1
|
Xiao Z, Zeng B, Xu F, Liu G, Zhou H, Chen J, Fei L, Liao X, Yuan J, Zhou Y. High-performance van der Waals stacked transistors based on ultrathin GaPS 4 dielectrics. NANOSCALE 2025; 17:4465-4471. [PMID: 39807023 DOI: 10.1039/d4nr03685a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Exploring high-κ gate dielectrics is crucial for the achievement of high-performance field-effect transistors (FETs). Here, we report the synthesis of a few-layer wide bandgap semiconductor gallium thiophosphate (GaPS4), which can be easily mechanically exfoliated from a bulk material. The few-layered GaPS4 flakes exhibit a relative dielectric constant of approximately 5.3. Two-dimensional (2D) van der Waals heterostructure FETs utilizing atomically smooth GaPS4 flakes as the top-gate dielectric layer and MoS2 as the channel material were fabricated, showing a high on-off ratio exceeding 107 with a subthreshold swing as low as 80 mV per decade. Our findings indicate that few-layer GaPS4 is a high-performance dielectric candidate for two-dimensional transistors, which enrich the high-κ 2D community and pave the way for fabricating modern electronic devices.
Collapse
Affiliation(s)
- Zhilin Xiao
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China.
- Jiangxi Provincial Key Laboratory of Photodetectors, School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Binghuan Zeng
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China.
- Jiangxi Provincial Key Laboratory of Photodetectors, School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Fang Xu
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China.
- Jiangxi Provincial Key Laboratory of Photodetectors, School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Guangjian Liu
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China.
- Jiangxi Provincial Key Laboratory of Photodetectors, School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Hua Zhou
- School of Physics, Shandong University, Shandanan Street 27, 250100 Jinan, P. R. China
| | - Jiaqi Chen
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China.
- Jiangxi Provincial Key Laboratory of Photodetectors, School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Linfeng Fei
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China.
- Jiangxi Provincial Key Laboratory of Photodetectors, School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Xiaxia Liao
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China.
- Jiangxi Provincial Key Laboratory of Photodetectors, School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Jiaren Yuan
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China.
- Jiangxi Provincial Key Laboratory of Photodetectors, School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Yangbo Zhou
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China.
- Jiangxi Provincial Key Laboratory of Photodetectors, School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| |
Collapse
|
2
|
Yue Y, Chen C, Liu Y, Kong D, Wei D. Multifunctional Integrated Biosensors Based on Two-Dimensional Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70160-70173. [PMID: 39661741 DOI: 10.1021/acsami.4c18412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
In recent years, field-effect transistor (FET) sensing technology has attracted significant attention owing to its noninvasive, label-free, real-time, and user-friendly detection capabilities. Owing to the large specific surface area, high flexibility, and excellent conductivity of two-dimensional (2D) materials, FET biosensors based on 2D materials have demonstrated unique potential in biomarker analysis and healthcare applications, driving continuous innovation and transformation in the field. Here, we review recent trends in the development of 2D FET biosensors based on key performance metrics and main characteristics, and we also discuss structural designs and modification strategies for biosensing devices utilizing graphene, transition metal dichalcogenides, black phosphorus, and other 2D materials to enhance key performance metrics. Finally, we offer insights into future directions for biosensor advancements, discuss potential improvements, and present new recommendations for practical clinical applications.
Collapse
Affiliation(s)
- Yang Yue
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Chang Chen
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Department of Material Science, Fudan University, Shanghai 200433, China
| | - Yunqi Liu
- Department of Material Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Derong Kong
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Department of Material Science, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Department of Material Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Fu GE, Yang H, Zhao W, Samorì P, Zhang T. 2D Conjugated Polymer Thin Films for Organic Electronics: Opportunities and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311541. [PMID: 38551322 DOI: 10.1002/adma.202311541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/07/2024] [Indexed: 04/06/2024]
Abstract
2D conjugated polymers (2DCPs) possess extended in-plane π-conjugated lattice and out-of-plane π-π stacking, which results in enhanced electronic performance and potentially unique band structures. These properties, along with predesignability, well-defined channels, easy postmodification, and order structure attract extensive attention from material science to organic electronics. In this review, the recent advance in the interfacial synthesis and conductivity tuning strategies of 2DCP thin films, as well as their application in organic electronics is summarized. Furthermore, it is shown that, by combining topology structure design and targeted conductivity adjustment, researchers have fabricated 2DCP thin films with predesigned active groups, highly ordered structures, and enhanced conductivity. These films exhibit great potential for various thin-film organic electronics, such as organic transistors, memristors, electrochromism, chemiresistors, and photodetectors. Finally, the future research directions and perspectives of 2DCPs are discussed in terms of the interfacial synthetic design and structure engineering for the fabrication of fully conjugated 2DCP thin films, as well as the functional manipulation of conductivity to advance their applications in future organic electronics.
Collapse
Affiliation(s)
- Guang-En Fu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Wenkai Zhao
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
4
|
Zhuang W, Jang HJ, Sui X, Ryu B, Wang Y, Pu H, Chen J. Enhancing Electrochemical Sensing through Molecular Engineering of Reduced Graphene Oxide-Solution Interfaces and Remote Floating-Gate FET Analysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27961-27968. [PMID: 38749768 PMCID: PMC11145583 DOI: 10.1021/acsami.4c03999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024]
Abstract
Two-dimensional nanomaterials such as reduced graphene oxide (rGO) have captured significant attention in the realm of field-effect transistor (FET) sensors due to their inherent high sensitivity and cost-effective manufacturing. Despite their attraction, a comprehensive understanding of rGO-solution interfaces (specifically, electrochemical interfacial properties influenced by linker molecules and surface chemistry) remains challenging, given the limited capability of analytical tools to directly measure intricate solution interface properties. In this study, we introduce an analytical tool designed to directly measure the surface charge density of the rGO-solution interface leveraging the remote floating-gate FET (RFGFET) platform. Our methodology involves characterizing the electrochemical properties of rGO, which are influenced by adhesion layers between SiO2 and rGO, such as (3-aminopropyl)trimethoxysilane (APTMS) and hexamethyldisilazane (HMDS). The hydrophilic nature of APTMS facilitates the acceptance of oxygen-rich rGO, resulting in a noteworthy pH sensitivity of 56.8 mV/pH at the rGO-solution interface. Conversely, hydrophobic HMDS significantly suppresses the pH sensitivity from the rGO-solution interface, attributed to the graphitic carbon-rich surface of rGO. Consequently, the carbon-rich surface facilitates a denser arrangement of 1-pyrenebutyric acid N-hydroxysuccinimide ester linkers for functionalizing capturing probes on rGO, resulting in an enhanced sensitivity of lead ions by 32% in our proof-of-concept test.
Collapse
Affiliation(s)
- Wen Zhuang
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Chemical
Sciences and Engineering Division, Physical Sciences and Engineering
Directorate, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Hyun-June Jang
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Chemical
Sciences and Engineering Division, Physical Sciences and Engineering
Directorate, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Xiaoyu Sui
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Chemical
Sciences and Engineering Division, Physical Sciences and Engineering
Directorate, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Byunghoon Ryu
- Chemical
Sciences and Engineering Division, Physical Sciences and Engineering
Directorate, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yuqin Wang
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Chemical
Sciences and Engineering Division, Physical Sciences and Engineering
Directorate, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Haihui Pu
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Chemical
Sciences and Engineering Division, Physical Sciences and Engineering
Directorate, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Junhong Chen
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Chemical
Sciences and Engineering Division, Physical Sciences and Engineering
Directorate, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
5
|
Muñoz J. Rational Design of Stimuli-Responsive Inorganic 2D Materials via Molecular Engineering: Toward Molecule-Programmable Nanoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305546. [PMID: 37906953 DOI: 10.1002/adma.202305546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/10/2023] [Indexed: 11/02/2023]
Abstract
The ability of electronic devices to act as switches makes digital information processing possible. Succeeding graphene, emerging inorganic 2D materials (i2DMs) have been identified as alternative 2D materials to harbor a variety of active molecular components to move the current silicon-based semiconductor technology forward to a post-Moore era focused on molecule-based information processing components. In this regard, i2DMs benefits are not only for their prominent physiochemical properties (e.g., the existence of bandgap), but also for their high surface-to-volume ratio rich in reactive sites. Nonetheless, since this field is still in an early stage, having knowledge of both i) the different strategies for molecularly functionalizing the current library of i2DMs, and ii) the different types of active molecular components is a sine qua non condition for a rational design of stimuli-responsive i2DMs capable of performing logical operations at the molecular level. Consequently, this Review provides a comprehensive tutorial for covalently anchoring ad hoc molecular components-as active units triggered by different external inputs-onto pivotal i2DMs to assess their role in the expanding field of molecule-programmable nanoelectronics for electrically monitoring bistable molecular switches. Limitations, challenges, and future perspectives of this emerging field which crosses materials chemistry with computation are critically discussed.
Collapse
Affiliation(s)
- Jose Muñoz
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| |
Collapse
|
6
|
Xu Y, Li D, Sun H, Xu H, Li P. Comprehensive understanding of electron mobility and superior performance in sub-10 nm DG ML tetrahex-GeC 2 n-type MOSFETs. Phys Chem Chem Phys 2024; 26:4284-4297. [PMID: 38231547 DOI: 10.1039/d3cp05327j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
In this study, we have investigated the electron mobility of monolayered (ML) tetrahex-GeC2 by solving the linearized Boltzmann transport equation (BTE) with the normalized full-band relaxation time approximation (RTA) using density functional theory (DFT). Contrary to what the deformation potential theory (DPT) suggested, the ZA acoustic mode was determined to be the most restrictive for electron mobility, not the LA mode. The electron mobility at 300 K is 803 cm2 (V s)-1, exceeding the 400 cm2 (V s)-1 of MoS2 which was calculated using the same method and measured experimentally. The ab initio quantum transport simulations were performed to assess the performance limits of sub-10 nm DG ML tetrahex-GeC2 n-type MOSFETs, including gate lengths (Lg) of 3 nm, 5 nm, 7 nm, and 9 nm, with the underlap (UL) effect considered for the first two. For both high-performance (HP) and low-power (LP) applications, their on-state currents (Ion) can meet the requirements of similar nodes in the ITRS 2013. In particular, the Ion is more remarkable for HP applications than that of the extensively studied MoS2. For LP applications, the Ion values at Lg of 7 and 9 nm surpass those of arsenene, known for having the largest Ion among 2D semiconductors. Subthreshold swings (SSs) as low as 69/53 mV dec-1 at an Lg of 9 nm were observed for HP/LP applications, and 73 mV dec-1 at an Lg of 5 nm for LP applications, indicating the excellent gate control capability. Moreover, the delay time τ and power dissipation (PDP) at Lg values of 3 nm, 5 nm, 7 nm, and 9 nm are all below the upper limits of the ITRS 2013 HP/LP proximity nodes and are comparable to or lower than those of typical 2D semiconductors. The sub-10 nm DG ML tetrahex-GeC2 n-type MOSFETs can be down-scaled to 9 nm and 5 nm for HP and LP applications, respectively, displaying desirable Ion, delay time τ, and PDP in the ballistic limit, making them a potential choice for sub-10 nm transistors.
Collapse
Affiliation(s)
- Yuehua Xu
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, Jiangsu, China.
| | - Daqing Li
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, Jiangsu, China.
| | - He Sun
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, Jiangsu, China.
| | - Haowen Xu
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, Jiangsu, China.
| | - Pengfei Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
7
|
Chen S, Bashir R. Advances in field-effect biosensors towards point-of-use. NANOTECHNOLOGY 2023; 34:492002. [PMID: 37625391 PMCID: PMC10523595 DOI: 10.1088/1361-6528/acf3f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 08/27/2023]
Abstract
The future of medical diagnostics calls for portable biosensors at the point of care, aiming to improve healthcare by reducing costs, improving access, and increasing quality-what is called the 'triple aim'. Developing point-of-care sensors that provide high sensitivity, detect multiple analytes, and provide real time measurements can expand access to medical diagnostics for all. Field-effect transistor (FET)-based biosensors have several advantages, including ultrahigh sensitivity, label-free and amplification-free detection, reduced cost and complexity, portability, and large-scale multiplexing. They can also be integrated into wearable or implantable devices and provide continuous, real-time monitoring of analytesin vivo, enabling early detection of biomarkers for disease diagnosis and management. This review analyzes advances in the sensitivity, parallelization, and reusability of FET biosensors, benchmarks the limit of detection of the state of the art, and discusses the challenges and opportunities of FET biosensors for future healthcare applications.
Collapse
Affiliation(s)
- Sihan Chen
- Holonyak Micro and Nanotechnology Laboratory, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Rashid Bashir
- Holonyak Micro and Nanotechnology Laboratory, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| |
Collapse
|
8
|
Maity A, Pu H, Sui X, Chang J, Bottum KJ, Jin B, Zhou G, Wang Y, Lu G, Chen J. Scalable graphene sensor array for real-time toxins monitoring in flowing water. Nat Commun 2023; 14:4184. [PMID: 37443127 DOI: 10.1038/s41467-023-39701-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Risk management for drinking water often requires continuous monitoring of various toxins in flowing water. While they can be readily integrated with existing water infrastructure, two-dimensional (2D) electronic sensors often suffer from device-to-device variations due to the lack of an effective strategy for identifying faulty devices from preselected uniform devices based on electronic properties alone, resulting in sensor inaccuracy and thus slowing down their real-world applications. Here, we report the combination of wet transfer, impedance and noise measurements, and machine learning to facilitate the scalable nanofabrication of graphene-based field-effect transistor (GFET) sensor arrays and the efficient identification of faulty devices. Our sensors were able to perform real-time detection of heavy-metal ions (lead and mercury) and E. coli bacteria simultaneously in flowing tap water. This study offers a reliable quality control protocol to increase the potential of electronic sensors for monitoring pollutants in flowing water.
Collapse
Affiliation(s)
- Arnab Maity
- Department of Mechanical Engineering, College of Engineering & Applied Science, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Haihui Pu
- Department of Mechanical Engineering, College of Engineering & Applied Science, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL, 60439, USA
| | - Xiaoyu Sui
- Department of Mechanical Engineering, College of Engineering & Applied Science, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL, 60439, USA
| | - Jingbo Chang
- Department of Mechanical Engineering, College of Engineering & Applied Science, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Kai J Bottum
- Department of Mechanical Engineering, College of Engineering & Applied Science, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Bing Jin
- Department of Mechanical Engineering, College of Engineering & Applied Science, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Guihua Zhou
- Department of Mechanical Engineering, College of Engineering & Applied Science, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Yale Wang
- Department of Mechanical Engineering, College of Engineering & Applied Science, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Ganhua Lu
- Department of Mechanical Engineering, College of Engineering & Applied Science, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Junhong Chen
- Department of Mechanical Engineering, College of Engineering & Applied Science, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL, 60439, USA.
| |
Collapse
|
9
|
Wang Q, Ai Z, Guo Q, Wang X, Dai C, Wang H, Sun J, Tang Y, Jiang D, Pei X, Chen R, Gou J, Yu L, Ding J, Wee ATS, Liu Y, Wei D. Photo-Enhanced Chemo-Transistor Platform for Ultrasensitive Assay of Small Molecules. J Am Chem Soc 2023; 145:10035-10044. [PMID: 37097713 DOI: 10.1021/jacs.2c13655] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Compared with traditional assay techniques, field-effect transistors (FETs) have advantages such as fast response, high sensitivity, being label-free, and point-of-care detection, while lacking generality to detect a wide range of small molecules since most of them are electrically neutral with a weak doping effect. Here, we demonstrate a photo-enhanced chemo-transistor platform based on a synergistic photo-chemical gating effect in order to overcome the aforementioned limitation. Under light irradiation, accumulated photoelectrons generated from covalent organic frameworks offer a photo-gating modulation, amplifying the response to small molecule adsorption including methylglyoxal, p-nitroaniline, nitrobenzene, aniline, and glyoxal when measuring the photocurrent. We perform testing in buffer, artificial urine, sweat, saliva, and diabetic mouse serum. The limit of detection is down to 10-19 M methylglyoxal, about 5 orders of magnitude lower than existing assay technologies. This work develops a photo-enhanced FET platform to detect small molecules or other neutral species with enhanced sensitivity for applications in fields such as biochemical research, health monitoring, and disease diagnosis.
Collapse
Affiliation(s)
- Qiankun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Zhaolin Ai
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Qianying Guo
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Xuejun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Hancheng Wang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jiang Sun
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yanan Tang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dingding Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Xinjie Pei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Renzhong Chen
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Jian Gou
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
10
|
Urbanos FJ, Gullace S, Samorì P. MoS 2 Defect Healing for High-Performance Chemical Sensing of Polycyclic Aromatic Hydrocarbons. ACS NANO 2022; 16:11234-11243. [PMID: 35796589 DOI: 10.1021/acsnano.2c04503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The increasing population and industrial development are responsible for environmental pollution. Among toxic chemicals, polycyclic aromatic hydrocarbons (PAHs) are highly carcinogenic contaminants resulting from the incomplete combustion of organic materials. Two-dimensional materials, such as transition metal dichalcogenides (TMDCs), are ideal sensory scaffolds, combining high surface-to-volume ratio with physical and chemical properties that are strongly susceptible to environmental changes. TMDCs can be integrated in field-effect transistors (FETs), which can operate as high-performance chemical detectors of (non)covalent interaction with small molecules. Here, we have developed MoS2-based FETs as platforms for PAHs sensing, relying on the affinity of the planar polyaromatic molecules for the basal plane of MoS2 and the structural defects in its lattice. X-ray photoelectron spectroscopy analysis, photoluminescence measurements, and transfer characteristics showed a notable reduction in the defectiveness of MoS2 and a p-type doping upon exposure to PAHs solutions, with a magnitude determined by the correlation between the ionization energies (EI) of the PAH and that of MoS2. Naphthalene, endowed with the higher EI among the studied PAHs, exhibited the highest output. We observed a log-log correlation between MoS2 doping and naphthalene concentration in water in a wide range (10-9-10-6 M), as well as a reversible response to the analyte. Naphthalene concentrations as low as 0.128 ppb were detected, being below the limits imposed by health regulations for drinking water. Furthermore, our MoS2 devices can reversibly detect vapors of naphthalene with both an electrical and optical readout, confirming that our architecture could operate as a dual sensing platform.
Collapse
Affiliation(s)
- Fernando J Urbanos
- University of Strasbourg, CNRS, ISIS, UMR 7006, 8 Allée Gaspard Monge, Strasbourg, F-67000, France
| | - Sara Gullace
- University of Strasbourg, CNRS, ISIS, UMR 7006, 8 Allée Gaspard Monge, Strasbourg, F-67000, France
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS, UMR 7006, 8 Allée Gaspard Monge, Strasbourg, F-67000, France
| |
Collapse
|