1
|
Yang X, Qu W, Tong W, Zhang B. Multifunctional Cooling Textiles with Enhanced Radiative and Moisture Management by One-Step Phase Separation. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40366785 DOI: 10.1021/acsami.5c04369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
The development of multifunctional cooling textiles has become crucial in addressing global warming and the increasing need for personal thermal management. Developing textiles with integrated unidirectional moisture transport and radiative cooling functionalities through a simple fabrication method has become a critical challenge in addressing thermal and moisture management under high-temperature conditions. This study presents the development of a radiative cooling and unidirectional moisture-wicking textile (RCUM-Textile) through one-step phase separation method. By employing evaporation-induced phase separation (EIPS) and non-solvent-induced phase separation (NIPS) mechanisms, the RCUM-Textile achieves a trilayer structure comprising a hydrophobic SiO2/PVDF-HFP upper layer and a hydrophilic cotton lower layer. This innovative structure integrates radiative cooling and efficient sweat evaporation, enabling a solar reflectance of 89.7%, a mid-infrared emissivity of 94.9%, and a cooling effect of 8.7°C under direct sunlight. The SiO2/PVDF-HFP solution, utilized as a cotton finishing agent, simplifies the functionalization process, ensuring uniform coating and structural stability while reducing processing complexity. Additionally, its enhanced sweat evaporation rate (0.029 g·m-2·s-1) and reduced evaporation enthalpy (2084 J/g) significantly improve thermal regulation and wearer comfort. This study provides a cost-effective and practical approach to fabricating high-performance textiles, paving the way for applications in personal cooling devices, wearable electronics, and industrial-scale cooling systems.
Collapse
Affiliation(s)
- Xiaorong Yang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Wenjie Qu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Wangshu Tong
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
- National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Beibei Zhang
- National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
2
|
Zong D, Cao L, Sun Y, Pang S, Li Y, Liu Y. Fast, Low-Cost, and Lyophilization-Free Synthesis of Multifunctional Elastic Nanofiber Aerogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412778. [PMID: 40317632 DOI: 10.1002/smll.202412778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/16/2025] [Indexed: 05/07/2025]
Abstract
Aerogels are regarded as ideal materials across a range of fields due to their exceptionally low densities and highly porous structures. However, their practical applications are significantly constrained by their inherent fragility, high production costs, and demanding conditions such as freeze-drying or supercritical drying. In this study, a novel, low-cost strategy is presented for the large-scale fabrication of hierarchically structured nanofiber aerogels (HENAs) using a lyophilization-free, dissolution-induced coordination (DIC) method. This approach enables fabrication within ≈4 h, which is 10 times faster than conventional lyophilization processes (usually require ≥48 h). Despite the absence of additional chemical crosslinking, the formation of stable coordination networks imparts the aerogels with excellent resilience (exhibiting only 3.9% deformation after 100 compression cycles). This strategy demonstrates fiber-type invariant universality, enabling the fabrication of HENAs with multifunctional properties, including noise absorption (noise reduction coefficient of 0.58), electromagnetic wave absorption (effective absorption bandwidth of 7.2 GHz), and oil adsorption (adsorbing capacity of 36.4 g g-1). The simplicity, rapidity, and cost-effectiveness of this synthesis approach provide a promising pathway for the large-scale production of multifunctional aerogels.
Collapse
Affiliation(s)
- Dingding Zong
- Ministry of Education Key Laboratory for Advanced Textile Composite Materials, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Leitao Cao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yaning Sun
- Ministry of Education Key Laboratory for Advanced Textile Composite Materials, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Shuying Pang
- Ministry of Education Key Laboratory for Advanced Textile Composite Materials, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yuyao Li
- Ministry of Education Key Laboratory for Advanced Textile Composite Materials, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yong Liu
- Ministry of Education Key Laboratory for Advanced Textile Composite Materials, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
3
|
Imani IM, Kim HS, Lee M, Kim S, Song S, Lee D, Hwang J, Lee J, Suh I, Kim S, Chen J, Kang H, Son D, Baik JM, Hur S, Song H. A Body Conformal Ultrasound Receiver for Efficient and Stable Wireless Power Transfer in Deep Percutaneous Charging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419264. [PMID: 40135259 PMCID: PMC12075921 DOI: 10.1002/adma.202419264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/28/2025] [Indexed: 03/27/2025]
Abstract
Wireless powering of rechargeable-implantable medical devices presents a challenge in developing reliable wireless energy transfer systems that meet medical safety and standards. Ultrasound-driven triboelectric nanogenerators (US-TENG) are investigated for various medical applications, including noninvasive percutaneous wireless battery powering to reduce the need for multiple surgeries for battery replacement. However, these devices often suffer from inefficiency due to limited output performance and rigidity. To address this issue, a dielectric-ferroelectric boosted US-TENG (US-TENGDF-B) capable of producing a high output charge with low-intensity ultrasound and a long probe distance is developed, comparatively. The feasibility and output stability of this deformable and augmented device is confirmed under various bending conditions, making it suitable for use in the body's curved positions or with electronic implants. The device achieved an output of ≈26 V and ≈6.7 mW output for remote charging of a rechargeable battery at a 35 mm distance. These results demonstrate the effectiveness of the output-augmented US-TENG for deep short-term wireless charging of implantable electronics with flexing conditions in curved devices such as future total artificial hearts.
Collapse
Affiliation(s)
- Iman M. Imani
- Department of Materials Science and EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Hyun Soo Kim
- Electronic and Hybrid Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Minhyuk Lee
- Electronic and Hybrid Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Seung‐Bum Kim
- Electronic and Hybrid Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Department of Materials Science and EngineeringKorea UniversitySeoul02841Republic of Korea
| | - So‐Min Song
- Electronic and Hybrid Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- School of Mechanical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Dong‐Gyu Lee
- Department of Materials Science and EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Joon‐Ha Hwang
- School of Advanced Materials Science and EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Jeyeon Lee
- Electronic and Hybrid Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Department of Micro/Nano SystemsKorea UniversitySeoul02841Republic of Korea
| | - In‐Yong Suh
- Department of Materials Science and EngineeringCenter for Human‐oriented Triboelectric Energy HarvestingYonsei UniversitySeoul03722Republic of Korea
| | - Sang‐Woo Kim
- Department of Materials Science and EngineeringCenter for Human‐oriented Triboelectric Energy HarvestingYonsei UniversitySeoul03722Republic of Korea
| | - Jun Chen
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
| | - Heemin Kang
- Department of Materials Science and EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Donghee Son
- Department of Electrical and Computer EngineeringSungkyunkwan University (SKKU)SuwonRepublic of Korea
- Department of Superintelligence EngineeringSungkyunkwan University (SKKU)SuwonRepublic of Korea
- Center for Neuroscience Imaging ResearchInstitute for Basic Science (IBS)SuwonRepublic of Korea
| | - Jeong Min Baik
- Electronic and Hybrid Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- School of Advanced Materials Science and EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
- KIST‐SKKU Carbon‐Neutral Research CenterSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Sunghoon Hur
- Electronic and Hybrid Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- School of Advanced Materials Science and EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
- KIST‐SKKU Carbon‐Neutral Research CenterSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Hyun‐Cheol Song
- Department of Materials Science and EngineeringKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
4
|
Wang N, Yang W, Wang S, Li K, Li Y, Zhang Q, Hou C, Wang H. In Situ Polarization Enables Dipole Alignment of α-Phase Polyamide 11 Nanoribbons for Breathable Triboelectric Textile. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22042-22049. [PMID: 40150969 DOI: 10.1021/acsami.5c01178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Triboelectric textiles have been extensively studied for wearable energy applications, including single-fiber power generation, humidity-resistant power generation, air-breakdown-based power generation, etc. However, intrinsic tribo-charge transfer in fiber- or textile-based triboelectric materials remains at a low level. Here, we propose a polarization strategy to enhance triboelectric performance using α-phase polyamide 11 nanoribbons. By employing a high-voltage electrostatic field during electrospinning, we achieve in situ polarization of polyamide 11, resulting in an 116% improvement in the performance of polyamide 11-based energy nonwovens. Additionally, we apply cold pressing to optimize the specific surface area and air permeability of the all-fiber-energy nonwoven, achieving a balance of high electrical performance and wearability. We further demonstrate applications of this nanofiber-based energy textile in wireless sensing and breathable energy insoles. This all-fiber performance enhancement strategy provides valuable insights for the development of high-performance triboelectric textiles in the future.
Collapse
Affiliation(s)
- Ning Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Weifeng Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Shuhan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yaogang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Qinghong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
- School of Materials Science and Engineering, Shanghai Dianji University, Shanghai 201306, P. R. China
| |
Collapse
|
5
|
Wang Y, Chen W, Sheng R, Zhao X, Chen Z, Zhang N, Huang J, Chen J. Design of Double Strains in Triboelectric Nanogenerators toward Improving Human Behavior Monitoring. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:253-262. [PMID: 39748315 DOI: 10.1021/acs.langmuir.4c03458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Triboelectric nanogenerators (TENGs) offer a convenient means to convert mechanical energy from human movement into electricity, exhibiting the application prospects in human behavior monitoring. Nevertheless, the present methods to improve the device monitoring effect are limited to the design of a triboelectric material level (control of electron gain and loss ability). As compared with reported work, we improve the monitoring effect of TENG-based tactile sensors by optimizing the structure of the electrode/triboelectric material interface by means of a multiple strains mechanism. Cu@Ni double-clad waste woven fabrics are used as electrodes, which are characterized by a structure with a large number of pores formed between the fibers, greatly increasing the specific surface area of the electrode and generating dynamic strain under differentiated stress fields because of their different elastic modulus. To be exact, the resin layer undergoes elastic deformation under 0.64-4.47 kPa external stress and a new deformation generates at the electrode/triboelectric material interface induced by Cu@Ni double-clad woven fabrics slip under 4.47-63.84 kPa external stress, resulting in the accumulation of triboelectric charges on the PDMS surface. The establishment of multiple strains in triboelectric material further facilitates the generation of distinct triboelectric signal waveforms that are easily distinguishable by its amplitude and peak form. Besides, combined with deep machine learning and the triboelectric effect, in an open setting, the identification accuracy of five distinct behaviors approaches 100%. This provides a new pathway for enhancing identification accuracy of a TENG-based tactile sensor.
Collapse
Affiliation(s)
- Yutong Wang
- Anhui Key Laboratory of Sewage Purification and Eco-restoration Materials, School of Biology, Food and Environment, Hefei University, Hefei City 230601 China
| | - Wenlong Chen
- School of Mechanical Engineering, Guizhou University of Engineering Science, Bijie City 551700, China
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei City 230601 China
| | - Rui Sheng
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei City 230601 China
| | - Xingke Zhao
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei City 230601 China
| | - Zhenming Chen
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei City 230601 China
| | - Ning Zhang
- School of Mechanical Engineering, Guizhou University of Engineering Science, Bijie City 551700, China
| | - Junjun Huang
- School of Mechanical Engineering, Guizhou University of Engineering Science, Bijie City 551700, China
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei City 230601 China
| | - Jun Chen
- Anhui Key Laboratory of Sewage Purification and Eco-restoration Materials, School of Biology, Food and Environment, Hefei University, Hefei City 230601 China
- School of Mechanical Engineering, Guizhou University of Engineering Science, Bijie City 551700, China
| |
Collapse
|
6
|
Zhou S, Cai M, Wang X, Hu W, Fu Z, Gong J, Zhang C, Xu W, Xia L. An integrated textile of electrical signal sensing with visual indicators and energy supply for perspiration management. Biosens Bioelectron 2025; 267:116794. [PMID: 39326321 DOI: 10.1016/j.bios.2024.116794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/31/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Recent advances in wearable electronics have enabled the development of sweat sensors providing valuable information for healthcare monitoring. However, the limitations of sweat sensors are excessive dependence on external detection systems, the impossible to real-time visual signal transmission, and inadequate perspiration management. Herein, a single- and double-layer interwoven fabric (SDIF) is designed to achieve indicators of color visualization with an output of electrical signal and energy supply. After absorption of electrolyte, the SDIF can be rapidly activated, connected with the concentration, infiltrated volume, and environmental parameters, and the variational color of SDIF can provide visual indicators. The one tissue cycle of SDIF with three-weft intervals maintains a stable output voltage of ≈1.0 V, conducted by twisting, folding, dynamic bending, and reusing. Moreover, serial tissue cycles can be woven into large fabrics by connecting in series and parallel configurations for energy supply. The developed SDIF with an interweaving structural design using industrial-producible weaving technology provides the functionality of sweat adsorption and transportation, monitoring by recognition of color, and electrical signals to improve perspiration management.
Collapse
Affiliation(s)
- Sijie Zhou
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Mengyao Cai
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Xiaofeng Wang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Wanjin Hu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Zhuan Fu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China; College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Junyao Gong
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China; School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunhua Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China.
| | - Liangjun Xia
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China.
| |
Collapse
|
7
|
Wu N, Mao P, Chang N, Zhou Y, Yang W, Fu F, Liu X, Ji T, Zhao J, Huang Y, Li Y, Dickey MD, Gong W. Weavable, Reconfigurable Triboelectric Ferrofluid Fiber for Early Warning. ACS NANO 2024; 18:33319-33329. [PMID: 39611767 DOI: 10.1021/acsnano.4c06225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
As communication technologies have become omnipresent, the prevalence of electromagnetic field (EMF) exposures poses possible health risks, particularly to vulnerable groups such as pregnant women. In response, we introduce a triboelectric ferrofluid fiber (TFF) that moves in response to EMF, thereby generating charge in a way that is self-powered. The TFF is flexible, stretchable (470%), and can be woven into fabrics. The TFF utilizes a soft-contact (ferrofluid-silicon rubber fiber) triboelectric core layer to enhance its sensitivity to EMF, enabling it to detect even minor electromagnetic fluctuations, such as those from cell phone typing. By integrating hydrogel electrodes that offer conductivity and minimal electromagnetic interference shielding, the TFF's sensitivity to magnetic fields is further amplified. Moreover, its open-circuit voltage output is increased by 50% compared to the conventional electrodes. Building on this technology, we designed a smart fabric for environmental early warning and potential real-time pulse monitoring, specifically tailored for the safety and healthcare needs of vulnerable groups. Finally, we developed a sensing and communication apparel (SCA) by integrating TFF into the apparel and exploring its capabilities in a wireless transmission of warning signals and long-distance NFC functionality.
Collapse
Affiliation(s)
- Naiyan Wu
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, Anhui Provincial Engineering Center for Automotive Highly Functional Fiber Products, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Department of Electrical and Systems Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130-4899, United States
| | - Pengxiang Mao
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, Anhui Provincial Engineering Center for Automotive Highly Functional Fiber Products, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Ningbo Chang
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, Anhui Provincial Engineering Center for Automotive Highly Functional Fiber Products, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Yanrun Zhou
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130-4899, United States
| | - Weifeng Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Fan Fu
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, Anhui Provincial Engineering Center for Automotive Highly Functional Fiber Products, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Xixi Liu
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, Anhui Provincial Engineering Center for Automotive Highly Functional Fiber Products, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Tianyi Ji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Junyi Zhao
- Department of Electrical and Systems Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130-4899, United States
| | - Yuxuan Huang
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130-4899, United States
| | - Yaogang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, North Carolina 27695-7905, United States
| | - Wei Gong
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, Anhui Provincial Engineering Center for Automotive Highly Functional Fiber Products, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Hefei 230036, China
| |
Collapse
|
8
|
Xu B, Shi Z, Lu C, Hu Z, Cheng Y, Zhu M, Jiang L, Liu H. Continuous Homogeneous Thin Liquid Film on a Single Cross-Shaped Profiled Fiber with High Off-Circularity: Toward Quick-Drying Fabrics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403316. [PMID: 39286894 DOI: 10.1002/adma.202403316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/26/2024] [Indexed: 09/19/2024]
Abstract
Quick-drying fabrics, renowned for their rapid sweat evaporation, have witnessed various applications in strenuous exercise. Profiled fiber textiles exhibit enhanced quick-drying performance, which is attributed to the excellent wicking effect within fibrous bundles, facilitating the rapid transport of sweat. However, the evaporation process is not solely influenced by macroscopic liquid transport but also by microscopic liquid spreading on the fibers where periodic liquid knots induced by spontaneous fluidic instability significantly reduce the evaporation area. Here, a cross-shaped profiled fiber with high off-circularity, featured as multiple concavities along the fibrous longitude-axis, which enables the formation of a homogeneous thin liquid film on a single fiber without any periodic liquid knots, is developed. The high off-circularity cross-sections help overcoming Plateau-Rayleigh instability by tuning the Laplace pressure difference, further facilitated by capillary flow along the concave surface. The homogeneous thin liquid film on a single fiber is responsible for maximizing the evaporation area, resulting in excellent overall evaporation capacity. Consequently, fabrics made from such fibers exhibit rapid evaporation behavior, with evaporation rates ≈50% higher than those of cylindrical fabrics. It is envisioned that profiled fibers may provide inspiration for the manipulating homogeneous liquid films for applications in fluid coatings and functional textiles.
Collapse
Affiliation(s)
- Bojie Xu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, 100191, P. R. China
| | - Zhongyu Shi
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, 100191, P. R. China
| | - Cong Lu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, 100191, P. R. China
| | - Zexu Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, 100191, P. R. China
| | - Huan Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
9
|
Qian L, Jin F, Li T, Wei Z, Ma X, Zheng W, Javanmardi N, Wang Z, Ma J, Lai C, Dong W, Wang T, Feng ZQ. Self-Adhesive and Self-Sustainable Bioelectronic Patch for Physiological Feedback Electronic Modulation of Soft Organs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406636. [PMID: 39148152 DOI: 10.1002/adma.202406636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Bionic electrical stimulation (Bio-ES) aims to achieve personalized therapy and proprioceptive adaptation by mimicking natural neural signatures of the body, while current Bio-ES devices are reliant on complex sensing and computational simulation systems, thus often limited by the low-fidelity of simulated electrical signals, and failure of interface information interaction due to the mechanical mismatch between soft tissues and rigid electrodes. Here, the study presents a flexible and ultrathin self-sustainable bioelectronic patch (Bio-patch), which can self-adhere to the lesion area of organs and generate bionic electrical signals synchronized vagal nerve envelope in situ to implement Bio-ES. It allows adaptive adjustment of intensity, frequency, and waveform of the Bio-ES to fully meet personalized needs of tissue regeneration based on real-time feedback from the vagal neural controlled organs. With this foundation, the Bio-patch can effectively intervene with excessive fibrosis and microvascular stasis during the natural healing process by regulating the polarization time of macrophages, promoting the reconstruction of the tissue-engineered structure, and accelerating the repair of damaged liver and kidney. This work develops a practical approach to realize biomimetic electronic modulation of the growth and development of soft organs only using a multifunctional Bio-patch, which establishes a new paradigm for precise bioelectronic medicine.
Collapse
Affiliation(s)
- Lili Qian
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Fei Jin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Tong Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhidong Wei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiying Ma
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Weiying Zheng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Negar Javanmardi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zheng Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Juan Ma
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Chengteng Lai
- Department of Orthopaedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Wei Dong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ting Wang
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zhang-Qi Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
10
|
Du P, Zhao X, Zhan X, Li X, Hou K, Ji Y, Fan Z, Muhammad J, Ge F, Cai Z. A High-Performance Passive Radiative Cooling Metafabric with Janus Wettability and Thermal Conduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403751. [PMID: 38940499 DOI: 10.1002/smll.202403751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/19/2024] [Indexed: 06/29/2024]
Abstract
With the development of industry and global warming, passive radiative cooling textiles have recently drawn great interest owing to saving energy consumption and preventing heat-related illnesses. Nevertheless, existing cooling textiles often lack efficient sweat management capacity and wearable comfort under many practical conditions. Herein, a hierarchical cooling metafabric that integrates passive radiation, thermal conduction, sweat evaporation, and excellent wearable comfort is reported through an electrospinning strategy. The metafabric presents excellent solar reflectivity (99.7%, 0.3-2.5 µm) and selective infrared radiation (92.4%, 8-13 µm), given that the unique optical nature of materials and wettability gradient/micro-nano hierarchical structure design. The strong moisture-wicking effect (water vapor transmission (WVT) of 2985 g m-2 d-1 and directional water transport index (R) of 1029.8%) and high heat-conduction capacity can synergistically enhance the radiative cooling efficiency of the metafabric. The outdoor experiment reveals that the metafabric can obtain cooling temperatures of 13.8 °C and 19.3 °C in the dry and sweating state, respectively. Meanwhile, the metafabric saves ≈19.3% of annual energy consumption compared with the buildings with HAVC systems in Shanghai. The metafabric also demonstrates desirable breathability, mechanical strength, and washability. The cost-effective and high-performance metafabric may offer a novel avenue for developing next-generation personal cooling textiles.
Collapse
Affiliation(s)
- Peibo Du
- National Engineering Research Center for Dyeing and Finishing of Textiles, Key Lab of Science & Technology of Eco-Textile, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, P. R. China
| | - Xingshun Zhao
- National Engineering Research Center for Dyeing and Finishing of Textiles, Key Lab of Science & Technology of Eco-Textile, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, P. R. China
| | - Xiongwei Zhan
- National Engineering Research Center for Dyeing and Finishing of Textiles, Key Lab of Science & Technology of Eco-Textile, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, P. R. China
| | - Xiaoyan Li
- National Engineering Research Center for Dyeing and Finishing of Textiles, Key Lab of Science & Technology of Eco-Textile, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, P. R. China
| | - Keru Hou
- National Engineering Research Center for Dyeing and Finishing of Textiles, Key Lab of Science & Technology of Eco-Textile, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, P. R. China
| | - Yating Ji
- National Engineering Research Center for Dyeing and Finishing of Textiles, Key Lab of Science & Technology of Eco-Textile, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, P. R. China
| | - Zhuizhui Fan
- National Engineering Research Center for Dyeing and Finishing of Textiles, Key Lab of Science & Technology of Eco-Textile, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, P. R. China
| | - Javed Muhammad
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Fengyan Ge
- National Engineering Research Center for Dyeing and Finishing of Textiles, Key Lab of Science & Technology of Eco-Textile, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, P. R. China
| | - Zaisheng Cai
- National Engineering Research Center for Dyeing and Finishing of Textiles, Key Lab of Science & Technology of Eco-Textile, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, P. R. China
| |
Collapse
|
11
|
Zhang Z, Ma J, Xu T, Wang T, Jia X, Lin J, Lv C, Cao L, Ying Y, Ji L, Wang S, Fu C. Transpiration-Inspired Fabric Dressing for Acceleration Healing of Wound Infected with Biofilm. Adv Healthc Mater 2024; 13:e2401005. [PMID: 38663447 DOI: 10.1002/adhm.202401005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Indexed: 05/04/2024]
Abstract
In chronic wound management, efficacious handling of exudate and bacterial infections stands as a paramount challenge. Here a novel biomimetic fabric, inspired by the natural transpiration mechanisms in plants, is introduced. Uniquely, the fabric combines a commercial polyethylene terephthalate (PET) fabric with asymmetrically grown 1D rutile titanium dioxide (TiO2) micro/nanostructures, emulating critical plant features: hierarchically porous networks and hydrophilic water conduction channels. This structure endows the fabric with exceptional antigravity wicking-evaporation performance, evidenced by a 780% one-way transport capability and a 0.75 g h-1 water evaporation rate, which significantly surpasses that of conventional moisture-wicking textiles. Moreover, the incorporated 1D rutile TiO2 micro/nanostructures present solar-light induced antibacterial activity, crucial for disrupting and eradicating wound biofilms. The biomimetic transpiration fabric is employed to drain exudate and eradicate biofilms in Staphylococcus aureus (S. aureus)-infected wounds, demonstrating a much faster infection eradication capability compared to clinically common ciprofloxacin irrigation. These findings illuminate the path for developing high-performance, textile-based wound dressings, offering efficient clinical platforms to combat biofilms associated with chronic wounds.
Collapse
Affiliation(s)
- Zhicheng Zhang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Junjie Ma
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Tao Xu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Tao Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xueying Jia
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiawei Lin
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Chang Lv
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Liang Cao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yulong Ying
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Lvlv Ji
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Sheng Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Caiyun Fu
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Department of Neurosurgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| |
Collapse
|
12
|
Huang K, Si Y, Hu J. Fluid Unidirectional Transport Induced by Structure and Ambient Elements across Porous Materials: From Principles to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402527. [PMID: 38812415 DOI: 10.1002/adma.202402527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/18/2024] [Indexed: 05/31/2024]
Abstract
Spontaneous or nonspontaneous unidirectional fluid transport across multidimension can occur under specific structural designs and ambient elements for porous materials. While existing reviews have extensively summarized unidirectional fluid transport on surfaces, there is an absence of literature summarizing fluid's unidirectional transport across porous materials. This review introduces wetting phenomena observed on natural biological surfaces or porous structures. Subsequently, it offers an overview of diverse principles and potential applications in this field, emphasizing various physical and chemical structural designs (surface energy, capillary size, topographic curvature) and ambient elements (underwater, under oil, pressure, and solar energy). Applications encompass moisture-wicking fabric, sensors, skincare, fog collection, oil-water separation, electrochemistry, liquid-based gating, and solar evaporators. Additionally, significant principles and formulas from various studies are compelled to offer readers valuable references. Simultaneously, potential advantages and challenges are critically assessed in these applications and the perspectives are presented.
Collapse
Affiliation(s)
- Kaisong Huang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Yifan Si
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
13
|
Li Z, Guo N, Zhu Y, Feng W, Wang H, Zhang P, Zhao F. Hygroscopic cooling (h-cool) fabric with highly efficient sweat evaporation and heat dissipation for personal thermo-moisture management. Int J Biol Macromol 2024; 267:131658. [PMID: 38636759 DOI: 10.1016/j.ijbiomac.2024.131658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Moisture evaporation plays a crucial role in thermal management of human body, particularly in perspiration process. However, current fabrics aim for sweat removal and takes little account of basic thermo-regulation of sweat, resulted in their limited evaporation capacity and heat dissipation at moderate/intense scenarios. In this study, a hygroscopic cooling (h-cool) fabric based on multi-functional design, for personal perspiration management, was described. By using economic and effective weaving technology, directional moisture transport routes and heat conductive pathways were incorporated in the construct. The resultant fabric showed 10 times greater one-way transport index higher than cotton, Dri-FIT and Coolswitch fabrics, which contributed to highly enhanced evaporation ability (∼4.5 times than cotton), not merely liquid diffusion. As a result, h-cool fabric performed 2.1-4.2 °C cooling efficacy with significantly reduced sweat consuming than cotton, Dri-FIT and Coolswitch fabrics in the artificial sweating skin. Finally, the practical applications by actually wearing h-cool fabric showed great evaporative-cooling efficacy during different physical activities. Owing to the excellent thermo-moisture management ability, we expect the novel concept and construct of h-cool fabric can provide promising strategy for developing functional textiles with great "cool" and comfortable "dry" tactile sensation at various daily scenarios.
Collapse
Affiliation(s)
- Zhijiang Li
- College of Textiles, Donghua University 2999 Renmin North Road, Shanghai 201620, China; College of Mechanical and Electrical Engineering, Tarim University, 705 Hongqiao South Road, Alar, Xinjiang 843300, China
| | - Ning Guo
- College of Textiles, Donghua University 2999 Renmin North Road, Shanghai 201620, China
| | - Ye Zhu
- College of Economics and Management, Tarim University, 705 Hongqiao South Road, Alar, Xinjiang 843300, China
| | - Wei Feng
- College of Mechanical and Electrical Engineering, Tarim University, 705 Hongqiao South Road, Alar, Xinjiang 843300, China
| | - Huaikai Wang
- Shandong Textile and Architecture Design Institute Company Limited, A2 Hanyu Jinggu, High-tech Zone, Jinan, Shandong 250101, China
| | - Peihua Zhang
- College of Textiles, Donghua University 2999 Renmin North Road, Shanghai 201620, China.
| | - Fan Zhao
- College of Textiles, Donghua University 2999 Renmin North Road, Shanghai 201620, China; Key Laboratory of Textile Science & Technology (Donghua University), Ministry of Education, Donghua University 2999 Renmin North Road, Shanghai 201620, China.
| |
Collapse
|
14
|
Li X, Guo W, Hsu PC. Personal Thermoregulation by Moisture-Engineered Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209825. [PMID: 36751106 DOI: 10.1002/adma.202209825] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Personal thermal management can effectively manage the skin microenvironment, improve human comfort, and reduce energy consumption. In personal thermal-management technology, owing to the high latent heat of water evaporation in wet-response textiles, heat- and moisture-transfer coexist and interact with each other. In the last few years, with rapid advances in materials science and innovative polymers, humidity-sensitive textiles have been developed for personal thermal management. However, a large gap exists between the conceptual laboratory-scale design and actual textile. Here, moisture-responsive textiles based on flap opening and closing, those based on yarn/fiber deformation, and sweat-evaporation regulation based on textile design for personal thermoregulation are reviewed, and the corresponding mechanisms and research progress are discussed. Finally, the existing engineering and scientific limitations and future developments are considered to resolve the existing issues and accelerate the practical application of moisture-responsive textiles and related technologies.
Collapse
Affiliation(s)
- Xiuqiang Li
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Wanlin Guo
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Po-Chun Hsu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
15
|
Zhang X, Wang F, Guo H, Sun F, Li X, Zhang C, Yu C, Qin X. Advanced Cooling Textiles: Mechanisms, Applications, and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305228. [PMID: 38140792 PMCID: PMC10933611 DOI: 10.1002/advs.202305228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/28/2023] [Indexed: 12/24/2023]
Abstract
High-temperature environments pose significant risks to human health and safety. The body's natural ability to regulate temperature becomes overwhelmed under extreme heat, leading to heat stroke, dehydration, and even death. Therefore, the development of effective personal thermal-moisture management systems is crucial for maintaining human well-being. In recent years, significant advancements have been witnessed in the field of textile-based cooling systems, which utilize innovative materials and strategies to achieve effective cooling under different environments. This review aims to provide an overview of the current progress in textile-based personal cooling systems, mainly focusing on the classification, mechanisms, and fabrication techniques. Furthermore, the challenges and potential application scenarios are highlighted, providing valuable insights for further advancements and the eventual industrialization of personal cooling textiles.
Collapse
Affiliation(s)
- Xueping Zhang
- Key Laboratory of Textile Science & TechnologyMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Fei Wang
- Key Laboratory of Textile Science & TechnologyMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Hanyu Guo
- Key Laboratory of Textile Science & TechnologyMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Fengqiang Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Xiangshun Li
- Key Laboratory of Textile Science & TechnologyMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Chentian Zhang
- Key Laboratory of Textile Science & TechnologyMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Chongwen Yu
- Key Laboratory of Science & Technology of Eco‐TextileMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Xiaohong Qin
- Key Laboratory of Textile Science & TechnologyMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| |
Collapse
|
16
|
Hu Y, Yang W, Wei W, Sun Z, Wu B, Li K, Li Y, Zhang Q, Xiao R, Hou C, Wang H. Phyto-inspired sustainable and high-performance fabric generators via moisture absorption-evaporation cycles. SCIENCE ADVANCES 2024; 10:eadk4620. [PMID: 38198540 PMCID: PMC10780955 DOI: 10.1126/sciadv.adk4620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Collecting energy from the ubiquitous water cycle has emerged as a promising technology for power generation. Here, we have developed a sustainable moisture absorption-evaporation cycling fabric (Mac-fabric). On the basis of the cycling unidirectional moisture conduction in the fabric and charge separation induced by the negative charge channel, sustainable constant voltage power generation can be achieved. A single Mac-fabric can achieve a high power output of 0.144 W/m2 (5.76 × 102 W/m3) at 40% relative humidity (RH) and 20°C. By assembling 500 series and 300 parallel units of Mac-fabrics, a large-scale demo achieves 350 V of series voltage and 33.76 mA of parallel current at 25% RH and 20°C. Thousands of Mac-fabric units are sewn into a tent to directly power commercial electronic products such as mobile phones in outdoor environments. The lightweight (300 g/m2) and soft characteristics of the Mac-fabric make it ideal for large-area integration and energy collection in real circumstances.
Collapse
Affiliation(s)
- Yunhao Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Weifeng Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Wei Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Zhouquan Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Bo Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Yaogang Li
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Qinghong Zhang
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Ru Xiao
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| |
Collapse
|
17
|
Ji K, Liu C, He H, Mao X, Wei L, Zhou F, Sun R. Green-Solvent-Processable Composite Micro/Nanofiber Membrane with Gradient Asymmetric Structure for Efficient Microfiltration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207330. [PMID: 37078831 DOI: 10.1002/smll.202207330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Electrospinning technology has attracted extensive attention in recent decades and is widely used to prepare nanofiber membranes from hundreds of polymers. Polyvinyl formal acetal (PVFA), as a polymer with excellent properties such as high strength and heat resistance, is not reported on the electrospun water treatment membrane. In this paper, the preparation process of electrospun PVFA nanofiber membrane is optimized, and the effect of sodium chloride (NaCl) addition on the physical and mechanical properties and microfiltration performance of nanofiber membrane is also explored. And the hydrophobic PVFA nanofiber filter layer is then combined with a hydrophilic nonwoven support layer to construct a composite micro/nanofiber membrane with a pore-size gradient structure and a hydrophilic/hydrophobic asymmetric structure. Finally, unidirectional water transport and water treatment performance are further investigated. The results show that the tensile breaking strength of the composite membrane can reach up to 37.8 MPa, the retention rate for particles with the size of 0.1-0.3 µm is 99.7%, and the water flux is 513.4 L m-2 h-1 under the hydrostatic pressure. Moreover, it still has a retention of more than 98% after three repeated uses. Therefore, the electrospun PVFA composite membrane has a great potential in microfiltration.
Collapse
Affiliation(s)
- Keyu Ji
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University, Xi'an, Shaanxi, 710048, China
| | - Chengkun Liu
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University, Xi'an, Shaanxi, 710048, China
| | - Haijun He
- Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, 214000, China
| | - Xue Mao
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University, Xi'an, Shaanxi, 710048, China
| | - Liang Wei
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University, Xi'an, Shaanxi, 710048, China
| | - Fenglei Zhou
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China
| | - Runjun Sun
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University, Xi'an, Shaanxi, 710048, China
| |
Collapse
|
18
|
Dong J, Peng Y, Wang D, Li L, Zhang C, Lai F, He G, Zhao X, Yan XP, Ma P, Hofkens J, Huang Y, Liu T. Quasi-Homogeneous and Hierarchical Electronic Textiles with Porosity-Hydrophilicity Dual-Gradient for Unidirectional Sweat Transport, Electrophysiological Monitoring, and Body-Temperature Visualization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206572. [PMID: 36592428 DOI: 10.1002/smll.202206572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/14/2022] [Indexed: 06/17/2023]
Abstract
On-skin electronics based on impermeable elastomers and stacking structures often suffer from inferior sweat-repelling capabilities and severe mechanical mismatch between sub-layers employed, which significantly impedes their lengthy wearing comfort and functionality. Herein, inspired by the transpiration system of vascular plants and the water diode phenomenon, a hierarchical nonwoven electronic textile (E-textile) with multi-branching microfibers and robust interlayer adhesion is rationally developed. The layer-by-layer electro-airflow spinning method and selective oxygen plasma treatment are utilized to yield a porosity-hydrophilicity dual-gradient. The resulting E-textile shows unidirectional, nonreversible, and anti-gravity water transporting performance even upon large-scale stretching (250%), excellent mechanical matching between sub-layers, as well as a reversible color-switching ability to visualize body temperature. More importantly, the conducting and skin-conformal E-textile demonstrates accurate and stable detecting capability for biomechanical and bioelectrical signals when applied as an on-skin bioelectrode, including different human activities, electrocardiography, electromyogram, and electrodermal activity signals. Further, the E-textile can be efficiently implemented in human-machine interfaces to build a gesture-controlled dustbin and a smart acousto-optic alarm. Hence, this hierarchically-designed E-textile with integrated functionalities offers a practical and innovative method for designing comfortable and daily applicable on-skin electronics.
Collapse
Affiliation(s)
- Jiancheng Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yidong Peng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Dan Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Le Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Feili Lai
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Guanjie He
- Christopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Xu Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiu-Ping Yan
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Piming Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Johan Hofkens
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yunpeng Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
19
|
Li Z, Lu Y, Guo N, Feng W, Fu S, Zhang P. Hygroscopic and cool boron nitride Nanosheets/Regenerated flax fiber material microstructure Dual-Cooling composite fabric. J Colloid Interface Sci 2023; 633:489-499. [PMID: 36463818 DOI: 10.1016/j.jcis.2022.11.130] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Developing cooling textiles with unidirectional water transport performances and high thermal conductivities is essential for personal thermal and wet comfort in human activities. We report a green, degradable, hygroscopic cooling material and dual-cooling composite fabric (d-CCF). A boron nitride nanosheet/regenerated flax fiber (BNNS/RFF) material with a high thermal conductivity was prepared by dissolving recovered flax fibers with a green, efficient 1-butyl-3-methylimidazole chloride/dimethyl sulfoxide system and adding BNNSs. The 60- wt% BNNS/RFF materials had excellent thermal conductivity and hydrophilicity, the breaking strength reached 120 MPa, and the elongation was 15.8 %. The d-CCF consisted of cool polyester (CPET) yarn (inner layer), CPET/bamboo composite yarn (middle layer), bamboo yarn, and 60- wt% BNNS/RFF (outer layer) with unobstructed heat dissipation and evaporation cooling for effective moisture and thermal management. This d-CCF had distinct advantages, including a high one-way water transport index (468 %), an extremely high evaporation rate (0.3818 g h-1), inner layer maximum heat flux (0.191 W cm-2), and outer layer maximum heat flux (0.249 W cm-2), providing a cooling sensation upon contact. Compared to cotton fabrics, the d-CCF could keep the skin cooler by 2.5 °C. This work provides a strategy to fabricate environmentally friendly BNNS/RFF materials and a facile pathway for cooling textile development for human health management.
Collapse
Affiliation(s)
- Zhijiang Li
- College of Textiles, Donghua University, 2999 Renmin North Road, Shanghai 201620, China; College of Mechanical and Electrical Engineering, Tarim University, 705 Hongqiao South Road, Alar, Xinjiang 843300, China
| | - Yanping Lu
- College of Textiles, Donghua University, 2999 Renmin North Road, Shanghai 201620, China
| | - Ning Guo
- College of Textiles, Donghua University, 2999 Renmin North Road, Shanghai 201620, China
| | - Wei Feng
- College of Mechanical and Electrical Engineering, Tarim University, 705 Hongqiao South Road, Alar, Xinjiang 843300, China
| | - Shaoju Fu
- College of Textiles, Donghua University, 2999 Renmin North Road, Shanghai 201620, China.
| | - Peihua Zhang
- College of Textiles, Donghua University, 2999 Renmin North Road, Shanghai 201620, China.
| |
Collapse
|
20
|
Duan Q, Peng W, He J, Zhang Z, Wu Z, Zhang Y, Wang S, Nie S. Rational Design of Advanced Triboelectric Materials for Energy Harvesting and Emerging Applications. SMALL METHODS 2023; 7:e2201251. [PMID: 36563114 DOI: 10.1002/smtd.202201251] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 06/17/2023]
Abstract
The properties of materials play a significant role in triboelectric nanogenerators (TENGs). Advanced triboelectric materials for TENGs have attracted tremendous attention because of their superior advantages (e.g., high specific surface area, high porosity, and customizable macrostructure). These advanced materials can be extensively applied in numerous fields, including energy harvester, wearable electronics, filtration, and self-powered sensors. Hence, designing triboelectric materials as advanced functional materials is important for the development of TENGs. Herein, the structural modification methods based on electrospinning to improve the triboelectric properties and the latest research progress in this kind of TENGs are systematically summarized. Preparation methods and design trends of nanofibers, microspheres, hierarchical structures, and doping nanomaterials are highlighted. The factors influencing the formation and properties of triboelectric materials are considered. Furthermore, the latest progress on the applications of TENGs is systematically elaborated. Finally, the challenges in the development of triboelectric materials are discussed, thereby guiding researchers in the large-scale application of TENGs.
Collapse
Affiliation(s)
- Qingshan Duan
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Weiqing Peng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Juanxia He
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Zhijun Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Zecheng Wu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Ye Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Shuangxi Nie
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| |
Collapse
|
21
|
Zhang Y, Zhou J, Zhang Y, Zhang D, Yong KT, Xiong J. Elastic Fibers/Fabrics for Wearables and Bioelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203808. [PMID: 36253094 PMCID: PMC9762321 DOI: 10.1002/advs.202203808] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Wearables and bioelectronics rely on breathable interface devices with bioaffinity, biocompatibility, and smart functionality for interactions between beings and things and the surrounding environment. Elastic fibers/fabrics with mechanical adaptivity to various deformations and complex substrates, are promising to act as fillers, carriers, substrates, dressings, and scaffolds in the construction of biointerfaces for the human body, skins, organs, and plants, realizing functions such as energy exchange, sensing, perception, augmented virtuality, health monitoring, disease diagnosis, and intervention therapy. This review summarizes and highlights the latest breakthroughs of elastic fibers/fabrics for wearables and bioelectronics, aiming to offer insights into elasticity mechanisms, production methods, and electrical components integration strategies with fibers/fabrics, presenting a profile of elastic fibers/fabrics for energy management, sensors, e-skins, thermal management, personal protection, wound healing, biosensing, and drug delivery. The trans-disciplinary application of elastic fibers/fabrics from wearables to biomedicine provides important inspiration for technology transplantation and function integration to adapt different application systems. As a discussion platform, here the main challenges and possible solutions in the field are proposed, hopefully can provide guidance for promoting the development of elastic e-textiles in consideration of the trade-off between mechanical/electrical performance, industrial-scale production, diverse environmental adaptivity, and multiscenario on-spot applications.
Collapse
Affiliation(s)
- Yufan Zhang
- Innovation Center for Textile Science and TechnologyDonghua UniversityShanghai201620China
| | - Jiahui Zhou
- College of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Yue Zhang
- College of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Desuo Zhang
- College of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Ken Tye Yong
- School of Biomedical EngineeringThe University of SydneySydneyNew South Wales2006Australia
| | - Jiaqing Xiong
- Innovation Center for Textile Science and TechnologyDonghua UniversityShanghai201620China
| |
Collapse
|
22
|
Zhang Q, Ji K, Huo T, Khan MN, Hu Z, Yuan C, Zhao J, Chen J, Wang Z, Dai Z. Biomimetic Patch with Wicking-Breathable and Multi-mechanism Adhesion for Bioelectrical Signal Monitoring. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48438-48448. [PMID: 36259961 DOI: 10.1021/acsami.2c13984] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Wearable bioelectrical monitoring devices can provide long-term human health information such as electrocardiogram and other physiological signals. It is a crucial part of the remote medical system. These can provide prediction for the diagnosis and treatment of cardiovascular disease and access to timely treatment. However, the patch comfort of the wearable monitoring devices in long-term contact with the skin have been a technical bottleneck of the hardware. In this study, the biomimetic patch with wicking-breathable and multi-mechanism adhesion performance to achieve adaptability and comfortability to human skin has been reported. The patch was designed based on a conical through-hole and hexagonal microgroove to directionally transport sweat from skin to air which gives the patch the breathable performance. The breathable and drainage capability of the biomimetic patch was experimentally verified by analyzing the conical through-hole and hexagonal microgroove with the structural mechanism of wicking. Multi-mechanism adhesion of the Ag/Ni microneedle array and PDMS-t adhesion material ensures the stability of patch signal acquisition. This study provides a new way for enhancing the breathability and adaptability of the patch to realize accurate bioelectrical signal monitoring under sweat conditions on human skin.
Collapse
Affiliation(s)
- Qian Zhang
- Jiangsu Provincial Key Laboratory of Bionic Functional Materials, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Keju Ji
- Jiangsu Provincial Key Laboratory of Bionic Functional Materials, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Tingwei Huo
- Jiangsu Provincial Key Laboratory of Bionic Functional Materials, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Muhammad Niaz Khan
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhuoyang Hu
- Jiangsu Provincial Key Laboratory of Bionic Functional Materials, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Cong Yuan
- Jiangsu Provincial Key Laboratory of Bionic Functional Materials, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jiahui Zhao
- Jiangsu Provincial Key Laboratory of Bionic Functional Materials, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jian Chen
- Jiangsu Provincial Key Laboratory of Bionic Functional Materials, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhouyi Wang
- Jiangsu Provincial Key Laboratory of Bionic Functional Materials, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhendong Dai
- Jiangsu Provincial Key Laboratory of Bionic Functional Materials, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
23
|
Zhang Q, Li K, Li Y, Li Y, Zhang X, Du Y, Tian D. Gradient monolayered porous membrane for liquid manipulation: from fabrication to application. NANOSCALE ADVANCES 2022; 4:3495-3503. [PMID: 36134360 PMCID: PMC9400516 DOI: 10.1039/d2na00421f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 06/16/2023]
Abstract
The controlled transport of liquid on a smart material surface has important applications in the fields of microreactors, mass and heat transfer, water collection, microfluidic devices and so on. Porous membranes with special wettability have attracted extensive attention due to their unique unidirectional transport behavior, that is, liquid can easily penetrate in one direction while reverse transport is prevented, which shows great potential in functional textiles, fog collection, oil/water separation, sensors, etc. However, many porous membranes are synthesized from multilayer structural materials with poor mechanical properties and are currently prone to delamination, which limits their stability. While a monolayered porous membrane, especially for gradient structure, is an efficient, stable and durable material owing to its good durability and difficult stratification. Therefore, it is of great significance to fabricate a monolayered porous membrane for controllable liquid manipulation. In this minireview, we briefly introduce the classification and fabrication of typical monolayered porous membranes. And the applications of monolayered porous membranes in unidirectional penetration, selective separation and intelligent response are further emphasized and discussed. Finally, the controllable preparation and potential applications of porous membranes are featured and their prospects discussed on the basis of their current development.
Collapse
Affiliation(s)
- Qiuya Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University Beijing 100191 P. R. China
- School of Physics, Beihang University Beijing 100191 P. R. China
| | - Ke Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University Beijing 100191 P. R. China
| | - Yuliang Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University Beijing 100191 P. R. China
| | - Yan Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University Beijing 100191 P. R. China
| | - Xiaofang Zhang
- School of Mathematics and Physics, University of Science & Technology Beijing Beijing 100083 P. R. China
| | - Yi Du
- School of Physics, Beihang University Beijing 100191 P. R. China
| | - Dongliang Tian
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University Beijing 100191 P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University Beijing 100191 P. R. China
| |
Collapse
|
24
|
Gong W, Guo Y, Yang W, Wu Z, Xing R, Liu J, Wei W, Zhou J, Guo Y, Li K, Hou C, Li Y, Zhang Q, Dickey MD, Wang H. Scalable and Reconfigurable Green Electronic Textiles with Personalized Comfort Management. ACS NANO 2022; 16:12635-12644. [PMID: 35930746 DOI: 10.1021/acsnano.2c04252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electronic textiles, inherited with the wearability of conventional clothes, are deemed fundamental for emerging wearable electronics, particularly in the Internet of Things era. However, the electronic waste produced by electronic textiles will further exacerbate the severe pollution in traditional textiles. Here, we develop a large-scale green electronic textile using renewable bio-based polylactic acid and sustainable eutectic gallium-indium alloys. The green electronic textile is extremely abrasion resistant and can degrade naturally in the environment even if abrasion produces infinitesimal amounts of microplastics. The mass loss and performance change rates of the reconstituted green electronic textiles are all below 5.4% after going through the full-cycle recycling procedure. This green electronic textile delivers high physiological comfort (including electronic comfort and thermal-moisture comfort), enables wireless power supply (without constraints by, e.g., wires and ports), has 2 orders of magnitude better air and moisture permeability than the body requires, and can lower skin temperature by 5.2 °C.
Collapse
Affiliation(s)
- Wei Gong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Yang Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
- Shanghai Wearalab Co., Ltd., Shanghai 201612, P.R. China
| | - Weifeng Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Zhihua Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P.R. China
| | - Ruizhe Xing
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
| | - Jin Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Wei Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Jie Zhou
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, P.R. China
| | - Yinben Guo
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, P.R. China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Yaogang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Qinghong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| |
Collapse
|
25
|
Xu B, Ding Y, Ni J, Zhang Y, Li C, Wu S, Wu D, Zhu Q. Directional Sweat Transport of Monolayered Cotton-Fabrics Fabricated through Femtosecond-laser Induced Hydrophilization for Personal Moisture and Thermal Management. J Colloid Interface Sci 2022; 628:417-425. [DOI: 10.1016/j.jcis.2022.07.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 10/16/2022]
|
26
|
Wang C, Gao X, Zhang F, Hu W, Gao Z, Zhang Y, Ding M, Liang Q. Mussel Inspired Trigger-Detachable Adhesive Hydrogel. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200336. [PMID: 35460194 DOI: 10.1002/smll.202200336] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Adhesion to many kinds of surfaces, including biological tissues, is important in many fields but has been proved to be extremely challenging. Furthermore, peeling from strong adhesion is needed in many conditions, but is sometimes painful. Herein, a mussel inspired hydrogel is developed to achieve both strong adhesion and trigger-detachment. The former is actualized by electrostatic interactions, covalent bonds, and physical interpenetration, while the latter is triggered, on-demand, through combining a thixotropic supramolecular network and polymer double network. The results of the experiments show that the hydrogel can adhere to various material surfaces and tissues. Moreover, triggered by shear force, non-covalent interactions of the supramolecular network are destroyed. This adhesion can be peeled easily. The possible mechanism involved is discussed and proved. This work will bring new insight into electronic engineering and tissue repair like skin care for premature infants and burn victims.
Collapse
Affiliation(s)
- Chenlong Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaohan Gao
- School of Medicine and Department of Neurosurgery, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100084, P. R. China
| | - Feng Zhang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Wanting Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhuxian Gao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuqi Zhang
- School of Medicine and Department of Neurosurgery, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100084, P. R. China
| | - Mingyu Ding
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
27
|
Dong K, Peng X, Cheng R, Ning C, Jiang Y, Zhang Y, Wang ZL. Advances in High-Performance Autonomous Energy and Self-Powered Sensing Textiles with Novel 3D Fabric Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109355. [PMID: 35083786 DOI: 10.1002/adma.202109355] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/25/2022] [Indexed: 05/02/2023]
Abstract
The seamless integration of emerging triboelectric nanogenerator (TENG) technology with traditional wearable textile materials has given birth to the next-generation smart textiles, i.e., textile TENGs, which will play a vital role in the era of Internet of Things and artificial intelligences. However, low output power and inferior sensing ability have largely limited the development of textile TENGs. Among various approaches to improve the output and sensing performance, such as material modification, structural design, and environmental management, a 3D fabric structural scheme is a facile, efficient, controllable, and scalable strategy to increase the effective contact area for contact electrification of textile TENGs without cumbersome material processing and service area restrictions. Herein, the recent advances of the current reported textile TENGs with 3D fabric structures are comprehensively summarized and systematically analyzed in order to clarify their superiorities over 1D fiber and 2D fabric structures in terms of power output and pressure sensing. The forward-looking integration abilities of the 3D fabrics are also discussed at the end. It is believed that the overview and analysis of textile TENGs with distinctive 3D fabric structures will contribute to the development and realization of high-power output micro/nanowearable power sources and high-quality self-powered wearable sensors.
Collapse
Affiliation(s)
- Kai Dong
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao Peng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Renwei Cheng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chuan Ning
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yang Jiang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yihan Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CUSTech Institute of Technology, Wenzhou, Zhejiang, 325024, P. R. China
- School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
28
|
Review on the Development and Application of Directional Water Transport Textile Materials. COATINGS 2022. [DOI: 10.3390/coatings12030301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Moisture (sweat) management in textile products is crucial to regulate human thermo-physiological comfort. Traditional hydrophilic textiles, such as cotton, can absorb sweat, but they retain it, leading to undesired wet adhesion sensation and even excessive cooling. To address such issues, the development of functional textiles with directional water transport (DWT) has garnered great deal of interest. DWT textile materials can realize directional water transport and prevent water penetration in the reverse direction, which is a great application for sweat release in daily life. In this review article, the mechanism of directional water transport is analyzed. Then, three key methods to achieve DWT performance are reviewed, including the design of the fabric structure, surface modification and electrospinning. In addition, the applications of DWT textile materials in functional clothing, electronic textiles, and wound dressing are introduced. Finally, the challenges and future development trends of DWT textile materials in the textile field are discussed.
Collapse
|
29
|
Zhang X, Yang W, Shao Z, Li Y, Su Y, Zhang Q, Hou C, Wang H. A Moisture-Wicking Passive Radiative Cooling Hierarchical Metafabric. ACS NANO 2022; 16:2188-2197. [PMID: 35075910 DOI: 10.1021/acsnano.1c08227] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing functional textiles with a cooling effect is important for personal comfort in human life and activities. Although existing passive cooling fabrics exhibit promising cooling effects, they do not meet the thermal comfort requirements under many practical conditions. Here, we report a nanofiber membrane-based moisture-wicking passive cooling hierarchical metafabric that couples selective optical cooling and wick-evaporation cooling to achieve efficient temperature and moisture management. The hierarchical metafabric showed high sunlight reflectivity (99.16% in the 0.3-0.76 μm wavelength range and 88.60% in the 0.76-2.5 μm wavelength range), selective infrared emissivity (78.13% in the 8-13 μm wavelength range), and good moisture permeability owing to the optical properties of the material and hierarchical morphology design. Cooling performance experiments revealed that covering simulated skin with the hierarchical metafabric prevented overheating by 16.6 °C compared with traditional textiles, including a contribution from management of the humidity (∼8.2 °C). In addition to the personal thermal management ability, the hierarchical metafabric also showed good wearability.
Collapse
Affiliation(s)
- Xiaoshuang Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Weifeng Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Zhuwang Shao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Yaogang Li
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai 201620, P.R. China
| | - Yun Su
- College of Fashion and Design, Donghua University, Shanghai 200051, P.R. China
| | - Qinghong Zhang
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai 201620, P.R. China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| |
Collapse
|
30
|
Liu J, Du Z, Wang Q, Su B, Xia Z. Particle Flow Spinning Mass-Manufactured Stretchable Magnetic Yarn for Self-Powered Mechanical Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2113-2121. [PMID: 34968028 DOI: 10.1021/acsami.1c22267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Self-powered fabric electronic devices are critical for next-generation wearable technologies, biomedical applications, and human-machine interfaces. The flexible magnetoelectric strategy is an emerging self-powered approach that can adapt to diverse environments and yield efficient electric outputs. However, there is an urgent need to develop a continuous manufacturing method for fabricating self-powered sensing magnetoelectric yarns with a high magnetic powder ratio and resistance to severe surroundings. In this study, we report particle flow spinning mass-manufactured magnetoelectric yarns for self-powered mechanical sensing. It has been shown that mechanical stretching/bending forces can be sensed and recognized by magnetoelectric yarns without an additional power supply. Through a combination of parameter optimization experiments and Maxwell modeling, we reveal the mechanism behind this mechanical-to-electric conversion capability. We further show that these self-powered sensing magnetoelectric yarns can monitor human motions after being attached to texture clothing. We expect that our results will stimulate further research on fabric electronics in a self-powered manner and will substantially advance the field.
Collapse
Affiliation(s)
- Jiaxin Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies & School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, Hubei, P. R. China
| | - Zhuolin Du
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Qi Wang
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Bin Su
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Zhigang Xia
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies & School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, Hubei, P. R. China
- State Key Laboratory of Bio-Fibers and Eco-Textile, Qingdao University, Qingdao 266000, Shandong, P. R. China
| |
Collapse
|
31
|
Sun W, Yang D, Luo N, Li H, Wang D. Influence of surface functionalization on the contact electrification of fabrics. NEW J CHEM 2022. [DOI: 10.1039/d2nj02833f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel self-powered fabric composition detection system has been developed from F-TENGs modified by different functional groups.
Collapse
Affiliation(s)
- Weixiang Sun
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Di Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao 266100, China
| | - Ning Luo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao 266100, China
| | - Hao Li
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Daoai Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao 266100, China
| |
Collapse
|
32
|
Zheng S, Li W, Ren Y, Liu Z, Zou X, Hu Y, Guo J, Sun Z, Yan F. Moisture-Wicking, Breathable, and Intrinsically Antibacterial Electronic Skin Based on Dual-Gradient Poly(ionic liquid) Nanofiber Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106570. [PMID: 34751468 DOI: 10.1002/adma.202106570] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/01/2021] [Indexed: 05/15/2023]
Abstract
Electronic skin can detect minute electrical potential changes in the human skin and represent the body's state, which is critical for medical diagnostics and human-computer interface development. On the other hand, sweat has a significant effect on the signal stability, comfort, and safety of electronic skin in a real-world application. In this study, by modifying the cation and anion of a poly(ionic liquid) (PIL) and employing a spinning process, a PIL-based multilayer nanofiber membrane (PIL membrane) electronic skin with a dual gradient is created. The PIL electronic skin is moisture-wicking and breathable due to the hydrophilicity and pore size-gradients. The intrinsically antimicrobial activities of PILs allow the safe collection of bioelectrical signals from the human body, such as electrocardiography (ECG) and electromyography (EMG). In addition, a robotic hand may be operated in real-time, and a preliminary human-computer interface can be accomplished by simple processing of the collected EMG signal. This study establishes a novel practical approach for monitoring and using bioelectrical signals in real-world circumstances via the multifunctional electronic skin.
Collapse
Affiliation(s)
- Sijie Zheng
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Weizheng Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yongyuan Ren
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Ziyang Liu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiuyang Zou
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yin Hu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiangna Guo
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhe Sun
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
33
|
Yang W, Gong W, Gu W, Liu Z, Hou C, Li Y, Zhang Q, Wang H. Self-Powered Interactive Fiber Electronics with Visual-Digital Synergies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104681. [PMID: 34558123 DOI: 10.1002/adma.202104681] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Fiber electronics with mechanosensory functionality are highly desirable in healthcare, human-machine interfaces, and robotics. Most efforts are committed to optimize the electronically readable interface of fiber mechanoreceptor, while the user interface based on naked-eye readable output is rarely explored. Here, a scalable fiber electronics that can simultaneously visualize and digitize the mechanical stimulus without external power supply, named self-powered optoelectronic synergistic fiber sensors (SOEFSs), are reported. By coupling of space and surface charge polarization, a new mechanoluminescent (ML)-triboelectric synergistic effect is realized. It contributes to remarkable enhancement of both electrical (by 100%) and optical output (by 30%), as well as novel temporal-spatial resolution mode for motion capturing. Based on entirely new thermoplastic ML material system and spinning process, industrial-level continuously manufacture and recycling processes of SOEFS are realized. Furthermore, SOEFSs' application in human-machine interface, virtual reality, and underwater sensing, rescue, and information interaction is demonstrated.
Collapse
Affiliation(s)
- Weifeng Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wei Gong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wei Gu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zhaoxu Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yaogang Li
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai, 201620, P. R. China
| | - Qinghong Zhang
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai, 201620, P. R. China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
34
|
Shi Y, Wei X, Wang K, He D, Yuan Z, Xu J, Wu Z, Wang ZL. Integrated All-Fiber Electronic Skin toward Self-Powered Sensing Sports Systems. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50329-50337. [PMID: 34641665 DOI: 10.1021/acsami.1c13420] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The development of wearable electronic skins (E-skins) requires devices with high flexibility, breathability, and antibacterial activity, as in sports sensing technology. Here, we report a flexible, breathable, and antibacterial triboelectric nanogenerator (TENG)-based E-skin for self-powered sensing in volleyball reception statistics and analytics, which is fabricated by sandwiching a silver nanowire (Ag NW) electrode between a thermoplastic polyurethane (TPU) sensing layer and a poly(vinyl alcohol)/chitosan (PVA/CS) substrate. Benefiting from an outstanding breathability of 10.32 kg m-2 day-1 and biocidal properties of CS and Ag NW, the E-skin offers excellent thermal-moisture comfort and a remarkable antibacterial effect on Escherichia coli and Staphylococcus aureus. A pressure sensitivity of 0.3086 V kPa-1 is demonstrated in the sensing range of 6.65-19.21 kPa. Besides, a volleyball reception statistical and analytical system is further developed based on a 2 × 3 E-skin array. According to this work, the integration of wearable electronic devices with self-powered sensors may expand practical applications in sports.
Collapse
Affiliation(s)
- Yapeng Shi
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xuelian Wei
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kaimeng Wang
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Dongdong He
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Zhihao Yuan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Jiahui Xu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhiyi Wu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CUSTech Institute of Technology, Wenzhou, Zhejiang 325024, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CUSTech Institute of Technology, Wenzhou, Zhejiang 325024, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
35
|
Zhao H, Qi X, Ma Y, Sun X, Liu X, Zhang X, Tian M, Qu L. Wearable Sunlight-Triggered Bimorph Textile Actuators. NANO LETTERS 2021; 21:8126-8134. [PMID: 34570519 DOI: 10.1021/acs.nanolett.1c02578] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photothermal bimorph actuators have attracted considerable attention in intelligent devices because of their cordless control and lightweight and easy preparation. However, current photothermal bimorph actuators are mostly based on films or papers driven by near-infrared sources, which are deficient in flexibility and adaptability, restricting their potential in wearable applications. Herein, a bimorph textile actuator that can be scalably fabricated with a traditional textile route and autonomously triggered by sunlight is reported. The active layer and passive layer of the bimorph are constructed by polypropylene tape and a MXene-modified polyamide filament. Because of the opposite thermal expansion and MXene-enhanced photothermal efficiency (>260%) of the bimorph, the textile actuator presents effective deformation (1.38 cm-1) under low sunlight power (100 mW/cm2). This work provides a new pathway for wearable sunlight-triggered actuators and finds attractive applications for smart textiles.
Collapse
Affiliation(s)
- Hongtao Zhao
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xiangjun Qi
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Yulong Ma
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xuantong Sun
- Department of Materials, The University of Manchester, Manchester M139PL, United Kingdom
| | - Xuqing Liu
- Department of Materials, The University of Manchester, Manchester M139PL, United Kingdom
| | - Xueji Zhang
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, Shandong 266071, P.R. China
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Mingwei Tian
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Lijun Qu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
36
|
Zhang D, Yang W, Gong W, Ma W, Hou C, Li Y, Zhang Q, Wang H. Abrasion Resistant/Waterproof Stretchable Triboelectric Yarns Based on Fermat Spirals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100782. [PMID: 34028894 DOI: 10.1002/adma.202100782] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Emerging energy harvesting yarns, via triboelectric effects, have wide application prospects in new-generation wearable electronics. However, few studies have been carried out regarding simultaneously achieving high electrical performance, mechanical robustness, and comfortability in industrial-scalable yarn. Here, an electronic yarn twisted into Fermat spiral, which has outstanding dynamic structure stability, is reported. The Fermat-spiral-based energy yarns (FSBEY) can simultaneously realize ultrahigh abrasion resistance (over 5000 Martindale standard abrasion cycles), stable reversible strain (100%), and excellent electrical output. Considerably high output (105 V, ≈1.2 µA under 2 Hz) can be attained upon contacting a single yarn (30 cm) with latex material, which is superior to most state-of-the-art stretchable triboelectric yarns. The application of these FSBEY in wireless gesture recognition, smart screen information protection, and harvesting of energy from water dropletsis demonstrated. Moreover, textiles knitted from the FSBEY have distinguished waterproof nature and are breathable. This work shows a feasible proposal for building future "energy garments".
Collapse
Affiliation(s)
- Dewei Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Weifeng Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wei Gong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wanwan Ma
- College of Textiles, Donghua University, Shanghai, 201620, P. R. China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yaogang Li
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai, 201620, P. R. China
| | - Qinghong Zhang
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai, 201620, P. R. China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|