1
|
Hou Y, Huang J, Ma H, Li Q, Xiang Z, Qian J, Li G, Tai Y, Xia R, Zhu S. Autonomous 3D Self-Sensing Hybrid Membrane Actuator for Interactive Communicating. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40302372 DOI: 10.1021/acsami.5c04053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
The advancement of intelligent soft actuators is progressively emphasizing the incorporation of environmental sensing capability to actuation, thereby enhancing the adaptability and interactivity of artificial systems. In the current situation where the sensing and actuation functions of soft actuators are generally separated, this work proposes an autonomous three-dimensional (3D) noncontact sensory actuator (NSA), based on the coupling of ″dielectric polarization-electrothermal conversion-thermal actuation″ triple effects. Specifically, the NSA hybrid membrane is composed of multiple interpenetrating networks, including a boron nitride nanosheet (BNNS) dielectric network for electrostatic field sensing and polarization, a silver nanowires (AgNWs) percolation network for dielectric enhancement and electrothermal conversion, and thermally contracted shape memory fiber (SMF) and thermally expanded polydimethylsiloxane (PDMS) networks for directional actuation. Based on the principle of electrostatic field and dielectric polarization, the SMF/BNNS composite (SMF-BN) fibrous membrane can logically sense the noncontact 3D motion, static/dynamic state of external objects, and distinguish material categories. Subsequently, the output sensing potential facilitates the built-in AgNWs nanonetwork heater to trigger electrothermal actuation of NSA. Lastly, as a biomimetic tongue, the autonomous noncontact "sensing-decision-actuating" of NSA is verified by seamless energy conversion in the process of sensing "prey" approaching and capturing. The proposed sensory actuator would facilitate multimodal integration for future wearable and human-machine-environment interaction technologies.
Collapse
Affiliation(s)
- Yuanyuan Hou
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiaxin Huang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hao Ma
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qingsong Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zerong Xiang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiasheng Qian
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Guanglin Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yanlong Tai
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ru Xia
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Shanshan Zhu
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
2
|
Esposito EP, Lopez Rios HM, Olvera de la Cruz M, Jaeger HM. Actuating superparamagnetic nanoparticle monolayers. Proc Natl Acad Sci U S A 2025; 122:e2424073122. [PMID: 40138344 PMCID: PMC12002294 DOI: 10.1073/pnas.2424073122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Magnetically responsive, mechanically flexible microstructures are desirable for applications ranging from smart sensors to remote-controlled actuation for surgery or robotics. Embedding magnetic nanoparticles into a thin matrix of elastic material enables high flexibility while exploiting the magnetic response of the individual particles. However, in the ultrathin limit of such nanocomposite materials, the particles become too small to sustain a permanent dipole moment. This implies that now large magnetic field gradients are required for actuation, which are difficult to achieve with externally applied fields. Here, we demonstrate through experiment and simulation that monolayer sheets of close-packed paramagnetic nanoparticles in a uniform applied field can generate large local field gradients through particle interactions. As a result, a strong collective magnetization is obtained that leads to large deflections of freestanding sheets already in moderate applied fields. Exploiting the vector nature of the applied field, we furthermore find that it is possible to induce more complex curvature and twist the sheets. Finally, we show that paramagnetic nanoparticle monolayers applied as coatings can generate sufficient force to deflect strips of nonmagnetic material that is several orders of magnitude thicker.
Collapse
Affiliation(s)
- Edward P. Esposito
- Department of Physics, University of Chicago, Chicago, IL60637
- James Franck Institute, University of Chicago, Chicago, IL60637
| | | | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL60208
- Department of Physics and Astronomy, Northwestern University, Evanston, IL60208
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL60208
- Department of Chemistry, Northwestern University, Evanston, IL60208
| | - Heinrich M. Jaeger
- Department of Physics, University of Chicago, Chicago, IL60637
- James Franck Institute, University of Chicago, Chicago, IL60637
| |
Collapse
|
3
|
Su J, He K, Li Y, Tu J, Chen X. Soft Materials and Devices Enabling Sensorimotor Functions in Soft Robots. Chem Rev 2025. [PMID: 40163535 DOI: 10.1021/acs.chemrev.4c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Sensorimotor functions, the seamless integration of sensing, decision-making, and actuation, are fundamental for robots to interact with their environments. Inspired by biological systems, the incorporation of soft materials and devices into robotics holds significant promise for enhancing these functions. However, current robotics systems often lack the autonomy and intelligence observed in nature due to limited sensorimotor integration, particularly in flexible sensing and actuation. As the field progresses toward soft, flexible, and stretchable materials, developing such materials and devices becomes increasingly critical for advanced robotics. Despite rapid advancements individually in soft materials and flexible devices, their combined applications to enable sensorimotor capabilities in robots are emerging. This review addresses this emerging field by providing a comprehensive overview of soft materials and devices that enable sensorimotor functions in robots. We delve into the latest development in soft sensing technologies, actuation mechanism, structural designs, and fabrication techniques. Additionally, we explore strategies for sensorimotor control, the integration of artificial intelligence (AI), and practical application across various domains such as healthcare, augmented and virtual reality, and exploration. By drawing parallels with biological systems, this review aims to guide future research and development in soft robots, ultimately enhancing the autonomy and adaptability of robots in unstructured environments.
Collapse
Affiliation(s)
- Jiangtao Su
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yanzhen Li
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jiaqi Tu
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
4
|
Li Y, Coodley SN, Chen S, Dong P, Li S, Yao S. Thermally responsive spatially programmable soft actuators with multiple response states enabled by Grayscale UV light processing. MATERIALS HORIZONS 2025; 12:1568-1580. [PMID: 39652336 DOI: 10.1039/d4mh01209g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Soft actuators hold great promise for applications in biomimetic robots, artificial muscles, and drug delivery systems due to their adaptability in diverse environments. A critical aspect of designing thermally responsive soft actuators is to achieve spatially programmable actuation under a global thermal stimulus. Different local actuation behaviors can be encoded in one actuator to enable complex morphing structures for different tasks. However, it is challenging to achieve programmability beyond one or binary states. This work introduces a new grayscale ultraviolet (UV) light processing method to fabricate soft actuators with spatially tunable Young's modulus, enabling multiple programmable states in one actuator. Together with a liquid crystal elastomer actuation layer and a photothermal heating layer, the LCE programming layer with spatially programmable moduli allows different regions of the soft actuator to bend to controllable extents under a global thermal stimulus. Various shape morphing patterns can be encoded using UV photomasks with spatially controlled grayscales. Additionally, caterpillar-inspired robots capable of bi-directional crawling and octopus-arm-inspired structures for object manipulation are demonstrated. This work represents advancements in the programmability of thermally responsive soft actuators, laying the foundation for their applications in advanced soft robotic systems.
Collapse
Affiliation(s)
- Yizong Li
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Sooyeon Noh Coodley
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Si Chen
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Penghao Dong
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Su Li
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Shanshan Yao
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
5
|
Lugoda P, Oliveros-Mata ES, Marasinghe K, Bhaumik R, Pretto N, Oliveira C, Dias T, Hughes-Riley T, Haller M, Münzenrieder N, Makarov D. Submersible touchless interactivity in conformable textiles enabled by highly selective overbraided magnetoresistive sensors. COMMUNICATIONS ENGINEERING 2025; 4:33. [PMID: 40000762 PMCID: PMC11861257 DOI: 10.1038/s44172-025-00373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
Miniature electronics positioned within textile braids leverages the persistent flexibility and comfort of textiles constructed from electronics with 1D form factors. Here, we developed touchless interactivity within textiles using 1D overbraided magnetic field sensors. Our integration strategy minimally impacts the performance of flexible giant magnetoresistive sensors, yielding machine-washable sensors that maintain conformability when integrated in traditional fabrics. These overbraided magnetoresistive sensors exhibit a detectivity down to 380 nT and a nearly isotropic magnetoresistance amplitude response, facilitating intuitive touchless interaction. The interactivity is possible even in humid environments, including underwater, opening reliable activation in day-to-day and specialized applications. To showcase capabilities of overbraided magnetoresistive sensors, we demonstrate a functional armband for navigation control in virtual reality environments and a self-monitoring safety helmet strap. This approach bridges the integration gap between on-skin and rigid magnetic interfaces, paving the way for highly reliable, comfortable, interactive textiles across entertainment, safety, and sportswear.
Collapse
Affiliation(s)
- Pasindu Lugoda
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK.
| | - Eduardo Sergio Oliveros-Mata
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Dresden, Germany
| | - Kalana Marasinghe
- Advanced Textiles Research Group, Nottingham School of Art and Design, Nottingham Trent University, Nottingham, UK
| | - Rahul Bhaumik
- Faculty of Engineering, Free University of Bozen-Bolzano, Bozen-Bolzano, Italy
| | - Niccolò Pretto
- Faculty of Engineering, Free University of Bozen-Bolzano, Bozen-Bolzano, Italy
| | - Carlos Oliveira
- Advanced Textiles Research Group, Nottingham School of Art and Design, Nottingham Trent University, Nottingham, UK
| | - Tilak Dias
- Advanced Textiles Research Group, Nottingham School of Art and Design, Nottingham Trent University, Nottingham, UK
| | - Theodore Hughes-Riley
- Advanced Textiles Research Group, Nottingham School of Art and Design, Nottingham Trent University, Nottingham, UK.
| | - Michael Haller
- Faculty of Engineering, Free University of Bozen-Bolzano, Bozen-Bolzano, Italy
| | - Niko Münzenrieder
- Faculty of Engineering, Free University of Bozen-Bolzano, Bozen-Bolzano, Italy.
| | - Denys Makarov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Dresden, Germany.
| |
Collapse
|
6
|
Zhang Z, Guo Y, Bu F, Wei S, Cheng E. Wireless Flexible Actuator Photoelectric Synergistically Driven for Environment Adaptability Crawling Robots. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8036-8046. [PMID: 39865597 DOI: 10.1021/acsami.4c21369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Wirelessly driven flexible actuators are crucial to the development of flexible robotic crawling. However, great challenges still remain for the crawling of flexible actuators in complex environments. Herein, we reported a wireless flexible actuator synergistically driven by wireless power transmission (WPT) technology and near-infrared (NIR) light, which consists of a poly(dimethylsiloxane)-graphene oxide (PDMS-GO) composite layer, eutectic gallium-indium alloy (EGaIn), a PDMS layer, and a polyimide (PI) layer. By optimizing the parameters of EGaIn and the concentration of the PDMS-GO composite film, the actuator has excellent bending ability and blocking force under different conditions driven by photoelectronic synergy. In addition, we fabricated a flexible crawling robot with high environmental adaptability by adding crawling structures at both ends of the actuator, which causes a discrepancy in friction between the front and rear feet. The flexible crawling robot has high stability, large deformation, and excellent crawling ability for wirelessly crawling on a plane, slope, and plane with different roughnesses. This work provides an idea for the application of wireless robots in complex environments.
Collapse
Affiliation(s)
- Zhengyan Zhang
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Yicong Guo
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Fan Bu
- School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, P. R. China
| | - Shijie Wei
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - E Cheng
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| |
Collapse
|
7
|
Yang H, Li S, Wu Y, Bao X, Xiang Z, Xie Y, Pan L, Chen J, Liu Y, Li RW. Advances in Flexible Magnetosensitive Materials and Devices for Wearable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311996. [PMID: 38776537 DOI: 10.1002/adma.202311996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Emerging fields, such as wearable electronics, digital healthcare, the Internet of Things, and humanoid robots, highlight the need for flexible devices capable of recording signals on curved surfaces and soft objects. In particular, flexible magnetosensitive devices garner significant attention owing to their ability to combine the advantages of flexible electronics and magnetoelectronic devices, such as reshaping capability, conformability, contactless sensing, and navigation capability. Several key challenges must be addressed to develop well-functional flexible magnetic devices. These include determining how to make magnetic materials flexible and even elastic, understanding how the physical properties of magnetic films change under external strain and stress, and designing and constructing flexible magnetosensitive devices. In recent years, significant progress is made in addressing these challenges. This study aims to provide a timely and comprehensive overview of the most recent developments in flexible magnetosensitive devices. This includes discussions on the fabrications and mechanical regulations of flexible magnetic materials, the principles and performances of flexible magnetic sensors, and their applications for wearable electronics. In addition, future development trends and challenges in this field are discussed.
Collapse
Affiliation(s)
- Huali Yang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Shengbin Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yuanzhao Wu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Xilai Bao
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ziyin Xiang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yali Xie
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Lili Pan
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinxia Chen
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yiwei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Zhao X, Yao H, Lv Y, Chen Z, Dong L, Huang J, Mi S. Reprogrammable Magnetic Soft Actuators with Microfluidic Functional Modules via Pixel-Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310009. [PMID: 38295155 DOI: 10.1002/smll.202310009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/31/2023] [Indexed: 02/02/2024]
Abstract
Magnetic soft actuators and robots have attracted considerable attention in biomedical applications due to their speedy response, programmability, and biocompatibility. Despite recent advancements, the fabrication process of magnetic actuators and the reprogramming approach of their magnetization profiles continue to pose challenges. Here, a facile fabrication strategy is reported based on arrangements and distributions of reusable magnetic pixels on silicone substrates, allowing for various magnetic actuators with customizable architectures, arbitrary magnetization profiles, and integration of microfluidic technology. This approach enables intricate configurations with decent deformability and programmability, as well as biomimetic movements involving grasping, swimming, and wriggling in response to magnetic actuation. Moreover, microfluidic functional modules are integrated for various purposes, such as on/off valve control, curvature adjustment, fluid mixing, dynamic microfluidic architecture, and liquid delivery robot. The proposed method fulfills the requirements of low-cost, rapid, and simplified preparation of magnetic actuators, since it eliminates the need to sustain pre-defined deformations during the magnetization process or to employ laser heating or other stimulation for reprogramming the magnetization profile. Consequently, it is envisioned that magnetic actuators fabricated via pixel-assembly will have broad prospects in microfluidics and biomedical applications.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
| | - Hongyi Yao
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
| | - Yaoyi Lv
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
| | - Zhixian Chen
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
| | - Lina Dong
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
| | - Jiajun Huang
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
- Optometry Advanced Medical Equipment R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, 518000, China
| | - Shengli Mi
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
- Optometry Advanced Medical Equipment R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
9
|
Han W, Gao W, Wang X. Enhanced Magnetic Soft Robotics: Integrating Fiber Optics and 3D Printing for Rapid Actuation and Precision Sensing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30396-30407. [PMID: 38820388 DOI: 10.1021/acsami.4c04586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Timely, accurate, and rapid grasping of dynamic change information in magnetic actuation soft robots is essential for advancing their evolution toward intelligent, integrated, and multifunctional systems. However, existing magnetic-actuation soft robots lack effective functions for integrating sensing and actuation. Herein, we demonstrate the integration of distributed fiber optics technology with advanced-programming 3D printing techniques. This integration provides our soft robots unique capabilities such as integrated sensing, precise shape reconstruction, controlled deformation, and sophisticated magnetic navigation. By utilizing an improved magneto-mechanical coupling model and an advanced inversion algorithm, we successfully achieved real-time reconstruction of complex structures, such as 'V', 'N', and 'M' shapes and gripper designs, with a notable response time of 34 ms. Additionally, our robots demonstrate proficiency in magnetic navigation and closed-loop deformation control, making them ideal for operation in confined or obscured environments. This work thus provides a transformative strategy to meet unmet demands in the rapidly growing field of soft robotics, especially in establishing the theoretical and technological foundation for constructing digitized robots.
Collapse
Affiliation(s)
- Wenheng Han
- Key Laboratory of Mechanics on Western Disaster and Environment, MoE, College of Civil Engineering and Mechanic, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Lanzhou University, Lanzhou 730000, PR China
| | - Wei Gao
- School of Science, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Xingzhe Wang
- Key Laboratory of Mechanics on Western Disaster and Environment, MoE, College of Civil Engineering and Mechanic, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
10
|
Jung Y, Kwon K, Lee J, Ko SH. Untethered soft actuators for soft standalone robotics. Nat Commun 2024; 15:3510. [PMID: 38664373 PMCID: PMC11045848 DOI: 10.1038/s41467-024-47639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Soft actuators produce the mechanical force needed for the functional movements of soft robots, but they suffer from critical drawbacks since previously reported soft actuators often rely on electrical wires or pneumatic tubes for the power supply, which would limit the potential usage of soft robots in various practical applications. In this article, we review the new types of untethered soft actuators that represent breakthroughs and discuss the future perspective of soft actuators. We discuss the functional materials and innovative strategies that gave rise to untethered soft actuators and deliver our perspective on challenges and opportunities for future-generation soft actuators.
Collapse
Affiliation(s)
- Yeongju Jung
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Kangkyu Kwon
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jinwoo Lee
- Department of Mechanical, Robotics, and Energy Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, South Korea.
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- Institute of Engineering Research / Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
| |
Collapse
|
11
|
Kwon H, Yang Y, Kim G, Gim D, Ha M. Anisotropy in magnetic materials for sensors and actuators in soft robotic systems. NANOSCALE 2024; 16:6778-6819. [PMID: 38502047 DOI: 10.1039/d3nr05737b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The field of soft intelligent robots has rapidly developed, revealing extensive potential of these robots for real-world applications. By mimicking the dexterities of organisms, robots can handle delicate objects, access remote areas, and provide valuable feedback on their interactions with different environments. For autonomous manipulation of soft robots, which exhibit nonlinear behaviors and infinite degrees of freedom in transformation, innovative control systems integrating flexible and highly compliant sensors should be developed. Accordingly, sensor-actuator feedback systems are a key strategy for precisely controlling robotic motions. The introduction of material magnetism into soft robotics offers significant advantages in the remote manipulation of robotic operations, including touch or touchless detection of dynamically changing shapes and positions resulting from the actuations of robots. Notably, the anisotropies in the magnetic nanomaterials facilitate the perception and response with highly selective, directional, and efficient ways used for both sensors and actuators. Accordingly, this review provides a comprehensive understanding of the origins of magnetic anisotropy from both intrinsic and extrinsic factors and summarizes diverse magnetic materials with enhanced anisotropy. Recent developments in the design of flexible sensors and soft actuators based on the principle of magnetic anisotropy are outlined, specifically focusing on their applicabilities in soft robotic systems. Finally, this review addresses current challenges in the integration of sensors and actuators into soft robots and offers promising solutions that will enable the advancement of intelligent soft robots capable of efficiently executing complex tasks relevant to our daily lives.
Collapse
Affiliation(s)
- Hyeokju Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Yeonhee Yang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Geonsu Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Dongyeong Gim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Minjeong Ha
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
12
|
Leanza S, Wu S, Sun X, Qi HJ, Zhao RR. Active Materials for Functional Origami. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302066. [PMID: 37120795 DOI: 10.1002/adma.202302066] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/13/2023] [Indexed: 06/19/2023]
Abstract
In recent decades, origami has been explored to aid in the design of engineering structures. These structures span multiple scales and have been demonstrated to be used toward various areas such as aerospace, metamaterial, biomedical, robotics, and architectural applications. Conventionally, origami or deployable structures have been actuated by hands, motors, or pneumatic actuators, which can result in heavy or bulky structures. On the other hand, active materials, which reconfigure in response to external stimulus, eliminate the need for external mechanical loads and bulky actuation systems. Thus, in recent years, active materials incorporated with deployable structures have shown promise for remote actuation of light weight, programmable origami. In this review, active materials such as shape memory polymers (SMPs) and alloys (SMAs), hydrogels, liquid crystal elastomers (LCEs), magnetic soft materials (MSMs), and covalent adaptable network (CAN) polymers, their actuation mechanisms, as well as how they have been utilized for active origami and where these structures are applicable is discussed. Additionally, the state-of-the-art fabrication methods to construct active origami are highlighted. The existing structural modeling strategies for origami, the constitutive models used to describe active materials, and the largest challenges and future directions for active origami research are summarized.
Collapse
Affiliation(s)
- Sophie Leanza
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Shuai Wu
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Xiaohao Sun
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - H Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
13
|
Abstract
Magnetic control has gained popularity recently due to its ability to enhance soft robots with reconfigurability and untethered maneuverability, among other capabilities. Several advancements in the fabrication and application of reconfigurable magnetic soft robots have been reported. This review summarizes novel fabrication techniques for designing magnetic soft robots, including chemical and physical methods. Mechanisms of reconfigurability and deformation properties are discussed in detail. The maneuverability of magnetic soft robots is then briefly discussed. Finally, the present challenges and possible future work in designing reconfigurable magnetic soft robots for biomedical applications are identified.
Collapse
Affiliation(s)
- Linxiaohai Ning
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Chayabhan Limpabandhu
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Zion Tsz Ho Tse
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
14
|
Vazquez-Perez F, Gila-Vilchez C, Leon-Cecilla A, Álvarez de Cienfuegos L, Borin D, Odenbach S, Martin JE, Lopez-Lopez MT. Fabrication and Actuation of Magnetic Shape-Memory Materials. ACS APPLIED MATERIALS & INTERFACES 2023; 15. [PMID: 37924281 PMCID: PMC10658454 DOI: 10.1021/acsami.3c14091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
Soft actuators are deformable materials that change their dimensions or shape in response to external stimuli. Among the various stimuli, remote magnetic fields are one of the most attractive forms of actuation, due to their ease of use, fast response, and safety in biological systems. Composites of magnetic particles with polymer matrices are the most common materials for magnetic soft actuators. In this paper, we demonstrate the fabrication and actuation of magnetic shape-memory materials based on hydrogels containing field-structured magnetic particles. These actuators are formed by placing the pregel dispersion into a mold of the desired on-field shape and exposing it to a homogeneous magnetic field until the gel point is reached. At this point, the material may be removed from the mold and fully gelled in the desired off-field shape. The resultant magnetic shape-memory material then transitions between these two shapes when it is subjected to successive cycles of a homogeneous magnetic field, acting as a large deformation actuator. For actuators that are planar in the off-field state, this can result in significant bending to return to the on-field state. In addition, it is possible to make shape-memory materials that twist under the application of a magnetic field. For these torsional actuators, both experimental and theoretical results are given.
Collapse
Affiliation(s)
- Francisco
J. Vazquez-Perez
- Departamento
de Física Aplicada, Universidad de
Granada, C.U. Fuentenueva, Granada E-18071, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avda. de Madrid 15, Granada E-18012, Spain
| | - Cristina Gila-Vilchez
- Departamento
de Física Aplicada, Universidad de
Granada, C.U. Fuentenueva, Granada E-18071, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avda. de Madrid 15, Granada E-18012, Spain
| | - Alberto Leon-Cecilla
- Departamento
de Física Aplicada, Universidad de
Granada, C.U. Fuentenueva, Granada E-18071, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avda. de Madrid 15, Granada E-18012, Spain
| | - Luis Álvarez de Cienfuegos
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avda. de Madrid 15, Granada E-18012, Spain
- Departamento
de Química Orgánica, Unidad de Excelencia Química
Aplicada a Biomedicina y Medioambiente, Universidad de Granada, C. U. Fuentenueva, Granada E-18071, Spain
| | - Dmitry Borin
- Chair
of Magnetofluiddynamics, Measuring and Automation Technology, Technische Universität Dresden, George-Bähr-Strasse 3, Dresden 01069, Germany
| | - Stefan Odenbach
- Chair
of Magnetofluiddynamics, Measuring and Automation Technology, Technische Universität Dresden, George-Bähr-Strasse 3, Dresden 01069, Germany
| | - James E. Martin
- Sandia
National Laboratories, Albuquerque, New Mexico 87059, United States
| | - Modesto T. Lopez-Lopez
- Departamento
de Física Aplicada, Universidad de
Granada, C.U. Fuentenueva, Granada E-18071, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avda. de Madrid 15, Granada E-18012, Spain
| |
Collapse
|
15
|
Hegde C, Su J, Tan JMR, He K, Chen X, Magdassi S. Sensing in Soft Robotics. ACS NANO 2023; 17:15277-15307. [PMID: 37530475 PMCID: PMC10448757 DOI: 10.1021/acsnano.3c04089] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Soft robotics is an exciting field of science and technology that enables robots to manipulate objects with human-like dexterity. Soft robots can handle delicate objects with care, access remote areas, and offer realistic feedback on their handling performance. However, increased dexterity and mechanical compliance of soft robots come with the need for accurate control of the position and shape of these robots. Therefore, soft robots must be equipped with sensors for better perception of their surroundings, location, force, temperature, shape, and other stimuli for effective usage. This review highlights recent progress in sensing feedback technologies for soft robotic applications. It begins with an introduction to actuation technologies and material selection in soft robotics, followed by an in-depth exploration of various types of sensors, their integration methods, and the benefits of multimodal sensing, signal processing, and control strategies. A short description of current market leaders in soft robotics is also included in the review to illustrate the growing demands of this technology. By examining the latest advancements in sensing feedback technologies for soft robots, this review aims to highlight the potential of soft robotics and inspire innovation in the field.
Collapse
Affiliation(s)
- Chidanand Hegde
- School
of Materials Science and Engineering, Nanyang
Technological University, Singapore 639798, Singapore
- Singapore-HUJ
alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE) Singapore 138602, Singapore
| | - Jiangtao Su
- School
of Materials Science and Engineering, Nanyang
Technological University, Singapore 639798, Singapore
- Singapore-HUJ
alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE) Singapore 138602, Singapore
| | - Joel Ming Rui Tan
- School
of Materials Science and Engineering, Nanyang
Technological University, Singapore 639798, Singapore
- Singapore-HUJ
alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE) Singapore 138602, Singapore
| | - Ke He
- School
of Materials Science and Engineering, Nanyang
Technological University, Singapore 639798, Singapore
- Singapore-HUJ
alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE) Singapore 138602, Singapore
| | - Xiaodong Chen
- School
of Materials Science and Engineering, Nanyang
Technological University, Singapore 639798, Singapore
- Singapore-HUJ
alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE) Singapore 138602, Singapore
| | - Shlomo Magdassi
- Singapore-HUJ
alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE) Singapore 138602, Singapore
- Casali
Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
16
|
Richter M, Sikorski J, Makushko P, Zabila Y, Venkiteswaran VK, Makarov D, Misra S. Locally Addressable Energy Efficient Actuation of Magnetic Soft Actuator Array Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302077. [PMID: 37330643 PMCID: PMC10460866 DOI: 10.1002/advs.202302077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/21/2023] [Indexed: 06/19/2023]
Abstract
Advances in magnetoresponsive composites and (electro-)magnetic actuators have led to development of magnetic soft machines (MSMs) as building blocks for small-scale robotic devices. Near-field MSMs offer energy efficiency and compactness by bringing the field source and effectors in close proximity. Current challenges of near-field MSM are limited programmability of effector motion, dimensionality, ability to perform collaborative tasks, and structural flexibility. Herein, a new class of near-field MSMs is demonstrated that combines microscale thickness flexible planar coils with magnetoresponsive polymer effectors. Ultrathin manufacturing and magnetic programming of effectors is used to tailor their response to the nonhomogeneous near-field distribution on the coil surface. The MSMs are demonstrated to lift, tilt, pull, or grasp in close proximity to each other. These ultrathin (80 µm) and lightweight (100 gm-2 ) MSMs can operate at high frequency (25 Hz) and low energy consumption (0.5 W), required for the use of MSMs in portable electronics.
Collapse
Affiliation(s)
- Michiel Richter
- Surgical Robotics LaboratoryDepartment of Biomechanical EngineeringUniversity of TwenteDrienerlolaan 5Enschede7500 AEThe Netherlands
| | - Jakub Sikorski
- Surgical Robotics LaboratoryDepartment of Biomechanical EngineeringUniversity of TwenteDrienerlolaan 5Enschede7500 AEThe Netherlands
- Surgical Robotics LaboratoryDepartment of Biomedical EngineeringUniversity of Groningen and UniversityMedical Centre Groningen, Hanzeplein 1Groningen9713 GZThe Netherlands
| | - Pavlo Makushko
- Institute of Ion Beam Physics and Materials Research, Helmholtz‐Zentrum Dresden‐Rossendorf e.V.Bautzner, Landstraße 40001328DresdenGermany
| | - Yevhen Zabila
- Institute of Ion Beam Physics and Materials Research, Helmholtz‐Zentrum Dresden‐Rossendorf e.V.Bautzner, Landstraße 40001328DresdenGermany
- The H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of SciencesKrakow31‐342Poland
| | | | - Denys Makarov
- Institute of Ion Beam Physics and Materials Research, Helmholtz‐Zentrum Dresden‐Rossendorf e.V.Bautzner, Landstraße 40001328DresdenGermany
| | - Sarthak Misra
- Surgical Robotics LaboratoryDepartment of Biomechanical EngineeringUniversity of TwenteDrienerlolaan 5Enschede7500 AEThe Netherlands
- Surgical Robotics LaboratoryDepartment of Biomedical EngineeringUniversity of Groningen and UniversityMedical Centre Groningen, Hanzeplein 1Groningen9713 GZThe Netherlands
| |
Collapse
|
17
|
Liu Y, Lin G, Medina-Sánchez M, Guix M, Makarov D, Jin D. Responsive Magnetic Nanocomposites for Intelligent Shape-Morphing Microrobots. ACS NANO 2023; 17:8899-8917. [PMID: 37141496 DOI: 10.1021/acsnano.3c01609] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
With the development of advanced biomedical theragnosis and bioengineering tools, smart and soft responsive microstructures and nanostructures have emerged. These structures can transform their body shape on demand and convert external power into mechanical actions. Here, we survey the key advances in the design of responsive polymer-particle nanocomposites that led to the development of smart shape-morphing microscale robotic devices. We overview the technological roadmap of the field and highlight the emerging opportunities in programming magnetically responsive nanomaterials in polymeric matrixes, as magnetic materials offer a rich spectrum of properties that can be encoded with various magnetization information. The use of magnetic fields as a tether-free control can easily penetrate biological tissues. With the advances in nanotechnology and manufacturing techniques, microrobotic devices can be realized with the desired magnetic reconfigurability. We emphasize that future fabrication techniques will be the key to bridging the gaps between integrating sophisticated functionalities of nanoscale materials and reducing the complexity and footprints of microscale intelligent robots.
Collapse
Affiliation(s)
- Yuan Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, 518055 Guangdong Province, P. R. China
| | - Gungun Lin
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Mariana Medina-Sánchez
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research (IFW), 01069 Dresden, Germany
- Chair of Micro- and NanoSystems, Center for Molecular Bioengineering (B CUBE), Dresden University of Technology, 01062 Dresden, Germany
| | - Maria Guix
- Universitat de Barcelona, Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional Barcelona, 08028 Barcelona, Spain
| | - Denys Makarov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Dayong Jin
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| |
Collapse
|
18
|
Li L, Yao H, Mi S. Magnetically Driven Modular Mechanical Metamaterials with High Programmability, Reconfigurability, and Multiple Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3486-3496. [PMID: 36598348 DOI: 10.1021/acsami.2c19679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Shape transformation and motion guidance are emerging research hotspots of mechanical metamaterials. In this case, the key issue is how to improve the programmability and reconfigurability of metamaterials. The magnetically driven method enables materials to accomplish remote, fast, and reversible deformation, so it is desired for improving the programmability and reconfigurability of metamaterials. However, conventional magnetically driven materials are often pure elastomer materials. Their magnetic programming method is single, and their overall shape is unchangeable after fabrication, which limits their programmability and reconfigurability. Herein, this article proposes a kind of magnetically driven, programmable, and reconfigurable modular mechanical metamaterial based on origami and kirigami design mechanisms. The motion and deformation were designed to follow the predefined creases and incisions that could be transformed into each other. This metamaterial enabled more discrete motion and force transmission and integrated the fold of origami, the rotation of kirigami, and the fold guided by cuts. Such designs laid the foundation for complex, three-dimensional structures which could be quickly reassembled and constructed to deal with complex situations. This paper also demonstrated applications of this metamaterial in information storage and manifestation, mechanical logic computing, reconfigurable robotics, deployable mechanisms, and so on. The results indicated that the high programmability and reconfigurability expanded the application potential of the metamaterial for broader needs.
Collapse
Affiliation(s)
- Linzhi Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen518000, China
| | - Hongyi Yao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen518000, China
| | - Shengli Mi
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen518000, China
| |
Collapse
|
19
|
Self-vectoring electromagnetic soft robots with high operational dimensionality. Nat Commun 2023; 14:182. [PMID: 36635282 PMCID: PMC9837125 DOI: 10.1038/s41467-023-35848-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023] Open
Abstract
Soft robots capable of flexible deformations and agile locomotion similar to biological systems are highly desirable for promising applications, including safe human-robot interactions and biomedical engineering. Their achievable degree of freedom and motional deftness are limited by the actuation modes and controllable dimensions of constituent soft actuators. Here, we report self-vectoring electromagnetic soft robots (SESRs) to offer new operational dimensionality via actively and instantly adjusting and synthesizing the interior electromagnetic vectors (EVs) in every flux actuator sub-domain of the robots. As a result, we can achieve high-dimensional operation with fewer actuators and control signals than other actuation methods. We also demonstrate complex and rapid 3D shape morphing, bioinspired multimodal locomotion, as well as fast switches among different locomotion modes all in passive magnetic fields. The intrinsic fast (re)programmability of SESRs, along with the active and selective actuation through self-vectoring control, significantly increases the operational dimensionality and possibilities for soft robots.
Collapse
|
20
|
Kaya K, Iseri E, van der Wijngaart W. Soft metamaterial with programmable ferromagnetism. MICROSYSTEMS & NANOENGINEERING 2022; 8:127. [PMID: 36483621 PMCID: PMC9722694 DOI: 10.1038/s41378-022-00463-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 05/27/2023]
Abstract
Magnetopolymers are of interest in smart material applications; however, changing their magnetic properties post synthesis is complicated. In this study, we introduce easily programmable polymer magnetic composites comprising 2D lattices of droplets of solid-liquid phase change material, with each droplet containing a single magnetic dipole particle. These composites are ferromagnetic with a Curie temperature defined by the rotational freedom of the particles above the droplet melting point. We demonstrate magnetopolymers combining high remanence characteristics with Curie temperatures below the composite degradation temperature. We easily reprogram the material between four states: (1) a superparamagnetic state above the melting point which, in the absence of an external magnetic field, spontaneously collapses to; (2) an artificial spin ice state, which after cooling forms either; (3) a spin glass state with low bulk remanence, or; (4) a ferromagnetic state with high bulk remanence when cooled in the presence of an external magnetic field. We observe the spontaneous emergence of 2D magnetic vortices in the spin ice and elucidate the correlation of these vortex structures with the external bulk remanence. We also demonstrate the easy programming of magnetically latching structures.
Collapse
Affiliation(s)
- Kerem Kaya
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, 100 44 Sweden
| | - Emre Iseri
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, 100 44 Sweden
| | | |
Collapse
|
21
|
Zhang S, Ke X, Jiang Q, Chai Z, Wu Z, Ding H. Fabrication and Functionality Integration Technologies for Small-Scale Soft Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200671. [PMID: 35732070 DOI: 10.1002/adma.202200671] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Small-scale soft robots are attracting increasing interest for visible and potential applications owing to their safety and tolerance resulting from their intrinsic soft bodies or compliant structures. However, it is not sufficient that the soft bodies merely provide support or system protection. More importantly, to meet the increasing demands of controllable operation and real-time feedback in unstructured/complicated scenarios, these robots are required to perform simplex and multimodal functionalities for sensing, communicating, and interacting with external environments during large or dynamic deformation with the risk of mismatch or delamination. Challenges are encountered during fabrication and integration, including the selection and fabrication of composite/materials and structures, integration of active/passive functional modules with robust interfaces, particularly with highly deformable soft/stretchable bodies. Here, methods and strategies of fabricating structural soft bodies and integrating them with functional modules for developing small-scale soft robots are investigated. Utilizing templating, 3D printing, transfer printing, and swelling, small-scale soft robots can be endowed with several perceptual capabilities corresponding to diverse stimulus, such as light, heat, magnetism, and force. The integration of sensing and functionalities effectively enhances the agility, adaptability, and universality of soft robots when applied in various fields, including smart manufacturing, medical surgery, biomimetics, and other interdisciplinary sciences.
Collapse
Affiliation(s)
- Shuo Zhang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xingxing Ke
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qin Jiang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhiping Chai
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhigang Wu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Han Ding
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
22
|
Guo Q, Yan J, Wu C, Jiang J, Zhou J, Lin Z, Hua N, Zhang P, Zheng C, Yang K, Weng M. Patterned Aluminum/Polydimethylsiloxane-Laminated Film for a Solvent-Driven Soft Actuator with Programmable and Multistable Shape Morphing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49171-49180. [PMID: 36274230 DOI: 10.1021/acsami.2c14352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recently, soft actuators capable of deforming in predictable ways under external stimuli have attracted increasing attention by showing great potential in emerging industries. However, limited efforts are being spent on the untethered actuators with multistable deformations. Also, there is a lack of mechanically guiding design principles for multistable structures. Here, the patterned aluminum/polydimethylsiloxane (Al/PDMS)-laminated films with surface wrinkles are fabricated by magnetron sputtering the Al layer on the PDMS substrate. By tuning the geometric parameters and surface constraints of the patterned Al/PDMS-laminated films, a series of solvent-driven actuators with multiform stable configurations (such as monostable arc, multistable cylinder, and monostable/bistable spiral) are proposed. The deformation mechanism is revealed using a linear elastic theory. Combined with the finite element analysis method, the deformations of Al/PDMS-laminated films with different surface constraints and geometric configurations are visually predicted. Besides, we modulate the deformation of different parts of the Z-shaped actuators by tuning the surface constraints in different regions of the Z-shaped Al/PDMS bilayer films to achieve multiple stable deformations in a single actuator. The concept offers a huge design scope for reconfigurable soft robots. Finally, two bionic applications are proposed to demonstrate the practical applications of the soft solvent-driven actuator based on the patterned Al/PDMS films in artificial muscles and bionic robotics. This work provides a strategy for the design and fabrication of programmable and controllable soft actuators, laying the foundation for a wide range of applications in smart materials.
Collapse
Affiliation(s)
- Qiaohang Guo
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fujian University of Technology, Fuzhou350118, China
| | - Jiuwei Yan
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fujian University of Technology, Fuzhou350118, China
| | - Changsheng Wu
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fujian University of Technology, Fuzhou350118, China
| | - Junheng Jiang
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fujian University of Technology, Fuzhou350118, China
| | - Jiahao Zhou
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fujian University of Technology, Fuzhou350118, China
| | - Zhijie Lin
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fujian University of Technology, Fuzhou350118, China
| | - Nengbin Hua
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fujian University of Technology, Fuzhou350118, China
| | - Peiqian Zhang
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fujian University of Technology, Fuzhou350118, China
| | - Chan Zheng
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fujian University of Technology, Fuzhou350118, China
| | - Kaihuai Yang
- School of Mechanical and Intelligent Manufacturing, Fujian Chuanzheng Communications College, Fuzhou, Fujian350007, China
| | - Mingcen Weng
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fujian University of Technology, Fuzhou350118, China
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou, Fujian350117, China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou, Fujian350108, China
| |
Collapse
|
23
|
Zeng Z, Yu S, Guo C, Lu D, Geng Z, Pei D. Mxene reinforced supramolecular hydrogels with high strength, stretchability and reliable conductivity for sensitive strain sensors. Macromol Rapid Commun 2022; 43:e2200103. [PMID: 35319127 DOI: 10.1002/marc.202200103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/16/2022] [Indexed: 11/07/2022]
Abstract
Conductive hydrogels used as electronics have received much attention due to their great flexibility and stretchability. However, the fabrication of ideal conductive hydrogels fulfilling with excellent mechanical properties and outstanding sensitivity remains a great challenge until now. Moreover, high sensitivity and broad linearity range are pivotal for the feasibility and accuracy of hydrogel sensors. In this study, a conductive supramolecular hydrogel was engineered by directly mixing the aqueous dispersion of MXene with the precursor of N-acryloyl glycinamide (NAGA) monomer and then rapidly photo cross-linked by UV irradiation. The resultant PNAGA/MXene hydrogel-sensors exhibited high mechanical strength (4.8 MPa), great stretchability (630%), and excellent durability. The conductive hydrogel-based sensor presented excellent conductivity (17.3 S·m-1 ) and a wide scope of linear dependence of sensitivity on strain (0-125%, gauge factor = 2.05). It displayed reliable detection of various motions, including repeated subtle movements and large strain. It was also showed good degradation in vitro and antifouling capability. This work may provide a simple and promising platform for engineering conductive supramolecular hydrogels with integrated high performance aiming for smart wearable electronics, electronic skin, soft robots, and human-machine interfacing. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhiwen Zeng
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
- Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou, 510500, China
- National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, China
| | - Shan Yu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
- Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou, 510500, China
- National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, China
| | - Cuiping Guo
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
- Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou, 510500, China
- National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, China
| | - Daohuan Lu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
- Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou, 510500, China
- National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, China
| | - Zhijie Geng
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
- Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou, 510500, China
- National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, China
| | - Dating Pei
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
- Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou, 510500, China
- National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, China
| |
Collapse
|
24
|
Abstract
In conventional classification, soft robots feature mechanical compliance as the main distinguishing factor from traditional robots made of rigid materials. Recent advances in functional soft materials have facilitated the emergence of a new class of soft robots capable of tether-free actuation in response to external stimuli such as heat, light, solvent, or electric or magnetic field. Among the various types of stimuli-responsive materials, magnetic soft materials have shown remarkable progress in their design and fabrication, leading to the development of magnetic soft robots with unique advantages and potential for many important applications. However, the field of magnetic soft robots is still in its infancy and requires further advancements in terms of design principles, fabrication methods, control mechanisms, and sensing modalities. Successful future development of magnetic soft robots would require a comprehensive understanding of the fundamental principle of magnetic actuation, as well as the physical properties and behavior of magnetic soft materials. In this review, we discuss recent progress in the design and fabrication, modeling and simulation, and actuation and control of magnetic soft materials and robots. We then give a set of design guidelines for optimal actuation performance of magnetic soft materials. Lastly, we summarize potential biomedical applications of magnetic soft robots and provide our perspectives on next-generation magnetic soft robots.
Collapse
Affiliation(s)
- Yoonho Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
25
|
Sheka DD, Pylypovskyi OV, Volkov OM, Yershov KV, Kravchuk VP, Makarov D. Fundamentals of Curvilinear Ferromagnetism: Statics and Dynamics of Geometrically Curved Wires and Narrow Ribbons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105219. [PMID: 35044074 DOI: 10.1002/smll.202105219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/06/2021] [Indexed: 06/14/2023]
Abstract
Low-dimensional magnetic architectures including wires and thin films are key enablers of prospective ultrafast and energy efficient memory, logic, and sensor devices relying on spin-orbitronic and magnonic concepts. Curvilinear magnetism emerged as a novel approach in material science, which allows tailoring of the fundamental anisotropic and chiral responses relying on the geometrical curvature of magnetic architectures. Much attention is dedicated to magnetic wires of Möbius, helical, or DNA-like double helical shapes, which act as prototypical objects for the exploration of the fundamentals of curvilinear magnetism. Although there is a bulk number of original publications covering fabrication, characterization, and theory of magnetic wires, there is no comprehensive review of the theoretical framework of how to describe these architectures. Here, theoretical activities on the topic of curvilinear magnetic wires and narrow nanoribbons are summarized, providing a systematic review of the emergent interactions and novel physical effects caused by the curvature. Prospective research directions of curvilinear spintronics and spin-orbitronics are discussed, the fundamental framework for curvilinear magnonics are outlined, and mechanically flexible curvilinear architectures for soft robotics are introduced.
Collapse
Affiliation(s)
- Denis D Sheka
- Faculty of Radiophysics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Oleksandr V Pylypovskyi
- Helmholtz-Zentrum Dresden - Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01328, Dresden, Germany
- Kyiv Academic University, Kyiv, 03142, Ukraine
| | - Oleksii M Volkov
- Helmholtz-Zentrum Dresden - Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01328, Dresden, Germany
| | - Kostiantyn V Yershov
- Leibniz-Institut für Festkörper- und Werkstoffforschung, IFW Dresden, 01171, Dresden, Germany
- Bogolyubov Institute for Theoretical Physics of National Academy of Sciences of Ukraine, Kyiv, 03142, Ukraine
| | - Volodymyr P Kravchuk
- Institut für Theoretische Festkörperphysik, Karlsruher Institut für Technologie, 76131, Karlsruhe, Germany
- Bogolyubov Institute for Theoretical Physics of National Academy of Sciences of Ukraine, Kyiv, 03142, Ukraine
| | - Denys Makarov
- Helmholtz-Zentrum Dresden - Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01328, Dresden, Germany
| |
Collapse
|
26
|
Makarov D, Volkov OM, Kákay A, Pylypovskyi OV, Budinská B, Dobrovolskiy OV. New Dimension in Magnetism and Superconductivity: 3D and Curvilinear Nanoarchitectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2101758. [PMID: 34705309 PMCID: PMC11469131 DOI: 10.1002/adma.202101758] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/16/2021] [Indexed: 06/13/2023]
Abstract
Traditionally, the primary field, where curvature has been at the heart of research, is the theory of general relativity. In recent studies, however, the impact of curvilinear geometry enters various disciplines, ranging from solid-state physics over soft-matter physics, chemistry, and biology to mathematics, giving rise to a plethora of emerging domains such as curvilinear nematics, curvilinear studies of cell biology, curvilinear semiconductors, superfluidity, optics, 2D van der Waals materials, plasmonics, magnetism, and superconductivity. Here, the state of the art is summarized and prospects for future research in curvilinear solid-state systems exhibiting such fundamental cooperative phenomena as ferromagnetism, antiferromagnetism, and superconductivity are outlined. Highlighting the recent developments and current challenges in theory, fabrication, and characterization of curvilinear micro- and nanostructures, special attention is paid to perspective research directions entailing new physics and to their strong application potential. Overall, the perspective is aimed at crossing the boundaries between the magnetism and superconductivity communities and drawing attention to the conceptual aspects of how extension of structures into the third dimension and curvilinear geometry can modify existing and aid launching novel functionalities. In addition, the perspective should stimulate the development and dissemination of research and development oriented techniques to facilitate rapid transitions from laboratory demonstrations to industry-ready prototypes and eventual products.
Collapse
Affiliation(s)
- Denys Makarov
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
| | - Oleksii M. Volkov
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
| | - Attila Kákay
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
| | - Oleksandr V. Pylypovskyi
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
- Kyiv Academic UniversityKyiv03142Ukraine
| | - Barbora Budinská
- Superconductivity and Spintronics LaboratoryNanomagnetism and MagnonicsFaculty of PhysicsUniversity of ViennaVienna1090Austria
| | - Oleksandr V. Dobrovolskiy
- Superconductivity and Spintronics LaboratoryNanomagnetism and MagnonicsFaculty of PhysicsUniversity of ViennaVienna1090Austria
| |
Collapse
|
27
|
Affiliation(s)
- Denys Makarov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Dresden, Germany.
| |
Collapse
|