 37926769 DOI: 10.1002/smll.202306504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/25/2023] [Indexed: 11/07/2023]
Abstract
Due to their unique advantages, single atoms and clusters of transition metals are expected to achieve a breakthrough in catalytic activity, but large-scale production of active materials remains a challenge. In this work, a simple solvent-free one-step annealing method is developed and applied to construct diatomic and cluster active sites in activated carbon by utilizing the strong anchoring ability of phenanthroline to metal ions, which can be scaled for mass productions. Benefiting from the synergy between the different metals, the obtained sub-nano-bimetallic atom-cluster catalysts (FeNiAC -NC) exhibit high oxygen reduction reactions (ORR) activity (E1/2 = 0.936 V vs. RHE) and a small ORR/oxygen evolution reaction (OER) potential gap of only 0.594 V. An in-house pouch Zn-air battery is assembled using an FeNiAC -NC catalyst, which demonstrates a stability of 1000 h, outperforming previous reports. The existence of clusters and their effects on catalytic activity is analyzed by density functional theory calculations to reveal the chemistry of nano-bimetallic atom-cluster catalysts.
Collapse
Affiliation(s)
- Youpeng Wang
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Naman Katyal
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yang Tang
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Hua Li
- School of Materials and Energy, Electron Microscopy Centre, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Kihyun Shin
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Materials Science and Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Wenqian Liu
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Ruilin He
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Maowen Xu
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Graeme Henkelman
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Shu-Juan Bao
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
35
|
Jiang F, Li Y, Pan Y. Design Principles of Single-Atom Catalysts for Oxygen Evolution Reaction: From Targeted Structures to Active Sites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306309. [PMID: 37704213 DOI: 10.1002/adma.202306309] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/29/2023] [Indexed: 09/15/2023]
Abstract
Hydrogen production from electrolytic water electrolysis is considered a viable method for hydrogen production with significant social value due to its clean and pollution-free nature, high hydrogen production efficiency, and purity, but the anode oxygen evolution reaction (OER) process is complex and kinetically slow. Single-atom catalysts (SACs) with 100% atom utilization and homogeneous active sites often exhibit high catalytic activity and are expected to be extensively applied. The catalytic performance of OER can be further improved by precise regulation of the structure through electronic effects, coordination environment, heteroatomic doping, and so on. In this review, the mechanisms of OER under different conditions are introduced, the latest research progress of SACs in the field of OER is systematically summarized, and then the effects of various structural regulation strategies on catalytic performance are discussed, and principles and ideas for the design of SACs for OER are proposed. In the end, the outstanding issues and current challenges in this field are summarized.
Collapse
Affiliation(s)
- Fei Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yichuan Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
36
|
Yang P, Li J, Vlachos DG, Caratzoulas S. Tuning Active Site Flexibility by Defect Engineering of Graphene Ribbon Edge-hosted Fe-N 3 Sites. Angew Chem Int Ed Engl 2023:e202311174. [PMID: 38079068 DOI: 10.1002/anie.202311174] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Indexed: 12/21/2023]
Abstract
Nitrogen-doped, carbon-supported transition metal catalysts are excellent for several reactions. Structural engineering of M-Nx sites to boost catalytic activity is rarely studied. Here, we demonstrate that the structural flexibility of Fe-N3 site is vital for tuning the electronic structure of Fe atoms and regulating the catalytic transfer hydrogenation (CTH) activity. By introducing carbon defects, we construct Fe-N3 sites with varying Fe-N bond lengths distinguishable by X-ray absorption spectroscopy. We investigate the CTH activity by density-functional theory and microkinetic calculations and reveal that the vertical displacement of the Fe atom out of the plane of the support, induced by the Fe-N3 distortion, raises the Fe3 d z 2 ${3{d}_{{z}^{2}}{\rm \ }}$ orbital and strengthens binding. We propose that the activity is controlled by the relaxation of the reconstructed site, which is further affected by Fe-N bond length, an excellent activity descriptor. We elucidate the origin of the CTH activity and principles for high-performing Fe-N-C catalysts by defect engineering.
Collapse
Affiliation(s)
- Piaoping Yang
- Catalysis Center for Energy Innovation, University of Delaware, Newark, DE 19716, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jiang Li
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Dionisios G Vlachos
- Catalysis Center for Energy Innovation, University of Delaware, Newark, DE 19716, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Stavros Caratzoulas
- Catalysis Center for Energy Innovation, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
37
|
Yu S, Levell Z, Jiang Z, Zhao X, Liu Y. What Is the Rate-Limiting Step of Oxygen Reduction Reaction on Fe-N-C Catalysts? J Am Chem Soc 2023; 145:25352-25356. [PMID: 37955970 DOI: 10.1021/jacs.3c09193] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Oxygen reduction reaction (ORR) is essential to various renewable energy technologies. An important catalyst for ORR is single iron atoms embedded in nitrogen-doped graphene (Fe-N-C). However, the rate-limiting step of the ORR on Fe-N-C is unknown, significantly impeding understanding and improvement. Here, we report the activation energies of all of the steps, calculated by ab initio molecular dynamics simulations under constant electrode potential. In contrast to the common belief that a hydrogenation step limits the reaction rate, we find that the rate-limiting step is oxygen molecule replacing adsorbed water on Fe. This occurs through concerted motion of H2O desorption and O2 adsorption, without leaving the site bare. Interestingly, despite being an apparent "thermal" process that is often considered to be potential-independent, the barrier reduces with the electrode potential. This can be explained by stronger Fe-O2 binding and weaker Fe-H2O binding at a lower potential, due to O2 gaining electrons and H2O donating electrons to the catalyst. Our study offers new insights into the ORR on Fe-N-C and highlights the importance of kinetic studies in heterogeneous electrochemistry.
Collapse
Affiliation(s)
- Saerom Yu
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zachary Levell
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhou Jiang
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Xunhua Zhao
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuanyue Liu
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
38
|
Wang Y, Wang M, Chen T, Yu W, Liu H, Cheng H, Bi W, Zhou M, Xie Y, Wu C. Pyrazine-linked Iron-coordinated Tetrapyrrole Conjugated Organic Polymer Catalyst with Spatially Proximate Donor-Acceptor Pairs for Oxygen Reduction in Fuel Cells. Angew Chem Int Ed Engl 2023; 62:e202308070. [PMID: 37779100 DOI: 10.1002/anie.202308070] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/25/2023] [Accepted: 10/01/2023] [Indexed: 10/03/2023]
Abstract
Nitrogen-coordinated iron (Fe-N4 ) materials represent the most promising non-noble electrocatalysts for the cathodic oxygen reduction reaction (ORR) of fuel cells. However, molecular-level structure design of Fe-N4 electrocatalyst remains a great challenge. In this study, we develop a novel Fe-N4 conjugated organic polymer (COP) electrocatalyst, which allows for precise design of the Fe-N4 structure, leading to unprecedented ORR performance. At the molecular level, we have successfully organized spatially proximate iron-pyrrole/pyrazine (FePr/Pz) pairs into fully conjugated polymer networks, which in turn endows FePr sites with firmly covalent-bonded matrix, strong d-π electron coupling and highly dense distribution. The resulting pyrazine-linked iron-coordinated tetrapyrrole (Pz-FeTPr) COP electrocatalyst exhibits superior performance compared to most ORR electrocatalysts, with a half-wave potential of 0.933 V and negligible activity decay after 40,000 cycles. When used as the cathode electrocatalyst in a hydroxide exchange membrane fuel cell, the Pz-FeTPr COP achieves a peak power density of ≈210 mW cm-2 . We anticipate the COP based Fe-N4 catalyst design could be an effective strategy to develop high-performance catalyst for facilitating the progress of fuel cells.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Minghao Wang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Ting Chen
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Weisheng Yu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Hongfei Liu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Han Cheng
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Wentuan Bi
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, 230031, China
| | - Min Zhou
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yi Xie
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, 230031, China
| | - Changzheng Wu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, 230031, China
| |
Collapse
|
39
|
Yi SY, Choi E, Jang HY, Lee S, Park J, Choi D, Jang Y, Kang H, Back S, Jang S, Lee J. Insight into Defect Engineering of Atomically Dispersed Iron Electrocatalysts for High-Performance Proton Exchange Membrane Fuel Cell. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302666. [PMID: 37548180 DOI: 10.1002/adma.202302666] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/11/2023] [Indexed: 08/08/2023]
Abstract
Atomically dispersed and nitrogen coordinated iron catalysts (Fe-NCs) demonstrate potential as alternatives to platinum-group metal (PGM) catalysts in oxygen reduction reaction (ORR). However, in the context of practical proton exchange membrane fuel cell (PEMFC) applications, the membrane electrode assembly (MEA) performances of Fe-NCs remain unsatisfactory. Herein, improved MEA performance is achieved by tuning the local environment of the Fe-NC catalysts through defect engineering. Zeolitic imidazolate framework (ZIF)-derived nitrogen-doped carbon with additional CO2 activation is employed to construct atomically dispersed iron sites with a controlled defect number. The Fe-NC species with the optimal number of defect sites exhibit excellent ORR performance with a high half-wave potential of 0.83 V in 0.5 M H2 SO4 . Variation in the number of defects allows for fine-tuning of the reaction intermediate binding energies by changing the contribution of the Fe d-orbitals, thereby optimizing the ORR activity. The MEA based on a defect-engineered Fe-NC catalyst is found to exhibit a remarkable peak power density of 1.1 W cm-2 in an H2 /O2 fuel cell, and 0.67 W cm-2 in an H2 /air fuel cell, rendering it one of the most active atomically dispersed catalyst materials at the MEA level.
Collapse
Affiliation(s)
- Seung Yeop Yi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Eunho Choi
- School of Mechanical Engineering, Kookmin National University, Seoul, 02707, Republic of Korea
| | - Ho Yeon Jang
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea
| | - Seonggyu Lee
- Department of Chemical Engineering, Kumoh National Institute of Technology (KIT), 61 Daehak-ro, Gumi, 39177, Republic of Korea
- Department of Energy Engineering Convergence, Kumoh National Institute of Technology (KIT), 61 Daehak-ro, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Jinkyu Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Daeeun Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yeju Jang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hojin Kang
- School of Mechanical Engineering, Kookmin National University, Seoul, 02707, Republic of Korea
| | - Seoin Back
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea
| | - Segeun Jang
- School of Mechanical Engineering, Kookmin National University, Seoul, 02707, Republic of Korea
| | - Jinwoo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
40
|
Zong L, Fan K, Cui L, Lu F, Liu P, Li B, Feng S, Wang L. Constructing Fe-N 4 Sites through Anion Exchange-mediated Transformation of Fe Coordination Environments in Hierarchical Carbon Support for Efficient Oxygen Reduction. Angew Chem Int Ed Engl 2023; 62:e202309784. [PMID: 37539978 DOI: 10.1002/anie.202309784] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/05/2023]
Abstract
Metal single atoms (SAs) anchored in carbon support via coordinating with N atoms are efficient active sites to oxygen reduction reaction (ORR). However, rational design of single atom catalysts with highly exposed active sites is challenging and urgently desirable. Herein, an anion exchange strategy is presented to fabricate Fe-N4 moieties anchored in hierarchical carbon nanoplates composed of hollow carbon spheres (Fe-SA/N-HCS). With the coordinating O atoms are substituted by N atoms, Fe SAs with Fe-O4 configuration are transformed into the ones with Fe-N4 configuration during the thermal activation process. Insights into the evolution of central atoms demonstrate that the SAs with specific coordination environment can be obtained by modulating in situ anion exchange process. The strategy produces a large quantity of electrochemical accessible site and high utilization rate of Fe-N4 . Fe-SA/N-HCS shows excellent ORR electrocatalytic performance with half-wave potential of 0.91 V (vs. RHE) in 0.1 M KOH, and outstanding performance when used in rechargeable aqueous and flexible Zn-air batteries. The evolution pathway for SAs demonstrated in this work offers a novel strategy to design SACs with various coordination environment and enhanced electrocatalytic activity.
Collapse
Affiliation(s)
- Lingbo Zong
- International Cooperation United Laboratory of Eco-chemical Engineering and Green Manufacturing, Technology Innovation Center of Battery Safety and Energy Storage Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Kaicai Fan
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Lixiu Cui
- International Cooperation United Laboratory of Eco-chemical Engineering and Green Manufacturing, Technology Innovation Center of Battery Safety and Energy Storage Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Fenghong Lu
- International Cooperation United Laboratory of Eco-chemical Engineering and Green Manufacturing, Technology Innovation Center of Battery Safety and Energy Storage Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Porun Liu
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Bin Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Chang-chun, 130012, China
| | - Lei Wang
- International Cooperation United Laboratory of Eco-chemical Engineering and Green Manufacturing, Technology Innovation Center of Battery Safety and Energy Storage Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
41
|
Zhang P, Chen K, Li J, Wang M, Li M, Liu Y, Pan Y. Bifunctional Single Atom Catalysts for Rechargeable Zinc-Air Batteries: From Dynamic Mechanism to Rational Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303243. [PMID: 37283478 DOI: 10.1002/adma.202303243] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/21/2023] [Indexed: 06/08/2023]
Abstract
Ever-growing demands for rechargeable zinc-air batteries (ZABs) call for efficient bifunctional electrocatalysts. Among various electrocatalysts, single atom catalysts (SACs) have received increasing attention due to the merits of high atom utilization, structural tunability, and remarkable activity. Rational design of bifunctional SACs relies heavily on an in-depth understanding of reaction mechanisms, especially dynamic evolution under electrochemical conditions. This requires a systematic study in dynamic mechanisms to replace current trial and error modes. Herein, fundamental understanding of dynamic oxygen reduction reaction and oxygen evolution reaction mechanisms for SACs is first presented combining in situ and/or operando characterizations and theoretical calculations. By highlighting structure-performance relationships, rational regulation strategies are particularly proposed to facilitate the design of efficient bifunctional SACs. Furthermore, future perspectives and challenges are discussed. This review provides a thorough understanding of dynamic mechanisms and regulation strategies for bifunctional SACs, which are expected to pave the avenue for exploring optimum single atom bifunctional oxygen catalysts and effective ZABs.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Kuo Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiaye Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Minmin Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Min Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
42
|
Balamurugan J, Austeria PM, Kim JB, Jeong ES, Huang HH, Kim DH, Koratkar N, Kim SO. Electrocatalysts for Zinc-Air Batteries Featuring Single Molybdenum Atoms in a Nitrogen-Doped Carbon Framework. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302625. [PMID: 37327064 DOI: 10.1002/adma.202302625] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/24/2023] [Indexed: 06/18/2023]
Abstract
Bifunctional catalysts can facilitate two different electrochemical reactions with conflicting characteristics. Here, a highly reversible bifunctional electrocatalyst for rechargeable zinc-air batteries (ZABs) is reported featuring a "core-shell structure" in which N-doped graphene sheets wrap around vanadium molybdenum oxynitride nanoparticles. Single Mo atoms are released from the particle core during synthesis and anchored to electronegative N-dopant species in the graphitic shell. The resultant Mo single-atom catalysts excel as active oxygen evolution reaction (OER) sites in pyrrolic-N and as active oxygen reduction reaction (ORR) sites in pyridinic-N environments. ZABs with such bifunctional and multicomponent single-atom catalysts deliver high power density (≈376.4 mW cm-2 ) and long cycle life of over 630 h, outperforming noble-metal-based benchmarks. Flexible ZABs that can tolerate a wide range of temperatures (-20 to 80 °C) under severe mechanical deformation are also demonstrated.
Collapse
Affiliation(s)
- Jayaraman Balamurugan
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - P Muthu Austeria
- Division of Science Education and Institute of Fusion Science, Department of Energy Storage/Conversion Engineering of Graduate School, Jeonbuk National University Jeonju, Jeonju, 54896, Republic of Korea
| | - Jun Beom Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Eun-Suk Jeong
- Department of Physics Education and Institute of Fusion Science, Jeonbuk National University Jeonju, Jeonju, 54896, Republic of Korea
| | - Hsin-Hui Huang
- Division of Nanostructures Research Laboratory, Japan Fine Ceramics Center 2-4-1 Mutsuno, Atsuta-ku, Nagoya, 456-8587, Japan
| | - Do Hwan Kim
- Division of Science Education and Institute of Fusion Science, Department of Energy Storage/Conversion Engineering of Graduate School, Jeonbuk National University Jeonju, Jeonju, 54896, Republic of Korea
| | - Nikhil Koratkar
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180, USA
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180, USA
| | - Sang Ouk Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
43
|
Wang Z, Qin Y, Wu T, Zhang J, Ding S, Su Y. Theoretical Study on B-doped FeN 4 Catalyst for Potential-Dependent Oxygen Reduction Reaction. Chemphyschem 2023; 24:e202300152. [PMID: 37309015 DOI: 10.1002/cphc.202300152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/14/2023]
Abstract
Electrochemical reactions mostly take place at a constant potential, but traditional DFT calculations operate at a neutral charge state. In order to really model experimental conditions, we developed a fixed-potential simulation framework via the iterated optimization and self-consistence of the required Fermi level. The B-doped graphene-based FeN4 sites for oxygen reduction reaction were chosen as the model to evaluate the accuracy of the fixed-potential simulation. The results demonstrate that *OH hydrogenation gets facile while O2 adsorption or hydrogenation becomes thermodynamically unfavorable due to the lower d-band center of Fe atoms in the constant potential state than the neutral charge state. The onset potential of ORR over B-doped FeN4 by performing potential-dependent simulations agree well with experimental findings. This work indicates that the fixed-potential simulation can provide a reasonable and accurate description on electrochemical reactions.
Collapse
Affiliation(s)
- Ziwei Wang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory of Electrical Insulation and Power Equipment, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yanyang Qin
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory of Electrical Insulation and Power Equipment, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tiantian Wu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory of Electrical Insulation and Power Equipment, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jianrui Zhang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory of Electrical Insulation and Power Equipment, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shujiang Ding
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory of Electrical Insulation and Power Equipment, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yaqiong Su
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory of Electrical Insulation and Power Equipment, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
44
|
Zhou Q, Tian Y, Wang M, Lei S, Xiong C. Molten salt induced formation of chitosan based carbon nanosheets decorated with CoNx for boosting rechargeable Zn-air batteries. J Colloid Interface Sci 2023; 641:842-852. [PMID: 36966573 DOI: 10.1016/j.jcis.2023.03.126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
The earth-abundant, low-cost, and efficient oxygen electrode materials offer a potential opportunity to satisfy the large-scale production and application of metal-air batteries. Herein, a molten salt-assisted strategy is developed to anchor transition metal-based active sites via in-situ confining into porous carbon nanosheet. As a result, a chitosan-based porous nitrogen-doped nanosheet decorated with the well-defined CoNx (CoNx/CPCN) was reported. Both structural characterization and electrocatalytic mechanisms demonstrate a prominent synergetic effect between CoNx and porous nitrogen-doped carbon nanosheets forcefully accelerates the sluggish reaction kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Interestingly, the Zn-air batteries (ZABs) equipped with CoNx/CPCN-900 as an air electrode shows outstanding durability for 750 discharge/charge cycles, a high power density of 189.9 mW cm-2, and a high gravimetric energy density of 1018.7 mWh g-1 at 10 mA cm-2. Furthermore, the assembled all-solid cell displays exceptional flexibility and power density (122.2 mW cm-2).
Collapse
|
45
|
Niu WJ, Li RJ, Zhao WW, Yan YY, Feng EP, Chen JL, Gu BN, Liu MJ, Chueh YL. Hierarchical porous Fe-N/C@surfactant composites synthesized by a surfactant-assisted strategy as high-performance bifunctional oxygen electrodes for rechargeable zinc-air batteries. J Colloid Interface Sci 2023; 649:435-444. [PMID: 37354800 DOI: 10.1016/j.jcis.2023.06.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/08/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023]
Abstract
Herein, a soft-template strategy involving the cationic surfactants has been successfully applied to size-controlled synthesis of hierarchical porous Fe-N/C for the first time. Specifically, a small amount of Fe and cationic surfactants can be uniformly doped into the zinc-based zeolite imidazole framework (ZIF-8) crystal particles and the cationic surfactants play a critical role in the formation of hierarchically porous Fe-ZIF-8@surfactant precursors. When the Fe-ZIF-8@surfactant is subsequently pyrolyzed, atomically dispersed Fe-Nx coordination structures can be in-situ converted to Fe-N/C, while the cationic surfactants decompose to form a carbon matrix to encapsulate the active sites, thereby preventing the aggregation of nanoparticles to a certain extent. As a result, the combined Fe nanocrystals and atomically dispersed Fe-Nx in the graphitic carbon matrix generate a synergistic effect to boost the electrocatalytic behaviors with a more positive half-wave potential (0.92 V) for oxygen reduction reaction (ORR) and a lower overpotential (420 mV at 10 mA cm-2) for oxygen evolution reaction (OER). As a proof of concept, the Fe-N/C@TTAB based zinc-air batteries (ZABs) present an outstanding peak power density (107.9 mW cm-2) and a superior specific capacity (706.3 mAh g-1) with robust cycling stability over 900 cycles for 150 h, which are better than the commercial Pt/C + IrO2 based ZABs.
Collapse
Affiliation(s)
- Wen-Jun Niu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China.
| | - Ru-Ji Li
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Wei-Wei Zhao
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Ying-Yun Yan
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Er-Peng Feng
- Key Laboratory of Vacuum Technology and Physics, Lanzhou Institute of Physics, Lanzhou 730000, PR China
| | - Jiang-Lei Chen
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Bing-Ni Gu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; Colleage of Semiconductor Research, National Tsing-Hua University, Hsinchu, 30013, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Ming-Jin Liu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; Colleage of Semiconductor Research, National Tsing-Hua University, Hsinchu, 30013, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Yu-Lun Chueh
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; Colleage of Semiconductor Research, National Tsing-Hua University, Hsinchu, 30013, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
46
|
Xu C, Guo C, Liu J, Hu B, Chen H, Li G, Xu X, Shu C, Li H, Chen C. Bioinspired Hydrophobicity Coupled with Single Fe-N 4 Sites Promotes Oxygen Diffusion for Efficient Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207675. [PMID: 36897005 DOI: 10.1002/smll.202207675] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/18/2023] [Indexed: 06/08/2023]
Abstract
The poor oxygen diffusion and sluggish oxygen reduction reaction (ORR) kinetics at multiphase interfaces in the cathode suppress the practical application of zinc-air batteries. Developing effective strategies to tackle the issue is of great significance for overcoming the performance bottleneck but remains challenging. Here, a multiscale hydrophobic surface is designed on the iron single-atom catalyst via a gas-phase fluorination-assisted method inspired by the structure of gas-trapping mastoids on lotus leaves. The hydrophobic Fe-FNC attains a higher peak power density of up to 226 mW cm-2 , a long durability of up close to 140 h, and better cyclic durability of up to 300 cycles compared to the corresponding Pt/C-based Zn-air battery. Experiments and theoretical calculations indicate that the formed more triple-phase interfaces and exposed isolated Fe-N4 sites are proposed as the governing factors in boosting electrocatalytic ORR activity and remarkable cycling durability for Zn-air batteries.
Collapse
Affiliation(s)
- Chuanlan Xu
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Chaozhong Guo
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Jianping Liu
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Bihao Hu
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Hongdian Chen
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Guijun Li
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Xinru Xu
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Chenyang Shu
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Honglin Li
- College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, China
| | - Changguo Chen
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
47
|
Wang Z, Jin X, Xu R, Yang Z, Ma S, Yan T, Zhu C, Fang J, Liu Y, Hwang SJ, Pan Z, Fan HJ. Cooperation between Dual Metal Atoms and Nanoclusters Enhances Activity and Stability for Oxygen Reduction and Evolution. ACS NANO 2023; 17:8622-8633. [PMID: 37129379 DOI: 10.1021/acsnano.3c01287] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We have achieved the synthesis of dual-metal single atoms and atomic clusters that co-anchor on a highly graphitic carbon support. The catalyst comprises Ni4 (and Fe4) nanoclusters located adjacent to the corresponding NiN4 (and FeN4) single-atom sites, which is verified by systematic X-ray absorption characterization and density functional theory calculations. A distinct cooperation between Fe4 (Ni4) nanoclusters and the corresponding FeN4 (NiN4) atomic sites optimizes the adsorption energy of reaction intermediates and reduces the energy barrier of the potential-determining steps. This catalyst exhibits enhanced oxygen reduction and evolution activity and long-cycle stability compared to counterparts without nanoclusters and commercial Pt/C. The fabricated Zn-air batteries deliver a high power density and long-term cyclability, demonstrating their prospects in energy storage device applications.
Collapse
Affiliation(s)
- Zhe Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Xiaoyan Jin
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Ruojie Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Zhenbei Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Shidong Ma
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Tao Yan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Chao Zhu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing 210096, China
| | - Jian Fang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yipu Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Seong-Ju Hwang
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Zhijuan Pan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Hong Jin Fan
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| |
Collapse
|
48
|
Chang J, Yang Y. Recent advances in zinc-air batteries: self-standing inorganic nanoporous metal films as air cathodes. Chem Commun (Camb) 2023; 59:5823-5838. [PMID: 37096450 DOI: 10.1039/d3cc00742a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Zinc-air batteries (ZABs) have promising prospects as next-generation electrochemical energy systems due to their high safety, high power density, environmental friendliness, and low cost. However, the air cathodes used in ZABs still face many challenges, such as the low catalytic activity and poor stability of carbon-based materials at high current density/voltage. To achieve high activity and stability of rechargeable ZABs, chemically and electrochemically stable air cathodes with bifunctional oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) activity, fast reaction rate with low platinum group metal (PGM) loading or PGM-free materials are required, which are difficult to achieve with common electrocatalysts. Meanwhile, inorganic nanoporous metal films (INMFs) have many advantages as self-standing air cathodes, such as high activity and stability for both the ORR/OER under highly alkaline conditions. The high surface area, three-dimensional channels, and porous structure with controllable crystal growth facet/direction make INMFs an ideal candidate as air cathodes for ZABs. In this review, we first revisit some critical descriptors to assess the performance of ZABs, and recommend the standard test and reported manner. We then summarize the recent progress of low-Pt, low-Pd, and PGM-free-based materials as air cathodes with low/non-PGM loading for rechargeable ZABs. The structure-composition-performance relationship between INMFs and ZABs is discussed in-depth. Finally, we provide our perspectives on the further development of INMFs towards rechargeable ZABs, as well as current issues that need to be addressed. This work will not only attract researchers' attention and guide them to assess and report the performance of ZABs more accurately, but also stimulate more innovative strategies to drive the practical application of INMFS for ZABs and other energy-related technologies.
Collapse
Affiliation(s)
- Jinfa Chang
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.
| | - Yang Yang
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA
- Renewable Energy and Chemical Transformation Cluster, University of Central Florida, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA
- The Stephen W. Hawking Center for Microgravity Research and Education, University of Central Florida, Orlando, FL 32826, USA
| |
Collapse
|
49
|
Li Z, Ji S, Wang C, Liu H, Leng L, Du L, Gao J, Qiao M, Horton JH, Wang Y. Geometric and Electronic Engineering of Atomically Dispersed Copper-Cobalt Diatomic Sites for Synergistic Promotion of Bifunctional Oxygen Electrocatalysis in Zinc-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300905. [PMID: 37040668 DOI: 10.1002/adma.202300905] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/09/2023] [Indexed: 06/19/2023]
Abstract
The development of rechargeable zinc-air batteries is heavily dependent on bifunctional oxygen electrocatalysts to offer exceptional oxygen reduction/evolution reaction (ORR/OER) activities. However, the design of such electrocatalysts with high activity and durability is challenging. Herein, a strategy is proposed to create an electrocatalyst comprised of copper-cobalt diatomic sites on a highly porous nitrogen-doped carbon matrix (Cu-Co/NC) with abundantly accessible metal sites and optimal geometric and electronic structures. Experimental findings and theoretical calculations demonstrate that the synergistic effect of Cu-Co dual-metal sites with metal-N4 coordination induce asymmetric charge distributions with moderate adsorption/desorption behavior with oxygen intermediates. This electrocatalyst exhibits extraordinary bifunctional oxygen electrocatalytic activities in alkaline media, with a half-wave potential of 0.92 V for ORR and a low overpotential of 335 mV at 10 mA cm-2 for OER. In addition, it demonstrates exceptional ORR activity in acidic (0.85 V) and neutral (0.74 V) media. When applied to a zinc-air battery, it achieves extraordinary operational performance and outstanding durability (510 h), ranking it as one of the most efficient bifunctional electrocatalysts reported to date. This work demonstrates the importance of geometric and electronic engineering of isolated dual-metal sites for boosting bifunctional electrocatalytic activity in electrochemical energy devices.
Collapse
Affiliation(s)
- Zhijun Li
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Siqi Ji
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Chun Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hongxue Liu
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Leipeng Leng
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Lei Du
- Huangpu Hydrogen Energy Innovation Centre, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Jincheng Gao
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Man Qiao
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - J Hugh Horton
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
- Department of Chemistry, Queen's University, Kingston, K7L 3N6, Canada
| | - Yu Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| |
Collapse
|
50
|
Wan K, Chu T, Li B, Ming P, Zhang C. Rational Design of Atomically Dispersed Metal Site Electrocatalysts for Oxygen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203391. [PMID: 36717282 PMCID: PMC10104677 DOI: 10.1002/advs.202203391] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/29/2022] [Indexed: 06/18/2023]
Abstract
Future renewable energy supply and a cleaner Earth greatly depend on various crucial catalytic reactions for the society. Atomically dispersed metal site electrocatalysts (ADMSEs) have attracted tremendous research interest and are considered as the next-generation promising oxygen reduction reaction (ORR) electrocatalysts due to the maximum atom utilization efficiency, tailorable catalytic sites, and tunable electronic structures. Despite great efforts have been devoted to the development of ADMSEs, the systematic summary for design principles of high-efficiency ADMSEs is not sufficiently highlighted for ORR. In this review, the authors first summarize the fundamental ORR mechanisms for ADMSEs, and further discuss the intrinsic catalytic mechanism from the perspective of theoretical calculation. Then, the advanced characterization techniques to identify the active sites and effective synthesis methods to prepare catalysts for ADMSEs are also showcased. Subsequently, a special emphasis is placed on effective strategies for the rational design of the advanced ADMSEs. Finally, the present challenges to be addressed in practical application and future research directions are also proposed to overcome the relevant obstacles for developing high-efficiency ORR electrocatalysts. This review aims to provide a deeper understanding for catalytic mechanisms and valuable design principles to obtain the advanced ADMSEs for sustainable energy conversion and storage techniques.
Collapse
Affiliation(s)
- Kechuang Wan
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| | - Tiankuo Chu
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| | - Bing Li
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| | - Pingwen Ming
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| | - Cunman Zhang
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| |
Collapse
|