1
|
Chen D, Cui R, Huang C, Wang Z, Niu L. Wearable Mechanoluminescent Triboelectric Sensors for Real-Time Monitoring of Nighttime Sports Activities. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18844-18851. [PMID: 40085721 DOI: 10.1021/acsami.4c22118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Smart clothing that integrates active luminescence and motion monitoring holds significant importance for enhancing safety during nighttime activities. In this study, by combining mechanoluminescent materials (ZnS/Cu) with triboelectric nanogenerators, an intelligent yoga pant that actively emits light and senses joint movements during physical activities has been fabricated. The incorporation of silver fiber electrodes ensures breathability throughout the mechanoluminescent triboelectric sensor (MTS), contributing to the high comfort of wearable smart clothing. The doping of ZnS/Cu with organic silicone rubber enhances the dielectric constant of the triboelectric layer, thereby effectively enhancing the output signal of the MTS. Moreover, the mechanoluminescent materials convert the tension applied during joint flexion into dynamically varying light, alerting passing vehicles and safeguarding users during nighttime activities. An in-depth investigation was conducted on the relationship between the content of luminescent materials and the device's light intensity and output voltage under the same stretching conditions. The integration of a wearable signal acquisition system ensures real-time output of the electrical signals from the MTS during running, enabling online real-time monitoring of motion indicators such as joint bending angles and step counts. These findings provide feasible insights for the development of breathable, active luminescent smart clothing.
Collapse
Affiliation(s)
- Dingding Chen
- School of Design, Jiangnan University, Wuxi 214122, China
- Zhouzhuang College of Culture and Tourism, Applied Technology College of Soochow University, Suzhou 215123, P. R. China
| | - Rongrong Cui
- College of Fashion, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 311199, P. R. China
| | - Chengwu Huang
- College of Sports, Fujian Polytechnic Normal University, Fuzhou 350000, P. R. China
| | - Zhicheng Wang
- College of Fashion, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 311199, P. R. China
| | - Li Niu
- School of Digital Technology and Creative Design, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Zhang M, Fang S, Cai W, Huynh C, Göktepe F, Oh J, Wang Z, Ekanayake I, Göktepe Ö, Baughman RH. Mandrel-free fabrication of giant spring-index and stroke muscles for diverse applications. Science 2025; 387:1101-1108. [PMID: 40048538 DOI: 10.1126/science.adr6708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/17/2025] [Indexed: 04/23/2025]
Abstract
Methods for making high-spring-index polymer fiber or yarn muscles have required expensive fabrication by wrapping around a mandrel, which limits their practical applications. We demonstrate an inexpensive mandrel-free method for making polymer muscles that can have a spring index of >50 and a contractile tensile stroke exceeding 97%. This method enables the spring index to be varied along a muscle's length by varying the plying twist, resulting in muscles that transition between homochiral and heterochiral when either heated or cooled. We demonstrate use of these polymer muscles for robots and environmentally driven comfort-adjusting jackets. This mandrel-free method was used to make high-spring-index carbon nanotube yarns for mechanical energy harvesters, self-powered strain sensors, and solvent-driven and electrochemically driven artificial muscles.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, USA
| | - Shaoli Fang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, USA
| | - Wenting Cai
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | - Chi Huynh
- Lintec of America, Inc., Nano-Science & Technology Center, Plano, TX, USA
| | - Fatma Göktepe
- Textile Engineering Department, Çorlu Engineering Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Jiyoung Oh
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, USA
| | - Zhong Wang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, USA
| | - Ishara Ekanayake
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, USA
| | - Özer Göktepe
- Textile Engineering Department, Çorlu Engineering Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Ray H Baughman
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
3
|
Khandelwal G, John DA, Vivekananthan V, Gadegaard N, Mulvihill DM, Kim SJ. Growth of the metal-organic framework ZIF-67 on cellulosic substrates for triboelectric nanogenerators. NANOSCALE 2025; 17:3211-3220. [PMID: 39718340 DOI: 10.1039/d4nr03909b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Metal-organic frameworks (MOFs) are porous crystalline materials with a metal ion coordinated to a ligand molecule. Recently, MOFs are being explored extensively for energy harvesting via triboelectrification. However, the majority of MOFs are brittle and hard to grow, thus leading to poor device stability and flexibility. Herein, the growth of ZIF-67 MOF is achieved on a cellulosic filter paper (CFP) and cotton fabric (CF) separately to use as the active layer in a TENG. The grown ZIF-67 MOFs were used for the fabrication of CFP-TENG and CF-TENG in vertical contact separation mode. The CF-TENG device exhibited a high durability with no significant change in the electrical output for a period of 14 000 s. Additionally, the device generated a maximum electrical output of 60 V and 3 μA with an output power density of 5 mW m-2 at a load resistance of 800 MΩ. The robustness of the MOF grown on cotton fabric was demonstrated by fabricating a contact separation and rotating TENG device. The rotating TENG device produced an output voltage of ∼100 V and current of 3.5 μA, thus confirming the strong adherence of MOFs on the fabric. The CF-TENG was demonstrated for powering electronics via flexible circuits and for biomechanical energy harvesting by utilising finger tapping, hand tapping, jogging and running movements.
Collapse
Affiliation(s)
- Gaurav Khandelwal
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Dina Anna John
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Venkateswaran Vivekananthan
- Center for Flexible Electronics, Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Vijayawada Campus, India.
- Department of Integrated Research and Discovery, Koneru Lakshmaiah Education Foundation, Vijayawada Campus, India
| | - Nikolaj Gadegaard
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Daniel M Mulvihill
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Sang-Jae Kim
- Nanomaterials and Systems Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy Systems, Jeju National University, Jeju-si, Republic of Korea.
| |
Collapse
|
4
|
Guo X, Wang L, Jin Z, Lee C. A Multifunctional Hydrogel with Multimodal Self-Powered Sensing Capability and Stable Direct Current Output for Outdoor Plant Monitoring Systems. NANO-MICRO LETTERS 2024; 17:76. [PMID: 39602030 PMCID: PMC11602912 DOI: 10.1007/s40820-024-01587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Smart farming with outdoor monitoring systems is critical to address food shortages and sustainability challenges. These systems facilitate informed decisions that enhance efficiency in broader environmental management. Existing outdoor systems equipped with energy harvesters and self-powered sensors often struggle with fluctuating energy sources, low durability under harsh conditions, non-transparent or non-biocompatible materials, and complex structures. Herein, a multifunctional hydrogel is developed, which can fulfill all the above requirements and build self-sustainable outdoor monitoring systems solely by it. It can serve as a stable energy harvester that continuously generates direct current output with an average power density of 1.9 W m-3 for nearly 60 days of operation in normal environments (24 °C, 60% RH), with an energy density of around 1.36 × 107 J m-3. It also shows good self-recoverability in severe environments (45 °C, 30% RH) in nearly 40 days of continuous operation. Moreover, this hydrogel enables noninvasive and self-powered monitoring of leaf relative water content, providing critical data on evaluating plant health, previously obtainable only through invasive or high-power consumption methods. Its potential extends to acting as other self-powered environmental sensors. This multifunctional hydrogel enables self-sustainable outdoor systems with scalable and low-cost production, paving the way for future agriculture.
Collapse
Affiliation(s)
- Xinge Guo
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore, 117608, Singapore
| | - Luwei Wang
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore, 117608, Singapore
| | - Zhenyang Jin
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore, 117608, Singapore
| | - Chengkuo Lee
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore, 117608, Singapore.
- NUS Graduate School - Integrative Sciences and Engineering Program (ISEP), National University of Singapore, Singapore, 119077, Singapore.
- Research Center for Sustainable Urban Farming (SUrF), National University of Singapore, Singapore, 117558, Singapore.
| |
Collapse
|
5
|
Ramaraj SG, Elamaran D, Tabata H, Zhang F, Liu X. Biocompatible triboelectric energy generators (BT-TENGs) for energy harvesting and healthcare applications. NANOSCALE 2024; 16:18251-18273. [PMID: 39282966 DOI: 10.1039/d4nr01987c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Electronic waste (e-waste) has become a significant environmental and societal challenge, necessitating the development of sustainable alternatives. Biocompatible and biodegradable electronic devices offer a promising solution to mitigate e-waste and provide viable alternatives for various applications, including triboelectric nanogenerators (TENGs). This review provides a comprehensive overview of recent advancements in biocompatible, biodegradable, and implantable TENGs, emphasizing their potential as energy scavengers for healthcare devices. The review delves into the fabrication processes of self-powered TENGs using natural biopolymers, highlighting their biodegradability and compatibility with biological tissues. It further explores the biomedical applications of ultrasound-based TENGs, including their roles in wound healing and energy generation. Notably, the review presents the novel application of TENGs for vagus nerve stimulation, demonstrating their potential in neurotherapeutic interventions. Key findings include the identification of optimal biopolymer materials for TENG fabrication, the effectiveness of TENGs in energy harvesting from physiological movements, and the potential of these devices in regenerative medicine. Finally, the review discusses the challenges in scaling up the production of implantable TENGs from biomaterials, addressing issues such as mechanical stability, long-term biocompatibility, and integration with existing medical devices, outlining future research opportunities to enhance their performance and broaden their applications in the biomedical field.
Collapse
Affiliation(s)
- Sankar Ganesh Ramaraj
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China.
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan
- Department of Materials Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMTS), Thandalam, Chennai-602105, Tamilnadu, India
| | - Durgadevi Elamaran
- Graduate School of Arts and Sciences College of Arts and Sciences, The University of Tokyo, Komaba Campus, Tokyo, Japan.
| | - Hitoshi Tabata
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Fuchun Zhang
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China.
| | - Xinghui Liu
- Science and Technology on Aerospace Chemical Power Laboratory, Laboratory of Emergency Safety and Rescue Technology, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China.
- Division of Research and Development, Lovely Professional University, Phagwara, India
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Graphene Basic Science Research Center, Beijing Graphene Institute (BGI), Beijing, 100095, China
| |
Collapse
|
6
|
Min G, Wang W, Li H, Wang T, Li C, Xu S, Xu K, Shang Y, Zhao X, Khandelwal G, Jiao X, Tang W. Optimizing Droplet-Based Electricity Generator via a Low Sticky Hydrophobic Droplet-Impacted Surface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402765. [PMID: 38940416 DOI: 10.1002/smll.202402765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/10/2024] [Indexed: 06/29/2024]
Abstract
Droplet-based electricity generators (DEGs) are increasingly recognized for their potential in converting renewable energy sources. This study explores the interplay of surface hydrophobicity and stickiness in improving DEG efficiency. It find that the high-performance C-WaxDEGs leverage both these properties. Specifically, DEGs incorporating polydimethylsiloxane (PDMS) with carnauba wax (C-wax) exhibit increased output as surface stickiness decreases. Through experimental comparisons, PDMS with 1wt.% C-wax demonstrated a significant power output increase from 0.07 to 1.2 W m- 2, which attribute to the minimized adhesion between water molecules and the polymer surface, achieved by embedding C-wax into PDMS surface to form microstructures. This improvement in DEG performance is notable even among samples with similar surface potentials and contact angles, suggesting that C-wax's primary contribution is in reducing surface stickiness rather than altering other surface properties. The further investigations into the C-WaxDEG variant with 1wt.% C-wax PDMS uncover its potential as a sensor for water quality parameters such as temperature, pH, and heavy metal ion concentration. These findings open avenues for the integration of C-WaxDEGs into flexible electronic devices aimed at environmental monitoring.
Collapse
Affiliation(s)
- Guanbo Min
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjun Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Huifan Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, China
| | - Tingyu Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengyu Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuxing Xu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kun Xu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- College of Mechanical and Electrical Engineering, Shandong Agricultural University, Tai'an, 271000, China
| | - Yurui Shang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, China
| | - Xin Zhao
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Gaurav Khandelwal
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Xufeng Jiao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Department of Orthopedic Surgery, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Wei Tang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Hao Y, Niu Z, Yang J, Wang M, Liu H, Qin Y, Su W, Zhang H, Zhang C, Li X. Self-Powered Terahertz Modulators Based on Metamaterials, Liquid Crystals, and Triboelectric Nanogenerators. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32249-32258. [PMID: 38869324 DOI: 10.1021/acsami.4c04251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
6G communication mainly occurs in the THz band (0.1-10 THz), which can achieve excellent performance. Self-powered THz modulators are essential for achieving better conduction, modulation, and manipulation of THz waves. Herein, a self-powered terahertz modulator, which is based on metamaterials, liquid crystals (LCs), and rotary triboelectric nanogenerators (R-TENGs), is proposed to realize the driving of different array elements. The corresponding designs can achieve an integrated design and preparation method for dynamic spectrum-reconfigurable liquid crystal metamaterials. In addition, for the type of cross-structure metamaterial liquid crystal box, a phase modulation of 1 GHz is achieved at frequencies of 0.117 and 0.161 THz with modulation depths of 13 and 11%, respectively. Because the R-TENG with a multifan blade and circular electrodes can generate 18 peaks of electric output in every rotation, it can successfully provide sufficient frequency alternating-current electric energy to drive the terahertz modulator and achieve a self-powered function. Our findings lay a solid theoretical foundation for further building self-powered THz communication systems and promote the development of a theoretical system for LC-driving spectrum-reconfigurable devices in the THz domain.
Collapse
Affiliation(s)
- Yijun Hao
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Zihao Niu
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Jiayi Yang
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Meiqi Wang
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Haopeng Liu
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Yong Qin
- State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Wei Su
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Hongke Zhang
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Chuguo Zhang
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Xiuhan Li
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| |
Collapse
|
8
|
Hao D, Li Y, Wu J, Zeng L, Zhang Z, Chen H, Liu W. A self-powered and self-sensing knee negative energy harvester. iScience 2024; 27:109105. [PMID: 38375224 PMCID: PMC10875156 DOI: 10.1016/j.isci.2024.109105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
Wearable devices realize health monitoring, information transmission, etc. In this study, the human-friendliness, adaptability, reliability, and economy (HARE) principle for designing human energy harvesters is first proposed and then a biomechanical energy harvester (BMEH) is proposed to recover the knee negative energy to generate electricity. The proposed BMEH is mounted on the waist of the human body and connected to the ankles by ropes for driving. Double-rotor mechanism and half-wave rectification mechanism design effectively improves energy conversion efficiency with higher power output density for more stable power output. The experimental results demonstrate that the double-rotor mechanism increases the output power of the BMEH by 70% compared to the single magnet-rotor mechanism. And the output power density of BMEH reaches 0.07 W/kg at a speed of 7 km/h. Furthermore, the BMEH demonstrates the excitation mode detection accuracy of 99.8% based on the Gate Recurrent Unit deep learning model with optimal parameters.
Collapse
Affiliation(s)
- Daning Hao
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yingjie Li
- Tangshan Institute of Southwest Jiaotong University, Tangshan 063008, China
| | - Jiaoyi Wu
- School of Information Science and Technical, Southwest Jiaotong University, Chengdu 610031, China
| | - Lei Zeng
- Tangshan Institute of Southwest Jiaotong University, Tangshan 063008, China
| | - Zutao Zhang
- Chengdu Technological University, Chengdu 611730, China
| | - Hongyu Chen
- School of Design, Southwest Jiaotong University, Chengdu 610031, China
| | - Weizhen Liu
- Tangshan Institute of Southwest Jiaotong University, Tangshan 063008, China
| |
Collapse
|
9
|
Zhao S, Han G, Deng H, Ma M, Zhong X. Research on the Sensing Characteristics of an Integrated Grid-like Sensor Based on a Triboelectric Nanogenerator. SENSORS (BASEL, SWITZERLAND) 2024; 24:869. [PMID: 38339585 PMCID: PMC10857516 DOI: 10.3390/s24030869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
With the development of the integration and miniaturization of sensing devices, the concept of self-sensing devices has been proposed. A motion state is self-sensed via the structure or integration of an actuator in the construction of a sensing unit. This device is then used to capture the perception and measurement of states such as position, displacement, and speed. A triboelectric nanogenerator converts mechanical energy into electrical energy through the coupling effect of contact generation and electrostatic induction, which represents one of the reliable ways through which to realize integrated sensing. In this world, the power generation technology of the TENG is applied to a sensing device. The sensing characteristics of a grid-like TENG are designed and analyzed in freestanding triboelectric mode. Firstly, a relation model of displacement, velocity, voltage, and charge is established. The charge-transfer increment and current amounts are linearly related to the velocity. The open-circuit voltage has a positive relationship with the displacement. The maximum open-circuit voltage and the maximum charge transfer are fixed values, and they are only related to the inherent parameters of a triboelectric nanogenerator. Next, the sensor model is constructed using COMSOL Multiphysics 6.0. The simulation results show that the relationships between output voltage and charge transfer, as well as those between the increments of charge transfer, velocity, and displacement, are consistent with the results derived from the formula. Finally, a performance test of the designed sensor is carried out, and the results are consistent with the theoretical deduction and simulation. After analysis and processing of the output electrical signal by the host computer, it can feedback the frequency and speed value of the measured object. In addition, the output signal is stable, and there is no large fluctuation or attenuation during the 521-s vibration test. Because the working unit of the sensor is thin filmed, it is small in size, easy to integrate, and has no external power supply; moreover, it can be integrated into a device to realize the self-sensing of a motion state.
Collapse
Affiliation(s)
- Shiyu Zhao
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China; (S.Z.)
| | - Guanghui Han
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China; (S.Z.)
| | - Huaxia Deng
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Mengchao Ma
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China; (S.Z.)
| | - Xiang Zhong
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China; (S.Z.)
| |
Collapse
|
10
|
Zhong Y, Wang J, Wu L, Liu K, Dai S, Hua J, Cheng G, Ding J. Dome-Conformal Electrode Strategy for Enhancing the Sensitivity of BaTiO 3-Doped Flexible Self-powered Triboelectric Pressure Sensor. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1727-1736. [PMID: 38150505 DOI: 10.1021/acsami.3c14015] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
A microstructured surface has been applied in self-powered triboelectric pressure sensors to increase the charge-carrying sites and enhance the output performance. However, the microstructure increases the distance between the electrode and the triboelectric layer, and its influence on the output performance is unknown. Herein, we proposed a dome-conformal electrode strategy for a self-powered triboelectric nanogenerator (TENG) pressure sensor. With a simple reverse-dome adsorption process, an ultrathin triboelectric layer and Ag electrode can be made conformal to the dome PDMS structure. The TENG sensor is constructed with paper as a positive triboelectric layer. Compared with the device based on nonconformal structure, the conformal design strategy endows the device with a faster charge transfer and enhanced output voltage. By doping with BaTiO3, the outermost triboelectric layer can be easily modified to improve its ability of sustaining charge, and an ultrathin PDMS layer is coated on the triboelectric layer to expand the triboelectric polarity difference between two triboelectric layers so as to enhance the output voltage. The synergistic effects enable the optimized TENG sensor with a sensitivity of 0.75 V/kPa in the low-pressure region (0-26 kPa) and 0.19 V/kPa in the high-pressure range (26-120 kPa). Its application in human motion detection, grabbing water beakers, and noncontact distance testing has been demonstrated. This work provides a route such as a conformal structure design strategy to enhance the output performance of a microstructure-based TENG sensor.
Collapse
Affiliation(s)
- Yan Zhong
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiaqi Wang
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Longgang Wu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kunshan Liu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shengping Dai
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'An 343009, China
| | - Jing Hua
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Guanggui Cheng
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianning Ding
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
11
|
Crivillé-Tena L, Colomer-Farrarons J, Miribel-Català PL. Fully Autonomous Active Self-Powered Point-of-Care Devices: The Challenges and Opportunities. SENSORS (BASEL, SWITZERLAND) 2023; 23:9453. [PMID: 38067826 PMCID: PMC10708618 DOI: 10.3390/s23239453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Quick and effective point-of-care (POC) devices have the chance to revolutionize healthcare in developed and developing countries since they can operate anywhere the patient is, with the possibility of obtaining and sending the results to the doctor without delay. In recent years, significant efforts have focused on developing new POC systems that can screen for biomarkers continuously and non-invasively in body fluids to prevent, diagnose, and manage diseases. However, one of the critical challenges left to address is how to power them effectively and sufficiently. In developing countries and rural and remote areas, where there are usually no well-established electricity grids or nearby medical facilities, and using batteries is unreliable or not cost-effective, alternative power sources are the most challenging issue for stand-alone and self-sustained POC devices. Here, we provide an overview of the techniques for used self-powering POC devices, where the sample is used to detect and simultaneously generate energy to power the system. Likewise, this paper introduced the state-of-the-art with a review of different research projects, patents, and commercial products for self-powered POCs from the mid-2010s until present day.
Collapse
Affiliation(s)
| | - Jordi Colomer-Farrarons
- Discrete-to-Integrated Systems Laboratory (D2In), Electronics and Biomedical Engineering Department, Universitat de Barcelona (UB), Marti i Franques, 1-11, 08028 Barcelona, Spain;
| | - Pere Ll. Miribel-Català
- Discrete-to-Integrated Systems Laboratory (D2In), Electronics and Biomedical Engineering Department, Universitat de Barcelona (UB), Marti i Franques, 1-11, 08028 Barcelona, Spain;
| |
Collapse
|
12
|
Hu R, Yang H, Wang L, Fan L. Flexible optical tactile sensor based on a liquid-membrane lens structure. APPLIED OPTICS 2023; 62:6952-6960. [PMID: 37707034 DOI: 10.1364/ao.496741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023]
Abstract
Based on the liquid lens focus mechanism, a novel, to the best of our knowledge, optical tactile sensor is designed by taking advantage of the structure simplicity, fast response, and environmental immunity. The design of the tactile sensing mechanism used the liquid-membrane lens structure. To integrate the tactile sensing system, we designed a data acquisition circuit unit. A performance test platform was built, and performance testing and two application demonstrations were conducted. The experiment's result showed that the linear fitting degree was greater than 0.988, the load response time was 0.078 s, the target mass was accurately measured, the maximum error was less than 0.02 N, and the fine adjustment of the LED light intensity was achieved.
Collapse
|
13
|
Sun W, Liu X, Hua W, Wang S, Wang S, Yu J, Wang J, Yong Q, Chu F, Lu C. Self-strengthening and conductive cellulose composite hydrogel for high sensitivity strain sensor and flexible triboelectric nanogenerator. Int J Biol Macromol 2023; 248:125900. [PMID: 37481191 DOI: 10.1016/j.ijbiomac.2023.125900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Triboelectric nanogenerators (TENGs) as promising energy harvesting devices have gained increasing attention. However, the fabrication of TENG simultaneously meets the requirements of green start feedstock, flexible, stretchable, and environmentally friendly remains challenging. Herein, the hydroxyethyl cellulose macromonomer (HECM) simultaneously bearing acrylate and hydroxyl groups was first synthesized and used as a crosslinker to prepare the chemically and physically dual-crosslinked cellulose composite hydrogel for an electrode material of stretchable TENG. Meanwhile, the in-situ polymerization of pyrrole endowed the hydrogel with satisfactory conductivity of 0.40 S/m. More impressively, the synergies of the cellulose rigid skeleton and the construction of the dual-crosslinking network significantly improved the mechanical toughness, and the hydrogel exhibited excellent self-strengthening through cyclic compression mechanical training, the self-strengthening efficiency reached 124.7 % after 10 compression cycles. Given these features, the hydrogel was used as wearable strain sensors with extremely high sensitivity (GF = 3.95) for real-time monitoring human motions. Additionally, the hydrogel showed practical applications in stretchable H-TENG for converting mechanical energy into electric energy to light LEDs and power a digital watch, and in self-powered wearable sensors to distinguish human motions and English letters. This work provided a promising strategy for fabricating sustainable, eco-friendly energy harvesting and self-powered electronic devices.
Collapse
Affiliation(s)
- Wenqing Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinyu Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenhui Hua
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaojun Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Juan Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jifu Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), No 16, Suojin Wucun, Nanjing 210042, Jiangsu Province, China
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Fuxiang Chu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), No 16, Suojin Wucun, Nanjing 210042, Jiangsu Province, China
| | - Chuanwei Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
14
|
Kim MP. Multilayered Functional Triboelectric Polymers for Self-Powered Wearable Applications: A Review. MICROMACHINES 2023; 14:1640. [PMID: 37630176 PMCID: PMC10456717 DOI: 10.3390/mi14081640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Multifunctional wearable devices detect electric signals responsive to various biological stimuli and monitor present body motions or conditions, necessitating flexible materials with high sensitivity and sustainable operation. Although various dielectric polymers have been utilized in self-powered wearable applications in response to multiple external stimuli, their intrinsic limitations hinder further device performance enhancement. Because triboelectric devices comprising dielectric polymers are based on triboelectrification and electrostatic induction, multilayer-stacking structures of dielectric polymers enable significant improvements in device performance owing to enhanced interfacial polarization through dissimilar permittivity and conductivity between each layer, resulting in self-powered high-performance wearable devices. Moreover, novel triboelectric polymers with unique chemical structures or nano-additives can control interfacial polarization, allowing wearable devices to respond to multiple external stimuli. This review summarizes the recent insights into multilayered functional triboelectric polymers, including their fundamental dielectric principles and diverse applications.
Collapse
Affiliation(s)
- Minsoo P Kim
- Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
15
|
Ghafouri T, Manavizadeh N. A 3D-printed millifluidic device for triboelectricity-driven pH sensing based on ZnO nanosheets with super-Nernstian response. Anal Chim Acta 2023; 1267:341342. [PMID: 37257971 DOI: 10.1016/j.aca.2023.341342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023]
Abstract
This paper suggests a straightforward and rapid fabrication method applying the integration of 3D printing and triboelectric nanogenerator (TENG) technologies to realize milli/microfluidic multipurpose devices. The proposed liquid-solid TENG device is served as an energy harvester and sensor at the same time with flexibility in operation modes. Accordingly, an innovative ethylene vinyl acetate (EVA)-made millifluidic pH sensor is fabricated based on zinc oxide nanosheets as a showcase of the functional adaptability of the ubiquitous device, and its performance is analyzed and compared with contemporary electrochemical pH sensors. High crystallinity of the nanosheets with an incline to (103) orientation in parallel with high levels of oxygen vacancies provides capacity for surface charge accumulation at the nanosheet-aqueous solution interface and the ensuing ultrahigh sensitivity of the triboelectric sensor. The millichannel is optimized in terms of sensing surface area, flow rate, and hydrophobicity properties by opting for appropriate geometry, TENG operation modes, and materials. Despite the finding that quasi-single-electrode mode TENG experiences a higher response (8.12 × Nernst limit) in comparison with quasi-contact-separation configuration (4.14 × Nernst limit), the latter enjoys superior linearity, stability, repeatability, reproducibility, and reliability characteristics corresponding to R2 of 98.93%, drift rate of 13 mV/h, relative standard deviation (RSD) of 1.23% in third hysteresis loop, 2.24%, and maximum standard error of ±0.2 pH units across multiple trials, respectively, in a wide pH range of 2-13. Time- and cost-effectiveness, user-friendliness, self-powering, portability, and biocompatibility of the device could be asserted as considerable advantages to open the door for feasibly realizing the new generation of real-life and point-of-care devices.
Collapse
Affiliation(s)
- Tara Ghafouri
- Nanostructured-Electronic Devices Laboratory, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, 1631714191, Iran
| | - Negin Manavizadeh
- Nanostructured-Electronic Devices Laboratory, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, 1631714191, Iran.
| |
Collapse
|
16
|
Lian JJ, Guo WT, Sun QJ. Emerging Functional Polymer Composites for Tactile Sensing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4310. [PMID: 37374494 DOI: 10.3390/ma16124310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
In recent years, extensive research has been conducted on the development of high-performance flexible tactile sensors, pursuing the next generation of highly intelligent electronics with diverse potential applications in self-powered wearable sensors, human-machine interactions, electronic skin, and soft robotics. Among the most promising materials that have emerged in this context are functional polymer composites (FPCs), which exhibit exceptional mechanical and electrical properties, enabling them to be excellent candidates for tactile sensors. Herein, this review provides a comprehensive overview of recent advances in FPCs-based tactile sensors, including the fundamental principle, the necessary property parameter, the unique device structure, and the fabrication process of different types of tactile sensors. Examples of FPCs are elaborated with a focus on miniaturization, self-healing, self-cleaning, integration, biodegradation, and neural control. Furthermore, the applications of FPC-based tactile sensors in tactile perception, human-machine interaction, and healthcare are further described. Finally, the existing limitations and technical challenges for FPCs-based tactile sensors are briefly discussed, offering potential avenues for the development of electronic products.
Collapse
Affiliation(s)
- Jia-Jin Lian
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wen-Tao Guo
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Qi-Jun Sun
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
17
|
Qaseem Q, Ibrahim A. Magnetic Bistability for a Wider Bandwidth in Vibro-Impact Triboelectric Energy Harvesters. MICROMACHINES 2023; 14:mi14051008. [PMID: 37241631 DOI: 10.3390/mi14051008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Mechanical energy from vibrations is widespread in the ambient environment. It may be harvested efficiently using triboelectric generators. Nevertheless, a harvester's effectiveness is restricted because of the limited bandwidth. To this end, this paper presents a comprehensive theoretical and experimental investigation of a variable frequency energy harvester, which integrates a vibro-impact triboelectric-based harvester and magnetic nonlinearity to increase the operation bandwidth and improve the efficiency of conventional triboelectric harvesters. A cantilever beam with a tip magnet was aligned with another fixed magnet at the same polarity to induce a nonlinear magnetic repulsive force. A triboelectric harvester was integrated into the system by utilizing the lower surface of the tip magnet to serve as the top electrode of the harvester, while the bottom electrode with an attached polydimethylsiloxane insulator was placed underneath. Numerical simulations were performed to examine the impact of the potential wells formed by the magnets. The structure's static and dynamic behaviors at varying excitation levels, separation distance, and surface charge density are all discussed. In order to develop a variable frequency system with a wide bandwidth, the system's natural frequency varies by changing the distance between the two magnets to reduce or magnify the magnetic force to achieve monostable or bistable oscillations. When the system is excited by vibrations, the beams vibrate, which causes an impact between the triboelectric layers. An alternating electrical signal is generated from a periodic contact-separation motion between the harvester's electrodes. Our theoretical findings were experimentally validated. The findings of this study have the potential to pave the way for the development of an effective energy harvester that is capable of scavenging energy from ambient vibrations across a broad range of excitation frequencies. The frequency bandwidth was found to increase by 120% at threshold distance compared to the conventional energy harvester. Nonlinear impact-driven triboelectric energy harvesters can effectively broaden the operational frequency bandwidth and enhance the harvested energy.
Collapse
Affiliation(s)
- Qais Qaseem
- Department of Mechanical Engineering, The University of Texas at Tyler, 3900 University Blvd., Tyler, TX 75799, USA
| | - Alwathiqbellah Ibrahim
- Department of Mechanical Engineering, The University of Texas at Tyler, 3900 University Blvd., Tyler, TX 75799, USA
| |
Collapse
|
18
|
Chai X, Tang J, Li Y, Cao Y, Chen X, Chen T, Zhang Z. Highly Stretchable and Stimulus-Free Self-Healing Hydrogels with Multiple Signal Detection Performance for Self-Powered Wearable Temperature Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18262-18271. [PMID: 37002947 DOI: 10.1021/acsami.2c21663] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
A flexible wearable temperature sensor is a novel electronic sensor that can monitor real-time changes in human body temperature in a variety of application scenarios and is regarded as the "crown jewel" of information collection technology. Although flexible strain sensors based on hydrogels have excellent self-healing effects and mechanical durability, their widespread application is still limited by external power sources. Herein, a novel self-energizing hydrogel was developed by embellishing cellulose nanocrystals (CNC) with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). The resultant thermoelectrically conductive CNC was then employed as a booster for poly(vinyl alcohol) (PVA)/borax hydrogels. The obtained hydrogels exhibit remarkable self-healing performance (92.57%) and exceptional stretchability (989.60%). Additionally, the hydrogel was capable of accurately and reliably identifying human motion. Most importantly, it exhibits excellent thermoelectric performance, capable of generating stable and reproducible voltages. It shows a large Seebeck coefficient of 1.31 mV k-1 at ambient temperatures. When subjected to a temperature difference of 25 K, the output voltage reaches 31.72 mV. CNC-PEDOT:PSS/PVA conductive hydrogel is multifunctional with self-healing, self-powering, and temperature sensing, which has the potential to be used for the preparation of intelligent wearable temperature-sensing devices.
Collapse
Affiliation(s)
- Xuyang Chai
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Longgang Institute of Zhejiang Sci-Tech University, Printing Industry Innovation Service Complex, Century Avenue, Longgang 325802, China
| | - Jinhong Tang
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yingzhan Li
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Longgang Institute of Zhejiang Sci-Tech University, Printing Industry Innovation Service Complex, Century Avenue, Longgang 325802, China
- National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Taian 271000, China
| | - Yiwen Cao
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Longgang Institute of Zhejiang Sci-Tech University, Printing Industry Innovation Service Complex, Century Avenue, Longgang 325802, China
| | - Xinyi Chen
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Longgang Institute of Zhejiang Sci-Tech University, Printing Industry Innovation Service Complex, Century Avenue, Longgang 325802, China
| | - Tianying Chen
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhen Zhang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
19
|
Zhang Z, Wang L, Zhang Q, Li H, Xiang Y, Wang X, Hu X. Effective Electrical Stimulation by a Poly(l-lactic acid)/Vitamin B2-Based Piezoelectric Generator Promotes Wound Healing. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
20
|
Neto J, Dahiya AS, Zumeit A, Christou A, Ma S, Dahiya R. Printed n- and p-Channel Transistors using Silicon Nanoribbons Enduring Electrical, Thermal, and Mechanical Stress. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9618-9628. [PMID: 36774654 PMCID: PMC9990968 DOI: 10.1021/acsami.2c20569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Printing technologies are changing the face of electronics with features such as resource-efficiency, low-cost, and novel form factors. While significant advances have been made in terms of organic electronics, the high-performance and stable transistors by printing, and their large-scale integration leading to fast integrated circuits remains a major challenge. This is because of the difficulties to print high-mobility semiconducting materials and the lack of high-resolution printing techniques. Herein, we present silicon based printed n- and p-channel transistors to demonstrate the possibility of developing high-performance complementary metal-oxide-semiconductor (CMOS) computing architecture. The direct roll transfer printing is used here for deterministic assembly of high-mobility single crystal silicon nanoribbons arrays on a flexible polyimide substrate. This is followed by high-resolution electrohydrodynamic printing to define source/drain/gate electrodes and to encapsulate, thus leading to printed devices. The printed transistors show effective peak mobilities of 15 cm2/(V s) (n-channel) and 5 cm2/(V s) (p-channel) at low 1 V drain bias. Furthermore, the effect of electrical, mechanical, and thermal stress on the performance and stability of the encapsulated transistors is investigated. The transistors showed stable transfer characteristics even after: (i) continuous 4000 transfer cycles, (ii) excruciating 10000 bending cycles at different bending radii (40, 25, and 15 mm), and (iii) between 15 and 60 °C temperatures.
Collapse
Affiliation(s)
- João Neto
- James
Watt School of Engineering, University of
Glasgow, Glasgow G12 8QQ, United
Kingdom
| | - Abhishek Singh Dahiya
- James
Watt School of Engineering, University of
Glasgow, Glasgow G12 8QQ, United
Kingdom
| | - Ayoub Zumeit
- James
Watt School of Engineering, University of
Glasgow, Glasgow G12 8QQ, United
Kingdom
| | - Adamos Christou
- James
Watt School of Engineering, University of
Glasgow, Glasgow G12 8QQ, United
Kingdom
| | - Sihang Ma
- James
Watt School of Engineering, University of
Glasgow, Glasgow G12 8QQ, United
Kingdom
| | - Ravinder Dahiya
- Bendable
Electronics and Sustainable Technologies (BEST) Group, Electrical
and Computer Engineering Department, Northeastern
University, Boston, Massachusetts 02115, United States
| |
Collapse
|
21
|
Yang A, Lin X, Liu Z, Duan X, Yuan Y, Zhang J, Liang Q, Ji X, Sun N, Yu H, He W, Zhu L, Xu B, Lin X. Worm Generator: A System for High-Throughput in Vivo Screening. NANO LETTERS 2023; 23:1280-1288. [PMID: 36719250 DOI: 10.1021/acs.nanolett.2c04456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Large-scale screening of molecules in organisms requires high-throughput and cost-effective evaluating tools during preclinical development. Here, a novel in vivo screening strategy combining hierarchically structured biohybrid triboelectric nanogenerators (HB-TENGs) arrays with computational bioinformatics analysis for high-throughput pharmacological evaluation using Caenorhabditis elegans is described. Unlike the traditional methods for behavioral monitoring of the animals, which are laborious and costly, HB-TENGs with micropillars are designed to efficiently convert animals' behaviors into friction deformation and result in a contact-separation motion between two triboelectric layers to generate electrical outputs. The triboelectric signals are recorded and extracted to various bioinformation for each screened compound. Moreover, the information-rich electrical readouts are successfully demonstrated to be sufficient to predict a drug's identity by multiple-Gaussian-kernels-based machine learning methods. This proposed strategy can be readily applied to various fields and is especially useful in in vivo explorations to accelerate the identification of novel therapeutics.
Collapse
Affiliation(s)
- Anqi Yang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518000, China
| | - Xiang Lin
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518000, China
| | - Zijian Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518000, China
| | - Xin Duan
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518000, China
| | - Yurou Yuan
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518000, China
| | - Jiaxuan Zhang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518000, China
| | - Qilin Liang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518000, China
| | - Xianglin Ji
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Nannan Sun
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Huajun Yu
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Weiwei He
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lili Zhu
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Bingzhe Xu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518000, China
| | - Xudong Lin
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518000, China
| |
Collapse
|
22
|
Zeng Q, Chen A, Zhang X, Luo Y, Tan L, Wang X. A Dual-Functional Triboelectric Nanogenerator Based on the Comprehensive Integration and Synergetic Utilization of Triboelectrification, Electrostatic Induction, and Electrostatic Discharge to Achieve Alternating Current/Direct Current Convertible Outputs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208139. [PMID: 36349825 DOI: 10.1002/adma.202208139] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Traditional alternating current (AC) and direct current (DC) triboelectric nanogenerators (TENGs), which are implemented via the pairwise coupling of triboelectrification, electrostatic induction, and electrostatic discharge, have been widely explored in various fields. In this work, the comprehensive integration and synergetic utilization of triboelectrification, electrostatic induction, and electrostatic discharge in a single device for the first time is realized, achieving a dual-functional TENG (DF-TENG) to produce an AC/DC convertible output. Distinguishing from the conventional TENGs, the coupling of triboelectrification and electrostatic discharge enables charge circulation between the dielectric tribo-layers, while electrostatic induction realizes charge transfer in the external circuit. This novel energy conversion mechanism has been proven to be applicable to a variety of materials, including polymers, fabrics, and semiconductors. The output mode of the DF-TENG can be tuned by adjusting the slider motion state, and its constant output current and power density can reach 1.51 mA m-2 Hz-1 and 398 mW m-2 Hz-1 , respectively, which are the highest records reported for constant DC-TENGs to date. This work not only provides a paradigm shift to achieve AC/DC convertible output, but it also exhibits high potential for extending the TENG design philosophy.
Collapse
Affiliation(s)
- Qixuan Zeng
- Department of Applied Physics, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, 400044, P. R. China
| | - Ai Chen
- Department of Applied Physics, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, 400044, P. R. China
| | - Xiaofang Zhang
- Department of Applied Physics, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, 400044, P. R. China
| | - Yanlin Luo
- Department of Applied Physics, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, 400044, P. R. China
| | - Liming Tan
- Department of Applied Physics, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, 400044, P. R. China
| | - Xue Wang
- Department of Applied Physics, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
23
|
Vafaiee M, Ejehi F, Mohammadpour R. CNT-PDMS foams as self-powered humidity sensors based on triboelectric nanogenerators driven by finger tapping. Sci Rep 2023; 13:370. [PMID: 36611085 PMCID: PMC9825370 DOI: 10.1038/s41598-023-27690-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
An increasing number of frequently applied portable electronics has raised the significance of self-powered systems. In this regard, triboelectric nanogenerators (TENGs) have drawn considerable attention due to their diversity of design and high power output. As a widely used material in TENG electrodes, polydimethylsiloxane (PDMS) shows attractive characteristics, such as electron affinity, flexibility, and facile fabrication. To achieve active TENG-based humidity sensing, we proposed a straightforward method to enhance the hydrophilicity of PDMS by two parallel approaches: 1. Porosity induction, 2. Carbon nanotube (CNT) compositing. Both of the mentioned processes have been performed by water addition during the synthesis procedure, which is not only totally safe (in contrast with the similar foaming/compositing routes), but also applicable for a wide range of nanomaterials. Applying the modified electrode as a single-electrode TENG-based humidity sensor, demonstrated an impressive enhancement of sensing response from 56% up to 108%, compared to the bare electrodes. Moreover, the detecting range of ambient humidity was broadened to higher values of 80% in a linear behavior. The fabricated humidity sensor based on a CNT-PDMS foam not only provides superior sensing characteristics but also is satisfactory for portable applications, due to being lightweight and desirably self-powered.
Collapse
Affiliation(s)
- Mohaddeseh Vafaiee
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, 14588-89694, Iran
| | - Faezeh Ejehi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, 14588-89694, Iran
| | - Raheleh Mohammadpour
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, 14588-89694, Iran.
| |
Collapse
|
24
|
Khandelwal G, Deswal S, Dahiya R. Triboelectric Nanogenerators as Power Sources for Chemical Sensors and Biosensors. ACS OMEGA 2022; 7:44573-44590. [PMID: 36530315 PMCID: PMC9753505 DOI: 10.1021/acsomega.2c06335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
The recent advances of portable sensors in flexible and wearable form factors are drawing increasing attention worldwide owing to their requirement applications ranging from health monitoring to environment monitoring. While portability is critical for these applications, real-time data gathering also requires a reliable power supply-which is largely met with batteries. Besides the need for regular charging, the use of toxic chemicals in batteries makes it difficult to rely on them, and as a result different types of energy harvesters have been explored in recent years. Among these, triboelectric nanogenerators (TENGs) provide a promising platform for harnessing ambient energy and converting it into usable electric signals. The ease of fabrication and possibility to develop TENGs with a diverse range of easily available materials also make them attractive. This review focuses on the TENG technology and its efficient use as a power source for various types of chemical sensors and biosensors. The paper describes the underlying mechanism, various modes of working of TENGs, and representative examples of their utilization as power sources for sensing a multitude of analytes. The challenges associated with their adoption for commercial solutions are also discussed to stimulate further advances and innovations.
Collapse
Affiliation(s)
- Gaurav Khandelwal
- Bendable
Electronics and Sensing Technologies Group, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Swati Deswal
- Bendable
Electronics and Sensing Technologies Group, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Ravinder Dahiya
- Bendable Electronics
and Sustainable Technologies Group, Electrical and Computer
Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
25
|
Chen Y, Ling Y, Yin R. Fiber/Yarn-Based Triboelectric Nanogenerators (TENGs): Fabrication Strategy, Structure, and Application. SENSORS (BASEL, SWITZERLAND) 2022; 22:9716. [PMID: 36560085 PMCID: PMC9781987 DOI: 10.3390/s22249716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
With the demand of a sustainable, wearable, environmentally friendly energy source, triboelectric nanogenerators (TENGs) were developed. TENG is a promising method to convert mechanical energy from motion into electrical energy. The combination of textile and TENG successfully enables wearable, self-driving electronics and sensor systems. As the primary unit of textiles, fiber and yarn become the focus of research in designing of textile-TENGs. In this review, we introduced the preparation, structure, and design strategy of fiber/yarn TENGs in recent research. We discussed the structure design and material selection of fiber/yarn TENGs according to the different functions it realizes. The fabrication strategy of fiber/yarn TENGs into textile-TENG are provided. Finally, we summarize the main applications of existing textile TENGs and give forward prospects for their subsequent development.
Collapse
Affiliation(s)
| | | | - Rong Yin
- Wilson College of Textiles, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
26
|
Nan X, Wang X, Kang T, Zhang J, Dong L, Dong J, Xia P, Wei D. Review of Flexible Wearable Sensor Devices for Biomedical Application. MICROMACHINES 2022; 13:1395. [PMID: 36144018 PMCID: PMC9505309 DOI: 10.3390/mi13091395] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 05/26/2023]
Abstract
With the development of cross-fertilisation in various disciplines, flexible wearable sensing technologies have emerged, bringing together many disciplines, such as biomedicine, materials science, control science, and communication technology. Over the past few years, the development of multiple types of flexible wearable devices that are widely used for the detection of human physiological signals has proven that flexible wearable devices have strong biocompatibility and a great potential for further development. These include electronic skin patches, soft robots, bio-batteries, and personalised medical devices. In this review, we present an updated overview of emerging flexible wearable sensor devices for biomedical applications and a comprehensive summary of the research progress and potential of flexible sensors. First, we describe the selection and fabrication of flexible materials and their excellent electrochemical properties. We evaluate the mechanisms by which these sensor devices work, and then we categorise and compare the unique advantages of a variety of sensor devices from the perspective of in vitro and in vivo sensing, as well as some exciting applications in the human body. Finally, we summarise the opportunities and challenges in the field of flexible wearable devices.
Collapse
Affiliation(s)
- Xueli Nan
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xin Wang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Tongtong Kang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Jiale Zhang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Lanxiao Dong
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Jinfeng Dong
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Peng Xia
- School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China
| | - Donglai Wei
- School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China
| |
Collapse
|