1
|
Lee H, Fu H, Gray KA. Making waves: Pioneering a nanoconfinement platform with mesoporous silica for sustainable water management and environmental applications. WATER RESEARCH 2025; 280:123460. [PMID: 40086150 DOI: 10.1016/j.watres.2025.123460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Nanomaterials applied in industrial processes and environmental fields usually demand immobilization and recovery strategies that often result in functionality loss and added operational costs. Nanoconfinement, the spatial restriction of nano-sized particles within a larger porous substrate, not only can address critical challenges and sustainability concerns in environmental nanotechnology but also offers unique opportunities otherwise inaccessible by unconfined, bulk-phase nanomaterials. In this perspective, we propose mesoporous silica (mSiO2) as an innovative framework for spatially confining metal nanoparticles in a well-controlled manner, offering an effective nanoconfinement engineering strategy for sustainable water management and environmental applications. We first summarize the current understanding of nanoconfinement effects and briefly review previous approaches to the fabrication of engineered nanoconfinement materials. We then present a layer-by-layer engineering strategy to confine various metal nanoparticles within multi-shelled mSiO2 structures, exploring their unique nanoconfinement features and potential environmental applications, e.g. tandem catalysis, surface-enhanced Raman scattering (SERS) sensor, and visible-light-driven water treatment. Finally, we discuss challenges in studying nanoconfinement effects and outline future research directions to advance sustainable innovation. Opportunities for practical implementation exist at the intersection of fundamental studies and engineering disciplines, emphasizing the need for parallel efforts to establish system characterization standards and enable effective technological integration at scale.
Collapse
Affiliation(s)
- Haklae Lee
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Han Fu
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Kimberly A Gray
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
2
|
Wu Y, Deng P, Liu L, Zhang J, Liu H, Gao X, Xiao FS, Wang L. Dynamic evolution of metal structures on/in zeolites for catalysis. Chem Soc Rev 2025; 54:4745-4762. [PMID: 40192039 DOI: 10.1039/d5cs00035a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Dynamic changes of metal species always occur during catalysis, and primarily rely on forming mobile metal species initiated by thermal or chemical conditions. During these processes, a support is important in affecting the catalyst stability and dynamic change pathways. Among several supports, zeolites provide ideal features for regulating the migration of metal species due to their unique pore structures and specific defect sites. This review provides a comprehensive summary of typical cases about dynamic migration of metal species on/in metal-zeolite catalysts, analyzing the mechanisms and driving factors of metal migration under different reaction conditions. We discuss the roles of zeolite supports in the migration process of metal species, particularly their crucial contributions to the stability of metal species and the optimization of active sites. In addition, the potential mechanism of the dynamic migration of metal species, theoretical studies, and practical guidance for designing highly efficient catalysts are also included in this review.
Collapse
Affiliation(s)
- Yuexin Wu
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Zhejiang Baima Lake Laboratory, Hangzhou, 311121, China
| | - Pengcheng Deng
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Lujie Liu
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Junyi Zhang
- PetroChina Lanzhou Petrochemical Company, Lanzhou, 730000, China
| | - Haisheng Liu
- PetroChina Lanzhou Petrochemical Company, Lanzhou, 730000, China
| | - Xionghou Gao
- PetroChina Lanzhou Petrochemical Company, Lanzhou, 730000, China
| | - Feng-Shou Xiao
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Zhejiang Baima Lake Laboratory, Hangzhou, 311121, China
| | - Liang Wang
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Zhejiang Baima Lake Laboratory, Hangzhou, 311121, China
| |
Collapse
|
3
|
Hongna Z, Yue Z, Haili Q, Huhe B, Ruifen Z. Advances in Transition Metal-Containing Phosphate-Based Molecular Sieves: From Synthesis to Sustainable Applications. Chem Asian J 2025:e202401872. [PMID: 40377136 DOI: 10.1002/asia.202401872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 05/18/2025]
Abstract
Porous metal phosphate materials, such as aluminophosphates (AlPOs) and transition-metal-substituted phosphates, are attracting significant attention due to their tunable pore structures, enhanced thermal stability, and catalytic efficiency with diverse applications in catalysis, adsorption, and environmental remediation. However, these materials have been relatively underexplored compared to other porous materials with open frameworks, such as aluminosilicates and other silica-based structures. In this review paper, we trace the evolution of phosphate-based porous materials, starting with early breakthroughs in their synthesis, and provide a comprehensive review of recent advancements in the understanding and application of transition metal phosphate-based mesoporous materials, with a particular emphasis on their roles in sustainable chemical processes. By integrating foundational research with recent advancements, this review aims to provide a deeper insight into key challenges. These challenges include limited cooperation between fundamental research and industry, likely due to scalability issues, and the design of green and sustainable synthesis routes. The review also highlights future opportunities, such as enhancing industry-academic collaboration and integrating advanced characterization and computational tools to develop green and scalable synthesis methods, thereby unlocking the full potential of these materials for large-scale applications.
Collapse
Affiliation(s)
- Zheng Hongna
- Inner Mongolia University of Technology, Aimin Road 221, Hohhot, Inner Mongolia, 010062, China
| | - Zhang Yue
- Inner Mongolia Yitai Coal-Based New Materials Research Institute Co., Ltd, North Tianjiao Road, Dongsheng District, Ordos, Inner Mongolia, 017000, China
| | - Qin Haili
- Inner Mongolia University of Technology, Aimin Road 221, Hohhot, Inner Mongolia, 010062, China
| | - Bao Huhe
- Inner Mongolia University of Technology, Aimin Road 221, Hohhot, Inner Mongolia, 010062, China
| | - Zhao Ruifen
- Inner Mongolia University of Technology, Aimin Road 221, Hohhot, Inner Mongolia, 010062, China
| |
Collapse
|
4
|
Zhou H, Ye B, Fu H, Wei X, Ma Z, Yin H, Yuan Y, Liu Y. Alumina-supported palladium modified by zeolite Socony Mobil-5 for highly efficient selective hydrogenation of acetylene in excess ethylene. J Colloid Interface Sci 2025; 696:137907. [PMID: 40403482 DOI: 10.1016/j.jcis.2025.137907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 05/14/2025] [Accepted: 05/15/2025] [Indexed: 05/24/2025]
Abstract
Catalytic selective hydrogenation of acetylene plays an indispensable role during polymer-grade ethylene manufacturing. However, highly-efficient removal of acetylene while avoiding overhydrogenation poses a huge challenge, especially in the front-end configurations containing excess H2 and C2H4. To address the issue, our work aims to construct isolated active sites by modifying alumina-supported palladium (Pd/Al2O3) with Zeolite Socony Mobil-5 (ZSM-5) characterized by uniform micropores, which would spatially separate active metals without shielding them. A series of Pd/Al2O3@mZSM-5 composites were synthesized by adjusting the mass ratio of Pd/Al2O3 to ZSM-5 (corresponding to m in Pd/Al2O3@mZSM-5, where m = 1:1, 1:2, 1:3). The modification effect is confirmed by various characterizations. In situ diffusion reflectance infrared Fourier transform spectra (DRIFTS) of carbon monoxide indicates that surface Pd species in Pd/Al2O3@1:3ZSM-5 are efficiently segregated by the ZSM-5 framework, forming isolated Pd active sites with a partial negative charge. As expected, Pd/Al2O3@mZSM-5 composites exhibit much-improved selectivity toward ethylene compared with that of Pd/Al2O3. Moreover, the higher the amount of ZSM-5, the greater the selectivity. Notably, Pd/Al2O3@1:3ZSM-5 with an ultralow Pd loading of 211 ppm demonstrates exceptional selectivity and extraordinary hydrogenation activity within a broad operating temperature window of 125-250 °C. Specifically, it achieves near-complete conversion at 125 °C and delivers an outstanding specific activity of 8552 molC2H2 molPd-1 h-1 at 100 °C, the highest value ever reported under comparable selectivity. Additionally, control experiments using amorphous silica (aSiO2) and mesoporous Santa Barbara Amorphous-15 (SBA-15) as structural analogs of ZSM-5 highlight the irreplaceable role of microporous architecture in modifying Pd/Al2O3 to optimize the performance of acetylene semihydrogenation. According to in situ C2H4-DRIFTS, relative to Pd/Al2O3, the intensity of 2σ-bonded C2H4 is significantly suppressed on Pd/Al2O3@1:3ZSM-5 due to the isolated Pd active sites, which accounts for its excellent selectivity.
Collapse
Affiliation(s)
- Huiran Zhou
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Bohui Ye
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Huigen Fu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaolong Wei
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhongke Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Haonan Yin
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yangyang Yuan
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231 Zhejiang, China.
| | - Yang Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
5
|
Sun Y, Wang F, He L, Cai T, Wang X, Zhang T, Wang N, Sun Q. Integration of Ultrasmall Pt Clusters With Silanol Groups in Pure Silica Zeolites for Robust Formaldehyde Oxidation. Chemistry 2025; 31:e202500405. [PMID: 40150824 DOI: 10.1002/chem.202500405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 03/29/2025]
Abstract
Formaldehyde (HCHO) is a major indoor air pollutant that poses serious health risks. Catalytic oxidation of HCHO to CO2 and H2O at room temperature offers an efficient solution. Supported Pt nanoparticles are the most efficient catalysts, but challenges such as high cost and water resistant, limit their widespread application. Herein, we employ a ligand-protected direct hydrogen reduction strategy to encapsulate ultrafine Pt clusters within hydrophobic silicalite-1 zeolite. Cs-corrected scanning transmission electron microscopy, x-ray absorption, and solid nuclear magnetic resonance measurements confirmed that the Pt clusters are stabilized within zeolite channels by adjacent silanol groups. The optimized Pt@S-1-400H catalyst achieved complete HCHO removal at room temperature, with even low Pt loading of 0.1 wt%, affording a high specific activity of 171.9 molHCHO·molPt -1·h-1, representing the top level among all state-of-the-art Pt-based catalysts. Significantly, the hydrophobic nature of silicalite-1 ensures excellent water resistance and long-term stability for the Pt@S-1-400H catalyst. In situ infrared spectroscopy reveals that silanol sites facilitate HCHO adsorption and the formation of formate intermediates. The synergistic effect between Pt clusters and adjacent silanol sites enhances the HCHO oxidation performance. The simple and cost-effective approach, combined with its excellent activity and stability, holds significant potential for effectively eliminating indoor pollutants in practical applications.
Collapse
Affiliation(s)
- Yue Sun
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, Shandong, China
| | - Feng Wang
- Qingdao Xinding Wanxing New Materials Co., Ltd, No. 3600 Haixi Road, Huangdao District, Qingdao, Shandong, 266000, China
| | - Lulu He
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, Shandong, China
| | - Tao Cai
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, Shandong, China
| | - Xiaoyu Wang
- Qingdao Xinding Wanxing New Materials Co., Ltd, No. 3600 Haixi Road, Huangdao District, Qingdao, Shandong, 266000, China
| | - Tianjun Zhang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, Heibei, China
| | - Ning Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, Shandong, China
| | - Qiming Sun
- Innovation Canter for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
6
|
Koch CJ, Clairmonte DM, Ruiz-Yi B, Beaumont PR. Integrated Ammonia Capture and Exchange on Ion-Exchanged 4A Zeolites. Chemistry 2025:e202404634. [PMID: 40327397 DOI: 10.1002/chem.202404634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/30/2025] [Accepted: 05/06/2025] [Indexed: 05/08/2025]
Abstract
Ammonia poses a challenge in effluent gas streams due to its corrosive nature. However, in fusion settings tritiated ammonia can be formed, leading to both tritium loss in inventory and the generation of reactive species. Therefore, identifying pathways in which both tritium can be recovered, and the ammonia can be easily handled would be beneficial. One such way to do so would be to combine two useful techniques: ammonia sequestration and hydrogen exchange (ND3→NH3). However, materials that can both adsorb ammonia and subsequently perform reactions on ammonia have not been well explored. In this work, we present the development of ion-exchanged A-type zeolites to be utilized as a support material for platinum catalysts. In this way, the zeolite can adsorb ammonia and the platinum catalyst can facilitate hydrogen exchange allowing for bifunctional reactivity of the material to be achieved. A variety of elements were explored for their effect on A-type zeolites and resulted in an isotopic difference in the adsorption of ND3 and NH3, noting the use of deuterium as a surrogate for tritium. Several platinum-impregnated zeolites were able to remove ND3 from the gas stream, indicating that utilizing these materials in isotope recovery processes would improve accountability of these valuable hydrogen isotopes.
Collapse
Affiliation(s)
- Christopher J Koch
- Savannah River National Laboratory, Hydrogen Isotope Processing Science, Aiken, South Carolina, 29803, USA
| | - Daniel M Clairmonte
- Savannah River National Laboratory, Hydrogen Isotope Processing Science, Aiken, South Carolina, 29803, USA
| | - Benjamin Ruiz-Yi
- Savannah River National Laboratory, Hydrogen Isotope Processing Science, Aiken, South Carolina, 29803, USA
| | - Paul R Beaumont
- Savannah River National Laboratory, Hydrogen Isotope Processing Science, Aiken, South Carolina, 29803, USA
| |
Collapse
|
7
|
Chen W, Wang Y, Xu W, Li C, Yang Y, Zhu T. Identifying Spatially Segregated Ir Sites Within ZSM-5 for Enhanced Redox Cycle in NO x Reduction by CO. Angew Chem Int Ed Engl 2025; 64:e202425312. [PMID: 40090907 DOI: 10.1002/anie.202425312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/07/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
Developing high-performance Ir-based catalysts for selective catalytic reduction of NOx by CO (CO-SCR) under low temperatures remains challenging. This study presents an Ir-based catalyst encapsulated in Zeolite Socony Mobil-5 (Ir@ZSM-5), with Ir species partially confined in micropores (Irδ+) and partially aggregated on the surface (Ir0), achieving ∼88% NOx conversion at 230 °C in the presence of 5% O2 and 100 ppm SO2. The confined Irδ+ species exhibit enhanced stability and oxidation states, whereas surface-aggregated Ir0 species, with weaker oxygen coordination, remain in a metallic state. The dynamic equilibrium between Irδ+ and Ir0 significantly improves the balance of CO oxidation and NO reduction. O2 promotes the oxidation of Ir0 to Irδ+, whereas SO2 facilitates the reverse, forming a reversible cycle that sustains catalytic efficiency. This work underscores the strategic interplay of Ir valence states and highlights a pathway for designing stable, high-performance Ir-based catalysts tailored for CO-SCR under complex reaction conditions.
Collapse
Affiliation(s)
- Wanrong Chen
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yixi Wang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenqing Xu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chaoqun Li
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yang Yang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tingyu Zhu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
8
|
Pan D, Yu J, Du K, Yan K, Ding L, Zhang Y, Tang Y. Evaluation of the collaboration between intrinsic activity and diffusion: a descriptor for alkene epoxidation catalyzed by TS-1. Chem Sci 2025; 16:5931-5941. [PMID: 40060097 PMCID: PMC11884413 DOI: 10.1039/d5sc00987a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 02/28/2025] [Indexed: 04/04/2025] Open
Abstract
The systemic evaluation of the collaboration between intrinsic activity of active sites and the substrate/product diffusion rate is a key challenge for rational optimization of reaction performance in alkene epoxidation. Herein, we constructed a series of TS-1 catalysts with adjustable local microenvironments around active sites to explore their performance in alkene epoxidation. This was achieved by controlling the contributions of classical and non-classical routines during the crystallization process. Based on the characterization of active sites, product diffusion and their alkene epoxidation activity, we proposed a descriptor, R a/d, for quantitative evaluation of the collaboration between intrinsic activity and product diffusion in TS-1 catalysts. This descriptor successfully explains the catalytic performance of various TS-1 catalysts including commercial TS-1 and guides further improvement of TS-1 in different alkene epoxidations. The optimal R a/d is found in various epoxidations, corresponding to peak epoxidation performance across different substrates due to the well-balanced intrinsic activity and diffusion rate.
Collapse
Affiliation(s)
- Di Pan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University Shanghai 200433 P. R. China
| | - Jiayu Yu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University Shanghai 200433 P. R. China
| | - Ke Du
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University Shanghai 200433 P. R. China
| | - Kexin Yan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University Shanghai 200433 P. R. China
| | - Ling Ding
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University Shanghai 200433 P. R. China
| | - Yahong Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University Shanghai 200433 P. R. China
| | - Yi Tang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University Shanghai 200433 P. R. China
| |
Collapse
|
9
|
Liu T, Liu Z, Jiang S, Peng P, Liu Z, Chowdhury AD, Liu G. Selectivity control by zeolites during methanol-mediated CO 2 hydrogenation processes. Chem Soc Rev 2025; 54:2726-2761. [PMID: 39820326 DOI: 10.1039/d4cs01042f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The thermocatalytic conversion of CO2 with green or blue hydrogen into valuable energy and commodity chemicals such as alcohols, olefins, and aromatics emerges as one of the most promising strategies for mitigating global warming concerns in the future. This process can follow either a CO2-modified Fischer-Tropsch synthesis route or a methanol-mediated route, with the latter being favored for its high product selectivity beyond the Anderson-Schulz-Flory distribution. Despite the progress of the CO2-led methanol-mediated route over bifunctional metal/zeolite catalysts, challenges persist in developing catalysts with both high activity and selectivity due to the complexity of CO2 hydrogenation reaction networks and the difficulty in controlling C-O bond activation and C-C bond coupling on multiple active sites within zeolites. Moreover, the different construction and proximity modes of bifunctionality involving redox-based metallic sites and acidic zeolite sites have been explored, which have not been systematically reviewed to derive reliable structure-reactivity relationships. To bridge this "knowledge gap", in this review, we will provide a comprehensive and critical overview of contemporary research on zeolite-confined metal catalysts for alcohol synthesis and zeolite-based bifunctional tandem/cascade catalytic systems for C2+ hydrocarbons synthesis in CO2 hydrogenation via the methanol-mediated route. Accordingly, special emphasis will be placed on evaluating how confinement and proximity effects within the "redox-acid" bifunctional systems influence the reaction outcomes, particularly regarding product selectivity, which has also been analyzed from the mechanistic standpoint. This review will also examine the synergistic interactions among various catalyst components that govern catalysis, offering valuable insights for the rational design of new or improved catalyst systems. By discussing current challenges and recognizing future opportunities in CO2 hydrogenation using zeolite-based bifunctional catalysis, this review aims to contribute to the advancement of sustainable and efficient processes for CO2 valorization.
Collapse
Affiliation(s)
- Tangkang Liu
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Zhiyao Liu
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Shican Jiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China.
| | - Peng Peng
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Zhiqiang Liu
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Abhishek Dutta Chowdhury
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China.
| | - Guoliang Liu
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China.
| |
Collapse
|
10
|
Zhao G, Yang T, Liu J, Xu X, Wang Y, Zhang Y, Gao M, Xiong C, Ji H. Research Progress in Epoxidation of Light Small-Molecule Olefins. Molecules 2025; 30:1340. [PMID: 40142116 PMCID: PMC11944721 DOI: 10.3390/molecules30061340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Light olefins, as important bulk raw materials in the petrochemical industry, play an irreplaceable role in the development of the manufacturing industry and the economy. The epoxides of light olefins are important intermediates for the synthesis of polymers, drugs, and fine chemicals, and their green, efficient, and safe synthesis has attracted much attention. This review focuses on the research progress of light olefin epoxidation and elucidates traditional epoxidation methods, such as the chlorohydrin method. Although these processes have mature processes, they have drawbacks, including equipment corrosion, environmental pollution, poor safety, and high waste emissions. Special emphasis is placed on catalytic epoxidation systems using oxygen or organic peroxides as oxygen sources. For homogeneous catalytic systems, certain metal complexes exhibit high activity and selectivity yet are difficult to separate and recycle. Moreover, heterogeneous catalytic systems have become a research hotspot due to their advantages of easy separation and reusability, with supported metal catalysts being a prime example. Meanwhile, the effects of reaction temperature, pressure, solvent, etc., on epoxidation are explored. The specific reaction mechanisms are also studied and analyzed. Current research challenges, including enhancing catalyst stability and reducing costs, are summarized. In the future, developing highly efficient, green, and economically viable epoxidation technologies for large-scale industrial applications represents an important research direction in this field.
Collapse
Affiliation(s)
- Guanghui Zhao
- Daqing Petrochemical Research Center, PetroChina Petrochemical Research Institute, Da’qing 163714, China; (G.Z.); (J.L.); (X.X.); (Y.W.); (Y.Z.); (M.G.)
| | - Tianfu Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China;
| | - Jincheng Liu
- Daqing Petrochemical Research Center, PetroChina Petrochemical Research Institute, Da’qing 163714, China; (G.Z.); (J.L.); (X.X.); (Y.W.); (Y.Z.); (M.G.)
| | - Xianming Xu
- Daqing Petrochemical Research Center, PetroChina Petrochemical Research Institute, Da’qing 163714, China; (G.Z.); (J.L.); (X.X.); (Y.W.); (Y.Z.); (M.G.)
| | - Yulong Wang
- Daqing Petrochemical Research Center, PetroChina Petrochemical Research Institute, Da’qing 163714, China; (G.Z.); (J.L.); (X.X.); (Y.W.); (Y.Z.); (M.G.)
| | - Yongjun Zhang
- Daqing Petrochemical Research Center, PetroChina Petrochemical Research Institute, Da’qing 163714, China; (G.Z.); (J.L.); (X.X.); (Y.W.); (Y.Z.); (M.G.)
| | - Meng Gao
- Daqing Petrochemical Research Center, PetroChina Petrochemical Research Institute, Da’qing 163714, China; (G.Z.); (J.L.); (X.X.); (Y.W.); (Y.Z.); (M.G.)
| | - Chao Xiong
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongbing Ji
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China;
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
11
|
Li Q, Zhang J, Yu T, Chen J, Wang G, Shi Z, Zhuo R, Wang R. Advanced metal oxide catalysts for propane dehydrogenation: from design strategy to dehydrogenation performance. NANOSCALE 2025; 17:5629-5653. [PMID: 39931811 DOI: 10.1039/d4nr04482g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
Propane dehydrogenation (PDH) technology has been considered an important breakthrough to cope with the ever-increasing demand for propylene. Developing high-performance non-noble metal catalysts has emerged as an effective approach for replacing the currently used commercial Pt- and Cr-based catalysts with high cost and toxicity. Metal oxides have attracted much attention as PDH catalysts due to their high C-H activity, abundant active sites, and desirable dehydrogenation pathways. Regulating the supports and active sites through the rational design of structure and composition provides a new promising platform to improve the dehydrogenation activity and stability of metal oxide catalysts. This review systematically summarizes the catalytic mechanism of PDH. The rational design of metal oxide catalysts with suitable supports and precisely modulated active sites is described with their catalytic performances. In addition, the important roles played by reaction conditions to promote PDH processes are discussed. Furthermore, combined with well-developed advanced characterization methods, the in-depth exploration of the metal oxide-based PDH catalysts is highlighted. Finally, some perspectives for metal oxide-based PDH catalysts are concisely proposed to achieve their future innovations and industrialization.
Collapse
Affiliation(s)
- Qian Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Tong Yu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, China.
| | - Gang Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Zongbo Shi
- REZEL Catalysts Corporation, Shanghai 200120, China
| | - Runsheng Zhuo
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
- REZEL Catalysts Corporation, Shanghai 200120, China
| | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
12
|
Song B, Song W, Liang Y, Liu Y, Li B, Li H, Zhang L, Ma Y, Ye R, Tang BZ, Zhao D, Zhou Y, Liu B. Direct Synthesis of Topology-Controlled BODIPY and CO 2-Based Zirconium Metal-Organic Frameworks for Efficient Photocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2025; 64:e202421248. [PMID: 39742452 DOI: 10.1002/anie.202421248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/12/2024] [Accepted: 12/30/2024] [Indexed: 01/03/2025]
Abstract
Boron dipyrromethene (BODIPY)-based zirconium metal-organic frameworks (Zr-MOFs) possess strong light-harvesting capabilities and great potential for artificial photosynthesis without the use of sacrificial reagents. However, their direct preparation has not yet been achieved due to challenges in synthesizing suitable ligands. Herein, we reported the first successful direct synthesis of BODIPY-based Zr-MOFs, utilizing CO2 as a feedstock. By controlling synthetic conditions, we successfully obtained two distinct Zr-MOFs. The first, CO2-Zr6-DEPB, exhibits a face-centered cubic (fcu) topology based on a Zr6(μ3-O)4(μ3-OH)4 node, while the second, CO2-Zr12-DEPB, features a hexagonal closed packed (hcp) topology, structured around a Zr12(μ3-O)8(μ3-OH)8(μ2-OH)6 node. Both MOFs demonstrated excellent crystallinity, as verified through powder X-ray diffraction and high-resolution transmission electron microscopy analyses. These MOF catalysts displayed suitable photocatalytic redox potentials for the reduction of CO2 to CO using H2O as the electron donor in the absence of co-catalyst or toxic sacrificial reagent. Under light irradiation, CO2-Zr12-DEPB and CO2-Zr6-DEPB offered high CO yields of 16.72 and 13.91 μmol g-1 h-1, respectively, with nearly 100 % selectivity. CO2 uptake and photoelectrochemical experiments revealed key insights into the mechanisms driving the different catalytic activities of the two MOFs. These BODIPY and CO2-based, light-responsive Zr-MOFs represent a promising platform for the development of efficient photocatalysts.
Collapse
Affiliation(s)
- Bo Song
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Wentao Song
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yuhang Liang
- Shanghai Key Laboratory of High-Resolution Electron Microscopy & School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yong Liu
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Bowen Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - He Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Liang Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Yanhang Ma
- Shanghai Key Laboratory of High-Resolution Electron Microscopy & School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ruquan Ye
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yi Zhou
- Shanghai Key Laboratory of High-Resolution Electron Microscopy & School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| |
Collapse
|
13
|
Rajeev A, Mohammed TP, George A, Sankaralingam M. Direct Methane to Methanol Conversion: An Overview of Non-Syn Gas Catalytic Strategies. CHEM REC 2025; 25:e202400186. [PMID: 39817884 PMCID: PMC11811604 DOI: 10.1002/tcr.202400186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/25/2024] [Indexed: 01/18/2025]
Abstract
Direct methane to methanol conversion is a dream reaction in industrial chemistry, which takes inspiration from the biological methanol production catalysed by methane monooxygenase enzymes (MMOs). Over the years, extensive studies have been conducted on this topic by bioengineering the MMOs, and tailoring methods to isolate the MMOs in the active form. Similarly, remarkable achievements have been noted in other methane activation strategies such as the use of heterogeneous catalysts or molecular catalysts. In this review, we outline the methane metabolism performed by methanotrophs and detail the latest advancements in the active site structures and catalytic mechanisms of both types of MMOs. Also, recent progress in the bioinspired approaches using various heterogeneous catalysts, especially first-row transition metal zeolites and the mechanistic insights are discussed. In addition, studies using molecular complexes such as "Periana catalyst" for methane to methanol conversion through methyl ester formation in the presence of strong acids are also detailed. Compared to the progress noted in the metal zeolites-mediated methane activation field, the utilisation of molecular catalysts or MMOs for this application is still in its nascent phase and further research is required to overcome the limitations of these methods effectively.
Collapse
Affiliation(s)
- Anjana Rajeev
- Bioinspired & Biomimetic Inorganic Chemistry LaboratoryDepartment of ChemistryNational Institute of Technology CalicutKozhikode, Kerala673601India
| | - Thasnim P Mohammed
- Bioinspired & Biomimetic Inorganic Chemistry LaboratoryDepartment of ChemistryNational Institute of Technology CalicutKozhikode, Kerala673601India
| | - Akhila George
- Bioinspired & Biomimetic Inorganic Chemistry LaboratoryDepartment of ChemistryNational Institute of Technology CalicutKozhikode, Kerala673601India
| | - Muniyandi Sankaralingam
- Bioinspired & Biomimetic Inorganic Chemistry LaboratoryDepartment of ChemistryNational Institute of Technology CalicutKozhikode, Kerala673601India
| |
Collapse
|
14
|
Prameswari J, Chou PT, Hung MY, Peng PY, Lu YR, Chen CL, Tian HK, Lin YC. Boosted reverse water-gas shift activity via exsolved Cu and Ni in silicalite-1. Chem Commun (Camb) 2024; 60:14244-14247. [PMID: 39535590 DOI: 10.1039/d4cc04964k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The reverse water-gas shift (RWGS) reaction offers a sustainable approach for CO2 utilization, yielding CO for vital catalytic processes. This study compares the catalytic performance of exsolved Cu- and Ni-encapsulated silicalite-1 (S-1) catalysts against those prepared by impregnation methods. Exsolved catalysts, characterized by confined metal nanoparticles and distinct surface chemistry, exhibited higher CO selectivity and lower activation energies of CO formation than their impregnated counterparts. Surface and structural analyses revealed that the exsolution process enhanced RWGS activity, driven by altered metal-support interactions and unique adsorption behaviors, offering insights for improving the efficiency of RWGS catalysis.
Collapse
Affiliation(s)
- Jedy Prameswari
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Pei-Tung Chou
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Ming-Yuan Hung
- Program on Smart and Sustainable Manufacturing, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan 70101, Taiwan
| | - Po-Yang Peng
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chi-Liang Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Hong-Kang Tian
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
- Program on Smart and Sustainable Manufacturing, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan 70101, Taiwan
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Chuan Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
15
|
Abdul Nasir J, Beale AM, Catlow CRA. Understanding deNO x mechanisms in transition metal exchanged zeolites. Chem Soc Rev 2024; 53:11657-11691. [PMID: 39440717 DOI: 10.1039/d3cs00468f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Transition-metal-containing zeolites have wide-ranging applications in several catalytic processes including the selective catalytic reduction (SCR) of NOx species. To understand how transition metal ions (TMIs) can effect NOx reduction chemistry, both structural and mechanistic aspects at the atomic level are needed. In this review, we discuss the coordination chemistry of TMIs and their mobility within the zeolite framework, the reactivity of active sites, and the mechanisms and intermediates in the NH3-SCR reaction. We emphasise the key relationship between TMI coordination and structure and mechanism and discuss approaches to enhancing catalytic activity via structural modifications.
Collapse
Affiliation(s)
- Jamal Abdul Nasir
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| | - Andrew M Beale
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, R92 Harwell, Oxfordshire OX11 0FA, UK
| | - C Richard A Catlow
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, R92 Harwell, Oxfordshire OX11 0FA, UK
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| |
Collapse
|
16
|
Shelyapina MG. NMR Relaxation to Probe Zeolites: Mobility of Adsorbed Molecules, Surface Acidity, Pore Size Distribution and Connectivity. Molecules 2024; 29:5432. [PMID: 39598821 PMCID: PMC11597874 DOI: 10.3390/molecules29225432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Unique structural and chemical properties, such as ion exchange, developed inner surface, etc., as well as the wide possibilities and flexibility of regulating these properties, cause a keen interest in zeolites. They are widely used in industry as molecular sieves, ion exchangers and catalysts. Current trends in the development of zeolite-based catalysts include the adaptation of their cationic composition, acidity and porosity for a specific catalytic process. Recent studies have shown that mesoporosity is beneficial to the rational design of catalysts with controlled product selectivity and an improved catalyst lifetime due to its efficient mass-transport properties. Nuclear magnetic resonance (NMR) has proven to be a reliable method for studying zeolites. Solid-state NMR spectroscopy allows for the quantification of both Lewis and Brønsted acidity in zeolite catalysts and, nowadays, 27Al and 29Si magic angle spinning NMR spectroscopy has become firmly established in the set of approved methods for characterizing zeolites. The use of probe molecules opens up the possibility for the indirect measurement of the characteristics of acid sites. NMR relaxation is less common, although it is especially informative and enlightening for studying the mobility of guest molecules in the porous matrix. Moreover, the NMR relaxation of guest molecules and NMR cryoporometry can quantify pore size distribution on a broader scale (compared to traditional methods), which is especially important for systems with complex pore organization. Over the last few years, there has been a growing interest in the use of 2D NMR relaxation techniques to probe porous catalysts, such as 2D T1-T2 correlation to study the acidity of the surface of catalysts and 2D T2-T2 exchange to study pore connectivity. This contribution provides a comprehensive review of various NMR relaxation techniques for studying porous media and recent results of their applications in probing micro- and mesoporous zeolites, mainly focused on the mobility of adsorbed molecules, the acidity of the zeolite surface and the pore size distribution and connectivity of zeolites with hierarchical porosity.
Collapse
Affiliation(s)
- Marina G Shelyapina
- Department of Nuclear Physics Research Methods, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg 199034, Russia
| |
Collapse
|
17
|
Sarabyar S, Farahbakhsh A, Tahmasebi HA, Mahmoodzadeh Vaziri B, Khosroyar S. Enhancing photocatalytic degradation of beta-blocker drugs using TiO 2 NPs/zeolite and ZnO NPs/zeolite as photocatalysts: optimization and kinetic investigations. Sci Rep 2024; 14:27390. [PMID: 39521784 PMCID: PMC11550835 DOI: 10.1038/s41598-024-73888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
This study delves into the development and optimization of photocatalysts, namely ZnO NPs/Zeolite and TiO2 NPs/Zeolite, for the degradation of two beta-blocker drugs, including Atenolol (AT) and Metoprolol (ME). Structural and morphological analyses of the catalysts were conducted, and optimal conditions for drug degradation were determined using a Box-Behnken design. The results underscored the significant influence of pH, catalyst amount, drug concentration, and H2O2 concentration on the degradation process using ZnO NPs/Zeolite and TiO2 NPs/Zeolite as the catalysts. The optimal values of drug concentration, pH, catalyst amount, and H2O2 concentration, were determined to be 32 and 33 mg L-1, 4.2 and 4.6, 428 and 386 mg, and 2.6 and 2.5 mM utilizing ZnO NPs/Zeolite and TiO2 NPs/Zeolite as the catalyst, respectively. Following optimization, the kinetics of the photodegradation process were investigated, revealing promising rates and half-life times for both drugs. The pseudo-first-order rate constants for Atenolol and Metoprolol degradation were 0.064 ± 0.007 min-1 and 0.065 ± 0.004 min-1 with ZnO NPs/Zeolite and 0.071 ± 0.007 min-1 and 0.071 ± 0.006 min-1 with TiO2 NPs/Zeolite, respectively. Furthermore, ZnO NPs/Zeolite and TiO2 NPs/Zeolite demonstrated reusability up to 5 and 6 times, respectively, without significant activity loss. The comparative analysis highlighted the superior performance of TiO2 NPs/Zeolite over ZnO NPs/Zeolite, attributed to lower consumption, shorter degradation time, improved reusability, and compatibility with milder acidic conditions. Overall, the research showcases the potential of ZnO NPs/Zeolite and TiO2 NPs/Zeolite as an effective and sustainable solution for removing Metoprolol and Atenolol contaminants.
Collapse
Affiliation(s)
- Sara Sarabyar
- Department of Chemical Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran
| | - Afshin Farahbakhsh
- Department of Chemical Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran.
| | - Hamzeh Ali Tahmasebi
- Department of Chemical Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran
| | | | - Susan Khosroyar
- Department of Chemical Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran
| |
Collapse
|
18
|
Manal AK, Shivhare A, Lande S, Srivastava R. Synergistic catalysis for promoting selective C-C/C-O cleavage in plastic waste: structure-activity relationship and rational design of heterogeneous catalysts for liquid hydrocarbon production. Chem Commun (Camb) 2024; 60:13143-13168. [PMID: 39431918 DOI: 10.1039/d4cc03261f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Ever-increasing consumption of plastic products and poor waste management infrastructure have resulted in a massive accumulation of plastic waste in environments, causing adverse effects on climate and living organisms. Although contributing ∼10% towards the total plastic waste management infrastructure, the chemical recycling of plastic waste is considered a viable option to valorize plastic waste into platform chemicals and liquid fuels. Among the various chemical upcycling processes, catalytic hydroprocessing has attracted interest due to its potential to offer higher selectivity than other thermal-based approaches. Heterogeneous catalytic hydroprocessing reactions offer routes for converting plastic waste into essential industrially important molecules. However, the functional group similarities in the plastic polymers frequently constrain reaction selectivity. Therefore, a fundamental understanding of metal selection for targeted bond activation and plastic interaction on solid surfaces is essential for catalyst design and reaction engineering. In this review, we critically assess the structure-activity relationship of catalysts used in the hydroprocessing of plastic waste for the selective production of liquid hydrocarbons. We discuss the significance of C-C/C-O bond activation in plastic waste through active site modulation and surface modification to elucidate reaction networks and pathways for achieving selective bond activation and cleavage. Finally, we highlight current challenges and future opportunities in catalyst design to upcycle real-life plastic waste and produce selective liquid hydrocarbons.
Collapse
Affiliation(s)
- Arjun K Manal
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140001, Punjab, India.
| | - Atal Shivhare
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140001, Punjab, India.
| | - Sharad Lande
- Research & Development, Reliance Industries Ltd, Thane Belapur Road, Ghansoli, Navi Mumbai-400701, India
| | - Rajendra Srivastava
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140001, Punjab, India.
| |
Collapse
|
19
|
Su C, Zou S, Li J, Wang L, Huang J. Supporting Nano Catalysts for the Selective Hydrogenation of Biomass-derived Compounds. CHEMSUSCHEM 2024; 17:e202400602. [PMID: 38760993 DOI: 10.1002/cssc.202400602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
The selective hydrogenation of biomass derivatives presents a promising pathway for the production of high-value chemicals and fuels, thereby reducing reliance on traditional petrochemical industries. Recent strides in catalyst nanostructure engineering, achieved through tailored support properties, have significantly enhanced the hydrogenation performance in biomass upgrading. A comprehensive understanding of biomass selective upgrading reactions and the current advancement in supported catalysts is crucial for guiding future processes in renewable biomass. This review aims to summarize the development of supported nanocatalysts for the selective hydrogenation of the US DOE's biomass platform compounds derivatives into valuable upgraded molecules. The discussion includes an exploration of the reaction mechanisms and conditions in catalytic transfer hydrogenation (CTH) and high-pressure hydrogenation. By thoroughly examining the tailoring of supports, such as metal oxide catalysts and porous materials, in nano-supported catalysts, we elucidate the promoting role of nanostructure engineering in biomass hydrogenation. This endeavor seeks to establish a robust theoretical foundation for the fabrication of highly efficient catalysts. Furthermore, the review proposes prospects in the field of biomass utilization and address application bottlenecks and industrial challenges associated with the large-scale utilization of biomass.
Collapse
Affiliation(s)
- Chunjing Su
- School of Chemical and Biomolecular Engineering, The University of Sydney, New South Wales, 2008, Sydney, Australia
| | - Sibei Zou
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, New South Wales, 2006, Sydney, Australia
| | - Jiaquan Li
- School of Chemical and Biomolecular Engineering, The University of Sydney, New South Wales, 2008, Sydney, Australia
| | - Lizhuo Wang
- School of Chemical and Biomolecular Engineering, The University of Sydney, New South Wales, 2008, Sydney, Australia
| | - Jun Huang
- School of Chemical and Biomolecular Engineering, The University of Sydney, New South Wales, 2008, Sydney, Australia
| |
Collapse
|
20
|
Cánovas M, Gracia A, Sayós R, Gamallo P. CO 2 Hydrogenation on Ru Single-Atom Catalyst Encapsulated in Silicalite: a DFT and Microkinetic Modeling Study. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:16551-16562. [PMID: 39380971 PMCID: PMC11459948 DOI: 10.1021/acs.jpcc.4c05941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024]
Abstract
The critical levels of CO2 emissions reached in the past decade have encouraged researchers into finding techniques to reduce the amount of anthropogenic CO2 expelled to the atmosphere. One possibility is to capture the produced CO2 from the source of emission or even from air (i.e., direct air capture) by porous materials (e.g., zeolites and MOFs). Among the different usages of captured CO2, its conversion into light fuels such as methane, methanol, and formic acid is essential for ensuring the long-awaited circular economy. In the last years, single-atom catalysts encapsulated in zeolites have been considered to this purpose since they exhibit a high selectivity and activity with the minimum expression of catalytic species. In this study, a detailed mechanism composed by 47 elementary reactions, 42 of them in both forward and reverse directions and 5 of them that correspond to the desorption of gas products just forwardly studied), has been proposed for catalytic CO2 hydrogenation over Ru SAC encapsulated in silicate (Ru1@S-1). Periodic density functional theory (DFT) calculations along with microkinetic modeling simulations at different temperatures and pressures were performed to evaluate the evolution of species over time. The analysis of the results shows that carbon monoxide is the main gas produced, followed by formic acid and formaldehyde. The rate analysis shows that CO(g) is formed mainly through direct dissociation of CO2 (i.e., redox mechanism), whereas COOH formation is assisted by OH. Moreover, the Campbell's degree of rate control analysis suggests that the determining steps for the formation of CO(g) and CH2O(g) gas species are their own desorption processes. The results obtained are in line with recent experimental and theoretical results showing that Ru1 SACs are highly selective to CO(g), whereas few atom clusters as Ru4 increase selectivity toward methane formation.
Collapse
Affiliation(s)
- Manuel
A. Cánovas
- Departament de Ciència
de Materials i Química Física & Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C. Martí i Franquès, 1, 08028 Barcelona, Spain
| | - Alejandro Gracia
- Departament de Ciència
de Materials i Química Física & Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C. Martí i Franquès, 1, 08028 Barcelona, Spain
| | - Ramón Sayós
- Departament de Ciència
de Materials i Química Física & Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C. Martí i Franquès, 1, 08028 Barcelona, Spain
| | - Pablo Gamallo
- Departament de Ciència
de Materials i Química Física & Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C. Martí i Franquès, 1, 08028 Barcelona, Spain
| |
Collapse
|
21
|
Li C, He G, Qu Z, Zhang K, Guo L, Zhang T, Zhang J, Sun Q, Mei D, Yu J. Highly Dispersed Pd-CeO x Nanoparticles in Zeolite Nanosheets for Efficient CO 2-Mediated Hydrogen Storage and Release. Angew Chem Int Ed Engl 2024; 63:e202409001. [PMID: 38990826 DOI: 10.1002/anie.202409001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024]
Abstract
Formic acid (FA) dehydrogenation and CO2 hydrogenation to FA/formate represent promising methodologies for the efficient and clean storage and release of hydrogen, forming a CO2-neutral energy cycle. Here, we report the synthesis of highly dispersed and stable bimetallic Pd-based nanoparticles, immobilized on self-pillared silicalite-1 (SP-S-1) zeolite nanosheets using an incipient wetness co-impregnation technique. Owing to the highly accessible active sites, effective mass transfer, exceptional hydrophilicity, and the synergistic effect of the bimetallic species, the optimized PdCe0.2/SP-S-1 catalyst demonstrated unparalleled catalytic performance in both FA dehydrogenation and CO2 hydrogenation to formate. Remarkably, it achieved a hydrogen generation rate of 5974 molH2 molPd -1 h-1 and a formate production rate of 536 molformate molPd -1 h-1 at 50 °C, surpassing most previously reported heterogeneous catalysts under similar conditions. Density functional theory calculations reveal that the interfacial effect between Pd and cerium oxide clusters substantially reduces the activation barriers for both reactions, thereby increasing the catalytic performance. Our research not only showcases a compelling application of zeolite nanosheet-supported bimetallic nanocatalysts in CO2-mediated hydrogen storage and release but also contributes valuable insights towards the development of safe, efficient, and sustainable hydrogen technologies.
Collapse
Affiliation(s)
- Chengxu Li
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| | - Guangyuan He
- School of Materials Science and Engineering and School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Ziqiang Qu
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| | - Kai Zhang
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| | - Liwen Guo
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| | - Tianjun Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, P. R. China
| | - Qiming Sun
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| | - Donghai Mei
- School of Materials Science and Engineering and School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Center of Future Science, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
22
|
Ding S, Fernandez Ainaga DL, Hu M, Qiu B, Khalid U, D'Agostino C, Ou X, Spencer B, Zhong X, Peng Y, Hondow N, Theodoropoulos C, Jiao Y, Parlett CMA, Fan X. Spatial segregation of catalytic sites within Pd doped H-ZSM-5 for fatty acid hydrodeoxygenation to alkanes. Nat Commun 2024; 15:7718. [PMID: 39231994 PMCID: PMC11375062 DOI: 10.1038/s41467-024-51925-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
Spatial control over features within multifunctional catalysts can unlock efficient one-pot cascade reactions, which are themselves a pathway to aviation biofuels via hydrodeoxygenation. A synthesis strategy that encompasses spatial orthogonality, i.e., one in which different catalytic species are deposited exclusively within discrete locations of a support architecture, is one solution that permits control over potential interactions between different sites and the cascade process. Here, we report a Pd doped hierarchical zeolite, in which Pd nanoparticles are selectively deposited within the mesopores, while acidity is retained solely within the micropores of ZSM-5. This spatial segregation facilitates hydrodeoxygenation while suppressing undesirable decarboxylation and decarbonation, yielding significant enhancements in activity (30.6 vs 3.6 moldodecane molPd-1 h-1) and selectivity (C12:C11 5.2 vs 1.9) relative to a conventionally prepared counterpart (via wet impregnation). Herein, multifunctional material design can realise efficient fatty acid hydrodeoxygenation, thus advancing the field and inspiring future developments in rationalised catalyst design.
Collapse
Affiliation(s)
- Shengzhe Ding
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
- Institute of Catalysis Science, Beijing Research Institute of Chemical Industry, Sinopec, Beijing, 100013, China
| | | | - Min Hu
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Boya Qiu
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Ushna Khalid
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Carmine D'Agostino
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
- Dipartimento di Ingegneria Civile, Chimica, Università di Bologna, 40131, Bologna, Italy
| | - Xiaoxia Ou
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo, 315100, China
| | - Ben Spencer
- Henry Royce Institute, The University of Manchester, Manchester, M13 9PL, UK
- Department of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Xiangli Zhong
- Henry Royce Institute, The University of Manchester, Manchester, M13 9PL, UK
- Department of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Yani Peng
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Nicole Hondow
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Yilai Jiao
- Shenyang National Laboratory for Materials Science, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Christopher M A Parlett
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK.
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK.
- University of Manchester at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK.
- UK Catalysis Hub, Rutherford Appleton Laboratory, Harwell, Oxfordshire, OX11 0FA, UK.
| | - Xiaolei Fan
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK.
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo, 315100, China.
- Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, China.
| |
Collapse
|
23
|
Lu N, Liu F. Tempospatially Confined Catalytic Membranes for Advanced Water Remediation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311419. [PMID: 38345861 DOI: 10.1002/adma.202311419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/03/2024] [Indexed: 02/28/2024]
Abstract
The application of homogeneous catalysts in water remediation is limited by their excessive chemical and energy input, weak regenerability, and potential leaching. Heterogeneous catalytic membranes (CMs) offer a new approach to facilitate efficient, selective, and continuous pollutant degradation. Thus, integrating membranes and continuous filtration with heterogeneous advanced oxidation processes (AOPs) can promote thermodynamic and kinetic mass transfers in spatially confined intrapores and facilitate diffusion-reaction processes. Despite the remarkable advantages of heterogeneous CMs, their engineering application is practically restricted due to the fuzzy design criteria for specific applications. Herein, the recent advances in CMs for advanced water remediation are critically reviewed and the design flow for tempospatially confined CMs is proposed. Further, state-of-the-art CM materials and their catalytic mechanisms are reviewed, after which the tempospatial confinement mechanisms comprising the nanoconfinement effect, interface effect, and kinetic mass transfer are emphasized, thus clarifying their roles in the construction and performance optimization of CMs. Additionally, the fabrication methods for CMs based on their catalysts and pore sizes are summarized and an overview of their application and performance evaluations is presented. Finally, future directions for CMs in materials research and water treatment, are presented.
Collapse
Affiliation(s)
- Na Lu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Fu Liu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
24
|
Tian G, Chen G, Yang G, Diao Z, Bai R, Han J, Guan B, Yu J. Construction of Metal/Zeolite Hybrid Nanoframe Reactors via in-Situ-Kinetics Transformations. ACS CENTRAL SCIENCE 2024; 10:1473-1480. [PMID: 39220692 PMCID: PMC11363334 DOI: 10.1021/acscentsci.4c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 09/04/2024]
Abstract
Metal/zeolite hybrid nanoframes featuring highly accessible compartmental environments, abundant heterogeneous interfaces, and diverse chemical compositions are expected to possess significant potential for heterogeneous catalysis, yet their general synthetic methodology has not yet been established. In this study, we developed a two-step in-situ-kinetics transformation approach to prepare metal/ZSM-5 hybrid nanoframes with exceptionally open nanostructures, tunable metal compositions, and abundant accessible active sites. Initially, the process involved the formation of single-crystalline ZSM-5 nanoframes through an anisotropic etching and recrystallization kinetic transformation process. Subsequently, through an in situ reaction of the Ni2+ ions and the silica species etched from ZSM-5 nanoframes, layered nickel silicate emerged on both the inner and outer surfaces of the zeolite nanoframes. Upon reduction under a hydrogen atmosphere, well-dispersed Ni nanoparticles were produced and immobilized onto the ZSM-5 nanoframes. Strikingly, this strategy can be extended to immobilize a variety of ultrasmall monometallic and bimetallic alloy nanoparticles on zeolite nanoframes. Benefiting from the structural and compositional advantages, the resultant hybrid nanoframes with a high loading of discrete Ni nanoparticles exhibited enhanced performance in the hydrodeoxygenation of stearic acid into liquid fuels. Overall, the methodology shares fresh insights into the rational construction of intricate frame-like metal/zeolite hybrid nanoreactors for many potential catalytic applications.
Collapse
Affiliation(s)
- Ge Tian
- State
Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College
of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Guangrui Chen
- State
Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College
of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
- International
Center of Future Science, Jilin University, Changchun 130012, People’s Republic of China
| | - Guoju Yang
- State
Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College
of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Zhenheng Diao
- State
Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College
of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
- School
of Chemical Engineering, Changchun University
of Technology, Changchun 130012, People’s
Republic of China
| | - Risheng Bai
- State
Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College
of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Ji Han
- State
Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College
of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Buyuan Guan
- State
Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College
of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
- International
Center of Future Science, Jilin University, Changchun 130012, People’s Republic of China
| | - Jihong Yu
- State
Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College
of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
- International
Center of Future Science, Jilin University, Changchun 130012, People’s Republic of China
| |
Collapse
|
25
|
Halmagyi TG, Noureen L, Szerlauth A, Szilagyi I. Engineering inorganic nanozyme architectures for decomposition of reactive oxygen species. Dalton Trans 2024; 53:14132-14138. [PMID: 39133078 DOI: 10.1039/d4dt01874e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Enzyme-mimicking nanomaterials (nanozymes) with antioxidant activity are at the forefront of research efforts towards biomedical and industrial applications. The selection of enzymatically active substances and their incorporation into novel inorganic nanozyme structures is critically important for this field of research. To this end, the fabrication of composites can be desirable as these can either exhibit multiple enzyme-like activities in a single material or show increased activity compared to the nanozyme components. Conversely, by modifying the structure of a nanomaterial, enzyme-like activities can be induced in formerly inert particles. We identify herein the three main routes of composite nanozyme synthesis, namely, surface functionalization of a particle with another compound, heteroaggregation of individual nanozymes, and modification of the bulk nanozyme structure to achieve optimal antioxidant activity. We discuss in particular the different inorganic support materials used in the synthesis of nanozyme architectures and the advantages brought forth by the use of composites.
Collapse
Affiliation(s)
- Tibor G Halmagyi
- MTA-SZTE Momentum Biocolloids Research Group, Department of Physical Chemistry and Materials Science, Interdisciplinary Centre of Excellence, University of Szeged, 6720 Szeged, Hungary.
| | - Laila Noureen
- MTA-SZTE Momentum Biocolloids Research Group, Department of Physical Chemistry and Materials Science, Interdisciplinary Centre of Excellence, University of Szeged, 6720 Szeged, Hungary.
| | - Adél Szerlauth
- MTA-SZTE Momentum Biocolloids Research Group, Department of Physical Chemistry and Materials Science, Interdisciplinary Centre of Excellence, University of Szeged, 6720 Szeged, Hungary.
| | - Istvan Szilagyi
- MTA-SZTE Momentum Biocolloids Research Group, Department of Physical Chemistry and Materials Science, Interdisciplinary Centre of Excellence, University of Szeged, 6720 Szeged, Hungary.
| |
Collapse
|
26
|
Xu J, Han P, Jin Y, Lu H, Sun B, Gao B, He T, Xu X, Pinna N, Wang G. Hybrid Molecular Sieve-Based Interfacial Layer with Physical Confinement and Desolvation Effect for Dendrite-free Zinc Metal Anodes. ACS NANO 2024; 18:18592-18603. [PMID: 38949082 DOI: 10.1021/acsnano.4c04632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The side reactions and dendrite growth at the interface of Zn anodes greatly limit their practical applications in Zn metal batteries. Herein, we propose a hybrid molecular sieve-based interfacial layer (denoted as Z7M3) with a hierarchical porous structure for Zn metal anodes, which contains 70 vol % microporous ZSM-5 molecular sieves and 30 vol % mesoporous MCM-41 molecular sieves. Through comprehensive molecular dynamics simulations, we demonstrate that the mesopores (∼2.5 nm) of MCM-41 can limit the disordered diffusion of free water molecules and increase the wettability of the interfacial layer toward aqueous electrolytes. In addition, the micropores (∼0.56 nm) of ZSM-5 can optimize the Zn2+ solvation structures by reducing the bonded water molecules, which simultaneously decrease the constraint force of solvated water molecules to Zn2+ ions, thus promoting the penetrability and diffusion kinetics of Zn2+ ions in Z7M3. The synergetic effects from the hybrid molecular sieves maintain a constant Zn2+ concentration on the surface of the Zn electrode during Zn deposition, contributing to dendrite-free Zn anodes. Consequently, Z7M3-coated Zn electrodes achieved excellent cycling stability in both half and full cells.
Collapse
Affiliation(s)
- Jing Xu
- Research Center of Grid Energy Storage and Battery Application, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Pingan Han
- Research Center of Grid Energy Storage and Battery Application, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yang Jin
- Research Center of Grid Energy Storage and Battery Application, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Hongfei Lu
- Research Center of Grid Energy Storage and Battery Application, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Sun
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Beibei Gao
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Tingting He
- School of Electrical Engineering, Beijing Jiaotong University, No. 3 Shangyuan Cun, Haidian District, Beijing 100044, China
| | - Xiaoxue Xu
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Nicola Pinna
- Department of Chemistry and the Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, Berlin 12489, Germany
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| |
Collapse
|
27
|
Mu Y, Jiao Y, Wang X, Williams PT. Effect of support structure of Pt/silicaite-1 catalyst on non-thermal plasma (NTP) assisted chlorobenzene degradation and PCDD/Fs formation. CHEMOSPHERE 2024; 359:142294. [PMID: 38734247 DOI: 10.1016/j.chemosphere.2024.142294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Development of efficient catalysts for non-thermal plasma (NTP) assisted catalysis to mitigate the formation of harmful by-products is a significant challenge in the degradation of chlorinated volatile organic compounds (Cl-VOCs). In this study, catalytically active Pt nanoparticles supported on non-porous SiO2 and silicalite-1 zeolites (S1) with different pore structure were comparatively investigated for catalytic chlorobenzene degradation under NTP condition. It was shown that the pore structure could significantly impact the metal size and metal dispersion rate. Pt supported on modified S1 hierarchical meso-micro-porous silicalite-1 (Pt/D-S1) exhibited the smallest particle size (∼6.19 nm) and the highest dispersion rate (∼1.87). Additionally, Pt/D-S1 demonstrated superior catalytic performance compared to the other catalysts, achieving the highest chlorobenzene conversion and COx selectivity at about 80% and 75%, respectively. Furthermore, the pore structure also affected the formation of by-products according to the findings from GC-MS analysis. Pt/SiO2 generated a total of 18 different species of organic compounds, whereas only 12 species of organic by-products were identified in the Pt/D-S1 system (e.g. polychlorinated compounds like 3,4 dichlorophenol were exclusively identified in Pt/SiO2). Moreover, dioxin-like polychlorinated biphenyl and other chlorinated organic compounds, which have potential to form highly toxic dioxins, were detected in the catalysts. HRGC-HRMS confirmed and quantified the 17 different dioxin/furans formed on Pt/SiO2 (25,100 ng TEQ kg-1), Pt/S1 (515 ng TEQ kg-1) and Pt/D-S1 (367 ng TEQ kg-1). The correlation between synthesis-structure-performance in this study provides insights into the design of catalysts for deep oxidation of Cl-VOCs in NTP system.
Collapse
Affiliation(s)
- Yibing Mu
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Yilai Jiao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, 110016, China
| | - Xinrui Wang
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Paul T Williams
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
28
|
Feng J, Duan J, Hung CT, Zhang Z, Li K, Ai Y, Yang C, Zhao Y, Yu Z, Zhang Y, Wang L, Zhao D, Li W. Micelles Cascade Assembly to Tandem Porous Catalyst for Waste Plastics Upcycling. Angew Chem Int Ed Engl 2024; 63:e202405252. [PMID: 38644634 DOI: 10.1002/anie.202405252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 04/23/2024]
Abstract
Catalytic upcycling of polyolefins into high-value chemicals represents the direction in end-of-life plastics valorization, but poses great challenges. Here, we report the synthesis of a tandem porous catalyst via a micelle cascade assembly strategy for selectively catalytic cracking of polyethylene into olefins at a low temperature. A hierarchically porous silica layer from mesopore to macropore is constructed on the surface of microporous ZSM-5 nanosheets through cascade assembly of dynamic micelles. The outer macropore arrays can adsorb bulky polyolefins quickly by the capillary and hydrophobic effects, enhancing the diffusion and access to active sites. The middle mesopores present a nanoconfinement space, pre-cracking polyolefins into intermediates by weak acid sites, which then transport into zeolites micropores for further cracking by strong Brønsted acid sites. The hierarchically porous and acidic structures, mimicking biomimetic protease catalytic clefts, ideally match the tandem cracking steps of polyolefins, thus suppressing coke formation and facilitating product escape. As a result, light hydrocarbons (C1-C7) are produced with a yield of 443 mmol gZSM-5 -1, where 74.3 % of them are C3-C6 olefins, much superior to ZSM-5 and porous silica catalysts. This tandem porous catalyst exemplifies a superstructure design of catalytic cracking catalysts for industrial and economical upcycling of plastic wastes.
Collapse
Affiliation(s)
- Jiayou Feng
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai, 200433, China
| | - Jindi Duan
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chin-Te Hung
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai, 200433, China
| | - Zhenghao Zhang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai, 200433, China
| | - Kailin Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai, 200433, China
| | - Yan Ai
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai, 200433, China
| | - Chaochao Yang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai, 200433, China
| | - Yiyue Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai, 200433, China
| | - Zhengmin Yu
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd., 116045, Dalian, China
| | - Yahong Zhang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai, 200433, China
| | - Liang Wang
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dongyuan Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai, 200433, China
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai, 200433, China
| |
Collapse
|
29
|
Bian C, Luo X, Chen X, Liu R, Li J, Zhu G, Xu H, Han S, Zhu J, Zhu L. One-Pot Synthesis of Ce-SSZ-39 Zeolite with Performance in the NH 3-SCR Reaction. Inorg Chem 2024; 63:10798-10808. [PMID: 38781309 DOI: 10.1021/acs.inorgchem.4c01509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Cu-SSZ-39 zeolite with 8-membered rings is regarded as a very promising catalyst in the NH3-SCR reaction, but its hydrothermal stability still remains to be improved. One of the solutions to promote hydrothermal stability is the insertion of rare earth elements in the product. Nevertheless, normal ion exchange of rare earth elements limits their contents in the zeolite product due to their large hydrated ionic radius and alkaline environment under hydrothermal conditions. Herein, we for the first time present a new method for the one-pot synthesis of Ce-SSZ-39 zeolite under solvent-free conditions. The key to success is the use of Ce-FAU zeolite as a precursor. The obtained product shows good crystallinity, sheet-like morphology, large BET surface area, and 4-coordinated Al species. Detailed investigations illustrate that Ce species in the Cu/Ce-SSZ-39 zeolite micropore can prevent the dealumination and thus formation of CuAlOx species during hydrothermal aging at 850 °C for 16 h, giving the excellent hydrothermal stability and thus showing the excellent catalytic performance in the NH3-SCR reaction. One-pot synthesis of Ce-SSZ-39 zeolite with excellent catalytic performance might open a new door for developing very efficient selective catalytic reduction (SCR) catalysts in near future.
Collapse
Affiliation(s)
- Chaoqun Bian
- Pharmaceutical and Material Engineering School, Jinhua Polytechnic, Jinhua 321000, P. R. China
| | - Xiaohui Luo
- Pharmaceutical and Material Engineering School, Jinhua Polytechnic, Jinhua 321000, P. R. China
| | - Xiao Chen
- Pharmaceutical and Material Engineering School, Jinhua Polytechnic, Jinhua 321000, P. R. China
| | - Rongrong Liu
- Pharmaceutical and Material Engineering School, Jinhua Polytechnic, Jinhua 321000, P. R. China
| | - Jingqiu Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Gaoyuan Zhu
- Pharmaceutical and Material Engineering School, Jinhua Polytechnic, Jinhua 321000, P. R. China
| | - Hao Xu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, P. R. China
| | - Shichao Han
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Jie Zhu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Longfeng Zhu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| |
Collapse
|
30
|
Deng M, Wang D, Li Y. General Design Concept of High-Performance Single-Atom-Site Catalysts for H 2O 2 Electrosynthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314340. [PMID: 38439595 DOI: 10.1002/adma.202314340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/25/2024] [Indexed: 03/06/2024]
Abstract
Hydrogen peroxide (H2O2) as a green oxidizing agent is widely used in various fields. Electrosynthesis of H2O2 has gradually become a hotspot due to its convenient and environment-friendly features. Single-atom-site catalysts (SASCs) with uniform active sites are the ideal catalysts for the in-depth study of the reaction mechanism and structure-performance relationship. In this review, the outstanding achievements of SASCs in the electrosynthesis of H2O2 through 2e- oxygen reduction reaction (ORR) and 2e- water oxygen reaction (WOR) in recent years, are summarized. First, the elementary steps of the two pathways and the roles of key intermediates (*OOH and *OH) in the reactions are systematically discussed. Next, the influence of the size effect, electronic structure regulation, the support/interfacial effect, the optimization of coordination microenvironments, and the SASCs-derived catalysts applied in 2e- ORR are systematically analyzed. Besides, the developments of SASCs in 2e- WOR are also overviewed. Finally, the research progress of H2O2 electrosynthesis on SASCs is concluded, and an outlook on the rational design of SASCs is presented in conjunction with the design strategies and characterization techniques.
Collapse
Affiliation(s)
- Mingyang Deng
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
31
|
Zhou J, Sun Q, Qin Y, Liu H, Hu P, Xiong C, Ji H. Bimetallic CoCu-modified Pt species in S-1 zeolite with enhanced stability for propane dehydrogenation. J Colloid Interface Sci 2024; 663:94-102. [PMID: 38394821 DOI: 10.1016/j.jcis.2024.01.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024]
Abstract
Propane dehydrogenation (PDH) has been an outstanding technique with a bright prospect, which can meet the growing global demand for propylene. However, undesired side reactions result in the deactivation of the Pt-based catalysts, which contribute to the insufficient lifetime of the catalysts. Herein, we describe a novel catalyst by encapsulating bimetallic CoCu-modified Pt species in S-1 zeolite for efficient dehydrogenation of propane, which synergizes the confinement of zeolites and the geometric and electronic effects on Pt species for enhancing the catalyst stability. The introduction of bimetallic additives efficiently promotes the dispersion of platinum and the electron transfer between Pt species and the additives, which greatly prolongs the lifetime of the catalysts. Particularly, no obvious deactivation is observed on 0.2Pt0.3Co0.5CuK@S-1 after 93 h on stream with a weight hourly space velocity (WHSV) of 5.4 h-1, revealing an ultralow deactivation constant of 0.0011 h-1 (t = 909 h). The formation rate of propylene still maintains at a high value of 407 mol gPt-1 h-1 (WHSV = 21.6 h-1) at 580 ℃ even after on pure propane stream for 42 h. The catalyst with the bimetallic CoCu-modified Pt species in S-1 zeolite reveals ultra-high activity and stability for PDH, which is ascribed to the highly dispersed Pt species and the stabilization effect of bimetallic additives on Pt species.
Collapse
Affiliation(s)
- Jie Zhou
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Qingdi Sun
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yuhan Qin
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hao Liu
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Peng Hu
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Chao Xiong
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China; State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Hongbing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China; State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China; Huizhou Research Institute, Sun Yat-sen University, Huizhou 516081, China.
| |
Collapse
|
32
|
Xu W, Su J, Ni X, Yang Q, Song W, Wang L, Zhu H. Crystal epitaxy-confined Pd, Ti-bimetallic sites in the MFI zeolite for benzylalcohol oxidation. Chem Commun (Camb) 2024; 60:5751-5754. [PMID: 38747134 DOI: 10.1039/d4cc01533a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
A general strategy for confining Pd, Ti-bimetallic sites in the MFI zeolite by crystal epitaxy was developed. The tailored spatial intimacy of the bimetallic sites demonstrated distinct catalytic performance for the oxidation of benzylalcohol. The related mechanism was clarified and afforded a valuable pathway for rational catalyst design.
Collapse
Affiliation(s)
- Wenchao Xu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, South Puzhu Rd. 30, Nanjing, 211816, P. R. China.
| | - Jianyuan Su
- School of Chemistry and Molecular Engineering, Nanjing Tech University, South Puzhu Rd. 30, Nanjing, 211816, P. R. China.
| | - Xiang Ni
- School of Chemistry and Molecular Engineering, Nanjing Tech University, South Puzhu Rd. 30, Nanjing, 211816, P. R. China.
| | - Qifan Yang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, South Puzhu Rd. 30, Nanjing, 211816, P. R. China.
| | - Wenwen Song
- School of Chemistry and Molecular Engineering, Nanjing Tech University, South Puzhu Rd. 30, Nanjing, 211816, P. R. China.
| | - Lei Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, South Puzhu Rd. 30, Nanjing, 211816, P. R. China.
| | - Hongjun Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, South Puzhu Rd. 30, Nanjing, 211816, P. R. China.
| |
Collapse
|
33
|
Ye J, Tang X, Cheng L, Zhang S, Zhan W, Guo Y, Wang L, Cao XM, Wang KW, Dai S, Guo Y. Solvent-Free Synthesis Enables Encapsulation of Subnanometric FeO x Clusters in Pure Siliceous Zeolites for Efficient Catalytic Oxidation Reactions. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38693896 DOI: 10.1021/acsami.4c03083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Metal/metal oxide clusters possess a higher count of unsaturated coordination sites than nanoparticles, providing multiatomic sites that single atoms do not. Encapsulating metal/metal oxide clusters within zeolites is a promising approach for synthesizing and stabilizing these clusters. The unique feature endows the metal clusters with an exceptional catalytic performance in a broad range of catalytic reactions. However, the encapsulation of stable FeOx clusters in zeolite is still challenging, which limits the application of zeolite-encapsulated FeOx clusters in catalysis. Herein, we design a modified solvent-free method to encapsulate FeOx clusters in pure siliceous MFI zeolites (Fe@MFI). It is revealed that the 0.3-0.4 nm subnanometric FeOx clusters are stably encapsulated in the 5/6-membered rings intersectional voids of the pure siliceous MFI zeolites. The encapsulated Fe@MFI catalyst with a Fe loading of 1.4 wt % demonstrates remarkable catalytic activity and recycle stability in the direct oxidation of methane, while also promoting the direct oxidation of cyclohexane, surpassing the performance of conventional zeolite-supported Fe catalysts.
Collapse
Affiliation(s)
- Jiajie Ye
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xuan Tang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Lu Cheng
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shoujie Zhang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Wangcheng Zhan
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yanglong Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Li Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiao-Ming Cao
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Kuan-Wen Wang
- Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan
| | - Sheng Dai
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yun Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
34
|
Chen M, Zhao W, Wei Y, Ren SB, Chen Y, Mei D, Han DM, Yu J. Improving the hydrothermal stability of Al-rich Cu-SSZ-13 zeolite via Pr-ion modification. Chem Sci 2024; 15:5548-5554. [PMID: 38638225 PMCID: PMC11023032 DOI: 10.1039/d3sc06422k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/08/2024] [Indexed: 04/20/2024] Open
Abstract
Al-rich (Si/Al = 4-6) Cu-SSZ-13 has been recognized as one of the potential catalysts to replace the commercial Cu-SSZ-13 (Si/Al = 10-12) towards ammonia-assisted selective catalytic reduction (NH3-SCR). However, poor hydrothermal stability is a great obstacle for Al-rich zeolites to meet the catalytic applications containing water vapor. Herein, we demonstrate that the hydrothermal stability of Al-rich Cu-SSZ-13 can be dramatically enhanced via Pr-ion modification. Particularly, after high-temperature hydrothermal aging (HTA), CuPr1.2-SSZ-13-HTA with an optimal Pr content of 1.2 wt% exhibits a T80 (temperature window of NO conversion above 80%) window of 225-550 °C and a T90 window of 250-350 °C. These values are superior to those of Cu-SSZ-13-HTA (225-450 °C for T80 and no T90 window). The results of X-ray diffraction Rietveld refinement, electron paramagnetic resonance (EPR) and spectral characterization reveal that Pr ions mainly located in the eight-membered rings (8MRs) in SSZ-13 zeolite can inhibit the generation of inactive CuOx during hydrothermal aging. This finding is further supported by density functional theory (DFT) calculations, which suggest that the presence of Pr ions restrains the transformation from Cu2+ ions in 6MRs into CuOx, resulting in enhanced hydrothermal stability. It is also noted that an excessive amount of Pr ions in Cu-SSZ-13 would result in the production of CuOx that causes the decline of catalytic performance. The present work provides a promising strategy for creating a hydrothermally stable Cu-SSZ-13 zeolite catalyst by adding secondary metal ions.
Collapse
Affiliation(s)
- Mengyang Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 P. R. China
| | - Wenru Zhao
- School of Materials Science and Engineering, Tiangong University Tianjin 300387 China
| | - Yingzhen Wei
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Shi-Bin Ren
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 P. R. China
| | - Yuxiang Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 P. R. China
| | - Donghai Mei
- School of Materials Science and Engineering, Tiangong University Tianjin 300387 China
| | - De-Man Han
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 P. R. China
- International Center of Future Science, Jilin University Changchun 130012 P. R. China
| |
Collapse
|
35
|
Atran AA, Hamdy MS. Hydrogenation of cyclohexene over single-atom Pt or Pd incorporated porous ceria nanoparticles under solvent-free conditions. RSC Adv 2024; 14:10644-10652. [PMID: 38567333 PMCID: PMC10985592 DOI: 10.1039/d4ra01432d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
In order to maximize the utilization of noble metals in catalysis, single atom of palladium (Pd) and platinum (Pt) were incorporated individually in the framework of porous ceria (CeO2) by using a one-step flash combustion method. Samples with different Pd and Pt loading (0.5, 1, 2.5, and 5 wt%) were prepared and examined by using different analysis techniques such as XRD, ICP, N2 sorption measurements, SEM, HR-TEM, and XPS. The characterization data confirms the formation of zero-state single-atom Pt and Pd (with possible formation of Pd nanoparticles with a size less than 5 nm) incorporated onto the three-dimensional porous ceria structure. The catalytic activity of the synthesized materials was studied in the cyclohexene reduction to cyclohexane at 393 K and 3 atm of pure hydrogen (H2) gas as a model reaction. The obtained results demonstrated that the conversion percentage of cyclohexene is increasing with Pd or Pt loading. The best cyclohexene conversion, 21% and 29%, was achieved over the sample that contains 5 wt% of Pt and Pd, respectively. The collected catalytic data fit the zero-order reaction model, and the rate constant of each catalyst was determined. The catalytic experiments of the most-performed catalysts were repeated five times and the obtained loss in activity was insignificant.
Collapse
Affiliation(s)
- Amal A Atran
- Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University P.O Box 9004 Abha 61413 Saudi Arabia
| | - Mohamed S Hamdy
- Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University P.O Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
36
|
Peng C, Pang R, Li J, Wang E. Current Advances on the Single-Atom Nanozyme and Its Bioapplications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211724. [PMID: 36773312 DOI: 10.1002/adma.202211724] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Nanozymes, a class of nanomaterials mimicking the function of enzymes, have aroused much attention as the candidate in diverse fields with the arbitrarily tunable features owing to the diversity of crystalline nanostructures, composition, and surface configurations. However, the uncertainty of their active sites and the lower intrinsic deficiencies of nanomaterial-initiated catalysis compared with the natural enzymes promote the pursuing of alternatives by imitating the biological active centers. Single-atom nanozymes (SAzymes) maximize the atom utilization with the well-defined structure, providing an important bridge to investigate mechanism and the relationship between structure and catalytic activity. They have risen as the new burgeoning alternative to the natural enzyme from in vitro bioanalytical tool to in vivo therapy owing to the flexible atomic engineering structure. Here, focus is mainly on the three parts. First, a detailed overview of single-atom catalyst synthesis strategies including bottom-up and top-down approaches is given. Then, according to the structural feature of single-atom nanocatalysts, the influence factors such as central metal atom, coordination number, heteroatom doping, and the metal-support interaction are discussed and the representative biological applications (including antibacterial/antiviral performance, cancer therapy, and biosensing) are highlighted. In the end, the future perspective and challenge facing are demonstrated.
Collapse
Affiliation(s)
- Chao Peng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Ruoyu Pang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
37
|
Dong Q, Zhang L, Chen C, Xue M, Zhu Z, Wang X, Wang X, Han Y, Li X, Zhang Q. Borosilicate-Based Framework: Synthesis, Single-Crystal Structure Study, and Physical Properties. Inorg Chem 2024; 63:2663-2669. [PMID: 38261761 DOI: 10.1021/acs.inorgchem.3c03964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Herein, we report the synthesis, crystal structure, and optical properties of a metal-free three-dimensional (3D) inorganic covalent framework ((H2en)[Si(B4O9)], named CityU-11, where H2en is the abbreviation for ethanediamine). With the assistance of a tiny amount of F- ions and the selection of SiO2 as Si sources, single crystals of CityU-11 can be successfully prepared under solvothermal conditions. The precise structure information on CityU-11 has been disclosed through both single-crystal X-ray diffraction (SCXRD) and low-dose high-resolution transmission electron microscopy (LD-HRTEM). The SCXRD results showed that CityU-11 crystallized in the noncentrosymmetric space group of Pnn2, while LD-HRTEM suggested that CityU-11 possessed almost the same interplanar distances of 0.6 nm for both (200) and (020) crystal planes, which finely matched with the double peaks of 2θ = 15° in the pattern of its powder X-ray diffraction (PXRD). CityU-11 also displayed an interesting optical property with a moderate birefringence of 0.0258@550 nm.
Collapse
Affiliation(s)
- Qiang Dong
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Lei Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Cailing Chen
- Physical Sciences and Engineering Division, Advanced Membranes and Porous Materials (AMPM) Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Miaomiao Xue
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Zengkui Zhu
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Xiang Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Xin Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yu Han
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 510641, P. R. China
| | - Xinxiong Li
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China
- Department of Chemistry & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
38
|
Wei Z, Bai X, Maximov AL, Wu W. Ultrasound-assisted preparation of PdCo bimetallic nanoparticles loaded on beta zeolite for efficient catalytic hydrogen production from dodecahydro-N-ethylcarbazole. ULTRASONICS SONOCHEMISTRY 2024; 103:106793. [PMID: 38320445 PMCID: PMC10851009 DOI: 10.1016/j.ultsonch.2024.106793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/08/2024]
Abstract
Research and development of high-performance catalysts is a key technology to realize hydrogen energy storage and transportation based on liquid organic hydrogen carriers. Co/beta was prepared using beta zeolite as a carrier via an electrostatic adsorption (ESA)-chemical reduction method, and it was used as the template and reducing agent to prepare bimetallic catalysts via an ultrasonic assisted galvanic replacement process (UGR). The fabricated PdCo/beta were characterized by TEM, XPS, FT-IR, XRD, H2-TPR, and H2-TPD. It was shown that the ultrafine PdCo nanoparticles (NPs) are evenly distributed on the surface of the beta zeolite. There is electron transfer between metal NPs and strong-metal-support-interaction (SMSI), which results in highly efficient catalytic dodecahydro-N-ethylcarbazole (12H-NEC) dehydrogenation performance of PdCo bimetallic catalysts. The dehydrogenation efficiency reached 100 % in 4 h at 180 °C and 95.3 % in 6 h at 160 °C. The TOF of 146.22 min-1 is 7 times that of Pd/beta. The apparent activation energy of the reaction is 66.6 kJ/mol, which is much lower than that of Pd/beta. Under the action of ultrasonic waves, the galvanic replacement reaction is accelerated, and the intermetal and metal-carrier interactions are enhanced, which improves the catalytic reaction performance.
Collapse
Affiliation(s)
- Zhongyuan Wei
- National Center for International Research on Catalytic Technology, Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, China
| | - Xuefeng Bai
- National Center for International Research on Catalytic Technology, Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, China; Institute of Petrochemistry, Heilongjiang Academy of Sciences, Harbin 150040, China
| | - A L Maximov
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow 119991, Russia
| | - Wei Wu
- National Center for International Research on Catalytic Technology, Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
39
|
Elyasi Z, Ghomi JS, Najafi GR, Sharif MA. Fabrication of uniform Pd nanoparticles immobilized on crosslinked ionic chitosan support as a super-active catalyst toward regioselective synthesis of pyrazole-fused heterocycles. Int J Biol Macromol 2023; 253:126589. [PMID: 37673137 DOI: 10.1016/j.ijbiomac.2023.126589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/07/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023]
Abstract
Selection of biodegradable chitosan as a raw material is a smart technique due to its easy modifiability and high renewability. Herein, taking advantage of these functional characteristics, an ionic biopolymer support is produced from copolymerization of allylated chitosan (with 48 % degree of substitution) and polymerizable ionic liquid ([MEVIm]Br). Next, palladium nanoparticles are successfully stabilized in this designed support through a facile manner based on interconnected porous network, ionic nature and rich functional groups. Then, the Pd@CS-PIL structure was utilized as a heterogeneous catalyst for regioselective synthesis of pyrazole-fused heterocycles. The as-synthesized Pd@CS-PIL was characterized by various techniques such as XRD, EDX, FESEM, elemental mapping, TEM, BET, ICP, TGA, and FT-IR to better determine the structure, morphology, purity and physical properties. The obtained results revealed that the proposed nanostructure provides favorable porosity with significant specific surface area (139.2 m2.g-1), Pd nanoparticles with high dispersion (mean diameter ∼ 22.8 nm) and crosslinked nature with good thermal stability (50 % weight loss about 600 °C). Therefore, Pd@CS-PIL nanostructure showed the key features of a super-active catalyst, and pharmaceutical pyrazole-fused scaffolds were produced in favorable yields (86-96 %) under ultrasound conditions.
Collapse
Affiliation(s)
- Zahra Elyasi
- Department of Chemistry, Qom Branch, Islamic Azad University, Qom, Iran
| | - Javad Safaei Ghomi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan 51167, Iran.
| | | | | |
Collapse
|
40
|
Zhang K, Wang N, Meng Y, Zhang T, Zhao P, Sun Q, Yu J. Highly dispersed Pd-based pseudo-single atoms in zeolites for hydrogen generation and pollutant disposal. Chem Sci 2023; 15:379-388. [PMID: 38131096 PMCID: PMC10732228 DOI: 10.1039/d3sc05851d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Atomically dispersed metal catalysts with excellent activity and stability are highly desired in heterogeneous catalysis. Herein, we synthesized zeolite-encaged Pd-based pseudo-single atoms via a facile and energy-efficient ligand-protected direct H2 reduction method. Cs-corrected scanning transmission electron microscopy, extended X-ray absorption, and pair distribution function measurements reveal that the metal species are close to atomic-level dispersion and completely confined within the intersectional channels of silicalite-1 (S-1) zeolite with the MFI framework. The Pd@S-1-H exhibits excellent activity and stability in methane combustion reactions with a complete combustion temperature of 390 °C, and no deactivation is observed even after 100 h on stream. The optimized bimetallic 0.8Pd0.2Ni(OH)2@S-1-H catalyst exhibits an excellent H2 generation rate from FA decomposition without any additives, affording a superhigh turnover frequency up to 9308 h-1 at 333 K, which represents the top activity among all of the best heterogeneous catalysts under similar conditions. Significantly, zeolite-encaged metal catalysts are first used for Cr(vi) reduction coupled with formic acid (FA) dehydrogenation and show a superhigh turnover number of 2980 mol(Cr2O72-) mol(Pd)-1 at 323 K, surpassing all of the previously reported catalysts. This work demonstrates that zeolite-encaged pseudo-single atom catalysts are promising in efficient hydrogen storage and pollutant disposal applications.
Collapse
Affiliation(s)
- Kai Zhang
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
| | - Ning Wang
- Institute of Sustainable Energy and Resources, College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 P. R. China
| | - Yali Meng
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
| | - Tianjun Zhang
- College of Chemistry and Materials Science, Hebei University Baoding 071002 P. R. China
| | - Pu Zhao
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
| | - Qiming Sun
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University Suzhou 215123 Jiangsu P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Center of Future Science, College of Chemistry, Jilin University Changchun 130012 P. R. China
| |
Collapse
|
41
|
Li H, Chen GZ, Wu CD. Confining redox-active metal sites in acidic porous scaffolds for the catalytic transformation of lignin-derived phenols to naphthenes. Dalton Trans 2023; 52:17219-17228. [PMID: 37955613 DOI: 10.1039/d3dt03002d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The hydrodeoxygenation transformation of lignin-derived phenols provides an attractive pathway for the production of renewable biofuels; however, harsh process conditions strongly hinder its practical application. Herein, we report a porous metal silicate (PMS) material, PMS-36, which consists of metallic nickel and Lewis acid AlIII sites inside the pores, demonstrating high efficiency in catalyzing the hydrodeoxygenation transformation of guaiacol under mild conditions. PMS-36 also exhibits robust stability, which can be attributed to the strong interaction and charge transfer between metallic Ni and AlIII Lewis acid sites inside the confined pores. This study shows the importance of synergistic and confinement effects in developing high-performance and stable heterogeneous catalysts for the chemical transformation of biomass and its derivatives.
Collapse
Affiliation(s)
- Hang Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Guan-Ze Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Chuan-De Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| |
Collapse
|
42
|
Zhang K, Dou X, Hou H, Zhou Z, Lopez-Haro M, Meira DM, Liu P, He P, Liu L. Generation of Subnanometer Metal Clusters in Silicoaluminate Zeolites as Bifunctional Catalysts. JACS AU 2023; 3:3213-3226. [PMID: 38034962 PMCID: PMC10685439 DOI: 10.1021/jacsau.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 12/02/2023]
Abstract
Zeolite-encapsulated subnanometer metal catalysts are an emerging class of solid catalysts with superior performances in comparison to metal catalysts supported on open-structure solid carriers. Currently, there is no general synthesis methodology for the encapsulation of subnanometer metal catalysts in different zeolite structures. In this work, we will show a general synthesis method for the encapsulation of subnanometer metal clusters (Pt, Pd, and Rh) within various silicoaluminate zeolites with different topologies (MFI, CHA, TON, MOR). The successful generation of subnanometer metal species in silicoaluminate zeolites relies on the introduction of Sn, which can suppress the migration of subnanometer metal species during high-temperature oxidation-reduction treatments according to advanced electron microscopy and spectroscopy characterizations. The advantage of encapsulated subnanometer Pt catalysts in silicoaluminate zeolites is reflected in the direct coupling of ethane and benzene for production of ethylbenzene, in which the Pt and the acid sites work in a synergistic way.
Collapse
Affiliation(s)
- Kun Zhang
- State
Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomeng Dou
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Huaming Hou
- National
Energy Center for Coal to Clean Fuels, Synfuels
China Technology Co., Ltd., Beijing 101407, China
| | - Ziyu Zhou
- State
Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Miguel Lopez-Haro
- Departamento
de Ciencia de los Materiales e Ingeniería Metalúrgica
y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz 11519, Spain
| | - Debora M. Meira
- CLS@APS
sector
20, Advanced Photon Source, Argonne National
Laboratory, 9700 S. Cass
Avenue, Argonne, Illinois 60439, United States
- Canadian
Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Ping Liu
- State
Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Peng He
- State
Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- National
Energy Center for Coal to Clean Fuels, Synfuels
China Technology Co., Ltd., Beijing 101407, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Lichen Liu
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
43
|
Chatterjee P, Han Y, Kobayashi T, Verma KK, Mais M, Behera RK, Johnson TH, Prozorov T, Evans JW, Slowing II, Huang W. Capturing Rare-Earth Elements by Synthetic Aluminosilicate MCM-22: Mechanistic Understanding of Yb(III) Capture. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54192-54201. [PMID: 37934618 DOI: 10.1021/acsami.3c14560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
We studied the mechanism underlying the solid-phase adsorption of a heavy rare-earth element (HREE, Yb) from acidic solutions employing MCM-22 zeolite, serving as both a layered synthetic clay mimic and a new platform for the mechanistic study of HREE adsorption on aluminosilicate materials. Mechanistic studies revealed that the adsorption of Yb(III) at the surface adsorption site occurs primarily through the electrostatic interaction between the site and Yb(III) species. The dependence of Yb adsorption on the pH of the solution indicated the role of surface charge, and the content of framework Al suggested that the Brønsted acid sites (BAS) are involved in the adsorption of Yb(III) ions, which was further scrutinized by spectroscopic analysis and theoretical calculations. Our findings have illuminated the roles of surface sites in the solid-phase adsorption of HREEs from acidic solutions.
Collapse
Affiliation(s)
- Puranjan Chatterjee
- U.S. Department of Energy, Ames National Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Yong Han
- U.S. Department of Energy, Ames National Laboratory, Ames, Iowa 50011, United States
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Takeshi Kobayashi
- U.S. Department of Energy, Ames National Laboratory, Ames, Iowa 50011, United States
| | - Krishna Kamlesh Verma
- U.S. Department of Energy, Ames National Laboratory, Ames, Iowa 50011, United States
| | - Marco Mais
- U.S. Department of Energy, Ames National Laboratory, Ames, Iowa 50011, United States
| | - Ranjan K Behera
- U.S. Department of Energy, Ames National Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Thomas H Johnson
- U.S. Department of Energy, Ames National Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Tanya Prozorov
- U.S. Department of Energy, Ames National Laboratory, Ames, Iowa 50011, United States
| | - James W Evans
- U.S. Department of Energy, Ames National Laboratory, Ames, Iowa 50011, United States
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Igor I Slowing
- U.S. Department of Energy, Ames National Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Wenyu Huang
- U.S. Department of Energy, Ames National Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
44
|
Xu G, Zhang X, Dong Z, Liang W, Xiao T, Chen H, Ma Y, Pan Y, Fu Y. Ferric Single-Site Catalyst Confined in a Zeolite Framework for Propane Dehydrogenation. Angew Chem Int Ed Engl 2023; 62:e202305915. [PMID: 37696765 DOI: 10.1002/anie.202305915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
Non-oxidative dehydrogenation of propane is a highly efficient approach for industrial preparation of propene that is commonly catalyzed by noble Pt or toxic Cr catalysts and suffers from coking. In this work, ferric catalyst confined in a zeolite framework was synthesized by a hydrothermal procedure. The isolated Fe in the framework formed distorted tetrahedra, which were beneficial for the selective dehydrogenation of propane and reached over 95 % propene selectivity and over 99 % total olefins selectivity. This catalyst had a silanol-free structure and was oxygen tolerant, hydrothermally stable, and coke free, with a deactivation constant of 0.01 h-1 . This study provided guidance for the synthesis of structural heteroatomic zeolite and efficient propane non-oxidative dehydrogenation over early transition metals.
Collapse
Affiliation(s)
- Guangyue Xu
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, 230026, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, 230031, China
| | - Xiang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, 230026, China
| | - Zhuoya Dong
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wanying Liang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, 230026, China
| | - Tianci Xiao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Huiyong Chen
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yanhang Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yao Fu
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
45
|
Qin Y, Zhu X, Huang R. Covalent organic frameworks: linkage types, synthetic methods and bio-related applications. Biomater Sci 2023; 11:6942-6976. [PMID: 37750827 DOI: 10.1039/d3bm01247f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Covalent organic frameworks (COFs) are composed of small organic molecules linked via covalent bonds, which have tunable mesoporous structure, good biocompatibility and functional diversities. These excellent properties make COFs a promising candidate for constructing biomedical nanoplatforms and provide ample opportunities for nanomedicine development. A systematic review of the linkage types and synthesis methods of COFs is of indispensable value for their biomedical applications. In this review, we first summarize the types of various linkages of COFs and their corresponding properties. Then, we highlight the reaction temperature, solvent and reaction time required by different synthesis methods and show the most suitable synthesis method by comparing the merits and demerits of various methods. To appreciate the cutting-edge research on COFs in bioscience technology, we also summarize the bio-related applications of COFs, including drug delivery, tumor therapy, bioimaging, biosensing and antimicrobial applications. We hope to provide insight into the interdisciplinary research on COFs and promote the development of COF nanomaterials for biomedical applications and their future clinical translations.
Collapse
Affiliation(s)
- Yanhui Qin
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China.
| | - Xinran Zhu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China.
| | - Rongqin Huang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
46
|
Zhang W, Wu J, Shi W, Qin P, Lang W, Zhang X, Gu Z, Li H, Fan Y, Shen Y, Zhang S, Liu Z, Fu Y, Zhang W, Huo F. New Function of Metal-Organic Framework: Structurally Ordered Metal Promoter. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303216. [PMID: 37272399 DOI: 10.1002/adma.202303216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2023] [Indexed: 06/06/2023]
Abstract
The remarkable roles of metal promoters have been known for nearly a century, but it is still a challenge to find a suitable structure model to reveal the action mechanism behind metal promoters. Herein, a new function of metal-organic frameworks (MOFs) is developed as an ideal model to construct structurally ordered metal promoters by a targeted post-modification strategy. MOFs as model not only favor clearing the real action mechanism behind metal promoters, but also can anchor one or multiple kinds of metal promoters especially noble metal promoters. Typically, the as-prepared Pd/bpy-UiO-Cu catalysts show high selectivity (>99%) toward 4-nitrophenylethane in 4-nitrostyrene hydrogenation, mainly due to the enhanced interaction between Pd nanoparticles and MOF carriers induced by Cu promoters, thus inhibiting the hydrogenation of 4-nitrophenylethane. This strategy with flexibility and universality will open up a new route to synthesize efficient catalysts with structurally ordered metal promoters.
Collapse
Affiliation(s)
- Wenlei Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, China
- College of Chemistry, Green Catalysis Center, Zhengzhou University (ZZU), Zhengzhou, 450001, China
- College of Science, Northeastern University, Shenyang, 100819, China
| | - Jichuang Wu
- College of Chemistry, Green Catalysis Center, Zhengzhou University (ZZU), Zhengzhou, 450001, China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Peishan Qin
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, China
| | - Wenfeng Lang
- College of Chemistry, Green Catalysis Center, Zhengzhou University (ZZU), Zhengzhou, 450001, China
| | - Xinglong Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, China
| | - Zhida Gu
- College of Science, Northeastern University, Shenyang, 100819, China
| | - Hongfeng Li
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, China
| | - Yun Fan
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, China
| | - Yu Shen
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Suoying Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, China
| | - Zhongyi Liu
- College of Chemistry, Green Catalysis Center, Zhengzhou University (ZZU), Zhengzhou, 450001, China
| | - Yu Fu
- College of Science, Northeastern University, Shenyang, 100819, China
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
47
|
Zhang C, Wang L, Wu CD. Stabilization of transition metal heterojunctions inside porous materials for high-performance catalysis. Dalton Trans 2023. [PMID: 37317703 DOI: 10.1039/d3dt01020a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Transition metal-based heterostructural materials are a class of very promising substitutes for noble metal-based catalysts for high-performance catalysis, due to their inherent internal electric field at the interface in the heterojunctions, which could induce electron relocalization and facilitate charge carrier migration between different metal sites at heterostructural boundaries. However, redox-active metal species suffer from reduction, oxidation, migration, aggregation, leaching and poisoning in catalysis, which results in heavy deterioration of the catalytic properties of transition metal-based heterojunctions and frustrates their practical applications. To improve the stability of transition metal-based heterojunctions and sufficiently expose redox-active sites at the heterosurfaces, many kinds of porous materials have been used as porous hosts for the stabilization of non-precious metal heterojunctions. This review article will discuss recently developed strategies for encapsulation and stabilization of transition metal heterojunctions inside porous materials, and highlight their improved stability and catalytic performance through the spatial confinement effect and synergistic interaction between the heterojunctions and the host matrices.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Lei Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Chuan-De Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| |
Collapse
|
48
|
Chen C, Wang X, Pan B, Xie W, Zhu Q, Meng Y, Hu Z, Sun Q. Construction of a Novel Cascade Electrolysis-Heterocatalysis System by Using Zeolite-Encaged Ultrasmall Palladium Catalysts for H 2 O 2 Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300114. [PMID: 36919559 DOI: 10.1002/smll.202300114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/19/2023] [Indexed: 06/15/2023]
Abstract
In situ generation of hydrogen peroxide (H2 O2 ) has attracted extensive attention, especially in water treatment. However, traditional anthraquinones can only produce high-concentration H2 O2 and its transportation and storage are not convenient and dangerous. Herein, an in situ and on-demand strategy to produce H2 O2 by using a cascade water electrolysis together with a heterocatalysis system is provided. Beginning with water, H2, and O2 can be generated via electrolysis and then react with each other to produce H2 O2 immediately on efficient zeolite-encaged ultrasmall Pd catalysts. Significantly, the H2 O2 generation rate in the optimized cascade system reaches up to 0.85 mol L-1 h-1 gPd -1 , overcoming most of the state-of-the-art catalysts in previous literature. The confinement effect of zeolites is not only beneficial to the formation of highly dispersed metal species, promoting the H2 O2 generation, but also inhibits the H2 O2 decomposition, enhancing the production yield of H2 O2 . In addition, the effect of electrolytes, sizes of Pd species, as well as zeolite acidity are also systematically studied. This work provides a new avenue for H2 O2 generation via a highly efficient cascade electrolysis-heterocatalysis system by using zeolite-supported metal catalysts. The high catalytic efficiency and green process for H2 O2 generation make it very promising for further practical applications.
Collapse
Affiliation(s)
- Caiyi Chen
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Xiaoli Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Boju Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Weiqiao Xie
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Qing Zhu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Yali Meng
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Zhuofeng Hu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Qiming Sun
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
49
|
Guan S, Liu Y, Zhang H, Shen R, Wen H, Kang N, Zhou J, Liu B, Fan Y, Jiang J, Li B. Recent Advances and Perspectives on Supported Catalysts for Heterogeneous Hydrogen Production from Ammonia Borane. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2300726. [PMID: 37118857 PMCID: PMC10375177 DOI: 10.1002/advs.202300726] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Ammonia borane (AB), a liquid hydrogen storage material, has attracted increasing attention for hydrogen utilization because of its high hydrogen content. However, the slow kinetics of AB hydrolysis and the indefinite catalytic mechanism remain significant problems for its large-scale practical application. Thus, the development of efficient AB hydrolysis catalysts and the determination of their catalytic mechanisms are significant and urgent. A summary of the preparation process and structural characteristics of various supported catalysts is presented in this paper, including graphite, metal-organic frameworks (MOFs), metal oxides, carbon nitride (CN), molybdenum carbide (MoC), carbon nanotubes (CNTs), boron nitride (h-BN), zeolites, carbon dots (CDs), and metal carbide and nitride (MXene). In addition, the relationship between the electronic structure and catalytic performance is discussed to ascertain the actual active sites in the catalytic process. The mechanism of AB hydrolysis catalysis is systematically discussed, and possible catalytic paths are summarized to provide theoretical considerations for the designing of efficient AB hydrolysis catalysts. Furthermore, three methods for stimulating AB from dehydrogenation by-products and the design of possible hydrogen product-regeneration systems are summarized. Finally, the remaining challenges and future research directions for the effective development of AB catalysts are discussed.
Collapse
Affiliation(s)
- Shuyan Guan
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| | - Yanyan Liu
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
| | - Huanhuan Zhang
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| | - Ruofan Shen
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Hao Wen
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Naixin Kang
- ISM, UMR CNRS N° 5255, Univ. Bordeaux, Talence Cedex, 33405, France
| | - Jingjing Zhou
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
| | - Baozhong Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| | - Yanping Fan
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
| | - Baojun Li
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| |
Collapse
|
50
|
Wei N, Zhang W, Zhang D, Huang S. Synergism between hierarchical MFI zeolites and alumina in alkene cross-metathesis reactions as a function of composition. RSC Adv 2023; 13:12670-12676. [PMID: 37101526 PMCID: PMC10123496 DOI: 10.1039/d3ra01642k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
Synergism between hierarchical zeolites and alumina in the preparation of active Mo catalysts, as a function of composition ratios, has been demonstrated in the cross-metathesis reaction between ethene and 2-butene. The metathesis reaction activity, reflected by ethene conversion, increases from 24.1% to 49.2% with the increase in the alumina content in composites from 10 wt% to 30 wt%. A further increase in the alumina content leads to the reduction in the metathesis activity, in which the ethene conversion decreases from 30.3% to 4.8% upon the enhanced alumina content from 50 wt% to 90 wt%. The impact of alumina content on the metathesis activity is closely associated with the interaction mode between the hierarchical ZSM-5 zeolite and alumina. TEM observation as well as EDS analysis and XPS results prove the progressive coating of alumina phase on the surface of zeolites along with the progressive enhancement of alumina content. The moderate alumina content in the composite enables the desired interaction between hierarchical zeolites and alumina, which is beneficial for the preparation of active catalysts for the alkene cross-metathesis reaction.
Collapse
Affiliation(s)
- Ning Wei
- Division of Fossil Energy Conversion, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Weiping Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Dazhi Zhang
- Division of Fossil Energy Conversion, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Shengjun Huang
- Division of Fossil Energy Conversion, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|