1
|
Chung CH, Huang YC, Su SW, Su CJ, Jeng US, Chen JY, Lin YC. Partially Degradable N-Type Conjugated Random Copolymers for Intrinsically Stretchable Organic Field-Effect Transistors. Macromol Rapid Commun 2025; 46:e2401057. [PMID: 39895232 DOI: 10.1002/marc.202401057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/20/2025] [Indexed: 02/04/2025]
Abstract
In this study, a series of conjugated homopolymers (P1 and P5) and random copolymers (P2-P4) by copolymerizing naphthalene diimide (NDI) as the acceptor with varying ratios of two donor units, thiophene-imine-thiophene (TIT) and thiophene-vinylene-thiophene (TVT) is developed. The inclusion of TIT imparted degradability to the random copolymers under acidic conditions, offering a sustainable solution for electronic waste management. Structural analysis revealed that TIT favored edge-on molecular orientation, while TVT promoted face-on and end-to-end orientations. The synergistic combination of TIT and TVT in copolymerization resulted in balanced structural and functional properties with partial degradability conferred using the TIT units. The random copolymer P3, with an optimal equimolar TIT/TVT ratio, demonstrates superior electrical and mechanical performance. P3 exhibits an initial charge mobility of 0.10 cm2 V⁻¹ s⁻¹ and maintained mobility of 0.0017 cm2 V⁻¹ s⁻¹ under 20% strain, significantly outperforming P1 in mobility at almost strain levels. P3 also achieved a mobility retention of 31.3% under 20% strain, compared to 12.2% for P5. This study demonstrates that the copolymerization of TIT and TVT enables the fine-tuning of solid-state packing modes and molecular orientations, thereby improving both the stretchability and environmental sustainability of the materials.
Collapse
Affiliation(s)
- Chia-Hsueh Chung
- Department of Chemical Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Yu-Chun Huang
- Department of Chemical Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Shang-Wen Su
- Department of Chemical Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Chun-Jen Su
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
- Department of Chemical Engineering & College of Semiconductor Research, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Jung-Yao Chen
- Department of Photonics, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Yan-Cheng Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
2
|
Huang YC, Yamamoto S, Chen JY, Su CJ, Jeng US, Higashihara T, Lin YC. Conjugated Multiblock Copolymers and Microcracked Gold Electrodes Applied for the Intrinsically Stretchable Field-Effect Transistor. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21521-21535. [PMID: 40145335 PMCID: PMC11986895 DOI: 10.1021/acsami.5c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 03/28/2025]
Abstract
The rise of flexible electronic devices has led to extensive research into conjugated polymer structural engineering. Integrating polymer channels and contact electrodes, warranting high stretchability, is still critical, and the microcracked gold technique provides a potential strategy to integrate them. Conjugated block copolymers have gained significant attention due to their high flexibility, allowing for tailored polymer structures to meet the specific requirements of different device characteristics. In this study, novel N-type multiblock copolymers (multi-BCPs) composed of rigid poly(naphthalene diimide-alt-bithiophene) and flexible polyisobutylene segments were successfully synthesized as polymer semiconductors for the first time. The materials are named based on the weight fraction of soft segments: NDI (0 wt %), mAB73 (27 wt %), and mAB60 (40 wt %). The study explores the mechanical properties, crystallinity, and electrical performance of flexible multi-BCPs. The results show that introducing soft segments significantly enhances stretchability, with crack-onset strains beyond 100% because of their low elastic moduli of 40-50 MPa. Furthermore, the OFET device of mAB73 achieves unchanged mobility under 100% strain, outperforming mAB60 due to excessive polyisobutylene blocks. At the end of this study, an integrated stretchable device with high stretchability is fulfilled by utilizing the microcracked gold technique to combine the multi-BCP channels and contact electrodes. The integrated device can be applied to biomedical electronics without toxic or corrosive electrode materials. The influencing factors, including contact resistance, channel charge mobility, and electrode resistance, are systematically studied to investigate the integrated device's mobility-stretchability relationship. The results indicate that the contact resistance between the multi-BCP channels and contact electrodes is essential to the device's performance. Among these, mAB73, containing soft segments, exhibits more stability than NDI due to the microcracked gold electrodes with infiltrated gold nanoparticles in the rubbery channel surface. Appropriately incorporating soft segments significantly enhances mobility retention under tensile strains, highlighting the potential of multi-BCP designs in stretchable electronic applications.
Collapse
Affiliation(s)
- Yu-Chun Huang
- Department
of Chemical Engineering, National Cheng
Kung University, Tainan 70101, Taiwan
| | - Shuto Yamamoto
- Department
of Organic Materials Science, Graduate School of Organic Materials
Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 990-0021, Japan
| | - Jung-Yao Chen
- Department
of Photonics, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Chun-Jen Su
- National
Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - U-Ser Jeng
- National
Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
- Department
of Chemical Engineering & College of Semiconductor Research, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Tomoya Higashihara
- Department
of Organic Materials Science, Graduate School of Organic Materials
Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 990-0021, Japan
| | - Yan-Cheng Lin
- Department
of Chemical Engineering, National Cheng
Kung University, Tainan 70101, Taiwan
- Advanced
Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
3
|
Zhu M, Shao Z, Li Y, Xiong Z, Yang Z, Chen J, Shi W, Wang C, Bian Y, Zhao Z, Guo Y, Liu Y. Molecular-Scale Geometric Design: Zigzag-Structured Intrinsically Stretchable Polymer Semiconductors. J Am Chem Soc 2024; 146:27429-27442. [PMID: 39345027 DOI: 10.1021/jacs.4c07174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Orienting intelligence and multifunction, stretchable semiconductors are of great significance in constructing next-generation human-friendly wearable electronic devices. Nevertheless, rendering semiconducting polymers mechanical stretchability without compromising intrinsic electrical performance remains a major challenge. Combining geometry-innovated inorganic systems and structure-tailored organic semiconductors, a molecular-scale geometric design strategy is proposed to obtain high-performance intrinsically stretchable polymer semiconductors. Originating from the linear regioregular conjugated polymer and corresponding para-modified near-linear counterpart, a series of zigzag-structured semiconducting polymers are developed with diverse ortho-type and meta-type kinking units quantitatively incorporated. They showcase huge edges in realizing stretchability enhancement for conformational transition, likewise with long-range π-aggregation and short-range torsion disorder taking effect. Assisted by additional heteroatom embedment and flexible alkyl-chain attachment, mechanical stretchability and carrier mobility could afford a two-way promotion. Among zigzag-structured species, o-OC8-5% with the initial field-effect mobility up to 1.92 cm2 V-1 s-1 still delivers 1.43 and 1.37 cm2 V-1 s-1 under 100% strain with charge transport parallel and perpendicular to the stretching direction, respectively, accompanied by outstanding performance retention and cyclic stability. This molecular design strategy contributes to an in-depth exploration of prospective intrinsically stretchable semiconductors for cutting-edge electronic devices.
Collapse
Affiliation(s)
- Mingliang Zhu
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhihao Shao
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yifan Li
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zihan Xiong
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhao Yang
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinyang Chen
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenkang Shi
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chengyu Wang
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yangshuang Bian
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhiyuan Zhao
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Zhang F, Sun J, Liu F, Li J, Hu BL, Tang Q, Li RW. Intrinsically Elastic Semiconductors through Aldehyde-Amine Polycondensation and Its Application on Stretchable Transistor. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38324-38333. [PMID: 38982664 DOI: 10.1021/acsami.4c08685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
With the increasing demand for elastic electronics, as a crucial component, elastic semiconductors have been widely studied. However, there are some issues for the current preparation of elastic semiconductors, such as harsh reaction conditions, low atomic economic utilization, and complicated product separation and purification. Aldehyde-amine polycondensation is an important chemical reaction with the advantages of mild reaction conditions, high atomic-economic efficiency, and easy separation and purification. Herein, intrinsically elastic semiconductors are developed via aldehyde-amine polycondensation, including a semiconducting segment and an elastic segment. The resulting polymer containing 42.62 wt % soft segments exhibits excellent stretchability and mechanical reversibility, especially with a lower modulus. Interestingly, the carrier mobility displays up to 0.04 cm2·V-1·s-1, in the range of the fully conjugated reference polymer (0.1 cm2·V-1·s-1). In brief, this strategy provides important guiding principles for the development of intrinsically elastic polymer semiconductors.
Collapse
Affiliation(s)
- Fengyuan Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Jing Sun
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology Northeast Normal University, Ministry of Education, Changchun 130024, P. R. China
| | - Fei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Junming Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Ben-Lin Hu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Qingxin Tang
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology Northeast Normal University, Ministry of Education, Changchun 130024, P. R. China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, PR China
| |
Collapse
|
5
|
Dacha P, Hambsch M, Pohl D, Haase K, Löffler M, Lan T, Feng X, Rellinghaus B, Mannsfeld SCB. Tailoring the Morphology of a Diketopyrrolopyrrole-based Polymer as Films or Wires for High-Performance OFETs using Solution Shearing. SMALL METHODS 2024; 8:e2300842. [PMID: 38009770 DOI: 10.1002/smtd.202300842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 11/29/2023]
Abstract
Conjugated polymers often show efficient charge carrier transport along their backbone which is a primary factor in the electrical behavior of Organic Field Effect Transistor (OFETs) devices fabricated from these materials. Herein, a solution shearing procedure is reported to fabricate micro/nano wires from a diketopyrrolopyrrole (DPP)-based polymer. Millimeter to nanometer long polymer wires orientated in the coating direction are developed after a thorough analysis of the deposition conditions. It shows several morphological regimes-film, transition, and wires and experimentally derive a phase diagram for the parameters coating speed and surface energy of the substrate. The as-fabricated wires are isolated, which is confirmed by optical, atomic force, and scanning electron microscopy. Beside the macroscopic alignment of wires, cross-polarized optical microscopy images show strong birefringence suggesting a high degree of molecular orientation. This is further substantiated by polarized UV-Vis-NIR spectroscopy, selected area electron diffraction transmission electron microscopy, and grazing-incidence wide-angle X-ray scattering. Finally, an enhanced electrical performance of single wire OFETs is observed with a 15-fold increase in effective charge carrier mobility to 1.57 cm2 V-1 s-1 over devices using films (0.1 cm2 V-1 s-1 ) with similar values for on/off current ratio and threshold voltage.
Collapse
Affiliation(s)
- Preetam Dacha
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069, Dresden, Germany
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01069, Dresden, Germany
| | - Mike Hambsch
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069, Dresden, Germany
| | - Darius Pohl
- Dresden Center for Nanoanalysis (DCN), Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069, Dresden, Germany
| | - Katherina Haase
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069, Dresden, Germany
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01069, Dresden, Germany
| | - Markus Löffler
- Dresden Center for Nanoanalysis (DCN), Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069, Dresden, Germany
| | - Tianshu Lan
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle (Saale), Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle (Saale), Germany
| | - Bernd Rellinghaus
- Dresden Center for Nanoanalysis (DCN), Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069, Dresden, Germany
| | - Stefan C B Mannsfeld
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069, Dresden, Germany
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01069, Dresden, Germany
| |
Collapse
|
6
|
Xue X, Li C, Shangguan Z, Gao C, Chenchai K, Liao J, Zhang X, Zhang G, Zhang D. Intrinsically Stretchable and Healable Polymer Semiconductors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305800. [PMID: 38115748 PMCID: PMC10885676 DOI: 10.1002/advs.202305800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/02/2023] [Indexed: 12/21/2023]
Abstract
In recent decades, polymer semiconductors, extensively employed as charge transport layers in devices like organic field-effect transistors (OFETs), have undergone thorough investigation due to their capacity for large-area solution processing, making them promising for mass production. Research efforts have been twofold: enhancing the charge mobilities of polymer semiconductors and augmenting their mechanical properties to meet the demands of flexible devices. Significant progress has been made in both realms, propelling the practical application of polymer semiconductors in flexible electronics. However, integrating excellent semiconducting and mechanical properties into a single polymer still remains a significant challenge. This review intends to introduce the design strategies and discuss the properties of high-charge mobility stretchable conjugated polymers. In addition, another key challenge faced in this cutting-edge field is maintaining stable semiconducting performance during long-term mechanical deformations. Therefore, this review also discusses the development of healable polymer semiconductors as a promising avenue to improve the lifetime of stretchable device. In conclusion, challenges and outline future research perspectives in this interdisciplinary field are highlighted.
Collapse
Affiliation(s)
- Xiang Xue
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Li
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhichun Shangguan
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chenying Gao
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaiyuan Chenchai
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junchao Liao
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xisha Zhang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Le CV, Yoon H. Advances in the Use of Conducting Polymers for Healthcare Monitoring. Int J Mol Sci 2024; 25:1564. [PMID: 38338846 PMCID: PMC10855550 DOI: 10.3390/ijms25031564] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Conducting polymers (CPs) are an innovative class of materials recognized for their high flexibility and biocompatibility, making them an ideal choice for health monitoring applications that require flexibility. They are active in their design. Advances in fabrication technology allow the incorporation of CPs at various levels, by combining diverse CPs monomers with metal particles, 2D materials, carbon nanomaterials, and copolymers through the process of polymerization and mixing. This method produces materials with unique physicochemical properties and is highly customizable. In particular, the development of CPs with expanded surface area and high conductivity has significantly improved the performance of the sensors, providing high sensitivity and flexibility and expanding the range of available options. However, due to the morphological diversity of new materials and thus the variety of characteristics that can be synthesized by combining CPs and other types of functionalities, choosing the right combination for a sensor application is difficult but becomes important. This review focuses on classifying the role of CP and highlights recent advances in sensor design, especially in the field of healthcare monitoring. It also synthesizes the sensing mechanisms and evaluates the performance of CPs on electrochemical surfaces and in the sensor design. Furthermore, the applications that can be revolutionized by CPs will be discussed in detail.
Collapse
Affiliation(s)
- Cuong Van Le
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea;
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Hyeonseok Yoon
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea;
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| |
Collapse
|
8
|
Qin R, Wu Y, Ding Z, Zhang R, Yu J, Huang W, Liu D, Lu G, Liu SF, Zhao K, Han Y. Highly Stretchable Conjugated Polymer/Elastomer Blend Films with Sandwich Structure. Macromol Rapid Commun 2024; 45:e2300240. [PMID: 37289949 DOI: 10.1002/marc.202300240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/31/2023] [Indexed: 06/10/2023]
Abstract
The physical blending of high-mobility conjugated polymers with ductile elastomers provides a simple way to realize high-performance stretchable films. However, how to control the morphology of the conjugated polymer and elastomer blend film and its response to mechanical fracture processes during stretching are not well understood. Herein, a sandwich structure is constructed in the blend film based on a conjugated polymer poly[(5-fluoro-2,1,3-benzothiadiazole-4,7-diyl)(4,4-dihexadecyl-4H-cyclopenta[2,1-b:3,4-b″]dithiophene-2,6-diyl)(6-fluoro-2,1,3-benzothiadiazole-4,7-diyl)(4,4-dihexadecyl-4H-cyclopenta[2,1-b:3,4-b″]dithiophene-2,6-diyl)] (PCDTFBT) and an elastomer polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS). The sandwich structure is composed of a PCDTFBT:SEBS mixed layer laminated with a PCDTFBT-rich layer at both the top and bottom surfaces. During stretching, the external strain energy can be effectively dissipated by the deformation of the crystalline PCDTFBT domains and amorphous SEBS phases and the recrystallization of the PCDTFBT chains. This endows the blend film with excellent ductility, with a large crack onset strain exceeding 1100%, and minimized the electrical degradation of the blend film at a large strain. This study indicates that the electrical and mechanical performance of conjugated polymer/elastomer blend films can be improved by manipulating their microstructure.
Collapse
Affiliation(s)
- Ru Qin
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yin Wu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zicheng Ding
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Rui Zhang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, 58183, Sweden
| | - Jifa Yu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Wenliang Huang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Dongle Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Guanghao Lu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
9
|
Chervanyov AI. Effect of the Interplay between Polymer-Filler and Filler-Filler Interactions on the Conductivity of a Filled Diblock Copolymer System. Polymers (Basel) 2023; 16:104. [PMID: 38201769 PMCID: PMC10781002 DOI: 10.3390/polym16010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
We investigate the relative roles of the involved interactions and micro-phase morphology in the formation of the conductive filler network in an insulating diblock copolymer (DBC) system. By incorporating the filler immersion energy obtained by means of the phase-field model of the DBC into the Monte Carlo simulation of the filler system, we determined the equilibrium distribution of fillers in the DBC that assumes the lamellar or cylindrical (hexagonal) morphology. Furthermore, we used the resistor network model to calculate the conductivity of the simulated filler system. The obtained results essentially depend on the complicated interplay of the following three factors: (i) Geometry of the DBC micro-phase, in which fillers are preferentially localized; (ii) difference between the affinities of fillers for dissimilar copolymer blocks; (iii) interaction between fillers. The localization of fillers in the cylindrical DBC micro-phase has been found to most effectively promote the conductivity of the composite. The effect of the repulsive and attractive interactions between fillers on the conductivity of the filled DBC has been studied in detail. It is quantitatively demonstrated that this effect has different significance in the cases when the fillers are preferentially localized in the majority and minority micro-phases of the cylindrical DBC morphology.
Collapse
Affiliation(s)
- A I Chervanyov
- Institute of Theoretical Physics, University of Münster, 48149 Münster, Germany
| |
Collapse
|
10
|
Matsuda M, Lin CY, Sung CY, Lin YC, Chen WC, Higashihara T. Unraveling the Effect of Stereoisomerism on Mobility-Stretchability Properties of n-Type Semiconducting Polymers with Biobased Epimers as Conjugation Break Spacers. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37897701 DOI: 10.1021/acsami.3c09951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
The development of intrinsically stretchable n-type semiconducting polymers has garnered much interest in recent years. In this study, three biobased dianhydrohexitol epimers of isosorbide (ISB), isomannide (IMN), and isoidide (IID), derived from cellulose, were incorporated into the backbone of a naphthalenediimide (NDI)-based n-type semiconducting polymer as conjugation break spacers (CBSs). Accordingly, three polymers were synthesized through the Migita-Kosugi-Stille coupling polymerization with NDI, bithiophene, and CBSs, and the mobility-stretchability properties of these polymers were investigated and compared with those of their analogues with conventional alkyl-based CBSs. Experimental results showed that the different configurations of these epimers in CBSs sufficiently modulate the melt entropies, surface aggregation, crystallographic parameters, chain entanglements, and mobility-stretchability properties. Comparable ductility and edge-on preferred stacking were observed in polymers with endo- or exo-configurations in IMN- and IID-based polymers. By contrast, ISB with endo-/exo-configurations exhibits an excellent chain-realigning capability, a reduced crack density, and a proceeding bimodal orientation under tensile strain. Therefore, the ISB-based polymer exhibits high orthogonal electron mobility retention of (53 and 56)% at 100% strain. This study is one of the few examples where biobased moieties are incorporated into semiconducting polymers as stress-relaxation units. Additionally, this is the first study to report on the effect of stereoisomerism of epimers on the morphology and mobility-stretchability properties of semiconducting polymers.
Collapse
Affiliation(s)
- Megumi Matsuda
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Chia-Yu Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Yuan Sung
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yan-Cheng Lin
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Tomoya Higashihara
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
11
|
Guan C, Xiao C, Liu X, Hu Z, Wang R, Wang C, Xie C, Cai Z, Li W. Non-Covalent Interactions between Polyvinyl Chloride and Conjugated Polymers Enable Excellent Mechanical Properties and High Stability in Organic Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202312357. [PMID: 37702544 DOI: 10.1002/anie.202312357] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/14/2023]
Abstract
The incorporation of insulating polymers into conjugated polymers has been widely explored as a strategy to improve mechanical properties of flexible organic electronics. However, phase separation due to the immiscibility of these polymers has limited their effectiveness. In this study, we report the discovery of multiple non-covalent interactions that enhances the miscibility between insulating and conjugated polymers, resulting in improved mechanical properties. Specifically, we have added polyvinyl chloride (PVC) into the conjugated polymer PM6 and observed a significant increase in solution viscosity, indicative of favorable miscibility between these two polymers. This phenomenon has been rarely observed in other insulating/conjugated polymer composites. Thin films of PM6/PVC exhibit a much-improved crack-onset strain of 19.35 %, compared to 10.12 % for pristine PM6 films. Analysis reveal that a "cyclohexyl-like" structure formed through dipole-dipole interactions and hydrogen bonding between PVC and PM6 acted as a cross-linking site in the thin films, leading to improved mechanical properties. Moreover, PM6/PVC blend films have demonstrated excellent thermal and bending stability when applied as an electron donor in organic solar cells. These findings provide new insights into non-covalent interactions that can be utilized to enhance the properties of conjugated polymers and may have potential applications in flexible organic electronics.
Collapse
Affiliation(s)
- Chong Guan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xin Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhijie Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ruoyao Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chao Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chengcheng Xie
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ziqi Cai
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
12
|
Li X, Bi R, Ou X, Han S, Sheng Y, Chen G, Xie Z, Liu C, Yue W, Wang Y, Hu W, Guo SZ. 3D-Printed Intrinsically Stretchable Organic Electrochemical Synaptic Transistor Array. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41656-41665. [PMID: 37610705 DOI: 10.1021/acsami.3c07169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Organic electrochemical transistors (OECTs) for skin-like bioelectronics require mechanical stretchability, softness, and cost-effective large-scale manufacturing. However, developing intrinsically stretchable OECTs using a simple and fast-response technique is challenging due to limitations in functional materials, substrate wettability, and integrated processing of multiple materials. In this regard, we propose a fabrication method devised by combining the preparation of a microstructured hydrophilic substrate, multi-material printing of functional inks with varying viscosities, and optimization of the device channel geometries. The resulting intrinsically stretchable OECT array with synaptic properties was successfully manufactured. These devices demonstrated high transconductance (22.5 mS), excellent mechanical softness (Young's modulus ∼ 2.2 MPa), and stretchability (∼30%). Notably, the device also exhibited artificial synapse functionality, mimicking the biological synapse with features such as paired-pulse depression, short-term plasticity, and long-term plasticity. This study showcases a promising strategy for fabricating intrinsically stretchable OECTs and provides valuable insights for the development of brain-computer interfaces.
Collapse
Affiliation(s)
- Xiaohong Li
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Ran Bi
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xingcheng Ou
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Songjia Han
- State Key Laboratory of Optoelectronic Materials and Technologies and Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Sheng
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Guoliang Chen
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhuang Xie
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies and Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Wan Yue
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yan Wang
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Weijie Hu
- School of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Shuang-Zhuang Guo
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
13
|
Seo S, Lee JW, Kim DJ, Lee D, Phan TNL, Park J, Tan Z, Cho S, Kim TS, Kim BJ. Poly(dimethylsiloxane)-block-PM6 Polymer Donors for High-Performance and Mechanically Robust Polymer Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300230. [PMID: 36929364 DOI: 10.1002/adma.202300230] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/07/2023] [Indexed: 06/16/2023]
Abstract
High power conversion efficiency (PCE) and stretchability are the dual requirements for the wearable application of polymer solar cells (PSCs). However, most efficient photoactive films are mechanically brittle. In this work, highly efficient (PCE = 18%) and mechanically robust (crack-onset strain (COS) = 18%) PSCs are acheived by designing block copolymer (BCP) donors, PM6-b-PDMSx (x = 5k, 12k, and 19k). In these BCP donors, stretchable poly(dimethylsiloxane) (PDMS) blocks are covalently linked with the PM6 blocks to effectively increase the stretchability. The stretchability of the BCP donors increases with a longer PDMS block, and PM6-b-PDMS19k :L8-BO PSC exhibits a high PCE (18%) and 9-times higher COS value (18%) compared to that (COS = 2%) of the PM6:L8-BO-based PSC. However, the PM6:L8-BO:PDMS12k ternary blend shows inferior PCE (5%) and COS (1%) due to the macrophase separation between PDMS and active components. In the intrinsically stretchable PSC, the PM6-b-PDMS19k :L8-BO blend exhibits significantly greater mechanical stability PCE80% ((80% of the initial PCE) at 36% strain) than those of the PM6:L8-BO blend (PCE80% at 12% strain) and the PM6:L8-BO:PDMS ternary blend (PCE80% at 4% strain). This study suggests an effective design strategy of BCP PD to achieve stretchable and efficient PSCs.
Collapse
Affiliation(s)
- Soodeok Seo
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jin-Woo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dong Jun Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dongchan Lee
- Department of Physics and EHSRC, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Tan Ngoc-Lan Phan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jinseok Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Zhengping Tan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Shinuk Cho
- Department of Physics and EHSRC, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
14
|
Kim DH, Kwon HG, Choi HK. Dewetting-Induced Hierarchical Self-Assembly of Block Copolymers Templated by Colloidal Crystals. Polymers (Basel) 2023; 15:polym15040897. [PMID: 36850181 PMCID: PMC9961777 DOI: 10.3390/polym15040897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Recent advances in high-performance flexible electronic devices have increased the demand for more diverse and complex nanofabrication methods; high-resolution, high-efficiency, and low-cost patterning strategies for next-generation devices are therefore required. In this study, we demonstrate the formation of dewetting-induced hierarchical patterns using two self-assembled materials: block copolymers (BCPs) and colloidal crystals. The combination of the two self-assembly methods successfully generates multiscale hierarchical patterns because the length scales of the periodic colloidal crystal structures are suitable for templating the BCP patterns. Various concentric ring patterns were observed on the templated BCP films, and a free energy model of the polymer chain was applied to explain the formation of these patterns relative to the template width. Frequently occurring spiral-defective features were also examined and found to be promoted by Y-junction defects.
Collapse
|
15
|
Ferrocene-Based Terpolyamides and Their PDMS-Containing Block Copolymers: Synthesis and Physical Properties. Polymers (Basel) 2022; 14:polym14235087. [PMID: 36501482 PMCID: PMC9735706 DOI: 10.3390/polym14235087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Aromatic polyamides are well-known as high-performance materials due to their outstanding properties making them useful in a wide range of applications. However, their limited solubility in common organic solvents restricts their processability and becomes a hurdle in their applicability. This study is focused on the synthesis of processable ferrocene-based terpolyamides and their polydimethylsiloxane (PDMS)-containing block copolymers, using low-temperature solution polycondensation methodology. All the synthesized materials were structurally characterized using FTIR and 1H NMR spectroscopic techniques. The ferrocene-based terpolymers and block copolymers were soluble in common organic solvents, while the organic analogs were found only soluble in sulfuric acid. WXRD analysis showed the amorphous nature of the materials, while the SEM analysis exposed the modified surface of the ferrocene-based block copolymers. The structure-property relationship of the materials was further elucidated by their water absorption and thermal behavior. These materials showed low to no water absorption along with their high limiting oxygen index (LOI) values depicting their good flame-retardant behavior. DFT studies also supported the role of various monomers in the polycondensation reaction where the electron pair donation from HOMO of diamine monomer to the LUMO of acyl chloride was predicted, along with the calculation of various other parameters of the representative terpolymers and block copolymers.
Collapse
|
16
|
Lee G, Zarei M, Wei Q, Zhu Y, Lee SG. Surface Wrinkling for Flexible and Stretchable Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203491. [PMID: 36047645 DOI: 10.1002/smll.202203491] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Recent advances in nanolithography, miniaturization, and material science, along with developments in wearable electronics, are pushing the frontiers of sensor technology into the large-scale fabrication of highly sensitive, flexible, stretchable, and multimodal detection systems. Various strategies, including surface engineering, have been developed to control the electrical and mechanical characteristics of sensors. In particular, surface wrinkling provides an effective alternative for improving both the sensing performance and mechanical deformability of flexible and stretchable sensors by releasing interfacial stress, preventing electrical failure, and enlarging surface areas. In this study, recent developments in the fabrication strategies of wrinkling structures for sensor applications are discussed. The fundamental mechanics, geometry control strategies, and various fabricating methods for wrinkling patterns are summarized. Furthermore, the current state of wrinkling approaches and their impacts on the development of various types of sensors, including strain, pressure, temperature, chemical, photodetectors, and multimodal sensors, are reviewed. Finally, existing wrinkling approaches, designs, and sensing strategies are extrapolated into future applications.
Collapse
Affiliation(s)
- Giwon Lee
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Mohammad Zarei
- Department of Chemistry, University of Ulsan, Ulsan, 44776, South Korea
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Seung Goo Lee
- Department of Chemistry, University of Ulsan, Ulsan, 44776, South Korea
| |
Collapse
|
17
|
Pei D, An C, Zhao B, Ge M, Wang Z, Dong W, Wang C, Deng Y, Song D, Ma Z, Han Y, Geng Y. Polyurethane-Based Stretchable Semiconductor Nanofilms with High Intrinsic Recovery Similar to Conventional Elastomers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33806-33816. [PMID: 35849824 DOI: 10.1021/acsami.2c07445] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polymer semiconductors with large elastic recovery (ER) under high strain in thin film state are highly desirable for stretchable electronics. Here we report a type of stretchable semiconductor PU(DPP)x, by copolymerization of oligodiketopyrrolopyrrole-based conjugated block and hydrogenated polybutadiene flexible block via urethane linkage for intermolecular hydrogen bonding. By regulating block ratio, PU(DPP)35 with 35 wt % conjugated block exhibits high intrinsic ER > 80% under 175% strain (ε) in pseudo free-standing thin film state, comparable with commercial elastomers, and crack onset strain (COS) > 300% along with maximum hole mobility of 0.19 cm2 V-1 s-1 in organic thin film transistors to bring it to the best performing block copolymer-type stretchable semiconductors. Enhanced mobility is achieved using PU(DPP)35 as the binder for conjugated polymer PDPPT3. The 25 wt %-PDPPT3 blend displays mobility up to 1.28 cm2 V-1 s-1 along with COS ∼120%, and 10 wt %-PDPPT3 blend exhibits ER of 78% at ε = 150%, COS of ∼230%, modulus of 36.5 MPa, maximum mobility of 0.62 cm2 V-1 s-1 and no obvious degradation of mobility at ε = 150% after 100 cycles of strain. Moreover, the structural similarity enables the blend film uniform and stable microstructure against mechanical and thermal deformation. Notably, PU(DPP)35 and the blend are characterized by high mechanical performance similar to that of commercial elastomers in thin film state, and demonstrate their potential for high performance stretchable electronics.
Collapse
Affiliation(s)
- Dandan Pei
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Chuanbin An
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| | - Bin Zhao
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Mengke Ge
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhongli Wang
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Weijia Dong
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Cheng Wang
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yunfeng Deng
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Dongpo Song
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhe Ma
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yang Han
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Yanhou Geng
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| |
Collapse
|
18
|
Liu C, Xiao C, Wang J, Liu B, Hao Y, Guo J, Song J, Tang Z, Sun Y, Li W. Revisiting Conjugated Polymers with Long-Branched Alkyl Chains: High Molecular Weight, Excellent Mechanical Properties, and Low Voltage Losses. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chunhui Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jing Wang
- Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Baiqiao Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yidi Hao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jiayi Guo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jiali Song
- School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Zheng Tang
- Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yanming Sun
- School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
19
|
Precise synthesis of α,ω-chain-end-functionalized poly(dimethylsiloxane) with bromoaryl groups for incorporation in naphthalene-diimide-based N-type semiconducting polymers. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Zhao Z, Liu K, Liu Y, Guo Y, Liu Y. Intrinsically flexible displays: key materials and devices. Natl Sci Rev 2022; 9:nwac090. [PMID: 35711242 PMCID: PMC9197576 DOI: 10.1093/nsr/nwac090] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 11/14/2022] Open
Abstract
Continuous progress in flexible electronics is bringing more convenience and comfort to human lives. In this field, interconnection and novel display applications are acknowledged as important future directions. However, it is a huge scientific and technical challenge to develop intrinsically flexible displays due to the limited size and shape of the display panel. To address this conundrum, it is crucial to develop intrinsically flexible electrode materials, semiconductor materials and dielectric materials, as well as the relevant flexible transistor drivers and display panels. In this review, we focus on the recent progress in this field from seven aspects: background and concept, intrinsically flexible electrode materials, intrinsically flexible organic semiconductors and dielectric materials for organic thin film transistors (OTFTs), intrinsically flexible organic emissive semiconductors for electroluminescent devices, and OTFT-driven electroluminescent devices for intrinsically flexible displays. Finally, some suggestions and prospects for the future development of intrinsically flexible displays are proposed.
Collapse
Affiliation(s)
- Zhiyuan Zhao
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Kai Liu
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yanwei Liu
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yunlong Guo
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yunqi Liu
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
21
|
Tan X, Zheng J. A Novel Porous PDMS-AgNWs-PDMS (PAP)-Sponge-Based Capacitive Pressure Sensor. Polymers (Basel) 2022; 14:polym14081495. [PMID: 35458245 PMCID: PMC9031670 DOI: 10.3390/polym14081495] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/24/2022] Open
Abstract
The development of capacitive pressure sensors with low cost, high sensitivity and facile fabrication techniques is desirable for flexible electronics and wearable devices. In this project, a highly sensitive and flexible capacitive pressure sensor was fabricated by sandwiching a porous PAP sponge dielectric layer between two copper electrodes. The porous PAP sponge dielectric layer was fabricated by introducing highly conductive silver nanowires (AgNWs) into the PDMS sponge with 100% sucrose as a template and with a layer of polydimethylsiloxane (PDMS) film coating the surface. The sensitivity of the PAP sponge capacitive pressure sensor was optimized by increasing the load amount of AgNWs. Experimental results demonstrated that when the load amount of AgNWs increased to 150 mg in the PAP sponge, the sensitivity of the sensor was the highest in the low-pressure range of 0–1 kPa, reaching 0.62 kPa−1. At this point, the tensile strength and elongation of sponge were 1.425 MPa and 156.38%, respectively. In addition, the specific surface area of PAP sponge reached 2.0 cm2/g in the range of 0–10 nm pore size, and showed excellent waterproof performance with high elasticity, low hysteresis, light weight, and low density. Furthermore, as an application demonstration, ~110 LED lights were shown to light up when pressed onto the optimized sensor. Hence, this novel porous PAP-sponge-based capacitive pressure sensor has a wide range of potential applications in the field of wearable electronics.
Collapse
|
22
|
Xie C, Xiao C, Jiang X, Liang S, Liu C, Zhang Z, Chen Q, Li W. Miscibility-Controlled Mechanical and Photovoltaic Properties in Double-Cable Conjugated Polymer/Insulating Polymer Composites. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chengcheng Xie
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Xudong Jiang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Shijie Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Chunhui Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Zhou Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Qiaomei Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
23
|
Liu C, Xiao C, Xie C, Zhu Q, Chen Q, Ma W, Li W. Insulating Polymers as Additives to Bulk-Heterojunction Organic Solar Cells: The Effect of Miscibility. Chemphyschem 2021; 23:e202100725. [PMID: 34791762 DOI: 10.1002/cphc.202100725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/17/2021] [Indexed: 11/06/2022]
Abstract
Adding insulating polymers to conjugated polymers is an efficient strategy to tailor their mechanical properties for flexible organic electronics. In this work, we selected two insulating polymers as additives for high-performance photoactive layers and investigated the mechanical and photovoltaic properties in organic solar cells (OSCs). The insulating polymers were found to reduce the electron mobilities in the photoactive layers, and hence the power conversion efficiencies were significantly decreased. More importantly, we found that the insulating polymers exhibited negative effect on the mechanical properties of the photoactive layers, with reduced Young's modulus and low crack onset strains. Further studies revealed that the insulating polymers had poor miscibility with the photoactive layers, providing large domains and more cavities in blend thin films, which act as negative effect for the tensile test. The studies indicate that rational selection of insulating polymers, especially enhancing the non-covalent interaction with the photoactive layers, will be critically important for the stretchable OSCs.
Collapse
Affiliation(s)
- Chunhui Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chengcheng Xie
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qinglian Zhu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qiaomei Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
24
|
Liu F, Hou X, Hu B, Li R. Intrinsically Elastic Organic Semiconductors (IEOSs). Molecules 2021; 26:molecules26206130. [PMID: 34684711 PMCID: PMC8537692 DOI: 10.3390/molecules26206130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
Elastic semiconductors are becoming more and more important to the development of flexible wearable electronic devices, which can be prepared by structural engineering design, blending, and the intrinsic elastification of organic semiconductors (intrinsically elastic organic semiconductor, IEOS). Compared with the elastic semiconductors prepared by structural engineering and blending, the IEOS prepared by organic synthesis has attracted numerous attentions for its solution processability and highly tunable chemical structures. For IEOSs, reasonable designs of synthetic routes and methods are the basis for realizing good mechanical and electrical properties. This brief review begins with a concise introduction of elastic semiconductors, then follows with several synthetic methods of IEOSs, and concludes the characteristics of each method, which provides guidance for the synthesis of IEOSs in the future. Furthermore, the properties of IEOSs are involved from the aspects of electrical, mechanical properties, and the applications of the IEOSs in elastic electronic devices. Finally, the challenge and an outlook which IEOSs are facing are presented in conclusion.
Collapse
Affiliation(s)
- Fei Liu
- Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China;
- CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xueling Hou
- Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China;
- Correspondence: (X.H.); (B.H.); (R.L.)
| | - Benlin Hu
- CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Correspondence: (X.H.); (B.H.); (R.L.)
| | - Runwei Li
- CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Correspondence: (X.H.); (B.H.); (R.L.)
| |
Collapse
|
25
|
Ding Y, Yuan Y, Wu N, Wang X, Zhang G, Qiu L. Intrinsically Stretchable n-Type Polymer Semiconductors through Side Chain Engineering. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00936] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yafei Ding
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Anhui Province Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China
| | - Ye Yuan
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Anhui Province Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China
| | - Ning Wu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Anhui Province Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China
| | - Xiaohong Wang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Anhui Province Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China
| | - Guobing Zhang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
26
|
Ditte K, Nguyen Le TA, Ditzer O, Sandoval Bojorquez DI, Chae S, Bachmann M, Baraban L, Lissel F. Rapid Detection of SARS-CoV-2 Antigens and Antibodies Using OFET Biosensors Based on a Soft and Stretchable Semiconducting Polymer. ACS Biomater Sci Eng 2021; 9:2140-2147. [PMID: 34519484 DOI: 10.1021/acsbiomaterials.1c00727] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the midst of the COVID-19 pandemic, adaptive solutions are needed to allow us to make fast decisions and take effective sanitation measures, e.g., the fast screening of large groups (employees, passengers, pupils, etc.). Although being reliable, most of the existing SARS-CoV-2 detection methods cannot be integrated into garments to be used on demand. Here, we report an organic field-effect transistor (OFET)-based biosensing device detecting of both SARS-CoV-2 antigens and anti-SARS-CoV-2 antibodies in less than 20 min. The biosensor was produced by functionalizing an intrinsically stretchable and semiconducting triblock copolymer (TBC) film either with the anti-S1 protein antibodies (S1 Abs) or receptor-binding domain (RBD) of the S1 protein, targeting CoV-2-specific RBDs and anti-S1 Abs, respectively. The obtained sensing platform is easy to realize due to the straightforward fabrication of the TBC film and the utilization of the reliable physical adsorption technique for the molecular immobilization. The device demonstrates a high sensitivity of about 19%/dec and a limit of detection (LOD) of 0.36 fg/mL for anti-SARS-Cov-2 antibodies and, at the same time, a sensitivity of 32%/dec and a LOD of 76.61 pg/mL for the virus antigen detection. The TBC used as active layer is soft, has a low modulus of 24 MPa, and can be stretched up to 90% with no crack formation of the film. The TBC is compatible with roll-to-roll printing, potentially enabling the fabrication of low-cost wearable or on-skin diagnostic platforms aiming at point-of-care concepts.
Collapse
Affiliation(s)
- Kristina Ditte
- Leibniz Institute of Polymer Research Dresden e.V., Hohe Straße 6, Dresden 01069, Germany.,Faculty of Chemistry and Food Chemistry, Dresden Technical University, Dresden 01062, Germany
| | - Trang Anh Nguyen Le
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, Dresden 01328, Germany.,Faculty of Medicine Carl Gustav Carus, Dresden Technical University, Dresden 01307, Germany
| | - Oliver Ditzer
- Leibniz Institute of Polymer Research Dresden e.V., Hohe Straße 6, Dresden 01069, Germany.,Faculty of Chemistry and Food Chemistry, Dresden Technical University, Dresden 01062, Germany
| | - Diana Isabel Sandoval Bojorquez
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, Dresden 01328, Germany
| | - Soosang Chae
- Leibniz Institute of Polymer Research Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, Dresden 01328, Germany.,Faculty of Medicine Carl Gustav Carus, Dresden Technical University, Dresden 01307, Germany
| | - Larysa Baraban
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, Dresden 01328, Germany
| | - Franziska Lissel
- Leibniz Institute of Polymer Research Dresden e.V., Hohe Straße 6, Dresden 01069, Germany.,Faculty of Chemistry and Food Chemistry, Dresden Technical University, Dresden 01062, Germany.,Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstr. 10, Jena 07743, Germany
| |
Collapse
|
27
|
Dauzon E, Sallenave X, Plesse C, Goubard F, Amassian A, Anthopoulos TD. Pushing the Limits of Flexibility and Stretchability of Solar Cells: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101469. [PMID: 34297433 DOI: 10.1002/adma.202101469] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/25/2021] [Indexed: 06/13/2023]
Abstract
Emerging forms of soft, flexible, and stretchable electronics promise to revolutionize the electronics industries of the future offering radically new products that combine multiple functionalities, including power generation, with arbitrary form factor. For example, skin-like electronics promise to transform the human-machine-interface, but the softness of the skin is incompatible with traditional electronic components. To address this issue, new strategies toward soft and wearable electronic systems are currently being pursued, which also include stretchable photovoltaics as self-powering systems for use in autonomous and stretchable electronics of the future. Here recent developments in the field of stretchable photovoltaics are reviewed and their potential for various emerging applications are examined. Emphasis is placed on the different strategies to induce stretchability including extrinsic and intrinsic approaches. In the former case, engineering and patterning of the materials and devices are key elements while intrinsically stretchable systems rely on mechanically compliant materials such as elastomers and organic conjugated polymers. The result is a review article that provides a comprehensive summary of the progress to date in the field of stretchable solar cells from the nanoscale to macroscopic functional devices. The article is concluded by discussing the emerging trends and future developments.
Collapse
Affiliation(s)
- Emilie Dauzon
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Physical Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| | | | - Cedric Plesse
- LPPI, CY Cergy Paris Université, Cergy, 95000, France
| | | | - Aram Amassian
- Department of Materials Science and Engineering, and Organic and Carbon Electronic Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Thomas D Anthopoulos
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Physical Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
28
|
Tsuda T, Chae S, Al-Hussein M, Formanek P, Fery A. Flexible Pressure Sensors Based on the Controlled Buckling of Doped Semiconducting Polymer Nanopillars. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37445-37454. [PMID: 34328731 DOI: 10.1021/acsami.1c12530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mechanically flexible and electrically conductive nanostructures are highly desired for flexible piezoresistive pressure sensors toward health monitoring or robotic skin applications. The popular approach for these sensors is to combine flexible but insulating polymers as a micro- or nanostructural functional medium and conductive materials covering the polymer surface, which could give rise to many practical issues, for example, durability, compatibility, and complicated processing steps. We herein report a piezoresistive pressure sensor with a functional component of nanopillars of a doped semiconducting polymer, operating at low bias voltage with a sensing mechanism based on controlled buckling. Nanopillars of poly(3-hexylthiophene-2,5-diyl) doped with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane are patterned using anodic aluminum oxide templates. The nanopillars impart reversible current changes in response to the applied pressure over a wide pressure range (0-400 kPa). The sensor exhibits two current response regimes. Below 50 kPa, a strongly nonlinear response is observed, and above 50 kPa, a linear pressure response is demonstrated. Euler buckling theory is used to predict the deformation behavior of the nanopillars under pressure and in turn elucidate the sensing mechanism. Our results demonstrate that the contact area between the nanopillars and the top electrode increases with the application of pressure due to their elastic buckling in a two-regime fashion underlining the two electrical current response regimes of the sensor. Independent finite element modeling and scanning electron microscopy measurements corroborated this sensing mechanism. In contrast to many reported pressure sensors, the controlled elastic buckling of the nanopillars enables the detection of pressure over a wide range with good sensitivity, excellent reproducibility, and cycling stability.
Collapse
Affiliation(s)
- Takuya Tsuda
- Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Str. 6, Dresden 01069, Germany
- Institute of Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Dresden 01062, Germany
| | - Soosang Chae
- Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Str. 6, Dresden 01069, Germany
| | - Mahmoud Al-Hussein
- Physics Department and Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan
| | - Petr Formanek
- Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Str. 6, Dresden 01069, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Str. 6, Dresden 01069, Germany
- Institute of Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Dresden 01062, Germany
| |
Collapse
|
29
|
Charge Carrier Mobility Improvement in Diketopyrrolopyrrole Block-Copolymers by Shear Coating. Polymers (Basel) 2021; 13:polym13091435. [PMID: 33946975 PMCID: PMC8125458 DOI: 10.3390/polym13091435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 12/20/2022] Open
Abstract
Shear coating is a promising deposition method for upscaling device fabrication and enabling high throughput, and is furthermore suitable for translating to roll-to-roll processing. Although common polymer semiconductors (PSCs) are solution processible, they are still prone to mechanical failure upon stretching, limiting applications in e.g., electronic skin and health monitoring. Progress made towards mechanically compliant PSCs, e.g., the incorporation of soft segments into the polymer backbone, could not only allow such applications, but also benefit advanced fabrication methods, like roll-to-roll printing on flexible substrates, to produce the targeted devices. Tri-block copolymers (TBCs), consisting of an inner rigid semiconducting poly-diketo-pyrrolopyrrole-thienothiophene (PDPP-TT) block flanked by two soft elastomeric poly(dimethylsiloxane) (PDMS) chains, maintain good charge transport properties, while being mechanically soft and flexible. Potentially aiming at the fabrication of TBC-based wearable electronics by means of cost-efficient and scalable deposition methods (e.g., blade-coating), a tolerance of the electrical performance of the TBCs to the shear speed was investigated. Herein, we demonstrate that such TBCs can be deposited at high shear speeds (film formation up to a speed of 10 mm s−1). While such high speeds result in increased film thickness, no degradation of the electrical performance was observed, as was frequently reported for polymer−based OFETs. Instead, high shear speeds even led to a small improvement in the electrical performance: mobility increased from 0.06 cm2 V−1 s−1 at 0.5 mm s−1 to 0.16 cm2 V−1 s−1 at 7 mm s−1 for the TBC with 24 wt% PDMS, and for the TBC containing 37 wt% PDMS from 0.05 cm2 V−1 s−1 at 0.5 mm s−1 to 0.13 cm2 V−1 s−1 at 7 mm s−1. Interestingly, the improvement of mobility is not accompanied by any significant changes in morphology.
Collapse
|
30
|
Ding Z, Liu D, Zhao K, Han Y. Optimizing Morphology to Trade Off Charge Transport and Mechanical Properties of Stretchable Conjugated Polymer Films. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00268] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zicheng Ding
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Dongle Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|