1
|
Wu E, Lin Y, Zhou J, He H, Hu Y, Tang C, Pan J, Liu Y, Zhuang X. Foldable, Stretchable, Superelastic, and Tunable Wettability Aramid Nanofiber Aerogels for Efficient Thermal Insulation and Oil-Water Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2778-2787. [PMID: 39825836 DOI: 10.1021/acs.langmuir.4c04630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Aerogels hold great potential in thermal insulation, catalytic supports, adsorption, and separation, due to their low density, high porosity, and low thermal conductivity. However, their inherent mechanical fragility and limited control functionality pose substantial challenges that hinder their practical use. In this study, a strategy is developed for the fabrication of cross-linked aramid nanofiber aerogels (cANFAs) by combining internanofiber surface cross-linking with ice-templating techniques. This approach enables the production of cANFAs with an ultralow density of 6.3 mg/cm3 while exhibiting robust mechanical properties, including exceptional mechanical resilience, withstanding 90% compression in air and 80% compression underwater for 100 cycles, and high stretchability with a tensile strain of 34%. The cANFAs demonstrate remarkable thermal insulation properties, with low thermal conductivities of 0.03816 W/(m·K) at room temperature and 0.03518 W/(m·K) at -40 °C. Additionally, the cANFAs exhibit tunable wettability, being hydrophilic and oleophilic in air while becoming superhydrophobic underwater, which enables efficient gravity-driven oil-water separation performance. This study presents a promising route to create robust and functional aramid nanofiber aerogels for practical applications across various fields.
Collapse
Affiliation(s)
- Enjie Wu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin 300387, China
| | - Yuan Lin
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jintao Zhou
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin 300387, China
| | - Honggui He
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yinghe Hu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Chuqing Tang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jingyu Pan
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin 300387, China
| | - Ya Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xupin Zhuang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
2
|
Hu P, Ge S, Dou S, Lv Z, Li M, Zhao Z, Zhang P, Wang J, Sun Z. Ultralight M5 Aerogels with Superior Thermal Stability and Inherent Flame Retardancy. CHEMSUSCHEM 2025; 18:e202401062. [PMID: 39259618 DOI: 10.1002/cssc.202401062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
Ultra-lightweight materials often face the formidable challenge of balancing their low density, high porosity, high mechanical stiffness, high thermal and environmental stability, and low thermal conductivity. This study introduces an innovative method for synthesizing high-performance polymer aerogels to address the challenge. Specifically, we detail the production of poly (2,5-dihydroxy-1,4-phenylene pyridine diimidazole) (PIPD or M5) aerogels. This process involves chemically stripping M5 "super" fibers into nanofibers, undergoing a Sol-Gel transition, followed by freeze-drying and subsequent thermal annealing. The M5 aerogels excel beyond existing polymer aerogels, boasting an ultralight density of 6.03 mg cm-3, superior thermal insulation with thermal conductivity at 32 mW m-1 K-1, inherent flame retardancy (LOI=50.3 %), 80 % compression resilience, a high specific surface area of 462.1 m2 g-1, and outstanding thermal stability up to 463 °C. These multi-faceted properties position the M5 aerogel as a front-runner in lightweight insulation materials, demonstrating the strategic use of high-performance polymer assembly units in aerogel design.
Collapse
Affiliation(s)
- Peiying Hu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, 8600, Empa, Dübendorf, Switzerland
| | - Sijia Ge
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Siyuan Dou
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zhengqiang Lv
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Mengmeng Li
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, 8600, Empa, Dübendorf, Switzerland
| | - Zhiyang Zhao
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, 8600, Empa, Dübendorf, Switzerland
| | - Peigen Zhang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Jin Wang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - ZhengMing Sun
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
3
|
Cheng Y, Cheng H, Gao J, Xue Y, Han G, Zhou B, Liu C, Feng Y, Shen C. Air-Drying for Rapid Manufacture of Flexible Aramid Nanofiber Aerogel Fibers with Robust Mechanical Properties and Thermal Insulation in Harsh Environments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409408. [PMID: 39711279 DOI: 10.1002/smll.202409408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/12/2024] [Indexed: 12/24/2024]
Abstract
Aerogel fibers uniting characteristics of both aerogels (lightweight and porosity) and fibers (flexibility and wearability) exhibit a great potential for the production of the next generation of thermal protection textiles; still, the complex drying procedures and mechanical brittleness remain the main obstacles toward further exploitation. Herein, flexible and robust aramid nanofiber aerogel fibers (ANAFs) are scalably prepared by continuous wet-spinning coupled with fast air-drying. This synthesis involves calcium ions (Ca2⁺) cross-linking and solvent displacement by low surface tension solvents, to enhance skeleton strength and reduce the capillary force during evaporation, respectively, thus minimizing shrinkage to 29.0% and maximizing specific surface area to 225.0 m2 g-1 for ANAF. Surprisingly, the air-dried ANAF showed excellent tensile strength (13.5 MPa) and toughness (7.0 MJ m-3), allowing their easy weaving into the textile without damage. Importantly, the ANAF textile with a skin-core porous structure exhibited low thermal conductivity (≈38.5 mW m-1 K-1) and excellent thermal insulation ability in the wide temperature range (-196 to 400 °C). Besides, the aramid molecular structure, as well as Ca2⁺ cross-linking, endowed the ANAF with high thermal stability and flame retardancy. Consequently, the robust ANAF with a fast-air-drying method is promising for thermal protection in extreme environments, such as in spacesuits.
Collapse
Affiliation(s)
- Yajie Cheng
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, China
| | - Hongli Cheng
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, China
| | - Jin Gao
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, China
| | - Yajun Xue
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, China
| | - Gaojie Han
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, China
| | - Bing Zhou
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, China
| | - Chuntai Liu
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, China
| | - Yuezhan Feng
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, China
| | - Changyu Shen
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, China
| |
Collapse
|
4
|
Wang C, Qiao L, Xie J, Shi X, Xu B, Xia G, Xie Q, Yang S. Effects of carbon nanotube and alumina doping on the properties of para-aramids: A DFT and molecular dynamics study. J Mol Graph Model 2025; 134:108909. [PMID: 39566401 DOI: 10.1016/j.jmgm.2024.108909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Because of its superior mechanical and electrical insulation qualities, paramamid insulating paper is frequently used in the electrical industry. However, a significant barrier preventing it from taking a more prominent role is its low heat conductivity. This research modifies aramid by doping it with carbon nanotubes and alumina to balance its insulating qualities and increase its thermal conductivity. Materials Studio uses molecular dynamics (MD) computations to examine the thermodynamic parameters of the composite system, such as modulus, glass transition temperature, and thermal conductivity. the system's cohesive energy density, free volume fraction, mean square displacement, and other structural characteristics. The relative dielectric constant is used to calculate the insulating characteristics. The Density Functional Theory (DFT) is then used to calculate the fluctuation of the electrostatic potential with Mulliken charge on the electrical properties. According to the findings, a single doped carbon nanotube significantly raises its mechanical and thermal conductivity while completely destroying its insulation. While single alumina doping increases the insulating properties of the system and yields improved structural parameters and tighter intermolecular bonding, it has minimally positive effects on its thermal conductivity. When mixed doping is used, the system's thermodynamics will be significantly enhanced without compromising its insulating qualities.
Collapse
Affiliation(s)
- Chunxin Wang
- Department of Electrical Engineering, North China Electric Power University, Baoding, 071003, China
| | - Longyin Qiao
- Department of Electrical Engineering, North China Electric Power University, Baoding, 071003, China
| | - Jun Xie
- Department of Electrical Engineering, North China Electric Power University, Baoding, 071003, China
| | - Xiaoyu Shi
- Department of Electrical Engineering, North China Electric Power University, Baoding, 071003, China
| | - Bobin Xu
- Department of Electrical Engineering, North China Electric Power University, Baoding, 071003, China
| | - Guowei Xia
- Department of Electrical Engineering, North China Electric Power University, Baoding, 071003, China
| | - Qing Xie
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (North China Electric Power University), Changping District, Beijing, 102206, China
| | - Shifang Yang
- Department of Electrical Engineering, North China Electric Power University, Baoding, 071003, China.
| |
Collapse
|
5
|
Lee J, Lee H, Kwak G. Aramid-Reinforced UV Curable Adhesive Resins for Use As an Interlayer in Laminated Glass. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404907. [PMID: 39051519 DOI: 10.1002/smll.202404907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/09/2024] [Indexed: 07/27/2024]
Abstract
Colorless, transparent, and mechanically robust aramid polymers are synthesized from two diamine monomers with strong electron-withdrawing groups, using low-temperature solution condensation with diacid chloride. The aramids dissolved very well in the liquid acrylamide monomers. When N,N-dimethylacrylamide (DMA) is used as a reactive diluent, films with the desired features are produced from the hybrid aramid-DMA resins via ultraviolet (UV) curing. The hybrid films are colorless and transparent in the visible region and showed an increase in the glass transition temperature, tensile strength, and elastic modulus in proportion to the aramid content. Laminated glass is manufactured using the hybrid resin as an interlayer, which exhibits very strong adhesion between the two sheets of glass, is not easily broken by an external impact, and do not scatter fragments. Moreover, the laminated glass do not distort images and functioned very effectively in UV blocking, soundproofing, and suppressing changes in the ambient temperature. Heat treatment further improves the light transmittance and impact resistance of the laminated glass. Laminated glass specimens with various fluorescence colors are also manufactured. Aramid-reinforced films prepared using N,N-diethylacrylamide as a reactive diluent underwent thermally induced phase separation in a wet state, providing smart glass with a privacy protection function.
Collapse
Affiliation(s)
- Jineun Lee
- Department of Polymer Science & Engineering, Polymeric Nanomaterials Laboratory, Kyungpook National University, 1370 Sankyuk-Dong, Buk-Ku, Daegu, 702-701, Republic of Korea
| | - Hanna Lee
- Department of Polymer Science & Engineering, Polymeric Nanomaterials Laboratory, Kyungpook National University, 1370 Sankyuk-Dong, Buk-Ku, Daegu, 702-701, Republic of Korea
| | - Giseop Kwak
- Department of Polymer Science & Engineering, Polymeric Nanomaterials Laboratory, Kyungpook National University, 1370 Sankyuk-Dong, Buk-Ku, Daegu, 702-701, Republic of Korea
| |
Collapse
|
6
|
Kuang Q, Feng S, Yang M. Biomimetic Aramid Nanofiber/β-FeOOH Composite Coating for Polypropylene Separators in Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39358833 DOI: 10.1021/acsami.4c10381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Aramid nanofibers (ANFs), with attractive mechanical and thermal properties, have attracted much attention as key building units for the design of high-performance composite materials. Although great progress has been made, the potential of ANFs as fibrous protein mimetics for controlling the growth of inorganic materials has not been fully revealed, which is critical for avoiding phase separation associated with typical solution blending. In this work, we show that ANFs could template the oriented growth of β-FeOOH nanowhiskers, which enables the synthesis of ANFs/β-FeOOH hybrids as composite coatings for polypropylene (PP) separators in Li-S batteries. The modified PP separator exhibits enhanced mechanical properties, heightened thermal performance, optimized electrolyte wettability, and improved ion conductivity, leading to superior electrochemical properties, including high initial specific capacity, better rate capability, and long cycling stability, which are superior to those of the commercial PP separators. Importantly, the addition of β-FeOOH to ANFs could further contribute to the suppression of lithium polysulfide shuttling by chemical immobilization, inhibition of the growth of lithium dendrites because of the intrinsic high modulus and hardness, and promotion of reaction dynamics due to the catalytic effect. We believe that our work may provide a potent biomimetic pathway for the development of advanced battery separators based on ANFs.
Collapse
Affiliation(s)
- Qingxia Kuang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Ming Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
7
|
Liu Z, Wang Y, He H, Zhang C, Pan N, Wang L. Interfacial Dehydration Strategy for Chitosan Film Shape Morphing and Its Application. NANO LETTERS 2024; 24:6665-6672. [PMID: 38767991 DOI: 10.1021/acs.nanolett.4c01324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Shape morphing of biopolymer materials, such as chitosan (CS) films, has great potential for applications in many fields. Traditionally, their responsive behavior has been induced by the differential water swelling through the preparation of multicomponent composites or cross-linking as deformation is not controllable in the absence of these processes. Here, we report an interfacial dehydration strategy to trigger the shape morphing of the monocomponent CS film without cross-linking. The release of water molecules is achieved by spraying the surface with a NaOH solution or organic solvents, which results in the interfacial shrinkage and deformation of the entire film. On the basis of this strategy, a range of CS actuators were developed, such as soft grippers, joint actuators, and a light switch. Combined with the geometry effect, edited deformation was also achieved from the planar CS film. This shape-morphing strategy is expected to enable the application of more biopolymers in a wide range of fields.
Collapse
Affiliation(s)
- Zhongqi Liu
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Yuanyu Wang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Hailong He
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Chenyuan Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Na Pan
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Lei Wang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
| |
Collapse
|
8
|
Lee M, Kwak H, Eom Y, Park SA, Sakai T, Jeon H, Koo JM, Kim D, Cha C, Hwang SY, Park J, Oh DX. Network of cyano-p-aramid nanofibres creates ultrastiff and water-rich hydrospongels. NATURE MATERIALS 2024; 23:414-423. [PMID: 38182810 DOI: 10.1038/s41563-023-01760-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/14/2023] [Indexed: 01/07/2024]
Abstract
The structure-property paradox of biological tissues, in which water-rich porous structures efficiently transfer mass while remaining highly mechanically stiff, remains unsolved. Although hydrogel/sponge hybridization is the key to understanding this phenomenon, material incompatibility makes this a challenging task. Here we describe hydrogel/sponge hybrids (hydrospongels) that behave as both ultrastiff water-rich gels and reversibly squeezable sponges. The self-organizing network of cyano-p-aramid nanofibres holds approximately 5,000 times more water than its solid content. Hydrospongels, even at a water concentration exceeding 90 wt%, are hard as cartilage with an elastic modulus of 50-80 MPa, and are 10-1,000 times stiffer than typical hydrogels. They endure a compressive strain above 85% through poroelastic relaxation and hydrothermal pressure at 120 °C. This performance is produced by amphiphilic surfaces, high rigidity and an interfibrillar, interaction-driven percolating network of nanofibres. These features can inspire the development of future biofunctional materials.
Collapse
Affiliation(s)
- Minkyung Lee
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - Hojung Kwak
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - Youngho Eom
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
- Department of Polymer Engineering, Pukyong National University, Busan, Republic of Korea
| | - Seul-A Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - Takamasa Sakai
- Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Hyeonyeol Jeon
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - Jun Mo Koo
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, Republic of Korea
| | - Dowan Kim
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - Chaenyung Cha
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Sung Yeon Hwang
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea.
- Department of Plant & Environmental New Resources and Graduate School of Biotechnology, Kyung Hee University, Gyeonggi-Do, Republic of Korea.
| | - Jeyoung Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea.
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea.
| | - Dongyeop X Oh
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea.
- Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon, Republic of Korea.
| |
Collapse
|
9
|
Lu X, Xie P, Li X, Li T, Sun J. Acid-Cleavable Aromatic Polymers for the Fabrication of Closed-Loop Recyclable Plastics with High Mechanical Strength and Excellent Chemical Resistance. Angew Chem Int Ed Engl 2024; 63:e202316453. [PMID: 38130147 DOI: 10.1002/anie.202316453] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
Although closed-loop recycling of dynamic covalent bond-based plastics does not require catalysts, their mechanical strength and chemical stability remain a major concern. In this study, closed-loop recyclable poly(aryl imine) (PAI) plastics with high mechanical strength and excellent chemical resistance are fabricated by copolymerizing aromatic amines and aromatic aldehydes through dynamic imine bonds. The resulting PAI plastic with a tensile strength of 58.2 MPa exhibits excellent chemical resistance and mechanical stability in acidic and basic aqueous solutions and various organic solvents. The PAI plastics can be depolymerized in a mixed solvent of tetrahydrofuran (THF)/HCl aqueous solution through the dissociation of imine bonds, and the monomers can be facilely recovered with high purity and isolated yields due to the solubility difference between the aromatic amines and aromatic aldehydes in selective solvents. The efficient closed-loop recycling of the PAI plastic can also be realized through monomer conversion because the hydrolysis of the aromatic aldehydes generates aromatic amines. The recovered monomers can be used to re-fabricate original PAI plastics. This PAI plastic can be selectively recovered from complicated mixed polymer waste streams due to the mild depolymerization conditions of the PAI plastic and its high stability in most organic solvents.
Collapse
Affiliation(s)
- Xingyuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Peng Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Tianqi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
10
|
Li L, Yang G, Lyu J, Sheng Z, Ma F, Zhang X. Folk arts-inspired twice-coagulated configuration-editable tough aerogels enabled by transformable gel precursors. Nat Commun 2023; 14:8450. [PMID: 38114508 PMCID: PMC10730912 DOI: 10.1038/s41467-023-44156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
Aerogels, as famous lightweight and porous nanomaterials, have attracted considerable attention in various emerging fields in recent decades, however, both low density and weak mechanical performance make their configuration-editing capability challenging. Inspired by folk arts, herein we establish a highly efficient twice-coagulated (TC) strategy to fabricate configuration-editable tough aerogels enabled by transformable gel precursors. As a proof of concept, aramid nanofibers (ANFs) and polyvinyl alcohol (PVA) are selected as the main components of aerogel, among which PVA forms a flexible configuration-editing gel network in the first coagulation process, and ANF forms a configuration-locking gel network in the second coagulation process. TC strategy guarantees the resulting aerogels with both high toughness and feasible configuration editing capability individually or simultaneously. Altogether, the resulting tough aerogels with special configuration through soft to hard modulation provide great opportunities to break through the performance limits of the aerogels and expand application areas of aerogels.
Collapse
Affiliation(s)
- Lishan Li
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, PR China
| | - Guandu Yang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, PR China
- Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, PR China
| | - Jing Lyu
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, PR China
| | - Zhizhi Sheng
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, PR China
| | - Fengguo Ma
- Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, PR China
| | - Xuetong Zhang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, PR China.
- Division of Surgery & Interventional Science, University College London, London, UK.
| |
Collapse
|
11
|
Chen Y, Hao J, Xu J, Hu Z, Bao H, Xu H. Pickering Emulsion Templated 3D Cylindrical Open Porous Aerogel for Highly Efficient Solar Steam Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303908. [PMID: 37507818 DOI: 10.1002/smll.202303908] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Porous-structured evaporators have been fabricated for achieving a high clean water throughput due to their maximized surface area. However, most of the evaporation surfaces in the porous structure are not active because of the trapped vapor in pores. Herein, a three-dimensional (3D) cylindrical aerogel-based photothermal evaporator with a disordered interconnected hierarchical porous structure is developed via a Pickering emulsion-involved polymerization method. The obtained cotton cellulose/aramid nanofibers/polypyrrole (CAP) aerogel-based evaporator achieved all-cold evaporation under 1.0 sun irradiation, which not only completely eliminated energy loss via radiation, convection, and conduction, but also harvested massive extra energy from the surrounding environment and bulk water, thus significantly increasing the total energy input for vapor generation to deliver an extremely high evaporation rate of 5.368 kg m-2 h-1 . In addition, with the external convective flow, solar steam generation over the evaporator can be dramatically enhanced due to fast vapor diffusion out of its unique opened porous structure, realizing an ultrahigh evaporation rate of 18.539 kg m-2 h-1 under 1.0 sun and 4.0 m s-1 . Moreover, this evaporator can continuously operate with concentrated salt solution (20 wt.% NaCl). This work advances rational design and construction of solar evaporator to promote the application of solar evaporation technology in freshwater production.
Collapse
Affiliation(s)
- Yiquan Chen
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, Key Laboratory for New Textile Materials and Applications of Hubei Province, School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Jiajia Hao
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, Key Laboratory for New Textile Materials and Applications of Hubei Province, School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Jie Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, Key Laboratory for New Textile Materials and Applications of Hubei Province, School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Zhengsong Hu
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, Key Laboratory for New Textile Materials and Applications of Hubei Province, School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Haifeng Bao
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, Key Laboratory for New Textile Materials and Applications of Hubei Province, School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Haolan Xu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, SA, 5095, Australia
| |
Collapse
|
12
|
Ghica ME, Mandinga JGS, Linhares T, Almeida CMR, Durães L. Improvement of the Mechanical Properties of Silica Aerogels for Thermal Insulation Applications through a Combination of Aramid Nanofibres and Microfibres. Gels 2023; 9:535. [PMID: 37504414 PMCID: PMC10378766 DOI: 10.3390/gels9070535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Reinforcement of silica aerogels, remarkable lightweight mesoporous materials with outstanding insulation performance, is still a challenging research topic. Among the strategies used to overcome their brittleness, one of the most effective is the manufacturing of aerogel composites with embedded fibres. In this work, the incorporation of nanofibres together with microfibres in a tetraethoxysilane-vinyltrimethoxysilane matrix is investigated for the first time for the development of novel aerogel nanocomposites. The nanofibres, synthesized from different aramid fibres, including Kevlar® pulp, Technora®, Teijinconex® and Twaron® fibres, were used in different combinations with microaramids and the resulting nanocomposites were thoroughly investigated for their physicochemical and thermomechanical features. The properties depended on the type and amount of the nano/microfibre used. While the microfibres exhibited low interaction with the silica matrix, the higher surface of the nanofibres ensured increased contact with the gel matrix. A low bulk density of 161 kg m-3 and thermal conductivity of 38.3 mW m-1 K-1 (Hot Disk®) was achieved when combining the nanofibres obtained from Kevlar® pulp with the Technora® or Teijinconex® long fibres. The nanofibres showed higher dispersion and random orientation and in combination with microfibres led to the improvement by a factor of three regarding the mechanical properties of the aerogel nanocomposites reinforced only with microfibres. The scale-up process of the samples and simulated tests of thermal cycling and vacuum outgassing successfully conducted indicate good compliance with space applications.
Collapse
Affiliation(s)
- Mariana Emilia Ghica
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| | - Jandira G S Mandinga
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| | - Teresa Linhares
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| | - Cláudio M R Almeida
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| | - Luisa Durães
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| |
Collapse
|
13
|
Miao Z, Xie C, Wu Z, Zhao Y, Zhou Z, Wu S, Su H, Li L, Tuo X, Huang R. Self-Stacked 3D Anisotropic BNNS Network Guided by Para-Aramid Nanofibers for Highly Thermal Conductive Dielectric Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24880-24891. [PMID: 37184365 DOI: 10.1021/acsami.3c02605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The enhancement of the heat-dissipation property of polymer-based composites is of great practical interest in modern electronics. Recently, the construction of a three-dimensional (3D) thermal pathway network structure for composites has become an attractive way. However, for most reported high thermal conductive composites, excellent properties are achieved at a high filler loading and the building of a 3D network structure usually requires complex steps, which greatly restrict the large-scale preparation and application of high thermal conductive polymer-based materials. Herein, utilizing the framework-forming characteristic of polymerization-induced para-aramid nanofibers (PANF) and the high thermal conductivity of hexagonal boron nitride nanosheets (BNNS), a 3D-laminated PANF-supported BNNS aerogel was successfully prepared via a simple vacuum-assisted self-stacking method, which could be used as a thermal conductive skeleton for epoxy resin (EP). The obtained PANF-BNNS/EP nanocomposite exhibits a high thermal conductivity of 3.66 W m-1 K-1 at only 13.2 vol % BNNS loading. The effectiveness of the heat conduction path was proved by finite element analysis. The PANF-BNNS/EP nanocomposite shows outstanding practical thermal management capability, excellent thermal stability, low dielectric constant, and dielectric loss, making it a reliable material for electronic packaging applications. This work also offers a potential and promotable strategy for the easy manufacture of 3D anisotropic high-efficiency thermal conductive network structures.
Collapse
Affiliation(s)
- Zhicong Miao
- State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chunjie Xie
- Key Laboratory of Advanced Materials (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Zhixiong Wu
- State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Beijing 100190, P. R. China
| | - Yalin Zhao
- State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhengrong Zhou
- State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shanshan Wu
- State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haojian Su
- State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Laifeng Li
- State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinlin Tuo
- Key Laboratory of Advanced Materials (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Rongjin Huang
- State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
14
|
Wang Y, Wang S, He X, Li Y, Xu T, Xu L, Yang B, Fan X, Zhao W, Zhao C. A breakthrough trial of an artificial liver without systemic heparinization in hyperbilirubinemia beagle models. Bioact Mater 2023; 20:651-662. [PMID: 35846839 PMCID: PMC9263408 DOI: 10.1016/j.bioactmat.2022.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/05/2022] Open
Abstract
The development of wearable artificial livers was restricted to device miniaturization and bleeding risk with water-soluble anticoagulants. Herein, a double-deck column filled with solid anticoagulant microspheres and Kevlar porous microspheres (KPMs, bilirubin adsorbents) was connected with the principle machine of wearable artificial liver (approximately 9 kg) to treat hyperbilirubinemia beagles for the first time. With the initial normal dose of heparin, the double-deck column could afford 3 h hemoperfusion in whole blood without thrombus formation. The removal efficiency of the double-deck column for total bilirubin (TBIL) was 31.4%. Interestingly, the excessive amounts of hepatocyte metabolites were also decreased by approximately 25%. The "anticoagulant + column" realized safe and effective whole blood hemoperfusion without the plasma separation system and heparin pump; however, the proposed principle machine of wearable artificial liver and "anticoagulant + column" cannot completely replace the bio-liver now. The intelligence of the device and the versatility of the adsorbent need to be improved; moreover, advanced experimental techniques need to be developed to validate the survival rates in animals. Overall, this study is a meaningful trial for the development of wearable artificial livers in the future.
Collapse
Affiliation(s)
- Yilin Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Shanshan Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Xueqin He
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yupei Li
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Lin Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Bo Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Xinnian Fan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
15
|
Hu P, Wang J, Zhang P, Wu F, Cheng Y, Wang J, Sun Z. Hyperelastic Kevlar Nanofiber Aerogels as Robust Thermal Switches for Smart Thermal Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207638. [PMID: 36271721 DOI: 10.1002/adma.202207638] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Aerogels, the lightest artificial solid materials characterized by low density and thermal conductivity, high porosity, and large specific surface area, have attracted increasing interest. Aerogels exhibit single-mode thermal insulation properties regardless of the surrounding temperature. In this study, hyperelastic Kevlar nanofiber aerogels (HEKAs) are designed and fabricated by a slow-proton-release-modulating gelation and thermoinduced crosslinking strategy. The method does not use crosslinking agents and endows the ultralow-density (4.7 mg cm-3 ) HEKAs with low thermal conductivity (0.029 W m-1 K-1 ), high porosity (99.75%), high thermal stability (550 °C), and increased compression resilience (80%) and fatigue resistance. Proofs of the concept of the HEKAs acting as on-off thermal switches are demonstrated through experiments and simulations. The thermal switches exhibit a rapid thermal response speed of 0.73 °C s-1 , high heat flux of 2044 J m-2 s-1 , and switching ratio of 7.5. Heat dissipation can be reversibly switched on/off more than fifty times owing to the hyperelasticity and fatigue resistance of the HEKAs. This study suggests a route to fulfill the hyperelasticity of highly porous aerogels and to tailor heat flux on-demand.
Collapse
Affiliation(s)
- Peiying Hu
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Jing Wang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Peigen Zhang
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Fushuo Wu
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yingying Cheng
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Jin Wang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - ZhengMing Sun
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
16
|
Zhou J, Liu X, He X, Wang H, Ma D, Lu X. Bio-Inspired Aramid Fibers@silica Binary Synergistic Aerogels with High Thermal Insulation and Fire-Retardant Performance. Polymers (Basel) 2022; 15:polym15010141. [PMID: 36616490 PMCID: PMC9824314 DOI: 10.3390/polym15010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Flame-retardant, thermal insulation, mechanically robust, and comprehensive protection against extreme environmental threats aerogels are highly desirable for protective equipment. Herein, inspired by the core (organic)-shell (inorganic) structure of lobster antenna, fire-retardant and mechanically robust aramid fibers@silica nanocomposite aerogels with core-shell structures are fabricated via the sol-gel-film transformation and chemical vapor deposition process. The thickness of silica coating can be well-defined and controlled by the CVD time. Aramid fibers@silica nanocomposite aerogels show high heat resistance (530 °C), low thermal conductivity of 0.030 W·m-1·K-1, high tensile strength of 7.5 MPa and good flexibility. More importantly, aramid fibers@silica aerogels have high flame retardancy with limiting oxygen index 36.5. In addition, this material fabricated by the simple preparation process is believed to have potential application value in the field of aerospace or high-temperature thermal protection.
Collapse
Affiliation(s)
- Jinman Zhou
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Xianyuan Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Xiaojiang He
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Haoxin Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Dongli Ma
- Beijing Huateng Rubber Plastic & Latex Products Co., Ltd., Beijing 101100, China
| | - Xianyong Lu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
- Correspondence:
| |
Collapse
|
17
|
Zhang H, Du X, Liu J, Bai Y, Nie J, Tan J, He Z, Zhang M, Li J, Ni Y. oA Novel and Effective Approach to Enhance the Interfacial Interactions of meta-Aramid Fibers. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Liu X, Feng T, Ding W, Zeng W, Wang N, Yang F, Yang C, Yang S, Kong Y, Lei Z. Synthesis of tamarind seed gum‐based
semi‐IPN
hydrogels with integration of fertilizer retention and anti‐evaporation. J Appl Polym Sci 2022. [DOI: 10.1002/app.53325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaomei Liu
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou China
| | - Tao Feng
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou China
| | - Wenbin Ding
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou China
| | - Wei Zeng
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou China
| | - Na Wang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou China
| | - Fenghong Yang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou China
| | - Cailing Yang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou China
| | - Shenghua Yang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou China
| | - Yanrong Kong
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou China
| | - Ziqiang Lei
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou China
| |
Collapse
|
19
|
Gao Y, Wu S, Li C, Xiao Y, Liu J, Zhang B. Hydrogen-Bond- and Shear-Field-Induced Self-Assembly for the Efficient Preparation of Polybenzoxazole Nanofibers with Excellent Mechanical Properties and Heat Resistance. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yufu Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Shaohua Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing100190, P. R. China
| | - Chuncheng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing100190, P. R. China
| | - Yaonan Xiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing100190, P. R. China
| | - Jiajian Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing100190, P. R. China
| | - Bo Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing100190, P. R. China
| |
Collapse
|
20
|
Yang S, Xie C, Qiu T, Tuo X. The Aramid-Coating-on-Aramid Strategy toward Strong, Tough, and Foldable Polymer Aerogel Films. ACS NANO 2022; 16:14334-14343. [PMID: 35994616 DOI: 10.1021/acsnano.2c04572] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aerogel has been much highlighted as an emerging lightweight thermal insulation material, but problems such as fragility, low strength, liquid permeability, and lack of flexibility greatly limit further applications. In this work, a facile aramid-coating-on-aramid (ACoA) method is demonstrated to fabricate all-aramid aerogel composite films for thermal insulation. The method started from the bottom-up synthesis of polymerization-induced para-aramid nanofibers (PANF), which were easily transformed into aerogel films through the vacuum-assisted filtration followed by the freeze-drying techniques. Then, the heterocyclic aramid (HA) solution prepared through the low-temperature-solution polycondensation was used as the coating to be applied onto the PANF aerogel films, and composite films of HA/PANF aerogel were simply achieved with HA contributed to the dense and continuous surface layer. The bulk HA film is of superior mechanical and thermal properties to those of the PANF film. Moreover, reliable interfacial interlocking structures were developed beneath the outermost surface via the interpenetration of the infiltrated HA with PANF network. The comprehensive result was the 15 times enhanced tensile strength, 33 times enhanced fracture toughness, the high thermal decomposition temperature, and the additional flexibility for the foldable films of HA/PANF aerogel. The sealing of the surface macropores greatly suppressed the surface chalking and high water absorption. However, the survival of the tiny pores inside the composite maintained the low enough level of the thermal conductivity to provide effective protections against high temperature not only in air but also under wet or even liquid conditions, suggesting the broader applications for thermal insulation.
Collapse
Affiliation(s)
- Shixuan Yang
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, No. 30, Shuangqing Road, Haidian District, Beijing 100084, P. R. China
| | - Chunjie Xie
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, No. 30, Shuangqing Road, Haidian District, Beijing 100084, P. R. China
| | - Teng Qiu
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, No. 15, North Third Ring Road, Chaoyang District, Beijing 100029, P. R. China
| | - Xinlin Tuo
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, No. 30, Shuangqing Road, Haidian District, Beijing 100084, P. R. China
| |
Collapse
|
21
|
Jiang Y, Wang J, Zhang H, Chen G, Zhao Y. Bio-inspired natural platelet hydrogels for wound healing. Sci Bull (Beijing) 2022; 67:1776-1784. [PMID: 36546063 DOI: 10.1016/j.scib.2022.07.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 01/07/2023]
Abstract
Wound healing has invariably been a fundamental health concern, demanding manpower and materials and causing financial burdens. In this research, inspired by the hemostatic function of platelets, we proposed a novel bionic hydrogel by covalent amidation crosslinking natural platelet and alginate for wound healing. With the natural functional groups, the platelet-derived hydrogel exhibited outstanding biocompatibility and blood compatibility. By changing the addition ratio of platelets to alginates, the mechanical properties of the achieved hydrogel were variable to cater to different wound environments. Furthermore, silver nanoparticles could be loaded into the void space of the hydrogel which endowed the composites with superior anti-infective properties. We have demonstrated that the bio-inspired platelet hydrogel could promote hemostasis of acute tissue damage, prevent bacterial proliferation, and promote angiogenesis, collagen deposition, and granulation tissue formation in wound healing. These features signify the potential values of the bio-inspired platelet hydrogel in clinical applications.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Jie Wang
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China
| | - Hui Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Guopu Chen
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210096, China; Children's Hospital of Nanjing Medical University, Nanjing 210008, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
22
|
Song M, Choi K, Choi I, Han SK, Ryu YH, Oh DH, Ahn GY, Choi SW. In-situ Spontaneous Fabrication of Tough and Stretchable Polyurethane-Polyethyleneimine Hydrogels Selectively Triggered by CO 2. Macromol Rapid Commun 2022; 43:e2200423. [PMID: 36056922 DOI: 10.1002/marc.202200423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/29/2022] [Indexed: 11/05/2022]
Abstract
We develop CO2 -triggered in-situ hydrogels from waterborne poly(ε-caprolactone)-based polyurethane (PU) dispersion and aqueous polyethyleneimine (PEI) solution without any other chemicals and apparatus (e.g., UV light). In our approach, non-toxic CO2 in air is used as a selective trigger for the hydrogel formation. CO2 adsorption onto PEI results in the formation of ammonium cations in PEI and the subsequent multiple ionic crosslinking between PU and PEI chains. Besides the amount of CO2 in air, the rate of hydrogel formation can be controlled by NaHCO3 in the PU-PEI mixture, which serves as a CO2 supplier. The PU hydrogels exhibit tough and stretchable properties with high tensile strength (2.05 MPa) and elongation at break (438.24%), as well as biocompatibility and biodegradability. In addition, the PU hydrogels exhibit high adhesion strength on skin and injectability due to the in-situ formation. We believe that these PU hydrogels have the ideal features for various future applications, such as tissue adhesion barriers, wound dressing, artificial skin, and injectable fillers. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Minju Song
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.,Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Kangho Choi
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.,Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Inseong Choi
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.,Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Soo-Kyung Han
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.,Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Young-Hyun Ryu
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.,Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Do-Hyun Oh
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.,Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Guk-Young Ahn
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.,Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Sung-Wook Choi
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.,Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| |
Collapse
|
23
|
Ferrous-Oxalate-Modified Aramid Nanofibers Heterogeneous Fenton Catalyst for Methylene Blue Degradation. Polymers (Basel) 2022; 14:polym14173491. [PMID: 36080566 PMCID: PMC9460404 DOI: 10.3390/polym14173491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
The heterogeneous Fenton system has drawn great attention in recent years due to its effective degradation of polluted water capability without limitation of the pH range and avoiding excess ferric hydroxide sludge. Therefore, simple chemical precipitation and vacuum filtration method for manufacturing the heterogeneous Fenton aramid nanofibers (ANFs)/ferrous oxalate (FeC2O4) composite membrane catalysts with excellent degradation of methylene blue (MB) is reported in the study. The morphology and structure of materials synthesized were characterized by scanning electron microscope (SEM), X-ray energy spectrum analysis (EDS), infrared spectrometer (FTIR), and X-ray diffraction (XRD) equipment. The 10 ppm MB degradation efficiency of composite catalyst and ferrous oxalate (FeC2O4) within 15 min were 94.5% and 91.6%, respectively. The content of methylene blue was measured by a UV-Vis spectrophotometer. Moreover, the dye degradation efficiency still could achieve 92% after five cycles, indicating the composite catalyst with excellent chemical stability and reusability. Simultaneously, the composite catalyst membrane can degrade not only MB but also rhodamine B (RB), orange II (O II), and methyl orange (MO). This study represents a new avenue for the fabrication of heterogeneous Fenton catalysts and will contribute to dye wastewater purification, especially in the degradation of methylene blue.
Collapse
|
24
|
Zhao Y, Cui J, Qiu X, Yan Y, Zhang Z, Fang K, Yang Y, Zhang X, Huang J. Manufacturing and post-engineering strategies of hydrogel actuators and sensors: From materials to interfaces. Adv Colloid Interface Sci 2022; 308:102749. [PMID: 36007285 DOI: 10.1016/j.cis.2022.102749] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022]
Abstract
Living bodies are made of numerous bio-sensors and actuators for perceiving external stimuli and making movement. Hydrogels have been considered as ideal candidates for manufacturing bio-sensors and actuators because of their excellent biocompatibility, similar mechanical and electrical properties to that of living organs. The key point of manufacturing hydrogel sensors/actuators is that the materials should not only possess excellent mechanical and electrical properties but also form effective interfacial connections with various substrates. Traditional hydrogel normally shows high electrical resistance (~ MΩ•cm) with limited mechanical strength (<1 MPa), and it is prone to fatigue fracture during continuous loading-unloading cycles. Just like iron should be toughened and hardened into steel, manufacturing and post-treatment processes are necessary for modifying hydrogels. Besides, advanced design and manufacturing strategies can build effective interfaces between sensors/actuators and other substrates, thus enhancing the desired mechanical and electrical performances. Although various literatures have reviewed the manufacture or modification of hydrogels, the summary regarding the post-treatment strategies and the creation of effective electrical and mechanically sustainable interfaces are still lacking. This paper aims at providing an overview of the following topics: (i) the manufacturing and post-engineering treatment of hydrogel sensors and actuators; (ii) the processes of creating sensor(actuator)-substrate interfaces; (iii) the development and innovation of hydrogel manufacturing and interface creation. In the first section, the manufacturing processes and the principles for post-engineering treatments are discussed, and some typical examples are also presented. In the second section, the studies of interfaces between hydrogels and various substrates are reviewed. Lastly, we summarize the current manufacturing processes of hydrogels, and provide potential perspectives for hydrogel manufacturing and post-treatment methods.
Collapse
Affiliation(s)
- Yiming Zhao
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Jiuyu Cui
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Xiaoyong Qiu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yonggan Yan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Zekai Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Kezhong Fang
- Lunan Pharmaceutical Group Co., LTD, Linyi 276005, China
| | - Yu Yang
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Linyi 276005, China
| | - Xiaolai Zhang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jun Huang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China.
| |
Collapse
|
25
|
Afzal J, Fu Y, Luan TX, Zhang D, Li Y, Li H, Cheng K, Su Z, Li PZ. Facile construction of a highly proton-conductive matrix-mixed membrane based on a -SO 3H functionalized polyamide. SOFT MATTER 2022; 18:5518-5523. [PMID: 35848897 DOI: 10.1039/d2sm00451h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing a facile strategy to construct low-cost and efficient proton-conductive electrolytes is pivotal in the practical application of proton exchange membrane (PEM) fuel cells. Herein, a polyamide with in-built -SO3H moieties, PA(PhSO3H)2, was synthesized via a simple one-pot polymeric acylation process. Investigations via electrochemical impedance spectroscopy (EIS) measurements revealed that the fabricated PA(PhSO3H)2 displays a proton conductivity of up to 5.54 × 10-2 S cm-1 at 353 K under 98% relative humidity (RH), which is more than 2 orders of magnitude higher than that of its -SO3H-free analogue PA(Ph)2 (2.38 × 10-4 S cm-1) under the same conditions. Therefore, after mixing with polyacrylonitrile (PAN) at different ratios, PA(PhSO3H)2-based matrix-mixed membranes were subsequently made and the analysis results revealed that the proton conductivity can reach up to 5.82 × 10-2 S cm-1 at 353 K and 98% RH when the weight ratio of PA(PhSO3H)2 : PAN is in 3 : 1 (labeled as PA(PhSO3H)2-PAN(3 : 1)), the value of which is comparable even to those of commercially available electrolytes that are used in PEM fuel cells. In addition, continuous testing shows that PA(PhSO3H)2-PAN(3 : 1) possesses long-life reusability. This work demonstrates that, utilizing the simple reaction of polymeric acylation with a sulfonated module as a precursor, highly effective proton-conductive membranes for PEM fuel cells can be achieved in a facile manner.
Collapse
Affiliation(s)
- Jamal Afzal
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China.
| | - Yaomei Fu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, Shandong Province, People's Republic of China
| | - Tian-Xiang Luan
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China.
| | - Deshan Zhang
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China.
| | - Yangyang Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China.
| | - Hailian Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China.
| | - Ke Cheng
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China.
| | - Zhongmin Su
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, Shandong Province, People's Republic of China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin Province, People's Republic of China
| | - Pei-Zhou Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China.
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, Shandong Province, People's Republic of China
| |
Collapse
|
26
|
Xie C, Yang S, He R, Liu J, Chen Y, Guo Y, Guo Z, Qiu T, Tuo X. Recent Advances in Self-Assembly and Application of Para-Aramids. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144413. [PMID: 35889286 PMCID: PMC9325195 DOI: 10.3390/molecules27144413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022]
Abstract
Poly(p-phenylene terephthalamide) (PPTA) is one kind of lyotropic liquid crystal polymer. Kevlar fibers performed from PPTA are widely used in many fields due to their superior mechanical properties resulting from their highly oriented macromolecular structure. However, the “infusible and insoluble” characteristic of PPTA gives rise to its poor processability, which limits its scope of application. The strong interactions and orientation characteristic of aromatic amide segments make PPTA attractive in the field of self-assembly. Chemical derivation has proved an effective way to modify the molecular structure of PPTA to improve its solubility and amphiphilicity, which resulted in different liquid crystal behaviors or supramolecular aggregates, but the modification of PPTA is usually complex and difficult. Alternatively, higher-order all-PPTA structures have also been realized through the controllable hierarchical self-assembly of PPTA from the polymerization process to the formation of macroscopic products. This review briefly summarizes the self-assembly methods of PPTA-based materials in recent years, and focuses on the polymerization-induced PPTA nanofibers which can be further fabricated into different macroscopic architectures when other self-assembly methods are combined. This monomer-started hierarchical self-assembly strategy evokes the feasible processing of PPTA, and enriches the diversity of product, which is expected to be expanded to other liquid crystal polymers.
Collapse
Affiliation(s)
- Chunjie Xie
- Key Laboratory of Advanced Materials (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; (C.X.); (S.Y.); (R.H.); (J.L.); (Y.C.); (Y.G.); (Z.G.)
| | - Shixuan Yang
- Key Laboratory of Advanced Materials (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; (C.X.); (S.Y.); (R.H.); (J.L.); (Y.C.); (Y.G.); (Z.G.)
| | - Ran He
- Key Laboratory of Advanced Materials (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; (C.X.); (S.Y.); (R.H.); (J.L.); (Y.C.); (Y.G.); (Z.G.)
| | - Jianning Liu
- Key Laboratory of Advanced Materials (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; (C.X.); (S.Y.); (R.H.); (J.L.); (Y.C.); (Y.G.); (Z.G.)
| | - Yuexi Chen
- Key Laboratory of Advanced Materials (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; (C.X.); (S.Y.); (R.H.); (J.L.); (Y.C.); (Y.G.); (Z.G.)
| | - Yongyi Guo
- Key Laboratory of Advanced Materials (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; (C.X.); (S.Y.); (R.H.); (J.L.); (Y.C.); (Y.G.); (Z.G.)
| | - Zhaoxia Guo
- Key Laboratory of Advanced Materials (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; (C.X.); (S.Y.); (R.H.); (J.L.); (Y.C.); (Y.G.); (Z.G.)
| | - Teng Qiu
- Key Laboratory of Carbon Fiber and Functional Polymers (Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China;
| | - Xinlin Tuo
- Key Laboratory of Advanced Materials (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; (C.X.); (S.Y.); (R.H.); (J.L.); (Y.C.); (Y.G.); (Z.G.)
- Correspondence:
| |
Collapse
|
27
|
Afzal J, Fu Y, Luan TX, Su Z, Li PZ. Highly Effective Proton-Conduction Matrix-Mixed Membrane Derived from an -SO3H Functionalized Polyamide. Molecules 2022; 27:molecules27134110. [PMID: 35807357 PMCID: PMC9268481 DOI: 10.3390/molecules27134110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/09/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
Developing a low-cost and effective proton-conductive electrolyte to meet the requirements of the large-scale manufacturing of proton exchange membrane (PEM) fuel cells is of great significance in progressing towards the upcoming “hydrogen economy” society. Herein, utilizing the one-pot acylation polymeric combination of acyl chloride and amine precursors, a polyamide with in-built -SO3H moieties (PA-PhSO3H) was facilely synthesized. Characterization shows that it possesses a porous feature and a high stability at the practical operating conditions of PEM fuel cells. Investigations of electrochemical impedance spectroscopy (EIS) measurements revealed that the fabricated PA-PhSO3H displays a proton conductivity of up to 8.85 × 10−2 S·cm−1 at 353 K under 98% relative humidity (RH), which is more than two orders of magnitude higher than that of its -SO3H-free analogue, PA-Ph (6.30 × 10−4 S·cm−1), under the same conditions. Therefore, matrix-mixed membranes were fabricated by mixing with polyacrylonitrile (PAN) in different ratios, and the EIS analyses revealed that its proton conductivity can reach up to 4.90 × 10−2 S·cm−1 at 353 K and a 98% relative humidity (RH) when the weight ratio of PA-PhSO3H:PAN is 3:1 (labeled as PA-PhSO3H-PAN (3:1)), the value of which is even comparable with those of commercial-available electrolytes being used in PEM fuel cells. Additionally, continuous tests showed that PA-PhSO3H-PAN (3:1) possesses a long-life reusability. This work demonstrates, using the simple acylation reaction with the sulfonated module as precursor, that low-cost and highly effective proton-conductive electrolytes for PEM fuel cells can be facilely achieved.
Collapse
Affiliation(s)
- Jamal Afzal
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Jinan 250100, China; (J.A.); (T.-X.L.)
| | - Yaomei Fu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, China; (Y.F.); (Z.S.)
| | - Tian-Xiang Luan
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Jinan 250100, China; (J.A.); (T.-X.L.)
| | - Zhongmin Su
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, China; (Y.F.); (Z.S.)
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Pei-Zhou Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Jinan 250100, China; (J.A.); (T.-X.L.)
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
- Correspondence:
| |
Collapse
|
28
|
Xu Y, Peng G, Li W, Zhu Y, Mai Z, Mamrol N, Liao J, Shen J, Zhao Y. Enhanced organic solvent nanofiltration of aligned Kevlar composite membrane by incorporated with amino-polystyrene nanospheres. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
Hu F, Zeng J, Li J, Wang B, Cheng Z, Wang T, Chen K. Mechanically Strong Electrically Insulated Nanopapers with High UV Resistance Derived from Aramid Nanofibers and Cellulose Nanofibrils. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14640-14653. [PMID: 35290013 DOI: 10.1021/acsami.2c01597] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Aramid nanofibers (ANFs) have great potential for civil and military applications due to their remarkable mechanical modulus, excellent chemical reliability, and superior thermostability. Unfortunately, the weak combination of neighboring ANFs limits the mechanical properties of ANF-based materials owing to their inherent rigidity and chemical inertness. Herein, high-performance nanopapers are fabricated by introducing a tiny amount of cellulose nanofibrils (CNFs) to serve as reinforcing blocks via vacuum filtration. As a result of the formation of nanosized building blocks and hydrogen-bonding interaction of CNFs, the resultant ANF/CNF nanopaper yields a record-high tensile strength (406.43 ± 16.93 MPa) and toughness (86.13 ± 5.22 MJ m-3), which are 1.8 and 4.3 times higher than those of the pure ANF nanopaper, respectively. When normalized by weight, the specific tensile strength of the nanopaper is as high as 307.90 MPa·g-1·cm3, which is even significantly superior to that of titanium alloys (257 MPa·g-1·cm3). The ANF/CNF nanopaper also possesses excellent dielectric strength (53.42 kV mm-1), superior UV-shielding performance (≥99.999% absorption for ultraviolet radiation), and a favorable thermostability (Tonset = 530 °C). This study proposes a new design strategy for developing ultrathin ANF-based nanopapers combined with high reliability and thermostability for application in high-end electrical insulation fields, such as 5G communication, wearable electronics, and artificial intelligence.
Collapse
Affiliation(s)
- Fugang Hu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| | - Jinsong Zeng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| | - Jinpeng Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| | - Bin Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| | - Zheng Cheng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tianguang Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| | - Kefu Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
30
|
Hydrogen-Bonding-Aided Fabrication of Wood Derived Cellulose Scaffold/Aramid Nanofiber into High-Performance Bulk Material. MATERIALS 2021; 14:ma14185444. [PMID: 34576668 PMCID: PMC8469447 DOI: 10.3390/ma14185444] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/25/2022]
Abstract
Preparing a lightweight yet high-strength bio-based structural material with sustainability and recyclability is highly desirable in advanced applications for architecture, new energy vehicles and spacecraft. In this study, we combined cellulose scaffold and aramid nanofiber (ANF) into a high-performance bulk material. Densification of cellulose microfibers containing ANF and hydrogen bonding between cellulose microfibers and ANF played a crucial role in enhanced physical and mechanical properties of the hybrid material. The prepared material showed excellent tensile strength (341.7 MPa vs. 57.0 MPa for natural wood), toughness (4.4 MJ/m3 vs. 0.4 MJ/m3 for natural wood) and Young’s modulus (24.7 GPa vs. 7.2 GPa for natural wood). Furthermore, due to low density, this material exhibited a superior specific strength of 285 MPa·cm3·g−1, which is remarkably higher than some traditional building materials, such as concrete, alloys. In addition, the cellulose scaffold was infiltrated with ANFs, which also improved the thermal stability of the hybrid material. The facile and top-down process is effective and scalable, and also allows one to fully utilize cellulose scaffolds to fabricate all kinds of advanced bio-based materials.
Collapse
|