1
|
Kam D, Choi H, Gwon G, Jang S, Shah SA, Yoo D, Choi D. Toward Droplet Energy Harvesting in Harsh Environment: Mechanical Buckling-Induced 3D Structured Droplet-Based Electricity Multigenerator. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502717. [PMID: 40342287 DOI: 10.1002/smll.202502717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/22/2025] [Indexed: 05/11/2025]
Abstract
Opening new horizons for droplet-based energy harvesters, droplet-based electricity generators (DEGs) face several obstacles, such as deficient current output and vulnerability to the external environment. In this study, a droplet-based electricity multigenerator (DEMG) subserved by an electromagnetic generator (EMG) is proposed to tackle them. By introducing a mechanical buckling-induced 3D structure, the DEMG is designed to have a sufficiently high figure of merit for flexibility/elasticity to harvest electric energy from droplets. Thanks to the hybrid effect of EMG, the total amount of induced charge from DEMG is enhanced by more than 8809% compared with that from DEG only. Furthermore, a continuous energy supply is expected from DEMG even under dusty and humid conditions. This study not only provides a pathway to overcome the inherent limitations of conventional DEGs but also paves the way for efficient droplet energy harvesting technologies applicable in diverse environmental conditions.
Collapse
Affiliation(s)
- Dongik Kam
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732 Deogyeong-daero, Yongin, Gyeonggi, 17104, Republic of Korea
| | - Hyeonyeong Choi
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732 Deogyeong-daero, Yongin, Gyeonggi, 17104, Republic of Korea
| | - Girak Gwon
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732 Deogyeong-daero, Yongin, Gyeonggi, 17104, Republic of Korea
| | - Sunmin Jang
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732 Deogyeong-daero, Yongin, Gyeonggi, 17104, Republic of Korea
| | - Soban Ali Shah
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732 Deogyeong-daero, Yongin, Gyeonggi, 17104, Republic of Korea
| | - Donghyeon Yoo
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Dongwhi Choi
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732 Deogyeong-daero, Yongin, Gyeonggi, 17104, Republic of Korea
| |
Collapse
|
2
|
Yang S, Xu G, Mao W, Ma H, Zhong T, Liu P, Dong J, Xu C, He X, Jiang Z, Yang X, Gong Y, Song Q. A Droplet-Based Electricity Nanogenerator with Press-Release Structure for Revealing the Coupling of Displacement and Conducting Currents. ACS APPLIED MATERIALS & INTERFACES 2025; 17:25390-25399. [PMID: 40245381 DOI: 10.1021/acsami.5c04098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Contact electrification (CE) and electrostatic induction (EI) are believed to be the core processes in classic liquid-solid triboelectric nanogenerators (L-S TENGs), including the classical transistor-like droplet-based electricity generator (DEG) and other forms of DEGs. Recently reported total current DEGs made full use of CE, EI, and charge transfer (CT) effects and realized the coupling of displacement and conducting currents. However, this method has only been revealed in special structures, which have limitations depending on the falling location of droplets. Here, we construct a press-release total current DEG (PRTC-DEG) using a single droplet of water to visually verify the universality of CT and the contribution of conducting current in the total current DEG. By simply squeezing and then releasing this PRTC-DEG, charges are squirted out to realize the separation of charges in space and time. The working mechanism of PRTC-DEG and the coupling between displacement current and conducting current are also demonstrated. In addition, the structural design proposed in this study alleviates the dependence of output on the falling location of droplets in DEG and provides a new working mode for DEG, which makes DEG expand to more scenarios.
Collapse
Affiliation(s)
- Shijing Yang
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Gaobo Xu
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Wenfei Mao
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Haiqin Ma
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Tao Zhong
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Ping Liu
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Jun Dong
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Cunyun Xu
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Xiaofeng He
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Zezhuan Jiang
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Xiude Yang
- School of Physics and Electronics, Zunyi Normal University, Zunyi 563002, PR China
| | - Yanli Gong
- College of Electronic Engineering (College of Meteorological Observation), Chengdu University of Information Technology, Chengdu 610225, PR China
| | - Qunliang Song
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
3
|
Lu Y, Xiao Y, Dong Z, Wang S, Yang Y, Luan J, Zhang S, Wang S, Wang G. Robust Droplet-Based Triboelectric Nanogenerator Enabled by Semicrystalline Composites Integration for Harsh Environments. NANO LETTERS 2025; 25:4330-4338. [PMID: 40048548 DOI: 10.1021/acs.nanolett.4c06381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The development of a high-performance polymer for a robust droplet-based triboelectric nanogenerator (RD-TENG) is crucial for sustainable energy harvesting and adaptive sensing applications in harsh environments. However, achieving thermal and chemical stability of dielectrics and induction electrodes remains a challenge. This study addresses these requirements by leveraging the intrinsic properties of polyether ether ketone (PEEK), which enables semicrystalline composites integration through a thermal bonding technique. The rigid molecular backbone of the PEEK and crystalline regions formed by its orderly arrangement impart thermomechanical properties and chemical stability. Incorporating multiwalled carbon nanotubes allows for tailoring low surface resistance and mechanical reinforcement. The results demonstrate a high glass transition temperature of 160 °C and structural integrity at 300 °C, along with exceptional durability and electrical performance under long-term salt spray, a wide pH range, and organic solvents. This work offers a valuable strategy for fabricating RD-TENG and promotes advancements in harsh environments.
Collapse
Affiliation(s)
- Yanxu Lu
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, PR China
| | - Yanwei Xiao
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, PR China
| | - Zhongxin Dong
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, PR China
| | - Shiyu Wang
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, PR China
| | - Yanchao Yang
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, PR China
| | - Jiashuang Luan
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, PR China
| | - Shuling Zhang
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, PR China
| | - Shengdao Wang
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, PR China
| | - Guibin Wang
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, PR China
| |
Collapse
|
4
|
Pharino U, Chaithaweep K, Pongampai S, Chanlek N, Kothan S, Kaewkhao J, Hajra S, Kim HJ, Vittayakorn W, Sriphan S, Vittayakorn N. A highly sensitive disease pre-screening approach for glycosuria: Triboelectric sensing at the liquid-solid interface. CHEMICAL ENGINEERING JOURNAL 2025; 508:160901. [DOI: 10.1016/j.cej.2025.160901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2025]
|
5
|
Hu Y, Yang W, Ma Y, Qiu Y, Wei W, Wu B, Li K, Li Y, Zhang Q, Xiao R, Hou C, Wang H. Solid-liquid interface charge transfer for generation of H 2O 2 and energy. Nat Commun 2025; 16:1692. [PMID: 39956810 PMCID: PMC11830785 DOI: 10.1038/s41467-025-57082-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/07/2025] [Indexed: 02/18/2025] Open
Abstract
Solid-liquid contact electrification is a widespread interface phenomenon in nature. Recent research and theory demonstrate that electron transfer during this process holds the potential to initiate interfacial chemical reactions. Here, we design a dual-functional device for generation of H2O2 and energy. Interfacial chemical reactions and solid-liquid contact charging occur simultaneously during the liquid phase flow process. Specifically, electron transfer at the solid-liquid interface induces the formation of hydroxyl radicals (·OH) in the liquid phase, leading to spontaneous generation of H2O2. The transfer of charges at the solid-liquid interface is accompanied by energy transfer. By designing an external electrode structure, we can effectively harvest the energy from the flowing liquid phase, yielding an output power of up to 5.8 kW/m3 for water.
Collapse
Affiliation(s)
- Yunhao Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
- School of Materials Science and Engineering, Shanghai Dianji University, Shanghai, China
| | - Weifeng Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Yuji Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Yong Qiu
- Binjiang Institute of Zhejiang University, Hangzhou, China
| | - Wei Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Bo Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Yaogang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Qinghong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Ru Xiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China.
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China.
- School of Materials Science and Engineering, Shanghai Dianji University, Shanghai, China.
| |
Collapse
|
6
|
Zhai H, Zhao S, Liu N, Tian Y, Liu Y, Cao W, Yen W, Feng L. Water-Enabled Electricity Generation by a Smooth Liquid-Like Semiconductor Coating Surface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410599. [PMID: 39737678 DOI: 10.1002/smll.202410599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/19/2024] [Indexed: 01/01/2025]
Abstract
Water energy-converting techniques that focus on interfacial charge separation and transfer have aroused significant attention. However, the water-repelling nature leads to a less dense liquid layer and a sharp gradient of liquid velocity, which limits its output performance. Here, a water sliding generator (WSG) based on a smooth liquid-like/semiconductor surface (SLSS) is developed that harnesses the full advantage of liquid sliding friction. The prepared SLSS not only retained the slippery surface's close contact with liquid droplets and the characteristic of sliding without residue but also exhibited an enhanced friction effect on the low-friction surface. The smooth liquid-like/semiconductor surface water sliding generator (SLSS-WSG) exerts outstanding liquid sliding friction energy harvesting with high output (≈16 V and ≈60 µA) demonstrated, capability in series connection, dual operation of power generation and self-cleaning effect, and high physical and chemical stability (continuous current scour and sun exposure). The prepared surface can be integrated with photovoltaic panels, enabling them to generate electricity from water-sliding energy during rainy days, compensating for the reduced output of photovoltaic panels during overcast and rainy weather. Furthermore, it allows for energy collection even during rainy nights. The prepared surface can be potentially applied in various fields, showing great potential for the development of water-based clean energy.
Collapse
Affiliation(s)
- Huajun Zhai
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuaiheng Zhao
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Na Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ye Tian
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yue Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wenqing Cao
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wei Yen
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lin Feng
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
7
|
Xu J, Bu L, Han X, Xue K, Du G, Wang X. Bimodal Droplet-Based Electricity Generation Through Semi Cassini Oval Dynamic Morphology Control. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406971. [PMID: 39491530 DOI: 10.1002/smll.202406971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Droplet-based electricity generator (DEG) is the promising energy harvesting technology applicable in versatile scenarios. Despite numerous optimizations in DEG's materials and structures, few has paid attention to the droplet dynamics and morphology control. Here the droplet's spread-retraction dynamics and the resultant semi Cassini oval (SCO) morphology are reported, characterized by convex at both ends and concave in the middle. The lifted top electrode (LTE) is designed to respond to the dynamic SCO morphology in two steps: 1) LTE first contacts the leading edge of the spreading droplet, generating a negative voltage peak; 2) LTE second contacts the trailing edge of the retracting droplet, generating a positive voltage peak. In this way, bimodal electrical output is obtained, which exhibits 25% increase in peak-to-peak voltage and 33% increase in average power compared to the traditional DEG with only one voltage peak. These results prove that incorporating the droplet dynamics and morphology control into DEG design uplifts the energy harvesting limit from individual droplet. The proposed LTE-DEG inspires alternative route for DEG power enhancement by maximizing energy utilization of individual droplet from the perspective of droplet dynamic morphology design.
Collapse
Affiliation(s)
- Jiaxing Xu
- School of Information Engineering, China University of Geosciences, Beijing, 100083, China
| | - Ling Bu
- School of Information Engineering, China University of Geosciences, Beijing, 100083, China
| | - Xu Han
- School of Information Engineering, China University of Geosciences, Beijing, 100083, China
| | - Kaiwen Xue
- School of Information Engineering, China University of Geosciences, Beijing, 100083, China
| | - Gang Du
- School of Information Engineering, China University of Geosciences, Beijing, 100083, China
| | - Xiaohong Wang
- School of Integrated Circuits, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
8
|
Cheng P, Zou Y, Li Z. Harvesting Water Energy through the Liquid-Solid Triboelectrification. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47050-47074. [PMID: 39207453 DOI: 10.1021/acsami.4c09044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The escalating energy and environmental challenges have catalyzed a global shift toward seeking more sustainable, economical, and eco-friendly energy solutions. Water, capturing 35% of the Earth's solar energy, represents a vast reservoir of clean energy. However, current industrial capabilities harness only a fraction of the energy within the hydrological cycle. The past decade has seen rapid advancements in nanoscience and nanomaterials leading to a comprehensive exploration of liquid-solid triboelectrification as a low-carbon, efficient method for water energy harvesting. This review explores two fundamental principle models involved in liquid-solid triboelectrification. On the basis of these models, two distinct types of water energy harvesting devices, including droplet-based nanogenerators and water evaporation-induced nanogenerators, are summarized from their working principles, recent developments, materials, structures, and performance optimization techniques. Additionally, the applications of these nanogenerators in energy harvesting, self-powered sensing, and healthcare are also discussed. Ultimately, the challenges and future prospects of liquid-solid triboelectrification are further explored.
Collapse
Affiliation(s)
- Peng Cheng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zou
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Lu Y, Li L, Wang S, Pu X, Zhu YL, Yang Y, Luan J, Zhang S, Wang G. Charge Transfer Mechanisms of Adaptive Multicomponent Solutions at Solid-Liquid Interfaces for Real-Time Coolant State Monitoring. NANO LETTERS 2024; 24:10372-10379. [PMID: 39105796 DOI: 10.1021/acs.nanolett.4c03174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Charge-transfer mechanisms in adaptive multicomponent solutions at liquid-solid interfaces with triboelectric probes are crucial for understanding chemistry dynamics. However, liquid-solid charge transfer becomes unpredictable, due to the components or interactions in solutions, restricting its potential application for precise monitoring of liquid environments. This study utilizes triboelectric probes to investigate the charge transfer of chemicals, applying this approach to real-time coolant state monitoring. Analysis of electrical signal dynamics induced by ethylene glycol and its oxidation byproduct, oxalic acid, in ethylene glycol solutions reveals that hydrogen bond and ion adsorption diminishes the efficiency of electron transfer at the liquid-solid interface. These findings promote the engineering of the triboelectric probe that enhances coolant quality with remarkable sensitivity (detection limit: 0.0001%) and a broad freezing point operational range (0 to -49 °C). This work advances the precise control of the charge dynamics and demonstrates the potential of triboelectric probes for interdisciplinary applications.
Collapse
Affiliation(s)
- Yanxu Lu
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Leibo Li
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Shengdao Wang
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Xin Pu
- College of Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
| | - You-Liang Zhu
- College of Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
| | - Yanchao Yang
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Jiashuang Luan
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Shuling Zhang
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Guibin Wang
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| |
Collapse
|
10
|
Jang S, Shah SA, Lee J, Cho S, Kam D, Ra Y, Lee D, Khawar MR, Yoo D, Ahmad A, Choi D. Beyond Metallic Electrode: Spontaneous Formation of Fluidic Electrodes from Operational Liquid in Highly Functional Droplet-Based Electricity Generator. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403090. [PMID: 38695508 DOI: 10.1002/adma.202403090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/14/2024] [Indexed: 07/03/2024]
Abstract
The droplet-based electricity generator (DEG) has facilitated efficient droplet energy harvesting, yet diversifying its applications necessitates the incorporation of various to the DEG. This study first proposes a methodology for advancing the DEG by substituting its conventional metallic electrode with electrically conductive water electrode (WE), which is spontaneously generated during the operation of the DEG with operating liquid. Due to the inherent conductive and fluidic nature of water, the introduction of the WE maintains the electrical output performance of the DEG while imparting functionalities such as high transparency and flexibility. So, the resultant WE applied DEG (WE-DEG) exhibits high optical transmittance (≈99%) and retains its electricity-generating capability under varying deformations, including bending and stretching. This innovation expands the versatility of the DEG, and especially, a sun-raindrop dual-mode energy harvester is demonstrated by hybridizing the WE-DEG and photovoltaic (PV) cell. This hybridization effectively addresses the weather-dependent limitations inherent in each energy harvester and enhances the temperature-induced inefficiencies typically observed in PV cells, thereby enhancing the overall efficiency. The introduction of the WE will be poised to catalyze new developments in DEG research, paving the way for broader applicability and enhanced efficiency in droplet energy harvesting technologies.
Collapse
Affiliation(s)
- Sunmin Jang
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Soban Ali Shah
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Jaehyun Lee
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Sumin Cho
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Dongik Kam
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Yoonsang Ra
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Donghan Lee
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Muhammad Ramzan Khawar
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Donghyeon Yoo
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Awais Ahmad
- Department of Chemistry, University of Lahore, Lahore, 54590, Pakistan
| | - Dongwhi Choi
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| |
Collapse
|
11
|
Wang C, Wang J, Wang P, Sun Y, Ma W, Li X, Zhao M, Zhang D. High-Entropy Ceramics Enhanced Droplet Electricity Generator for Energy Harvesting and Bacterial Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400505. [PMID: 38782490 DOI: 10.1002/adma.202400505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/24/2024] [Indexed: 05/25/2024]
Abstract
The droplet electricity generator (DEG) is a solid-liquid triboelectric nanogenerator with transistor-inspired bulk effect, which is regarded as an effective strategy for raindrop energy harvesting. However, further enhancement of DEG output voltage is necessary to enable its widespread applications. Here, high-entropy ceramics are integrated into the design of DEG intermediate layer for the first time, achieving a high output voltage of 525 V. High-entropy ceramics have colossal dielectric constant, which can help to reduce the triboelectric charge decay for DEG. Furthermore, the effect of factors on DEG output performance when employing high-entropy ceramics as the intermediate layer is extensively analyzed, and the underlying mechanisms and mathematical models are explored. Finally, the enhanced output voltage of DEG not only facilitates faster energy harvesting but also develops a novel method for rapid bacterial detection. This work successfully integrates high-entropy ceramics into DEG design, significantly enhances the output voltage, and offers a novel direction for DEG development.
Collapse
Affiliation(s)
- Congyu Wang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Jianming Wang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Science, Institute of Marine Corrosion Protection, Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, 530007, China
| | - Peng Wang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Yihan Sun
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Science, Institute of Marine Corrosion Protection, Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, 530007, China
| | - Wenlong Ma
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaoyi Li
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Maomi Zhao
- University of Chinese Academy of Science, Institute of Marine Corrosion Protection, Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, 530007, China
| | - Dun Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Science, Beijing, 100049, China
| |
Collapse
|
12
|
Xu Y, Sun Z, Bai Z, Shen H, Wen R, Wang F, Xu G, Lee C. Bionic e-skin with precise multi-directional droplet sliding sensing for enhanced robotic perception. Nat Commun 2024; 15:6022. [PMID: 39019858 PMCID: PMC11255283 DOI: 10.1038/s41467-024-50270-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024] Open
Abstract
Electronic skins with deep and comprehensive liquid information detection are desired to endow intelligent robotic devices with augmented perception and autonomous regulation in common droplet environments. At present, one technical limitation of electronic skins is the inability to perceive the liquid sliding information as realistically as humans and give feedback in time. To this critical challenge, in this work, a self-powered bionic droplet electronic skin is proposed by constructing an ingenious co-layer interlaced electrode network and using an overpass connection method. The bionic skin is used for droplet environment reconnaissance and converts various dynamic droplet sliding behaviors into electrical signals based on triboelectricity. More importantly, the two-dimensional sliding behavior of liquid droplets is comprehensively perceived by the e-skin and visually fed back in real-time on an indicator. Furthermore, the flow direction warning and intelligent closed-loop control of water leakage are also achieved by this e-skin, achieving the effect of human neuromodulation. This strategy compensates for the limitations of e-skin sensing droplets and greatly narrows the gap between artificial e-skins and human skins in perceiving functions.
Collapse
Affiliation(s)
- Yunlong Xu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
- Department of Electrical & Computer Engineering, National University of Singapore, Singapore, Singapore
- Center for Intelligent Sensors and MEMS, National University of Singapore, Singapore, Singapore
| | - Zhongda Sun
- Department of Electrical & Computer Engineering, National University of Singapore, Singapore, Singapore
- Center for Intelligent Sensors and MEMS, National University of Singapore, Singapore, Singapore
| | - Zhiqing Bai
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China.
| | - Hua Shen
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Run Wen
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Fumei Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Guangbiao Xu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China.
| | - Chengkuo Lee
- Department of Electrical & Computer Engineering, National University of Singapore, Singapore, Singapore.
- Center for Intelligent Sensors and MEMS, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
13
|
Wang H, Kurokawa Y, Wang J, Cai W, Zhang JH, Kato S, Usami N. Free-Standing Electrode and Fixed Surface Tiny Electrode Implemented Triboelectric Nanogenerator with High Instantaneous Current. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308531. [PMID: 38047546 DOI: 10.1002/smll.202308531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/16/2023] [Indexed: 12/05/2023]
Abstract
Conventional triboelectric nanogenerators (TENGs) face challenges pertaining to low output current density at low working frequencies and high internal impedance. While strategies, such as surface modification to enhance surface charge density, permittivity regulation of materials, and circuit management, have partially mitigated these issues. However, they have also resulted in increased complexity in the fabrication process. Therefore, there is an urgent demand for a universal and simplified approach to address these challenges. To fulfill this need, this work presents a free-standing electrode and fixed surface tiny electrode implemented triboelectric nanogenerator (FFI-TENG). It is fabricated by a straightforward yet effective method: introducing a tiny electrode onto the surface of the tribo-negative material. This approach yields substantial enhancements in performance, notably a more than tenfold increase in output current density, a reduction in effective working frequencies, and a decrease in matching resistance as compared to vertical contact-separation TENGs (CS-TENGs) or single-electrode TENGs (SE-TENGs). Simultaneously, a comprehensive examination and proposition regarding the operational mechanism of FFI-TENG, highlighting its extensive applicability are also offered. Significantly, FFI-TENG excels in mechanical energy harvesting even under ultra-low working frequencies (0.1 Hz), outperforming similar contact-separation models. This innovation positions it as a practical and efficient solution for the development of low-entropy energy harvesters.
Collapse
Affiliation(s)
- Haitao Wang
- Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Yasuyoshi Kurokawa
- Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Jia Wang
- Center for Integrated Research of Future Electronics, Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, 464-8603, Japan
| | - Wentao Cai
- Center for Integrated Research of Future Electronics, Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, 464-8603, Japan
| | - Jia-Han Zhang
- Collaborative Innovation Center of Advanced Microstructures School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Shinya Kato
- Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Noritaka Usami
- Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| |
Collapse
|
14
|
Sun L, Han Y, Zhao Y, Cui J, Bi Z, Liao S, Ma Z, Lou F, Xiao C, Feng W, Liu J, Cai B, Li D. Black phosphorus, an advanced versatile nanoparticles of antitumor, antibacterial and bone regeneration for OS therapy. Front Pharmacol 2024; 15:1396975. [PMID: 38725666 PMCID: PMC11079190 DOI: 10.3389/fphar.2024.1396975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor. In the clinic, usual strategies for OS treatment include surgery, chemotherapy, and radiation. However, all of these therapies have complications that cannot be ignored. Therefore, the search for better OS treatments is urgent. Black phosphorus (BP), a rising star of 2D inorganic nanoparticles, has shown excellent results in OS therapy due to its outstanding photothermal, photodynamic, biodegradable and biocompatible properties. This review aims to present current advances in the use of BP nanoparticles in OS therapy, including the synthesis of BP nanoparticles, properties of BP nanoparticles, types of BP nanoparticles, and modification strategies for BP nanoparticles. In addition, we have discussed comprehensively the application of BP in OS therapy, including single, dual, and multimodal synergistic OS therapies, as well as studies about bone regeneration and antibacterial properties. Finally, we have summarized the conclusions, limitations and perspectives of BP nanoparticles for OS therapy.
Collapse
Affiliation(s)
- Lihui Sun
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Yu Han
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Yao Zhao
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Jing Cui
- Jilin Provincial Key Laboratory of Oral Biomedical Engineering, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhiguo Bi
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Shiyu Liao
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Zheru Ma
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Fengxiang Lou
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Eco-materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Wei Feng
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Jianguo Liu
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Bo Cai
- Department of Diagnostic Ultrasound of People's Liberation Army 964 Hospital, Changchun, China
| | - Dongsong Li
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| |
Collapse
|
15
|
Pan C, Meng J, Jia L, Pu X. Droplet-Based Direct-Current Electricity Generation Induced by Dynamic Electric Double Layers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17649-17656. [PMID: 38552212 DOI: 10.1021/acsami.4c01168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Harvesting energy from water droplets has received tremendous attention due to the pursuit of sustainable and green energy resources. The droplet-based electricity generator (DEG) provides an admirable strategy to harvest energy from droplets into electricity. However, most of the DEGs merely generate electricity of alternating current (AC) output rather than direct current (DC) without the utilization of rectifiers, impeding its practical applications in energy storage and power supply. Here, a direct current droplet-based electricity generator (DC-DEG) is developed by the simple configuration of the electrodes. The DC output originates from the dynamical electric double layer (EDL) formed at two electrodes and droplet interfaces where the charging/discharging process of EDL capacitance occurs. Several experiments are exhibited to demonstrate the rationality of the proposed principle. The influence of some factors on the output is investigated for further insight into the DC-DEG device. This work provides a novel strategy to harvest energy from water droplets directly into DC electricity and may expand the application of DEGs in powering electronic devices without the help of rectifiers.
Collapse
Affiliation(s)
- Chongxiang Pan
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Jia Meng
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Luyao Jia
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Science, Beijing 100049, P. R. China
| | - Xiong Pu
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Science, Beijing 100049, P. R. China
| |
Collapse
|
16
|
Jiang Y, Wu Y, Xu G, Wang S, Mei T, Liu N, Wang T, Wang Y, Xiao K. Charges Transfer in Interfaces for Energy Generating. SMALL METHODS 2024; 8:e2300261. [PMID: 37256272 DOI: 10.1002/smtd.202300261] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/24/2023] [Indexed: 06/01/2023]
Abstract
Under the threat of energy crisis and environmental pollution, the technology for sustainable and clean energy extraction has received considerable attention. Owing to the intensive exploration of energy conversion strategies, expanded energy sources are successfully converted into electric energy, including mechanical energy from human motion, kinetic energy of falling raindrops, and thermal energy in the ambient. Among these energy conversion processes, charge transfer at different interfaces, such as solid-solid, solid-liquid, liquid-liquid, and gas-contained interfaces, dominates the power-generating efficiency. In this review, the mechanisms and applications of interfacial energy generators (IEGs) with different interface types are systematically summarized. Challenges and prospects are also highlighted. Due to the abundant interfacial interactions in nature, the development of IEGs offers a promising avenue of inexhaustible and environmental-friendly power generation to solve the energy crisis.
Collapse
Affiliation(s)
- Yisha Jiang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325027, P. R. China
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China
| | - Yitian Wu
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China
| | - Guoheng Xu
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China
| | - Senyao Wang
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China
| | - Tingting Mei
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China
| | - Nannan Liu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325027, P. R. China
| | - Tao Wang
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China
| | - Yude Wang
- School of Materials and Energy, Yunnan University, Kunming, 650091, P. R. China
| | - Kai Xiao
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China
| |
Collapse
|
17
|
Zhou Z, Qin H, Cui P, Wang J, Zhang J, Ge Y, Liu H, Feng C, Meng Y, Huang Z, Yang K, Cheng G, Du Z. Enhancing the Output of Liquid-Solid Triboelectric Nanogenerators through Surface Roughness Optimization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4763-4771. [PMID: 38165822 DOI: 10.1021/acsami.3c16352] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The advent of liquid-solid triboelectric nanogenerators (LS-TENGs) has ushered in a new era for harnessing and using energy derived from water. To date, extensive research has been conducted to enhance the output of LS-TENGs, thereby improving water utilization efficiency and facilitating their practical application. However, in contrast to intricate chemical treatment methods and specialized structures, a straightforward operational process and cost-effective materials are more conducive to the widespread adoption of LS-TENGs in practical applications. This work presents a novel method to enhance the output of LS-TENGs by increasing the liquid-solid contact area. The approach involves creating roughness on the solid surface through sandpaper grinding, which is simple in design and easy to operate and significantly reduces the cost of the experiment. The theory is applied to the solid triboelectric layer commonly used in the LS-TENG, demonstrating its universality and wide applicability to improve the output of the LS-TENG. The practical performance of the device is demonstrated by charging the capacitor and external load and driving the hygrometer and commercial 5 W LED light bulb, which can directly light up 300 commercial light-emitting diodes (LEDs) driven by a drop of water. This work provides a new method for the optimization of LS-TENGs and contributes to the wide application of LS-TENGs. This is a significant step forward in the field of energy harvesting and utilization.
Collapse
Affiliation(s)
- Zunkang Zhou
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng 475004, P. R. China
| | - Huaifang Qin
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Peng Cui
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng 475004, P. R. China
| | - Jingjing Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, P. R. China
| | - Jingjing Zhang
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng 475004, P. R. China
| | - Ying Ge
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng 475004, P. R. China
| | - Huimin Liu
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng 475004, P. R. China
| | - Can Feng
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng 475004, P. R. China
| | - Yao Meng
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng 475004, P. R. China
| | - Zanying Huang
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng 475004, P. R. China
| | - Ke Yang
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng 475004, P. R. China
| | - Gang Cheng
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng 475004, P. R. China
| | - Zuliang Du
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
18
|
Cai X, Liu Z, Dong J, Li H, Han J, Huang J, Chen H. U-Shaped Tube Based Liquid-Solid Triboelectric Nanogenerator for Harvesting Unutilized Compressed Air Energy. MICROMACHINES 2023; 14:2057. [PMID: 38004914 PMCID: PMC10673232 DOI: 10.3390/mi14112057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023]
Abstract
Due to a lack of technologies that harvest green and sustainable energy, unutilized compressed air energy during the operation of pneumatic systems is wasted. Liquid-solid triboelectric nano-generators (L-S TENGs) have been widely used as an advanced technology with broad development prospects due to their advantages of a simple structure and long service life. Among them, liquid-solid triboelectric nanogenerators with tube structures have great potential for coupling multiple physical effects and integrating them into a single device. Herein, a U-shaped tube triboelectric nanogenerator composed of fluorinated ethylene propylene (FEP) and copper foil (UFC-TENG) is proposed to directly harvest unutilized compressed air energy. The UFC-TENG can collect unutilized compressed air energy with a stable peak voltage and current of approximately 33 V and 0.25 μA, respectively. When the alternating frequency of the liquid is 0.9 Hz, the unutilized compressed air can drive the UFC-TENG unit with an inner diameter of 12 mm, achieving a maximum output power of 3.93 μW at an external load resistance of 90 MΩ. The UFC-TENG is a novel driving method for L-S TENGs and demonstrates the promising potential of TENGs in the harvesting of unutilized compressed air energy in pneumatic systems.
Collapse
Affiliation(s)
| | - Zhijian Liu
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China; (X.C.); (H.L.); (J.H.); (J.H.); (H.C.)
| | - Jingming Dong
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China; (X.C.); (H.L.); (J.H.); (J.H.); (H.C.)
| | | | | | | | | |
Collapse
|
19
|
Peng S, Xie B, Wang Y, Wang M, Chen X, Ji X, Zhao C, Lu G, Wang D, Hao R, Wang M, Hu N, He H, Ding Y, Zheng S. Low-grade wind-driven directional flow in anchored droplets. Proc Natl Acad Sci U S A 2023; 120:e2303466120. [PMID: 37695920 PMCID: PMC10515142 DOI: 10.1073/pnas.2303466120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/22/2023] [Indexed: 09/13/2023] Open
Abstract
Low-grade wind with airspeed Vwind < 5 m/s, while distributed far more abundantly, is still challenging to extract because current turbine-based technologies require particular geography (e.g., wide-open land or off-shore regions) with year-round Vwind > 5 m/s to effectively rotate the blades. Here, we report that low-speed airflow can sensitively enable directional flow within nanowire-anchored ionic liquid (IL) drops. Specifically, wind-induced air/liquid friction continuously raises directional leeward fluid transport in the upper portion, whereas three-phase contact line (TCL) pinning blocks further movement of IL. To remove excessive accumulation of IL near TCL, fluid dives, and headwind flow forms in the lower portion, as confirmed by microscope observation. Such stratified circulating flow within single drop can generate voltage output up to ~0.84 V, which we further scale up to ~60 V using drop "wind farms". Our results demonstrate a technology to tap the widespread low-grade wind as a reliable energy resource.
Collapse
Affiliation(s)
- Shan Peng
- Department of Inorganic Chemistry, College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, Hebei071002, China
| | - Binglin Xie
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou510641, China
| | - Yanlei Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, China
| | - Mi Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, China
| | - Xiaoxin Chen
- Department of Inorganic Chemistry, College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, Hebei071002, China
| | - Xiaoyu Ji
- Department of Inorganic Chemistry, College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, Hebei071002, China
| | - Chenyang Zhao
- Department of Inorganic Chemistry, College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, Hebei071002, China
| | - Gang Lu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Dianyu Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou450001, China
| | - Ruiran Hao
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Kaifeng475004, China
| | - Mingzhan Wang
- Pritzker School of Molecular Engineering, University of Chicago, ChicagoIL60637
| | - Nan Hu
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou510641, China
- Pazhou Lab., Guangzhou510005, China
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou451150, China
| | - Yulong Ding
- School of Chemical Engineering, University of Birmingham, BirminghamB15 2TT, United Kingdom
| | - Shuang Zheng
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Wang W, Zhang L, Wang H, Zhao Y, Cheng J, Meng J, Wang D, Liu Y. High-Output Single-Electrode Droplet Triboelectric Nanogenerator Based on Asymmetrical Distribution Electrostatic Induction Enhancement. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301568. [PMID: 37150866 DOI: 10.1002/smll.202301568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/04/2023] [Indexed: 05/09/2023]
Abstract
Droplet-based triboelectric nanogenerators (D-TENGs) have recently gained much attention due to their great potential in harvesting energy. However, the output performance of conventional single-electrode droplet-based TENGs is limited owing to low induced electrification efficiency. The asymmetric distribution of electric fields on both sides of the electrode edge enhances the electrostatic induction process and improves the output performance of D-TENG. Herein, an induced electrification-enhanced droplet-based triboelectric nanogenerator (IED-TENG) is developed to effectively enhance the output performance by simultaneously optimizing the electrode structure and the dynamics of the water droplet. One droplet falling from a height of 30 cm results in a -70 V output voltage and -6 µA short-circuit current, which is 70 times and 20 times the full-inductive-electrode mode, respectively. The working principle and the relationship between electric signal and droplet dynamics are analyzed in detail. Moreover, the peak output voltage can reach -110 V, and the peak current can get -140 µA by using the power generation of multiple water droplets. The present protocol provides an easy and reproducibility strategy in energy harvesting and sensing areas.
Collapse
Affiliation(s)
- Wenqi Wang
- Institute of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao, 266100, China
| | - Liqiang Zhang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Hanchao Wang
- Qingdao Center of Resource Chemistry and New Materials, Qingdao, 266100, China
| | - Yongkang Zhao
- Qingdao Center of Resource Chemistry and New Materials, Qingdao, 266100, China
| | - Jiahui Cheng
- Qingdao Center of Resource Chemistry and New Materials, Qingdao, 266100, China
| | - Jie Meng
- Qingdao Center of Resource Chemistry and New Materials, Qingdao, 266100, China
| | - Daoai Wang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Ying Liu
- Institute of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
21
|
Choi D, Lee Y, Lin ZH, Cho S, Kim M, Ao CK, Soh S, Sohn C, Jeong CK, Lee J, Lee M, Lee S, Ryu J, Parashar P, Cho Y, Ahn J, Kim ID, Jiang F, Lee PS, Khandelwal G, Kim SJ, Kim HS, Song HC, Kim M, Nah J, Kim W, Menge HG, Park YT, Xu W, Hao J, Park H, Lee JH, Lee DM, Kim SW, Park JY, Zhang H, Zi Y, Guo R, Cheng J, Yang Z, Xie Y, Lee S, Chung J, Oh IK, Kim JS, Cheng T, Gao Q, Cheng G, Gu G, Shim M, Jung J, Yun C, Zhang C, Liu G, Chen Y, Kim S, Chen X, Hu J, Pu X, Guo ZH, Wang X, Chen J, Xiao X, Xie X, Jarin M, Zhang H, Lai YC, He T, Kim H, Park I, Ahn J, Huynh ND, Yang Y, Wang ZL, Baik JM, Choi D. Recent Advances in Triboelectric Nanogenerators: From Technological Progress to Commercial Applications. ACS NANO 2023; 17:11087-11219. [PMID: 37219021 PMCID: PMC10312207 DOI: 10.1021/acsnano.2c12458] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/20/2023] [Indexed: 05/24/2023]
Abstract
Serious climate changes and energy-related environmental problems are currently critical issues in the world. In order to reduce carbon emissions and save our environment, renewable energy harvesting technologies will serve as a key solution in the near future. Among them, triboelectric nanogenerators (TENGs), which is one of the most promising mechanical energy harvesters by means of contact electrification phenomenon, are explosively developing due to abundant wasting mechanical energy sources and a number of superior advantages in a wide availability and selection of materials, relatively simple device configurations, and low-cost processing. Significant experimental and theoretical efforts have been achieved toward understanding fundamental behaviors and a wide range of demonstrations since its report in 2012. As a result, considerable technological advancement has been exhibited and it advances the timeline of achievement in the proposed roadmap. Now, the technology has reached the stage of prototype development with verification of performance beyond the lab scale environment toward its commercialization. In this review, distinguished authors in the world worked together to summarize the state of the art in theory, materials, devices, systems, circuits, and applications in TENG fields. The great research achievements of researchers in this field around the world over the past decade are expected to play a major role in coming to fruition of unexpectedly accelerated technological advances over the next decade.
Collapse
Affiliation(s)
- Dongwhi Choi
- Department
of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
| | - Younghoon Lee
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department
of Mechanical Engineering, Soft Robotics Research Center, Seoul National University, Seoul 08826, South Korea
- Department
of Mechanical Engineering, Gachon University, Seongnam 13120, Korea
| | - Zong-Hong Lin
- Department
of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
- Department
of Biomedical Engineering, National Taiwan
University, Taipei 10617, Taiwan
- Frontier
Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sumin Cho
- Department
of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
| | - Miso Kim
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Chi Kit Ao
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Siowling Soh
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Changwan Sohn
- Division
of Advanced Materials Engineering, Jeonbuk
National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
- Department
of Energy Storage/Conversion Engineering of Graduate School (BK21
FOUR), Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
| | - Chang Kyu Jeong
- Division
of Advanced Materials Engineering, Jeonbuk
National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
- Department
of Energy Storage/Conversion Engineering of Graduate School (BK21
FOUR), Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
| | - Jeongwan Lee
- Department
of Physics, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Minbaek Lee
- Department
of Physics, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Seungah Lee
- School
of Materials Science & Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Jungho Ryu
- School
of Materials Science & Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Parag Parashar
- Department
of Biomedical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| | - Yujang Cho
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaewan Ahn
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Feng Jiang
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798, Singapore
- Institute of Flexible
Electronics Technology of Tsinghua, Jiaxing, Zhejiang 314000, China
| | - Pooi See Lee
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Gaurav Khandelwal
- Nanomaterials
and System Lab, Major of Mechatronics Engineering, Faculty of Applied
Energy System, Jeju National University, Jeju 632-43, South Korea
- School
of Engineering, University of Glasgow, Glasgow G128QQ, U. K.
| | - Sang-Jae Kim
- Nanomaterials
and System Lab, Major of Mechatronics Engineering, Faculty of Applied
Energy System, Jeju National University, Jeju 632-43, South Korea
| | - Hyun Soo Kim
- Electronic
Materials Research Center, Korea Institute
of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department
of Physics, Inha University, Incheon 22212, Republic of Korea
| | - Hyun-Cheol Song
- Electronic
Materials Research Center, Korea Institute
of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KIST-SKKU
Carbon-Neutral Research Center, Sungkyunkwan
University (SKKU), Suwon 16419, Republic
of Korea
| | - Minje Kim
- Department
of Electrical Engineering, College of Engineering, Chungnam National University, 34134, Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Junghyo Nah
- Department
of Electrical Engineering, College of Engineering, Chungnam National University, 34134, Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Wook Kim
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Habtamu Gebeyehu Menge
- Department
of Mechanical Engineering, College of Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 17058, Republic of Korea
| | - Yong Tae Park
- Department
of Mechanical Engineering, College of Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 17058, Republic of Korea
| | - Wei Xu
- Research
Centre for Humanoid Sensing, Zhejiang Lab, Hangzhou 311100, P. R. China
| | - Jianhua Hao
- Department
of Applied Physics, The Hong Kong Polytechnic
University, Hong Kong, P.R. China
| | - Hyosik Park
- Department
of Energy Science and Engineering, Daegu
Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Ju-Hyuck Lee
- Department
of Energy Science and Engineering, Daegu
Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Dong-Min Lee
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Sang-Woo Kim
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
- Samsung
Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, 115, Irwon-ro, Gangnam-gu, Seoul 06351, South Korea
- SKKU
Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Ji Young Park
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Haixia Zhang
- National
Key Laboratory of Science and Technology on Micro/Nano Fabrication;
Beijing Advanced Innovation Center for Integrated Circuits, School
of Integrated Circuits, Peking University, Beijing 100871, China
| | - Yunlong Zi
- Thrust
of Sustainable Energy and Environment, The
Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangdong 511400, China
| | - Ru Guo
- Thrust
of Sustainable Energy and Environment, The
Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangdong 511400, China
| | - Jia Cheng
- State
Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical
Engineering, Tsinghua University, Beijing 100084, China
| | - Ze Yang
- State
Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical
Engineering, Tsinghua University, Beijing 100084, China
| | - Yannan Xie
- College
of Automation & Artificial Intelligence, State Key Laboratory
of Organic Electronics and Information Displays & Institute of
Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu
National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Sangmin Lee
- School
of Mechanical Engineering, Chung-ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Jihoon Chung
- Department
of Mechanical Design Engineering, Kumoh
National Institute of Technology (KIT), 61 Daehak-ro, Gumi, Gyeongbuk 39177, South Korea
| | - Il-Kwon Oh
- National
Creative Research Initiative for Functionally Antagonistic Nano-Engineering,
Department of Mechanical Engineering, School of Mechanical and Aerospace
Engineering, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Ji-Seok Kim
- National
Creative Research Initiative for Functionally Antagonistic Nano-Engineering,
Department of Mechanical Engineering, School of Mechanical and Aerospace
Engineering, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Tinghai Cheng
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Qi Gao
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Gang Cheng
- Key
Lab for Special Functional Materials, Ministry of Education, National
& Local Joint Engineering Research Center for High-efficiency
Display and Lighting Technology, School of Materials Science and Engineering,
and Collaborative Innovation Center of Nano Functional Materials and
Applications, Henan University, Kaifeng 475004, China
| | - Guangqin Gu
- Key
Lab for Special Functional Materials, Ministry of Education, National
& Local Joint Engineering Research Center for High-efficiency
Display and Lighting Technology, School of Materials Science and Engineering,
and Collaborative Innovation Center of Nano Functional Materials and
Applications, Henan University, Kaifeng 475004, China
| | - Minseob Shim
- Department
of Electronic Engineering, College of Engineering, Gyeongsang National University, 501, Jinjudae-ro, Gaho-dong, Jinju 52828, South Korea
| | - Jeehoon Jung
- Department
of Electrical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology
(UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, South Korea
| | - Changwoo Yun
- Department
of Electrical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology
(UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, South Korea
| | - Chi Zhang
- CAS
Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano
Energy and Sensor, Beijing Institute of
Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoxu Liu
- CAS
Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano
Energy and Sensor, Beijing Institute of
Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufeng Chen
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Suhan Kim
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Xiangyu Chen
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Jun Hu
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Xiong Pu
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Zi Hao Guo
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Xudong Wang
- Department
of Materials Science and Engineering, University
of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jun Chen
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Xiao Xiao
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Xing Xie
- School
of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mourin Jarin
- School
of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hulin Zhang
- College
of Information and Computer, Taiyuan University
of Technology, Taiyuan 030024, P. R. China
| | - Ying-Chih Lai
- Department
of Materials Science and Engineering, National
Chung Hsing University, Taichung 40227, Taiwan
- i-Center
for Advanced Science and Technology, National
Chung Hsing University, Taichung 40227, Taiwan
- Innovation
and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan
| | - Tianyiyi He
- Department
of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore
| | - Hakjeong Kim
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Inkyu Park
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Junseong Ahn
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Nghia Dinh Huynh
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Ya Yang
- CAS
Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano
Energy and Sensor, Beijing Institute of
Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- Center
on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
| | - Zhong Lin Wang
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jeong Min Baik
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
- KIST-SKKU
Carbon-Neutral Research Center, Sungkyunkwan
University (SKKU), Suwon 16419, Republic
of Korea
| | - Dukhyun Choi
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| |
Collapse
|
22
|
Wu Y, Cuthbert TJ, Luo Y, Chu PK, Menon C. Cross-Link-Dependent Ionogel-Based Triboelectric Nanogenerators with Slippery and Antireflective Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301381. [PMID: 36919263 DOI: 10.1002/smll.202301381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Indexed: 06/15/2023]
Abstract
Given the ability to convert various ambient unused mechanical energies into useful electricity, triboelectric nanogenerators (TENGs) are gaining interest since their inception. Recently, ionogel-based TENGs (I-TENGs) have attracted increasing attention because of their excellent thermal stability and adjustable ionic conductivity. However, previous studies on ionogels mainly pursued the device performance or applications under harsh conditions, whereas few have investigated the structure-property relationships of components to performance. The results indicate that the ionogel formulation-composed of a crosslinking monomer with an ionic liquid-affects the conductivity of the ionogel by modulating the cross-link density. In addition, the ratio of cross-linker to ionic liquid is important to ensure the formation of efficient charge channels, yet increasing ionic liquid content delivers diminishing returns. The ionogels are then used in I-TENGs to harvest water droplet energy and the performance is correlated to the ionogels structure-property relationships. Improvement of the energy harvesting is further explored by the introduction of surface polymer brushes on I-TENGs via a facile and universal method, which enhances droplet sliding by means of ideal surface contact angle hysteresis and improves its anti-reflective properties by employing the I-TENG as a surface covering for solar cells.
Collapse
Affiliation(s)
- Yinghong Wu
- Biomedical and Mobile Health Technology Lab, Department of Health Sciences and Technology, ETH Zürich, Lengghalde 5, Zürich, 8008, Switzerland
| | - Tyler J Cuthbert
- Biomedical and Mobile Health Technology Lab, Department of Health Sciences and Technology, ETH Zürich, Lengghalde 5, Zürich, 8008, Switzerland
| | - Yang Luo
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Paul K Chu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Carlo Menon
- Biomedical and Mobile Health Technology Lab, Department of Health Sciences and Technology, ETH Zürich, Lengghalde 5, Zürich, 8008, Switzerland
| |
Collapse
|
23
|
Deng Y, Meng G, Tai Y, Liu Z. Noncontact liquid-solid nanogenerators as self-powered droplet sensors. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN ELECTRONICS 2023; 34:1033. [PMID: 38625192 PMCID: PMC10127196 DOI: 10.1007/s10854-023-10389-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/01/2023] [Indexed: 04/07/2024]
Abstract
Liquid-solid triboelectric nanogenerators (L-S TENGs) can generate corresponding electrical signal responses through the contact separation of droplets and dielectrics and have a wide range of applications in energy harvesting and self-powered sensing. However, the contact between the droplet and the electret will cause the contact L-S TENG's performance degradation or even failure. Here we report a noncontact triboelectric nanogenerator (NCLS-TENG) that can effectively sense droplet stimuli without contact with droplets and convert them into electrical energy or corresponding electrical signals. Since there is no contact between the droplet and the dielectric, it can continuously and stably generate a signal output. To verify the feasibility of NCLS-TENG, we demonstrate the modified murphy's dropper as a smart infusion monitoring system. The smart infusion monitoring system can effectively identify information such as the type, concentration, and frequency of droplets. NCLS-TENG show great potential in smart medical, smart wearable and other fields.
Collapse
Affiliation(s)
- Yi Deng
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Centre for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, 832003 Shihezi China
- Key Laboratory of Human-Machine Intelligence-Synergy Systems of Chinese Academy of Sciences (CAS), Shenzhen Institutes of Advanced Technology, CAS, Shenzhen, 518055 China
| | - Guihua Meng
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Centre for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, 832003 Shihezi China
| | - Yanlong Tai
- Key Laboratory of Human-Machine Intelligence-Synergy Systems of Chinese Academy of Sciences (CAS), Shenzhen Institutes of Advanced Technology, CAS, Shenzhen, 518055 China
| | - Zhiyong Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Centre for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, 832003 Shihezi China
| |
Collapse
|
24
|
Wang W, Yang D, Yan X, Wang L, Hu H, Wang K. Triboelectric nanogenerators: the beginning of blue dream. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2271-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
25
|
Ye C, Liu D, Chen P, Cao LNY, Li X, Jiang T, Wang ZL. An Integrated Solar Panel with a Triboelectric Nanogenerator Array for Synergistic Harvesting of Raindrop and Solar Energy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209713. [PMID: 36580631 DOI: 10.1002/adma.202209713] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The triboelectric nanogenerator (TENG) is regarded as an effective strategy for harvesting energy from raindrops, and is a complementary solution with solar cells to achieve all-weather energy harvesting and sustainable energy supply. However, due to the irregularity of natural rainfalls in the volume, frequency, density, and location, designing high-efficiency raindrop TENG (R-TENG) arrays faces great challenges. In this work, a highly transparent, large-area, and high-efficiency R-TENG array with rational material choice, electrode structure, and array distribution is developed for efficiently harvesting irregular raindrop energy. The problem of electrical signal cancellation among adjacent raindrops can be fully avoided, as viewed from the high-resolution space-time analyses of high-speed camera and electrical signal characteristics. With the rationally designed electrode instead of multiple complex electrodes, all charges can be exported by the R-TENG array in a simulated irregular raindrop scenario. Moreover, it is demonstrated that the R-TENG possesses higher average power density (40.80 mW m-2 ) than that of the solar cell (37.03 mW m-2 ) in rainy condition. Additionally, a self-powered wireless light-intensity-monitoring system is demonstrated for real-time and all-day weather monitoring. This work provides useful guidance for designing high-efficiency TENG arrays integrated with solar panels for harvesting irregular raindrop energy and solar energy.
Collapse
Affiliation(s)
- Cuiying Ye
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Di Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Pengfei Chen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Leo N Y Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xunjia Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Tao Jiang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
26
|
Song WZ, Zhang M, Qiu HJ, Li CL, Chen T, Jiang LL, Yu M, Ramakrishna S, Wang ZL, Long YZ. Insulator polymers achieve efficient catalysis under visible light due to contact electrification. WATER RESEARCH 2022; 226:119242. [PMID: 36257156 DOI: 10.1016/j.watres.2022.119242] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Under the limitation of the carrier yield and mobility of semiconductor photocatalysts and the reaction domain, it seems that the photocatalytic efficiency cannot be greatly improved. Here, an efficient contact-electro-catalysis (CEC) system based on droplet triboelectric nanogenerator (TENG) is developed. Instead of using traditional semiconductor catalysts, the electric charge transferred during the electrification process of the contact between water droplets and polytetrafluoroethylene (PTFE) is used to participate in catalysis, and the output electrical signal can also monitor the degree of catalysis. The important role of light in the circulation of this CEC system is studied and discussed for the first time. It is proved that the contact electrification at the liquid-solid interface is accompanied by the generation of a large number of strong oxidizing radicals. The efficient transport of charge carriers driven by mechanical force and the active oxygen species distributed in the whole domain greatly improve the degradation rate of dyes. The experimental data show that the degradation efficiency of crystal violet (CV) reaches 90% within 38 s, and the rate constant k is as high as 3.7 min-1. This is a breakthrough in the field of catalysis.
Collapse
Affiliation(s)
- Wei-Zhi Song
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Meng Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Hui-Jing Qiu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| | - Chang-Long Li
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Ting Chen
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Long-Long Jiang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Miao Yu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China; Junada (Qingdao) Technology Co. Ltd., Qingdao International Academician Park, Qingdao 266199, China
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, National University of Singapore, Singapore
| | - Zhong-Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
27
|
Xue L, Li H, Li A, Zhao Z, Li K, Li M, Song Y. Non-Hookean Droplet Spring for Enhancing Hydropower Harvest. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200875. [PMID: 35385220 DOI: 10.1002/smll.202200875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Nonlinear elastic materials are significant for engineering and micromechanics. Droplets with the merits of easy-accessibility, diversity, and energy-absorption capability exhibit a variety of non-Hookean elastic behaviors. Herein, benefiting from the confinement of heterogeneous-wettable parallel plates, the non-Hookean mechanics of the droplet-based spring are systematically investigated. Experimental results and theoretical analysis reveal that the force generated by the spring varies nonlinearly with its deformation, and a force model is accordingly built to depict the mechanics of springs with different sized/numbered droplets and confined by different wettability patterns. Importantly, for the droplet-based spring, the droplet-plate contact area expands nonlinearly with the pressing force, which is employed to optimize the output performance of the droplet-based triboelectric nanogenerator to 226% compared with the control test. This finding deepens the understanding of the non-Hookean behavior of droplet-based springs, and sheds light on applications in energy harvesting, micromechanics, and miniature optic/electric devices.
Collapse
Affiliation(s)
- Luanluan Xue
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huizeng Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - An Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhipeng Zhao
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kaixuan Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mingzhu Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|