1
|
Li T, Huang L, Guo C, Ren J, Chen X, Ke Y, Xun Z, Hu W, Qi Y, Wang H, Gong Z, Liang XJ, Xue X. Massage-Mimicking Nanosheets Mechanically Reorganize Inter-organelle Contacts to Restore Mitochondrial Functions in Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413376. [PMID: 40223359 DOI: 10.1002/advs.202413376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/11/2025] [Indexed: 04/15/2025]
Abstract
Parkinson's disease (PD) is exacerbated by dysfunction of inter-organelle contact, which depends on cellular responses to the mechanical microenvironment and can be regulated by external mechanical forces. Delivering dynamic mechanical forces to neural cells proves challenging due to the skull. Inspired by the effects of massage; here PEGylated black phosphorus nanosheets (PEG-BPNS), known for their excellent biocompatibility, biodegradability, specific surface area, mechanical strength, and flexibility, are introduced, which are capable of adhering to neural cell membrane and generating mechanical stimulation with their lateral size of 200 nm, exhibiting therapeutic potential in a 1-methyl-4-phenyl-1,2,3,6-te-trahydropyridine-induced PD mouse model by regulating inter-organelle contacts. Specifically, it is found that 200 nm PEG-BPNS, acting as "NanoMassage," significantly increase plasma membrane tension, as evidenced by fluorescent lipid tension reporter fluorescence lifetime analysis. This mechanical force modulates actin reorganization, subsequently regulating the contacts between actin, mitochondria, and endoplasmic reticulum, further controlling mitochondrial fission and mitigating mitochondrial dysfunction in PD, exhibiting therapeutic efficacy via intranasal administration. These findings provide a noninvasive strategy for applying mechanical stimulation to deep brain areas and elucidate the mechanism of NanoMassage mediating inter-organelle contacts, suggesting the rational design of "NanoMassage" to remodel inter-organelle communications in neurodegenerative disease treatment.
Collapse
Affiliation(s)
- Tianqi Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Liwen Huang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Chenxiao Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Jing Ren
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Xi Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Yachu Ke
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Zengyu Xun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Wenzhuo Hu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Yilin Qi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Heping Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Zhongying Gong
- Department of Neurology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, P. R. China
| | - Xing-Jie Liang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
2
|
Liang J, Yao L, Liu Z, Chen Y, Lin Y, Tian T. Nanoparticles in Subunit Vaccines: Immunological Foundations, Categories, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407649. [PMID: 39501996 DOI: 10.1002/smll.202407649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/12/2024] [Indexed: 01/11/2025]
Abstract
Subunit vaccines, significant in next-generation vaccine development, offer precise targeting of immune responses by focusing on specific antigens. However, this precision often comes at the cost of eliciting strong and durable immunity, posing a great challenge to vaccine design. To address this limitation, recent advancements in nanoparticles (NPs) are utilized to enhance antigen delivery efficiency and boost vaccine efficacy. This review examines how the physicochemical properties of NPs influence various stages of the immune response during vaccine delivery and analyzes how different NP types contribute to immune activation and enhance vaccine performance. It then explores the unique characteristics and immune activation mechanisms of these NPs, along with their recent advancements, and highlights their application in subunit vaccines targeting infectious diseases and cancer. Finally, it discusses the challenges in NP-based vaccine development and proposes future directions for innovation in this promising field.
Collapse
Affiliation(s)
- Jiale Liang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West ChinaHospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lan Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West ChinaHospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West ChinaHospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ye Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West ChinaHospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West ChinaHospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Taoran Tian
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, China
| |
Collapse
|
3
|
Ashok Kumar SS, Bashir S, Pershaanaa M, Kamarulazam F, Kuppusamy AV, Badawi N, Ramesh K, Ramesh S. A review of the role of graphene-based nanomaterials in tackling challenges posed by the COVID-19 pandemic. Microb Pathog 2024; 197:107059. [PMID: 39442812 DOI: 10.1016/j.micpath.2024.107059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/31/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
In 2020, the World Health Organization (WHO) declared a pandemic due to the emergence of the coronavirus disease (COVID-19) which had resulted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). At present, the emergence of many new variants and mutants were found to be more harmful compared to the previous strains. As a result, research scientists around the world had devoted significant efforts to understand the mechanism, causes and transmission due to COVID-19 along with the treatment to cure these diseases. However, despite achieving several findings, much more was unknown and yet to be explored. Hence, along with these developments, it is also extremely essential to design effective systems by incorporating smart materials to battle the COVID-19. Therefore, several approaches have been implemented to combat against COVID-19. Recently, the graphene-based materials have been explored for the current COVID-19 and future pandemics due to its superior physicochemical properties, providing efficient nanoplatforms for optical and electrochemical sensing and diagnostic applications with high sensitivity and selectivity. Moreover, based on the photothermal effects or reactive oxygen species formation, the carbon-based nanomaterials have shown its potentiality for targeted antiviral drug delivery and the inhibitory effects against pathogenic viruses. Therefore, this review article sheds light on the recent progress and the most promising strategies related to graphene and related materials and its applications for detection, decontamination, diagnosis, and protection against COVID-19. In addition, the key challenges and future directives are discussed in detail for fundamental design and development of technologies based on graphene-based materials along with the demand aspects of graphene-based products and lastly, our personal opinions on the appropriate approaches to improve these technologies respectively.
Collapse
Affiliation(s)
- Sachin Sharma Ashok Kumar
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; School of Engineering, Taylor's University, 1 Jalan Taylor's, 47500, Subang Jaya, Selangor, Malaysia.
| | - Shahid Bashir
- Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D, Universiti Malaya, Jalan Pantai Baharu, 59990, Kuala Lumpur, Malaysia
| | - M Pershaanaa
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Fathiah Kamarulazam
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - A V Kuppusamy
- School of Engineering and Computing, Manipal International University, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Nujud Badawi
- University of Hafr Al-Batin College of Science, Hafer Al-Batin, 39921, Saudi Arabia
| | - K Ramesh
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Department of Physical Sciences, Saveetha School of Engineering, Saveetha University (SIMATS), Chennai, India.
| | - S Ramesh
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Department of Physical Sciences, Saveetha School of Engineering, Saveetha University (SIMATS), Chennai, India
| |
Collapse
|
4
|
Deruelle F. Microwave radiofrequencies, 5G, 6G, graphene nanomaterials: Technologies used in neurological warfare. Surg Neurol Int 2024; 15:439. [PMID: 39640342 PMCID: PMC11618680 DOI: 10.25259/sni_731_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/26/2024] [Indexed: 12/07/2024] Open
Abstract
Background Scientific literature, with no conflicts of interest, shows that even below the limits defined by the International Commission on Non-Ionizing Radiation Protection, microwaves from telecommunication technologies cause numerous health effects: neurological, oxidative stress, carcinogenicity, deoxyribonucleic acid and immune system damage, electro-hypersensitivity. The majority of these biological effects of non-thermal microwave radiation have been known since the 1970s. Methods Detailed scientific, political, and military documents were analyzed. Most of the scientific literature comes from PubMed. The other articles (except for a few) come from impacted journals . The rare scientific documents that were not peer reviewed were produced by recognized scientists in their fields. The rest of the documentation comes from official sources: political (e.g., European Union and World Health Organization), military (e.g., US Air Force and NATO), patents, and national newspapers. Results (1) Since their emergence, the authorities have deployed and encouraged the use of wireless technologies (2G, 3G, 4G, WiFi, WiMAX, DECT, Bluetooth, cell phone towers/masts/base stations, small cells, etc.) in full awareness of their harmful effects on health. (2) Consequences of microwave radiation from communication networks are comparable to the effects of low-power directed-energy microwave weapons, whose objectives include behavioral modification through neurological (brain) targeting. Above 20 gigahertz, 5G behaves like an unconventional chemical weapon. (3) Biomedical engineering (via graphene-based nanomaterials) will enable brain-computer connections, linked wirelessly to the Internet of Everything through 5G and 6G networks (2030) and artificial intelligence, gradually leading to human-machine fusion (cyborg) before the 2050s. Conclusion Despite reports and statements from the authorities presenting the constant deployment of new wireless communication technologies, as well as medical research into nanomaterials, as society's ideal future, in-depth research into these scientific fields shows, above all, an objective linked to the current cognitive war. It could be hypothesized that, in the future, this aim will correspond to the control of humanity by machines.
Collapse
|
5
|
Guo X, Guo M, Cai R, Hu M, Rao L, Su W, Liu H, Gao F, Zhang X, Liu J, Chen C. mRNA compartmentalization via multimodule DNA nanostructure assembly augments the immunogenicity and efficacy of cancer mRNA vaccine. SCIENCE ADVANCES 2024; 10:eadp3680. [PMID: 39576858 PMCID: PMC11584007 DOI: 10.1126/sciadv.adp3680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
Messenger RNA (mRNA) vaccine has fueled a great hope for cancer immunotherapy. However, low immunogenicity, caused by inefficient mRNA expression and weak immune stimulation, hampers the efficacy of mRNA vaccines. Here, we present an mRNA compartmentalization-based cancer vaccine, comprising a multimodule DNA nanostructure (MMDNS)-assembled compartment for efficient mRNA translation via in situ localizing mRNA concentration and relevant reaction molecules. The MMDNS is constructed via programmable DNA hybridization chain reaction (HCR)-based strategy, with integrating antigen-coded mRNA, CpG oligodeoxynucleotides (ODNs), acidic-responsive DNA sequence, and dendritic cells targeting aptamer. MMDNS undergoes in situ assembly in acidic lysosomes to form a micro-sized aggregate, inducing an enhanced CpG ODN adjuvant efficacy. Subsequently, the aggregates escape into cytoplasm, providing a moderate compartment which supports the efficient translation of spatially proximal mRNA transcripts via localizing relevant reaction molecules. The mRNA compartmentalization-based vaccine boosts a strong immune response and effectively inhibits tumor growth and metastasis, offering a robust strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaocui Guo
- New Cornerstone Science Laboratory, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Mengyu Guo
- New Cornerstone Science Laboratory, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Rong Cai
- New Cornerstone Science Laboratory, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Mingdi Hu
- New Cornerstone Science Laboratory, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Le Rao
- Health Management Institute, The Second Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Wen Su
- New Cornerstone Science Laboratory, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - He Liu
- New Cornerstone Science Laboratory, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Fene Gao
- New Cornerstone Science Laboratory, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Xiaoyu Zhang
- New Cornerstone Science Laboratory, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Jing Liu
- New Cornerstone Science Laboratory, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunying Chen
- New Cornerstone Science Laboratory, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou, 510700, China
| |
Collapse
|
6
|
Hou Y, Li Y, Zhang Y, Zhang J, Wu D. Current status and future directions of nanovaccine for cancer: a bibliometric analysis during 2004-2023. Front Immunol 2024; 15:1423212. [PMID: 39136021 PMCID: PMC11317272 DOI: 10.3389/fimmu.2024.1423212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Background Nanovaccine treatment is an exciting area of research in immunology and personalized medicine, holding great promise for enhancing immune responses and targeting specific diseases. Their small size allows efficient uptake by immune cells, leading to robust immune activation. They can incorporate immune-stimulating molecules to boost vaccine efficacy. Therefore, nanovaccine can be personalized to target tumor-specific antigens, activating the immune system against cancer cells. Currently, there have been ample evidence showing the effectiveness and potential of nanovaccine as a treatment for cancer. However, there was rare bibliometric analysis of nanovaccine for cancer. Here we performed a bibliometric and visual analysis of published studies related to nanovaccine treatment for cancer, providing the trend of future development of nanovaccine. Methods We collected the literatures based on the Web of Science Core Collection SCI-Expanded database. The bibliometric analysis was performed via utilizing visualization analysis tools VOSviewer, Co-Occurrence (COOC), Citespace, Bibliometrix (R-Tool of R-Studio), and HitCite. Results A total of 517 literatures were included in this study. China is the country with the most publications and the highest total local citation score (TLCS). The Chinese Academy of Sciences holds the largest research count in this field and the most prolific author is Deling Kong from Nankai University. The most prominent journal for publishing in this area is Biomaterials. The researches mainly focus on the therapeutic process of tumor nanovaccines, the particle composition and the application of nanovaccines, suggesting the potential hotspots and trends of nanovaccine. Conclusion In this study, we summarized the characteristics and variation trends of publications involved in nanovaccine, and categorized the most influential countries, institutions, authors, journals, hotspots and trends regarding the nanovaccine for cancer. With the continuous development of nanomaterials and tumor immunotherapy, nanovaccine for cancer provides a research field of significant clinical value and potential application.
Collapse
Affiliation(s)
- Yuhui Hou
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yue Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Youao Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Juan Zhang
- Shenzhen Key Laboratory of Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Dinglan Wu
- Shenzhen Key Laboratory of Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Ayreen Z, Khatoon U, Kirti A, Sinha A, Gupta A, Lenka SS, Yadav A, Mohanty R, Naser SS, Mishra R, Chouhan RS, Samal SK, Kaushik NK, Singh D, Suar M, Verma SK. Perilous paradigm of graphene oxide and its derivatives in biomedical applications: Insight to immunocompatibility. Biomed Pharmacother 2024; 176:116842. [PMID: 38810404 DOI: 10.1016/j.biopha.2024.116842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024] Open
Abstract
With advancements in nanotechnology and innovative materials, Graphene Oxide nanoparticles (GONP) have attracted lots of attention among the diverse types of nanomaterials owing to their distinctive physicochemical characteristics. However, the usage at scientific and industrial level has also raised concern to their toxicological interaction with biological system. Understanding these interactions is crucial for developing guidelines and recommendations for applications of GONP in various sectors, like biomedicine and environmental technologies. This review offers crucial insights and an in-depth analysis to the biological processes associated with GONP immunotoxicity with multiple cell lines including human whole blood cultures, dendritic cells, macrophages, and multiple cancer cell lines. The complicated interactions between graphene oxide nanoparticles and the immune system, are highlighted in this work, which reveals a range of immunotoxic consequences like inflammation, immunosuppression, immunostimulation, hypersensitivity, autoimmunity, and cellular malfunction. Moreover, the immunotoxic effects are also highlighted with respect to in vivo models like mice and zebrafish, insighting GO Nanoparticles' cytotoxicity. The study provides invaluable review for researchers, policymakers, and industrialist to understand and exploit the beneficial applications of GONP with a controlled measure to human health and the environment.
Collapse
Affiliation(s)
- Zobia Ayreen
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Uzma Khatoon
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Apoorv Kirti
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Abha Gupta
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Sudakshya S Lenka
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Anu Yadav
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Rupali Mohanty
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Shaikh Sheeran Naser
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Richa Mishra
- Parul University, Vadodara, Gujarat 391760, India
| | - Raghuraj Singh Chouhan
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, Ljubljana 1000, Slovenia
| | | | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Deobrat Singh
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden.
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India.
| |
Collapse
|
8
|
Feng J, Liu Y, Zheng X, Gao M, Wang L, Rodrigues LR, Wen Y, Pan H, Li G, Zhang L, Wan B, Zhang Y. Protein-assisted synthesis of chitosan-coated minicells enhance dendritic cell recruitment for therapeutic immunomodulation within pulmonary tumors. Carbohydr Polym 2024; 334:122031. [PMID: 38553230 DOI: 10.1016/j.carbpol.2024.122031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 04/02/2024]
Abstract
The efficacy of cancer therapies is significantly compromised by the immunosuppressive tumor milieu. Herein, we introduce a previously unidentified therapeutic strategy that harnesses the synergistic potential of chitosan-coated bacterial vesicles and a targeted chemotherapeutic agent to activate dendritic cells, thereby reshaping the immunosuppressive milieu for enhanced cancer therapy. Our study focuses on the protein-mediated modification of bacterium-derived minicells with chitosan molecules, facilitating the precise delivery of Doxorubicin to tumor sites guided by folate-mediated homing cues. These engineered minicells demonstrate remarkable specificity in targeting lung carcinomas, triggering immunogenic cell death and releasing tumor antigens and damage-associated molecular patterns, including calreticulin and high mobility group box 1. Additionally, the chitosan coating, coupled with bacterial DNA from the minicells, initiates the generation of reactive oxygen species and mitochondrial DNA release. These orchestrated events culminate in dendritic cell maturation via activation of the stimulator of interferon genes signaling pathway, resulting in the recruitment of CD4+ and CD8+ cytotoxic T cells and the secretion of interferon-β, interferon-γ, and interleukin-12. Consequently, this integrated approach disrupts the immunosuppressive tumor microenvironment, impeding tumor progression. By leveraging bacterial vesicles as potent dendritic cell activators, our strategy presents a promising paradigm for synergistic cancer treatment, seamlessly integrating chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Jing Feng
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 211100, China; Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yiting Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 211100, China; The Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211100, China
| | - Xiaoran Zheng
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 211100, China
| | - Min Gao
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 211100, China
| | - Li Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 211100, China
| | - Lígia R Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Yuting Wen
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 211100, China
| | - Hangcheng Pan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 211100, China
| | - Gege Li
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 211100, China
| | - Longjiang Zhang
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China.
| | - Bing Wan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 211100, China.
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 211100, China; The Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211100, China; Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China.
| |
Collapse
|
9
|
Zare-Zardini H, Saberian E, Jenča A, Jenča A, Petrášová A, Jenčová J. A Narrative Review on the Promising Potential of Graphene in Vaccine Design: Evaluating the Benefits and Drawbacks of Carbon Nanoplates in Nanovaccine Production. Vaccines (Basel) 2024; 12:660. [PMID: 38932389 PMCID: PMC11209486 DOI: 10.3390/vaccines12060660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Graphene, a two-dimensional material consisting of a single layer of carbon atoms arranged in a honeycomb lattice, has shown great potential in various fields, including biomedicine. When it comes to vaccine development, graphene can offer several advantages due to its unique properties. Potential applications of graphene in vaccine development include improved vaccine delivery, adjuvant properties, improved vaccine stability, improved immune response, and biosensing capabilities. Although graphene offers many potential benefits in vaccine development, there are also some drawbacks and challenges associated with its use. Although graphene shows promising potential for vaccine development, overcoming the challenges and limitations associated with its use is critical to realizing its full potential in the field of immunization. Further research and development efforts are needed to overcome these drawbacks and take advantage of graphene for improved vaccine formulations. In this review, we focus on the advantages and disadvantages of graphene for vaccine development.
Collapse
Affiliation(s)
- Hadi Zare-Zardini
- Department of Biomedical Engineering, Meybod University, Meybod 89616-99557, Iran
| | - Elham Saberian
- Klinika and Akadémia Košice Bacikova, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia
| | - Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, 040 11 Kosice, Slovakia (A.P.)
| | - Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, 040 11 Kosice, Slovakia (A.P.)
| | - Adriána Petrášová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, 040 11 Kosice, Slovakia (A.P.)
| | - Janka Jenčová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, 040 11 Kosice, Slovakia (A.P.)
| |
Collapse
|
10
|
Yang H, Zhou JN, Zhang XM, Ling DD, Sun YB, Li CY, Zhou QQ, Shi GN, Wang SH, Lin XS, Fan T, Wang HY, Zeng Q, Jia YL, Xi JF, Jin YG, Pei XT, Yue W. Nanoengineered Red Blood Cells Loaded with TMPRSS2 and Cathepsin L Inhibitors Block SARS-CoV-2 Pseudovirus Entry into Lung ACE2 + Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310306. [PMID: 38194699 DOI: 10.1002/adma.202310306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/27/2023] [Indexed: 01/11/2024]
Abstract
The enzymatic activities of Furin, Transmembrane serine proteinase 2 (TMPRSS2), Cathepsin L (CTSL), and Angiotensin-converting enzyme 2 (ACE2) receptor binding are necessary for the entry of coronaviruses into host cells. Precise inhibition of these key proteases in ACE2+ lung cells during a viral infection cycle shall prevent viral Spike (S) protein activation and its fusion with a host cell membrane, consequently averting virus entry to the cells. In this study, dual-drug-combined (TMPRSS2 inhibitor Camostat and CTSL inhibitor E-64d) nanocarriers (NCs) are constructed conjugated with an anti-human ACE2 (hACE2) antibody and employ Red Blood Cell (RBC)-hitchhiking, termed "Nanoengineered RBCs," for targeting lung cells. The significant therapeutic efficacy of the dual-drug-loaded nanoengineered RBCs in pseudovirus-infected K18-hACE2 transgenic mice is reported. Notably, the modular nanoengineered RBCs (anti-receptor antibody+NCs+RBCs) precisely target key proteases of host cells in the lungs to block the entry of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), regardless of virus variations. These findings are anticipated to benefit the development of a series of novel and safe host-cell-protecting antiviral therapies.
Collapse
Affiliation(s)
- Hui Yang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jun-Nian Zhou
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xue-Mei Zhang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Dan-Dan Ling
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ying-Bao Sun
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Chen-Yan Li
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Qian-Qian Zhou
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Gao-Na Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Si-Han Wang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xiao-Song Lin
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Tao Fan
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hai-Yang Wang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Quan Zeng
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ya-Li Jia
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jia-Fei Xi
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yi-Guang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xue-Tao Pei
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| |
Collapse
|
11
|
Choi H, Hong J, Seo Y, Joo SH, Lim H, Lahiji SF, Kim YH. Self-Assembled Oligopeptoplex-Loaded Dissolving Microneedles for Adipocyte-Targeted Anti-Obesity Gene Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309920. [PMID: 38213134 DOI: 10.1002/adma.202309920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/16/2023] [Indexed: 01/13/2024]
Abstract
Advancements in gene delivery systems are pivotal for gene-based therapeutics in oncological, inflammatory, and infectious diseases. This study delineates the design of a self-assembled oligopeptoplex (SA-OP) optimized for shRNA delivery to adipocytes, targeting obesity and associated metabolic syndromes. Conventional systems face challenges, including instability due to electrostatic interactions between genetic materials and cationic oligopeptides. Additionally, repeated injections induce discomfort and compromise patient well-being. To circumvent these issues, a dissolvable hyaluronic acid-based, self-locking microneedle (LMN) patch is developed, with improved micro-dose efficiency, for precise SA-OP delivery. This platform offers pain-free administration and improved SA-OP storage stability. In vitro studies in 3T3-L1 cells demonstrated improvements in SA-OP preservation and gene silencing efficacy. In vivo evaluation in a mice model of diet-induced type 2 diabetes yielded significant gene silencing in adipose tissue and a 21.92 ± 2.51% reduction in body weight with minimum relapse risk at 6-weeks post-treatment, representing a superior therapeutic efficacy in a truncated timeframe relative to the GLP-1 analogues currently available on the market. Additionally, SA-OP (LMN) mitigated insulin resistance, inflammation, and hepatic steatosis. These findings establish SA-OP (LMN) as a robust, minimally invasive transdermal gene delivery platform with prolonged storage stability for treating obesity and its metabolic comorbidities.
Collapse
Affiliation(s)
- Heekyung Choi
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, 04763, Republic of Korea
- Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, 04763, Republic of Korea
| | - Juhyeong Hong
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, 04763, Republic of Korea
- Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yuha Seo
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, 04763, Republic of Korea
- Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seung-Hwan Joo
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, 04763, Republic of Korea
- Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hanseok Lim
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, 04763, Republic of Korea
- Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, 04763, Republic of Korea
| | - Shayan Fakhraei Lahiji
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, 04763, Republic of Korea
- Cursus Bio Inc., Icure Tower, Seoul, 06170, Republic of Korea
| | - Yong-Hee Kim
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, 04763, Republic of Korea
- Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, 04763, Republic of Korea
- Cursus Bio Inc., Icure Tower, Seoul, 06170, Republic of Korea
| |
Collapse
|
12
|
Lin H, Buerki-Thurnherr T, Kaur J, Wick P, Pelin M, Tubaro A, Carniel FC, Tretiach M, Flahaut E, Iglesias D, Vázquez E, Cellot G, Ballerini L, Castagnola V, Benfenati F, Armirotti A, Sallustrau A, Taran F, Keck M, Bussy C, Vranic S, Kostarelos K, Connolly M, Navas JM, Mouchet F, Gauthier L, Baker J, Suarez-Merino B, Kanerva T, Prato M, Fadeel B, Bianco A. Environmental and Health Impacts of Graphene and Other Two-Dimensional Materials: A Graphene Flagship Perspective. ACS NANO 2024; 18:6038-6094. [PMID: 38350010 PMCID: PMC10906101 DOI: 10.1021/acsnano.3c09699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Abstract
Two-dimensional (2D) materials have attracted tremendous interest ever since the isolation of atomically thin sheets of graphene in 2004 due to the specific and versatile properties of these materials. However, the increasing production and use of 2D materials necessitate a thorough evaluation of the potential impact on human health and the environment. Furthermore, harmonized test protocols are needed with which to assess the safety of 2D materials. The Graphene Flagship project (2013-2023), funded by the European Commission, addressed the identification of the possible hazard of graphene-based materials as well as emerging 2D materials including transition metal dichalcogenides, hexagonal boron nitride, and others. Additionally, so-called green chemistry approaches were explored to achieve the goal of a safe and sustainable production and use of this fascinating family of nanomaterials. The present review provides a compact survey of the findings and the lessons learned in the Graphene Flagship.
Collapse
Affiliation(s)
- Hazel Lin
- CNRS,
UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, ISIS, University of Strasbourg, 67000 Strasbourg, France
| | - Tina Buerki-Thurnherr
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Jasreen Kaur
- Nanosafety
& Nanomedicine Laboratory, Institute
of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Peter Wick
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Marco Pelin
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Aurelia Tubaro
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | | | - Mauro Tretiach
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Emmanuel Flahaut
- CIRIMAT,
Université de Toulouse, CNRS, INPT,
UPS, 31062 Toulouse CEDEX 9, France
| | - Daniel Iglesias
- Facultad
de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - Ester Vázquez
- Facultad
de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - Giada Cellot
- International
School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Laura Ballerini
- International
School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Valentina Castagnola
- Center
for
Synaptic Neuroscience and Technology, Istituto
Italiano di Tecnologia, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Fabio Benfenati
- Center
for
Synaptic Neuroscience and Technology, Istituto
Italiano di Tecnologia, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Andrea Armirotti
- Analytical
Chemistry Facility, Istituto Italiano di
Tecnologia, 16163 Genoa, Italy
| | - Antoine Sallustrau
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Frédéric Taran
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Mathilde Keck
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Cyrill Bussy
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Sandra Vranic
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Kostas Kostarelos
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Mona Connolly
- Instituto Nacional de Investigación y Tecnología
Agraria
y Alimentaria (INIA), CSIC, Carretera de la Coruña Km 7,5, E-28040 Madrid, Spain
| | - José Maria Navas
- Instituto Nacional de Investigación y Tecnología
Agraria
y Alimentaria (INIA), CSIC, Carretera de la Coruña Km 7,5, E-28040 Madrid, Spain
| | - Florence Mouchet
- Laboratoire
Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - Laury Gauthier
- Laboratoire
Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - James Baker
- TEMAS Solutions GmbH, 5212 Hausen, Switzerland
| | | | - Tomi Kanerva
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
| | - Maurizio Prato
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Bengt Fadeel
- Nanosafety
& Nanomedicine Laboratory, Institute
of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Alberto Bianco
- CNRS,
UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, ISIS, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
13
|
Huang S, Li Y, Zhang S, Chen Y, Su W, Sanchez DJ, Mai JDH, Zhi X, Chen H, Ding X. A self-assembled graphene oxide adjuvant induces both enhanced humoral and cellular immune responses in influenza vaccine. J Control Release 2024; 365:716-728. [PMID: 38036004 DOI: 10.1016/j.jconrel.2023.11.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Antiviral vaccine is essential for preventing and controlling virus spreading, along with declining morbidity and mortality. A major challenge in effective vaccination lies in the ability to enhance both the humoral and cellular immune responses by adjuvants. Herein, self-assembled nanoparticles based on graphene oxide quantum dots with components of carnosine, resiquimod and Zn2+ ions, namely ZnGC-R, are designed as a new adjuvant for influenza vaccine. With its high capability for antigen-loading, ZnGC-R enhances antigen utilization, improves DC recruitment, and activates antigen-presenting cells. Single cell analysis of lymphocytes after intramuscular vaccination revealed that ZnGC-R generated multifaceted immune responses. ZnGC-R stimulated robust CD4+CCR7loPD-1hi Tfh and durable CD8+CD44hiCD62L- TEM immune responses, and simultaneously promoted the proliferation of CD26+ germinal center B cells. Besides, ZnGC-R elicited 2.53-fold higher hemagglutination-inhibiting antibody than commercial-licensed aluminum salt adjuvant. ZnGC-R based vaccine induced 342% stronger IgG antibody responses compared with vaccines with inactivated virus alone, leading to 100% in vivo protection efficacy against the H1N1 influenza virus challenge.
Collapse
Affiliation(s)
- Shiyi Huang
- Department of Pathology, Wenling First People's Hospital, Wenling City, Zhejiang Province 317500, China; Institute for Personalized Medicine, School of Biomedical Engineering, State Key laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yiyang Li
- Institute for Personalized Medicine, School of Biomedical Engineering, State Key laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shuang Zhang
- Institute for Personalized Medicine, School of Biomedical Engineering, State Key laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Youming Chen
- Institute for Personalized Medicine, School of Biomedical Engineering, State Key laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wenqiong Su
- Institute for Personalized Medicine, School of Biomedical Engineering, State Key laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200030, China
| | - David J Sanchez
- Pharmaceutical Sciences Department, College of Pharmacy, Western University of Health Sciences, Pomona 91766, CA, USA
| | - John D H Mai
- Alfred E. Mann Institute for Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Xiao Zhi
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Xianting Ding
- Department of Pathology, Wenling First People's Hospital, Wenling City, Zhejiang Province 317500, China; Institute for Personalized Medicine, School of Biomedical Engineering, State Key laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
14
|
Li C, Hou Y, He M, Lv L, Zhang Y, Sun S, Zhao Y, Liu X, Ma P, Wang X, Zhou Q, Zhan L. Laponite Lights Calcium Flickers by Reprogramming Lysosomes to Steer DC Migration for An Effective Antiviral CD8 + T-Cell Response. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303006. [PMID: 37638719 PMCID: PMC10602536 DOI: 10.1002/advs.202303006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/13/2023] [Indexed: 08/29/2023]
Abstract
Immunotherapy using dendritic cell (DC)-based vaccination is an established approach for treating cancer and infectious diseases; however, its efficacy is limited. Therefore, targeting the restricted migratory capacity of the DCs may enhance their therapeutic efficacy. In this study, the effect of laponite (Lap) on DCs, which can be internalized into lysosomes and induce cytoskeletal reorganization via the lysosomal reprogramming-calcium flicker axis, is evaluated, and it is found that Lap dramatically improves the in vivo homing ability of these DCs to lymphoid tissues. In addition, Lap improves antigen cross-presentation by DCs and increases DC-T-cell synapse formation, resulting in enhanced antigen-specific CD8+ T-cell activation. Furthermore, a Lap-modified cocktail (Lap@cytokine cocktail [C-C]) is constructed based on the gold standard, C-C, as an adjuvant for DC vaccines. Lap@C-C-adjuvanted DCs initiated a robust cytotoxic T-cell immune response against hepatitis B infection, resulting in > 99.6% clearance of viral DNA and successful hepatitis B surface antigen seroconversion. These findings highlight the potential value of Lap as a DC vaccine adjuvant that can regulate DC homing, and provide a basis for the development of effective DC vaccines.
Collapse
Affiliation(s)
- Chenyan Li
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
- BGI college, Henan Institute of Medical and Pharmaceutical Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yangyang Hou
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Minwei He
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Liping Lv
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Yulong Zhang
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Sujing Sun
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Yan Zhao
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Xingzhao Liu
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Ping Ma
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Xiaohui Wang
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Qianqian Zhou
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Linsheng Zhan
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
- BGI college, Henan Institute of Medical and Pharmaceutical Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
15
|
Yao M, Liu X, Qian Z, Fan D, Sun X, Zhong L, Wu P. Research progress of nanovaccine in anti-tumor immunotherapy. Front Oncol 2023; 13:1211262. [PMID: 37692854 PMCID: PMC10484753 DOI: 10.3389/fonc.2023.1211262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Tumor vaccines aim to activate dormant or unresponsive tumor-specific T lymphocytes by using tumor-specific or tumor-associated antigens, thus enhancing the body's natural defense against cancer. However, the effectiveness of tumor vaccines is limited by the presence of tumor heterogeneity, low immunogenicity, and immune evasion mechanisms. Fortunately, multifunctional nanoparticles offer a unique chance to address these issues. With the advantages of their small size, high stability, efficient drug delivery, and controlled surface chemistry, nanomaterials can precisely target tumor sites, improve the delivery of tumor antigens and immune adjuvants, reshape the immunosuppressive tumor microenvironment, and enhance the body's anti-tumor immune response, resulting in improved efficacy and reduced side effects. Nanovaccine, a type of vaccine that uses nanotechnology to deliver antigens and adjuvants to immune cells, has emerged as a promising strategy for cancer immunotherapy due to its ability to stimulate immune responses and induce tumor-specific immunity. In this review, we discussed the compositions and types of nanovaccine, and the mechanisms behind their anti-tumor effects based on the latest research. We hope that this will provide a more scientific basis for designing tumor vaccines and enhancing the effectiveness of tumor immunotherapy.
Collapse
Affiliation(s)
- Min Yao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhangbo Qian
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Dianfa Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Xinjun Sun
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
16
|
Wang Y, Yang K, Zhou H. Immunogenic proteins and potential delivery platforms for mpox virus vaccine development: A rapid review. Int J Biol Macromol 2023; 245:125515. [PMID: 37353117 PMCID: PMC10284459 DOI: 10.1016/j.ijbiomac.2023.125515] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Since May 2022, the mpox virus (MPXV) has spread worldwide and become a potential threat to global public health. Vaccines are important tools for preventing MPXV transmission and infection in the population. However, there are still no available potent and applicable vaccines specifically for MPXV. Herein, we highlight several potential vaccine targets for MPVX and emphasize potent immunogens, such as M1R, E8L, H3L, A29L, A35R, and B6R proteins. These proteins can be integrated into diverse vaccine platforms to elicit powerful B-cell and T-cell responses, thereby providing protective immunity against MPXV infection. Overall, research on the MPXV vaccine targets would provide valuable information for developing timely effective MPXV-specific vaccines.
Collapse
Affiliation(s)
- Yang Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Kaiwen Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Hao Zhou
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China.
| |
Collapse
|
17
|
Gao Z, Qin S, Ménard-Moyon C, Bianco A. Applications of graphene-based nanomaterials in drug design: The good, the bad and the ugly. Expert Opin Drug Discov 2023; 18:1321-1332. [PMID: 37661858 DOI: 10.1080/17460441.2023.2251879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
INTRODUCTION Graphene-based materials (GBMs) have unique physicochemical properties that make them extremely attractive as platforms for the design of new drugs. Indeed, their bidimensional (2D) morphology, high surface area, mechanical and optical properties, associated to different possibilities for functionalization of their surface, provides opportunities for their use as nanomedicines for drug delivery and/or phototherapies. AREAS COVERED This opinion paper provides an overview of the current status of GBMs in drug design, with a focus on their therapeutic applications, potential environmental and health risks, and some controversial results. The authors discuss the chemical modifications of GBMs for the treatment of various diseases. The potential toxicity associated with some GBMs is also presented, along with a safe-by-design approach to minimize the risks. Finally, the authors address some issues associated to the use of GBMs in the biomedical field, such as contradictory antibacterial effects, fluorescence quenching and imprecise chemical functionalization. EXPERT OPINION GBMs are a promising and exciting area of research in drug delivery. It is however important that responsible and safe use of these materials is ensured to fully exploit their advantages and overcome their drawbacks.
Collapse
Affiliation(s)
- Zhengfeng Gao
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| | - Siyao Qin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| |
Collapse
|
18
|
Papi M, De Spirito M, Palmieri V. Nanotechnology in the COVID-19 era: Carbon-based nanomaterials as a promising solution. CARBON 2023; 210:118058. [PMID: 37151958 PMCID: PMC10148660 DOI: 10.1016/j.carbon.2023.118058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic has led to collaboration between nanotechnology scientists, industry stakeholders, and clinicians to develop solutions for diagnostics, prevention, and treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections. Nanomaterials, including carbon-based materials (CBM) such as graphene and carbon nanotubes, have been studied for their potential in viral research. CBM unique effects on microorganisms, immune interaction, and sensitivity in diagnostics have made them a promising subject of SARS-CoV-2 research. This review discusses the interaction of CBM with SARS-CoV-2 and their applicability, including CBM physical and chemical properties, the known interactions between CBM and viral components, and the proposed prevention, treatment, and diagnostics uses.
Collapse
Affiliation(s)
- Massimiliano Papi
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Largo Francesco Vito 1, 00168, Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Largo Francesco Vito 1, 00168, Italy
| | - Valentina Palmieri
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
- Istituto dei Sistemi Complessi, CNR, Via dei Taurini 19, 00185, Rome, Italy
| |
Collapse
|
19
|
Li CX, Qi Y, Chen Y, Zhang Y, Li B, Feng J, Zhang XZ. Tuning Bacterial Morphology to Enhance Anticancer Vaccination. ACS NANO 2023; 17:8815-8828. [PMID: 37093563 DOI: 10.1021/acsnano.3c02373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Morphology tuning is a potent strategy to modulate physiological effects of synthetic biomaterials, but it is rarely explored in microbe-based biochemicals due to the lack of artificial adjustability. Inspired by the interesting phenomenon of microbial transformation, Escherichia coli is rationally adjusted into filamentous morphology-adjusted bacteria (MABac) via chemical stimulation to prepare a bacteria-based vaccine adjuvant/carrier. Inactivated MABac display stronger immunogenicity and special delivery patterns (phagosome escape and cytoplasmic retention) that are sharply distinct from the short rod-shaped bacteria parent (Bac). Transcriptomic study further offers solid evidence for deeply understanding the in vivo activity of MABac-based vaccine, which more effectively motivates multiple cytosolic immune pathways (such as NOD-like receptors and STING) and induces pleiotropic immune responses in comparison with Bac. Harnessing the special functions caused by morphology tuning, the MABac-based adjuvant/carrier significantly improves the immunogenicity and delivery profile of cancer antigens in vivo, thus boosting cancer-specific immunity against the melanoma challenge. This study validates the feasibility of tuning bacterial morphology to improve their biological effects, establishing a facile engineering strategy that upgrades bacterial properties and functions without complex procedures like gene editing.
Collapse
Affiliation(s)
- Chu-Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Yongdan Qi
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Yingge Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Yu Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Bin Li
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|
20
|
Chen W, Wang B, Liang S, Wang M, Zheng L, Xu S, Wang J, Fang H, Yang P, Feng W. Renal clearance of graphene oxide: glomerular filtration or tubular secretion and selective kidney injury association with its lateral dimension. J Nanobiotechnology 2023; 21:51. [PMID: 36765370 PMCID: PMC9913007 DOI: 10.1186/s12951-023-01781-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/12/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Renal excretion is one of the major routes of nanomaterial elimination from the body. Many previous studies have found that graphene oxide nanosheets are excreted in bulk through the kidneys. However, how the lateral size affects GO disposition in the kidneys including glomerular filtration, active tubular secretion and tubular reabsorption is still unknown. RESULTS The thin, two-dimensional graphene oxide nanosheets (GOs) was observed to excrete in urine through the kidneys, but the lateral dimension of GOs affects their renal clearance pathway and renal injury. The s-GOs could be renal excreted via the glomerular filtration, while the l-GOs were predominately excreted via proximal tubular secretion at a much faster renal clearance rate than the s-GOs. For the tubular secretion of l-GOs, the mRNA level of basolateral organic anion transporters Oat1 and Oat2 in the kidney presented dose dependent increase, while no obvious alterations of the efflux transporters such as Mdr1 and Mrp4 mRNA expression levels were observed, suggesting the accumulation of l-GOs. During the GO renal elimination, mostly the high dose of 15 mg/kg s-GO and l-GO treatment showed obvious kidney injuries but at different renal compartment, i.e., the s-GOs induced obvious glomerular changes in podocytes, while the l-GOs induced more obvious tubular injuries including necrosis of renal tubular epithelial cells, loss of brush border, cast formation and tubular dilatation. The specifically tubular injury biomarkers KIM1 and NGAL were shown slight increase with mRNA levels in l-GO administrated mice. CONCLUSIONS This study shows that the lateral size of GOs affected their interactions with different renal compartments, renal excretion pathways and potential kidney injuries.
Collapse
Affiliation(s)
- Wei Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shanshan Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingna Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Si Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Jiali Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Hao Fang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pu Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiyue Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
21
|
Liu Y, Yi Y, Zhong C, Ma Z, Wang H, Dong X, Yu F, Li J, Chen Q, Lin C, Li X. Advanced bioactive nanomaterials for diagnosis and treatment of major chronic diseases. Front Mol Biosci 2023; 10:1121429. [PMID: 36776741 PMCID: PMC9909026 DOI: 10.3389/fmolb.2023.1121429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
With the rapid innovation of nanoscience and technology, nanomaterials have also been deeply applied in the medical and health industry and become one of the innovative methods to treat many diseases. In recent years, bioactive nanomaterials have attracted extensive attention and have made some progress in the treatment of some major chronic diseases, such as nervous system diseases and various malignant tumors. Bioactive nanomaterials depend on their physical and chemical properties (crystal structure, surface charge, surface functional groups, morphology, and size, etc.) and direct produce biological activity and play to the role of the treatment of diseases, compared with the traditional nanometer pharmaceutical preparations, biological active nano materials don't exert effects through drug release, way more directly, also is expected to be more effective for the treatment of diseases. However, further studies are needed in the evaluation of biological effects, fate in vivo, structure-activity relationship and clinical transformation of bionanomaterials. Based on the latest research reports, this paper reviews the application of bioactive nanomaterials in the diagnosis and treatment of major chronic diseases and analyzes the technical challenges and key scientific issues faced by bioactive nanomaterials in the diagnosis and treatment of diseases, to provide suggestions for the future development of this field.
Collapse
Affiliation(s)
- Yongfei Liu
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Yi Yi
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China,*Correspondence: Yi Yi,
| | - Chengqian Zhong
- Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Zecong Ma
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Haifeng Wang
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Xingmo Dong
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Feng Yu
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Jing Li
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Qinqi Chen
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Chaolu Lin
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Xiaohong Li
- Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| |
Collapse
|
22
|
Sengupta J, Hussain CM. The Emergence of Carbon Nanomaterials as Effective Nano-Avenues to Fight against COVID-19. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1068. [PMID: 36770075 PMCID: PMC9918919 DOI: 10.3390/ma16031068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
COVID-19 (Coronavirus Disease 2019), a viral respiratory ailment that was first identified in Wuhan, China, in 2019, and then expanded globally, was caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The severity of the illness necessitated quick action to cease the virus's spread. The best practices to avert the infection include early detection, the use of protective clothing, the consumption of antiviral medicines, and finally the immunization of the patients through vaccination. The family of carbon nanomaterials, which includes graphene, fullerene, carbon nanotube (CNT), and carbon dot (CD), has a great deal of potential to effectively contribute to each of the main trails in the battle against the coronavirus. Consequently, the recent advances in the application of carbon nanomaterials for containing and combating the SARS-CoV-2 virus are discussed herein, along with their associated challenges and futuristic applicability.
Collapse
Affiliation(s)
- Joydip Sengupta
- Department of Electronic Science, Jogesh Chandra Chaudhuri College, Kolkata 700033, India
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
23
|
Barnwal A, Basu B, Tripathi A, Soni N, Mishra D, Banerjee A, Kumar R, Vrati S, Bhattacharyya J. SARS-CoV-2 Spike Protein-Activated Dendritic Cell-Derived Extracellular Vesicles Induce Antiviral Immunity in Mice. ACS Biomater Sci Eng 2022; 8:5338-5348. [PMID: 36445062 PMCID: PMC9717688 DOI: 10.1021/acsbiomaterials.2c01094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022]
Abstract
The onset and spread of the SARS-CoV-2 virus have created an unprecedented universal crisis. Although vaccines have been developed against the parental SARS-CoV-2, outbreaks of the disease still occur through the appearance of different variants, suggesting a continuous need for improved and effective therapeutic strategies. Therefore, we developed a novel nanovesicle presenting Spike protein on the surface of the dendritic cell-derived extracellular vesicles (DEVs) for use as a potential vaccine platform against SARS-CoV-2. DEVs express peptide/MHC-I (pMHC-I) complexes, CCR-7, on their surface. The immunogenicity and efficacy of the Spike-activated DEVs were tested in mice and compared with free Spike protein. A 1/10 Spike equivalent dose of DEVs showed a superior potency in inducing anti-Spike IgG titers in blood of mice when compared to dendritic cells or free Spike protein treatment. Moreover, DEV-induced sera effectively reduced viral infection by 55-60% within 15 days of booster dose administration. Furthermore, a 1/10 Spike equivalent dose of DEV-treated mice was found to be equally effective in inducing CD19+CD38+ T-cells in the spleen and lymph node; CD8 cells in the bone marrow, spleen, and lymph node; and CD4+CD25+ T-cells in the spleen and lymph node after 90 days of treatment. Thus, our results support the immunogenic nature of DEVs, demonstrating that a low dose of DEVs induces antibodies to inhibit SARS-CoV-2 infection in vitro, therefore warranting further investigations.
Collapse
Affiliation(s)
- Anjali Barnwal
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Science, New Delhi 110029, India
| | - Brohmomoy Basu
- Laboratory of Virology, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Aarti Tripathi
- Laboratory of Virology, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Naina Soni
- Laboratory of Virology, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Debasish Mishra
- Laboratory of Virology, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Arup Banerjee
- Laboratory of Virology, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Rajesh Kumar
- Translational Health Science & Technology Institute, Faridabad 121001, Haryana, India
| | - Sudhanshu Vrati
- Laboratory of Virology, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Jayanta Bhattacharyya
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Science, New Delhi 110029, India
| |
Collapse
|
24
|
Yao L, Chen A, Li Li, Liu Y. Preparation, properties, applications and outlook of graphene-based materials in biomedical field: A comprehensive review. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:1121-1156. [DOI: 10.1080/09205063.2022.2155781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Luyang Yao
- School of Pharmacy, Liaoning University, Shenyang 110036, People’s Republic of China
| | - Anqi Chen
- School of Pharmacy, Liaoning University, Shenyang 110036, People’s Republic of China
| | - Li Li
- School of Pharmacy, Liaoning University, Shenyang 110036, People’s Republic of China
- Liaoning Key Laboratory of New Drug Research & Development, Shenyang 110036, People’s Republic of China
| | - Yu Liu
- School of Pharmacy, Liaoning University, Shenyang 110036, People’s Republic of China
- Liaoning University, Judicial Expertise Center, Shenyang 110036, People’s Republic of China
| |
Collapse
|
25
|
Understanding the Role of the Lateral Dimensional Property of Graphene Oxide on Its Interactions with Renal Cells. Molecules 2022; 27:molecules27227956. [PMID: 36432058 PMCID: PMC9697150 DOI: 10.3390/molecules27227956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Renal excretion is expected to be the major route for the elimination of biomedically applied nanoparticles from the body. Hence, understanding the nanomedicine-kidney interaction is crucially required, but it is still far from being understood. Herein, we explored the lateral dimension- (~70 nm and ~300 nm), dose- (1, 5, and 15 mg/kg in vivo and 0.1~250 μg/mL in vitro), and time-dependent (48 h and 7 d in vivo) deposition and injury of PEGylated graphene oxide sheets (GOs) in the kidney after i.v. injection in mice. We specially investigated the cytotoxic effects on three typical kidney cell types with which GO renal excretion is related: human renal glomerular endothelial cells (HRGECs) and human podocytes, and human proximal tubular epithelial cells (HK-2). By using in vivo fluorescence imaging and in situ Raman imaging and spectroscopic analysis, we revealed that GOs could gradually be eliminated from the kidneys, where the glomeruli and renal tubules are their target deposition sites, but only the high dose of GO injection induced obvious renal histological and ultrastructural changes. We showed that the high-dose GO-induced cytotoxicity included a cell viability decrease and cellular apoptosis increase. GO uptake by renal cells triggered cellular membrane damage (intracellular LDH release) and increased levels of oxidative stress (ROS level elevation and a decrease in the balance of the GSH/GSSG ratio) accompanied by a mitochondrial membrane potential decrease and up-regulation of the expression of pro-inflammatory cytokines TNF-α and IL-18, resulting in cellular apoptosis. GO treatments activated Keap1/Nrf2 signaling; however, the antioxidant function of Nrf2 could be inhibited by apoptotic engagement. GO-induced cytotoxicity was demonstrated to be associated with oxidative stress and an inflammation reaction. Generally, the l-GOs presented more pronounced cytotoxicity and more severe cellular injury than s-GOs did, demonstrating lateral size-dependent toxicity to the renal cells. More importantly, GO-induced cytotoxicity was independent of renal cell type. The results suggest that the dosage of GOs in biomedical applications should be considered and that more attention should be paid to the ability of a high dose of GO to cause renal deposition and potential nephrotoxicity.
Collapse
|
26
|
Deruelle F. The pharmaceutical industry is dangerous to health. Further proof with COVID-19. Surg Neurol Int 2022; 13:475. [PMID: 36324959 PMCID: PMC9610448 DOI: 10.25259/sni_377_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022] Open
Abstract
Background: The COVID-19 period highlights a huge problem that has been developing for decades, the control of science by industry. In the 1950s, the tobacco industry set the example, which the pharmaceutical industry followed. Since then, the latter has been regularly condemned for illegal marketing, misrepresentation of experimental results, dissimulation of information about the dangers of drugs, and considered as criminal. Therefore, this study was conducted to show that knowledge is powerfully manipulated by harmful corporations, whose goals are: 1/financial; 2/to suppress our ability to make choices to acquire global control of public health. Methods: Pharmaceutical industry techniques for manipulating science and COVID-19 reporting were reviewed. Several sources of official documents were used: PubMed; National Institutes of Health resources; pharmaceutical companies; policy documents; national newspapers and news agencies; and books by prominent professionals (scientific and legal). A few studies have not been published in peer-reviewed journals; however, they have been conducted by reputable scientists in their respective fields. Results: Since the beginning of COVID-19, we can list the following methods of information manipulation which have been used: falsified clinical trials and inaccessible data; fake or conflict-of-interest studies; concealment of vaccines’ short-term side effects and total lack of knowledge of the long-term effects of COVID-19 vaccination; doubtful composition of vaccines; inadequate testing methods; governments and international organizations under conflicts of interest; bribed physicians; the denigration of renowned scientists; the banning of all alternative effective treatments; unscientific and liberticidal social methods; government use of behavior modification and social engineering techniques to impose confinements, masks, and vaccine acceptance; scientific censorship by the media. Conclusion: By supporting and selecting only the one side of science information while suppressing alternative viewpoints, and with obvious conflicts of interest revealed by this study, governments and the media constantly disinform the public. Consequently, the unscientifically validated vaccination laws, originating from industry-controlled medical science, led to the adoption of social measures for the supposed protection of the public but which became serious threats to the health and freedoms of the population.
Collapse
|
27
|
Svadlakova T, Holmannova D, Kolackova M, Malkova A, Krejsek J, Fiala Z. Immunotoxicity of Carbon-Based Nanomaterials, Starring Phagocytes. Int J Mol Sci 2022; 23:ijms23168889. [PMID: 36012161 PMCID: PMC9408998 DOI: 10.3390/ijms23168889] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
In the field of science, technology and medicine, carbon-based nanomaterials and nanoparticles (CNMs) are becoming attractive nanomaterials that are increasingly used. However, it is important to acknowledge the risk of nanotoxicity that comes with the widespread use of CNMs. CNMs can enter the body via inhalation, ingestion, intravenously or by any other route, spread through the bloodstream and penetrate tissues where (in both compartments) they interact with components of the immune system. Like invading pathogens, CNMs can be recognized by large numbers of receptors that are present on the surface of innate immune cells, notably monocytes and macrophages. Depending on the physicochemical properties of CNMs, i.e., shape, size, or adsorbed contamination, phagocytes try to engulf and process CNMs, which might induce pro/anti-inflammatory response or lead to modulation and disruption of basic immune activity. This review focuses on existing data on the immunotoxic potential of CNMs, particularly in professional phagocytes, as they play a central role in processing and eliminating foreign particles. The results of immunotoxic studies are also described in the context of the entry routes, impacts of contamination and means of possible elimination. Mechanisms of proinflammatory effect depending on endocytosis and intracellular distribution of CNMs are highlighted as well.
Collapse
Affiliation(s)
- Tereza Svadlakova
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
- Correspondence:
| | - Drahomira Holmannova
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
| | - Martina Kolackova
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Andrea Malkova
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
| | - Jan Krejsek
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Zdenek Fiala
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
| |
Collapse
|
28
|
Huo W, Yang X, Wang B, Cao L, Fang Z, Li Z, Liu H, Liang XJ, Zhang J, Jin Y. Biomineralized hydrogel DC vaccine for cancer immunotherapy: A boosting strategy via improving immunogenicity and reversing immune-inhibitory microenvironment. Biomaterials 2022; 288:121722. [DOI: 10.1016/j.biomaterials.2022.121722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/02/2022]
|
29
|
Kohzadi S, Najmoddin N, Baharifar H, Shabani M. Functionalized SPION immobilized on graphene-oxide: Anticancer and antiviral study. DIAMOND AND RELATED MATERIALS 2022; 127:109149. [PMID: 35677893 PMCID: PMC9163046 DOI: 10.1016/j.diamond.2022.109149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/23/2022] [Accepted: 05/29/2022] [Indexed: 05/14/2023]
Abstract
The progressive and fatal outbreak of some diseases such as cancer and coronavirus necessitates using advanced materials to bring such devastating illnesses under control. In this study, graphene oxide (GO) is decorated by superparamagnetic iron oxide nanoparticles (SPION) (GO/SPION) as well as polyethylene glycol functionalized SPION (GO/SPION@PEG), and chitosan functionalized SPION (GO/SPION@CS). Field emission scanning electron microscopic (FESEM) images show the formation of high density uniformly distributed SPION nanoparticles on the surface of GO sheets. The structural and chemical composition of nanostructures is confirmed by X-ray diffraction and Fourier transform infrared spectroscopy. The saturation magnetization of GO/SPION, GO/SPION@PEG and GO- SPION@CS are found to be 20, 19 and 8 emu/g using vibrating sample magnetometer. Specific absorption rate (SAR) values of 305, 283, and 199 W/g and corresponding intrinsic loss power (ILP) values of 9.4, 8.7, and 6.2 nHm2kg-1 are achieved for GO/SPION, GO/SPION@PEG and GO/SPION@CS, respectively. The In vitro cytotoxicity assay indicates higher than 70% cell viability for all nanostructures at 100, 300, and 500 ppm after 24 and 72 h. Additionally, cancerous cell (EJ138 human bladder carcinoma) ablation is observed using functionalized GO/SPION under applied magnetic field. More than 50% cancerous cell death has been achieved for GO/SPION@PEG at 300 ppm concentration. Furthermore, Surrogate virus neutralization test is applied to investigate neutralizing property of the synthesized nanostructures through analysis of SARS-CoV-2 receptor-binding domain and human angiotensin-converting enzyme 2 binding. The highest level of SARS-CoV-2 virus inhibition is related to GO/SPION@CS (86%) due to the synergistic exploitation of GO and chitosan. Thus, GO/SPION and GO/SPION@PEG with higher SAR and ILP values could be beneficial for cancer treatment, while GO/SPION@CS with higher virus suppression has potential to use against coronaviruses. Thus, the developed nanocomposites have a potential in the efficient treatment of cancer and coronavirus.
Collapse
Affiliation(s)
- Shaghayegh Kohzadi
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Najmeh Najmoddin
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hadi Baharifar
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Lin H, Peng S, Guo S, Ma B, Lucherelli MA, Royer C, Ippolito S, Samorì P, Bianco A. 2D Materials and Primary Human Dendritic Cells: A Comparative Cytotoxicity Study. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107652. [PMID: 35451183 DOI: 10.1002/smll.202107652] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Human health can be affected by materials indirectly through exposure to the environment or directly through close contact and uptake. With the ever-growing use of 2D materials in many applications such as electronics, medical therapeutics, molecular sensing, and energy storage, it has become more pertinent to investigate their impact on the immune system. Dendritic cells (DCs) are highly important, considering their role as the main link between the innate and the adaptive immune system. By using primary human DCs, it is shown that hexagonal boron nitride (hBN), graphene oxide (GO) and molybdenum disulphide have minimal effects on viability. In particular, it is evidenced that hBN and GO increase DC maturation, while GO leads to the release of reactive oxygen species and pro-inflammatory cytokines. hBN and MoS2 increase T cell proliferation with and without the presence of DCs. hBN in particular does not show any sign of downstream T cell polarization. The study allows ranking of the three materials in terms of inherent toxicity, providing the following trend: GO > hBN ≈ MoS2 , with GO the most cytotoxic.
Collapse
Affiliation(s)
- Hazel Lin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Shiyuan Peng
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Shi Guo
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Baojin Ma
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Matteo Andrea Lucherelli
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Cathy Royer
- Plateforme Imagerie In Vitro de l'ITI Neurostra, CNRS UAR 3156, University of Strasbourg, Strasbourg, 67000, France
| | | | - Paolo Samorì
- CNRS, ISIS, Université de Strasbourg, Strasbourg, 67000, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| |
Collapse
|
31
|
Chikileva I, Shubina I, Burtseva AM, Kirgizov K, Stepanyan N, Varfolomeeva S, Kiselevskiy M. Antiviral Cell Products against COVID-19: Learning Lessons from Previous Research in Anti-Infective Cell-Based Agents. Biomedicines 2022; 10:biomedicines10040868. [PMID: 35453618 PMCID: PMC9027720 DOI: 10.3390/biomedicines10040868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
COVID-19 is a real challenge for the protective immunity. Some people do not respond to vaccination by acquiring an appropriate immunological memory. The risk groups for this particular infection such as the elderly and people with compromised immunity (cancer patients, pregnant women, etc.) have the most serious problems in developing an adequate immune response. Therefore, dendritic cell (DC) vaccines that are loaded ex vivo with SARS-CoV-2 antigens in the optimal conditions are promising for immunization. Lymphocyte effector cells with chimeric antigen receptor (CAR lymphocytes) are currently used mainly as anti-tumor treatment. Before 2020, few studies on the antiviral CAR lymphocytes were reported, but since the outbreak of SARS-CoV-2 the number of such studies has increased. The basis for CARs against SARS-CoV-2 were several virus-specific neutralizing monoclonal antibodies. We propose a similar, but basically novel and more universal approach. The extracellular domain of the immunoglobulin G receptors will be used as the CAR receptor domain. The specificity of the CAR will be determined by the antibodies, which it has bound. Therefore, such CAR lymphocytes are highly universal and have functional activity against any infectious agents that have protective antibodies binding to a foreign surface antigen on the infected cells.
Collapse
Affiliation(s)
- Irina Chikileva
- Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (I.S.); (M.K.)
- Correspondence:
| | - Irina Shubina
- Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (I.S.); (M.K.)
| | - Anzhelika-Mariia Burtseva
- College of New Materials and Nanotechnologies, National University of Science and Technology “MISiS”, 119049 Moscow, Russia;
| | - Kirill Kirgizov
- Research Institute of Children Oncology and Hematology, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (K.K.); (N.S.); (S.V.)
| | - Nara Stepanyan
- Research Institute of Children Oncology and Hematology, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (K.K.); (N.S.); (S.V.)
| | - Svetlana Varfolomeeva
- Research Institute of Children Oncology and Hematology, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (K.K.); (N.S.); (S.V.)
| | - Mikhail Kiselevskiy
- Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (I.S.); (M.K.)
| |
Collapse
|
32
|
Zhou S, Jin M, Tan R, Shen Z, Yin J, Qiu Z, Chen Z, Shi D, Li H, Yang Z, Wang H, Gao Z, Li J, Yang D. A reduced graphene oxide-Fe 3O 4 composite functionalized with cetyltrimethylammonium bromide for efficient adsorption of SARS-CoV-2 spike pseudovirus and human enteric viruses. CHEMOSPHERE 2022; 291:132995. [PMID: 34808196 PMCID: PMC8602125 DOI: 10.1016/j.chemosphere.2021.132995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 05/05/2023]
Abstract
The latent dangers of waterborne viral transmission have become a major public health concern. In this study, reduced graphene oxide (rGO)-Fe3O4 nanoparticles were decorated with cetyltrimethylammonium bromide (CTAB) to adsorb severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike pseudovirus and three human enteric viruses (HuNoV, HRV, and HAdV). The successful combination of CTAB with rGO-Fe3O4 was confirmed by transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, zeta potential, Brunner-Emmet-Teller, and vibrating sample magnetometer measurements. The adsorption of HuNoV and HAdV followed pseudo-first-order kinetics, while that of HRV conformed to the pseudo-second-order model. CTAB-functionalized rGO-Fe3O4 exhibited exceptionally high adsorption of HuNoV, HRV, HAdV and SARS-CoV-2 spike pseudovirus, with maximum adsorption capacities of 3.55 × 107, 7.01 × 107, 2.21 × 107 and 6.92 × 106 genome copies mg-1, respectively. Moreover, the composite could effectively adsorb the four types of virus particles from coastal, tap, and river water. In addition, concentrating the virions using CTAB functionalized rGO-Fe3O4 composites before qPCR analysis significantly improved the detection limit. The results indicate that viruses are captured on the surface of CTAB functionalized rGO-Fe3O4 composites through electrostatic interactions and the intrinsic adsorption ability of rGO. Overall, CTAB-functionalized rGO-Fe3O4 composites are promising materials for the adsorption and detection of human enteric viruses as well as SARS-CoV-2 from complex aqueous environments.
Collapse
Affiliation(s)
- Shuqing Zhou
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Min Jin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Rong Tan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zhiqiang Shen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Jing Yin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zhigang Qiu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zhengshan Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Danyang Shi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Haibei Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zhongwei Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Huaran Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zhixian Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Junwen Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Dong Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
33
|
Gao F, Huang J, Li T, Hu C, Shen M, Mu S, Luo F, Song S, Hao Y, Wang W, Han X, Qian C, Wang Y, Wu R, Li L, Li S, Jin A. A Highly Conserved Peptide Vaccine Candidate Activates Both Humoral and Cellular Immunity Against SARS-CoV-2 Variant Strains. Front Immunol 2021; 12:789905. [PMID: 34950151 PMCID: PMC8688401 DOI: 10.3389/fimmu.2021.789905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
Facing the imminent need for vaccine candidates with cross-protection against globally circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutants, we present a conserved antigenic peptide RBD9.1 with both T-cell and B-cell epitopes. RBD9.1 can be recognized by coronavirus disease 2019 (COVID-19) convalescent serum, particularly for those with high neutralizing potency. Immunization with RBD9.1 can successfully induce the production of the receptor-binding domain (RBD)-specific antibodies in Balb/c mice. Importantly, the immunized sera exhibit sustained neutralizing efficacy against multiple dominant SARS-CoV-2 variant strains, including B.1.617.2 that carries a point mutation (SL452R) within the sequence of RBD9.1. Specifically, SY451 and SY454 are identified as the key amino acids for the binding of the induced RBD-specific antibodies to RBD9.1. Furthermore, we have confirmed that the RBD9.1 antigenic peptide can induce a S448-456 (NYNYLYRLF)-specific CD8+ T-cell response. Both RBD9.1-specific B cells and the S448-456-specific T cells can still be activated more than 3 months post the last immunization. This study provides a potential vaccine candidate that can generate long-term protective efficacy over SARS-CoV-2 variants, with the unique functional mechanism of activating both humoral and cellular immunity.
Collapse
Affiliation(s)
- Fengxia Gao
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Jingjing Huang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Tingting Li
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Chao Hu
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Meiying Shen
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Song Mu
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Feiyang Luo
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Shuyi Song
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Yanan Hao
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Wang Wang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Xiaojian Han
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Chen Qian
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Yingming Wang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Ruixin Wu
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Luo Li
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Shenglong Li
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Aishun Jin
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
34
|
Campana P, Palaia ME, Conte M, Cante T, Petraglia L, Femminella GD, Parisi V, Leosco D. The elderly at risk: aldosterone as modulator of the immune response to SARS-CoV-2 infection. GeroScience 2021; 44:567-572. [PMID: 34741250 PMCID: PMC8570771 DOI: 10.1007/s11357-021-00481-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
The elderly population is the most susceptible to SARS-CoV-2 infection and develops the worst clinical phenotype with severe pneumonia and cardiac complications. Older COVID-19 patients are also at higher risk of sudden death, mainly attributable to electrolyte disorders and to an uncontrolled inflammatory response. After the identification of ACE 2 as the receptor of SARS-CoV-2 in human cells, several research studies have focused on the role of the activation of Renin Angiotensin System in COVID-19 clinical course. In the present opinion paper, we discuss the role of hyperaldosteronism in the increasing risk of cardiac complications in COVID-19 older patients. In particular, we focus on the immunoregulatory activity of aldosterone, as the last mediator of the Renin Angiotensin System cascade, in activating the innate and adaptive immune response related to SARS-CoV-2 infection in the elderly. Aldosterone may stimulate dendritic cells and the recruitment of monocytes/macrophages in the endothelium of coronary vessels, favoring the production of pro-inflammatory mediators and T-cells response. Higher basal levels of aldosterone together with SARS-CoV-2-induced production may explain the unfavorable course of COVID-19 in the elderly.
Collapse
Affiliation(s)
- Pasquale Campana
- Department of Translational Medical Sciences, University Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
| | - Maria Emiliana Palaia
- Department of Translational Medical Sciences, University Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Maddalena Conte
- Department of Translational Medical Sciences, University Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.,Casa di Cura San Michele, Maddaloni, Italy
| | - Teresa Cante
- Department of Translational Medical Sciences, University Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Laura Petraglia
- Department of Translational Medical Sciences, University Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Grazia Daniela Femminella
- Department of Translational Medical Sciences, University Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Valentina Parisi
- Department of Translational Medical Sciences, University Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.,Casa di Cura San Michele, Maddaloni, Italy
| | - Dario Leosco
- Department of Translational Medical Sciences, University Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.,Casa di Cura San Michele, Maddaloni, Italy
| |
Collapse
|
35
|
Li X, Guo M, Chen C. Graphdiyne: from Preparation to Biomedical Applications. Chem Res Chin Univ 2021; 37:1176-1194. [PMID: 34720525 PMCID: PMC8536907 DOI: 10.1007/s40242-021-1343-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/21/2021] [Indexed: 01/15/2023]
Abstract
Graphdiyne(GDY) is a kind of two-dimensional carbon nanomaterial with specific configurations of sp and sp 2 carbon atoms. The key progress in the preparation and application of GDY is bringing carbon materials to a brand-new level. Here, the various properties and structures of GDY are introduced, including the existing strategies for the preparation and modification of GDY. In particular, GDY has gradually emerged in the field of life sciences with its unique properties and performance, therefore, the development of biomedical applications of GDY is further summarized. Finally, the challenges of GDY toward future biomedical applications are discussed.
Collapse
Affiliation(s)
- Xiaodan Li
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190 P. R. China
| | - Mengyu Guo
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190 P. R. China
| | - Chunying Chen
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190 P. R. China
| |
Collapse
|