1
|
Liu Z, Qiu J, Yuan T, Zhang X, Bai S, Chen J, Chen S, Zhang Y. Bifunctional gel coating for stabilizing zinc metal anodes in aqueous zinc-ion batteries. J Colloid Interface Sci 2025; 692:137435. [PMID: 40179658 DOI: 10.1016/j.jcis.2025.137435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/03/2025] [Accepted: 03/23/2025] [Indexed: 04/05/2025]
Abstract
Currently, the zinc anode faces significant challenges such as dendrite growth, corrosion, and hydrogen evolution, which severely limit the practical applications of aqueous zinc-ion batteries. To address these issues, this study designed a zinc anode (denoted as CG@Zn) coated with a gel composed of carboxymethyl cellulose sodium (CMC) and glucose. This coating featured dual functionalities: it regulated the directional transport of Zn2+ ions and constrained the electrochemical activity of interfacial water molecules, effectively inhibiting the growth of zinc dendrites and significantly reducing the occurrence of corrosion and hydrogen evolution side reactions. Benefiting from these advantages, CG@Zn exhibited excellent electrochemical performance. Under testing conditions of 5 mA cm-2/1 mAh cm-2, the symmetric battery assembled with CG@Zn demonstrated over 1000 h of stable cycling, achieving a cycle life five times that of bare zinc electrodes. Furthermore, the full cell configuration of CG@Zn//NaV3O8·1.5H2O with a matching zinc sulfate electrolyte maintained a capacity retention of 67.1 % after 15,000 cycles at 10 A g-1, significantly outperforming the rapid capacity decay observed in bare zinc batteries under the same conditions. Therefore, this study successfully developed an effective bifunctional gel coating for zinc anodes using CMC and glucose, paving the way for the development of safe and eco-friendly aqueous zinc-ion batteries.
Collapse
Affiliation(s)
- Zhipeng Liu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jikai Qiu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, PR China
| | - Tao Yuan
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, PR China
| | - Xiangxin Zhang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, PR China
| | - Shuai Bai
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, PR China
| | - Junting Chen
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, PR China
| | - Sujing Chen
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, PR China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China
| | - Yining Zhang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, PR China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
2
|
Sun L, Cao X, Gao L, Li J, Qian C, Wu J, Nie X, Gao H, Huang P, Zhao Y, Wang Y, Zhang J, Wang G, Liu H. Immobilizing Zwitterionic Molecular Brush in Functional Organic Interfacial Layers for Ultra-Stable Zn-Ion Batteries. NANO-MICRO LETTERS 2025; 17:262. [PMID: 40392345 DOI: 10.1007/s40820-025-01782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/22/2025] [Indexed: 05/22/2025]
Abstract
Rechargeable zinc-ion batteries have emerged as one of the most promising candidates for large-scale energy storage applications due to their high safety and low cost. However, the use of Zn metal in batteries suffers from many severe issues, including dendrite growth and parasitic reactions, which often lead to short cycle lives. Herein, we propose the construction of functional organic interfacial layers (OIL) on the Zn metal anodes to address these challenges. Through a well-designed organic-assist pre-construction process, a densely packed artificial layer featuring the immobilized zwitterionic molecular brush can be constructed, which can not only efficiently facilitate the smooth Zn plating and stripping, but also introduce a stable environment for battery reactions. Through density functional theory calculations and experimental characterizations, we verify that the immobilized organic propane sulfonate on Zn anodes can significantly lower the energy barrier and increase the kinetics of Zn2+ transport. Thus, the Zn metal anode with the functional OIL can significantly improve the cycle life of the symmetric cell to over 3500 h stable operation. When paired with the H2V3O8 cathode, the aqueous Zn-ion full cells can be continuously cycled over 7000 cycles, marking an important milestone for Zn anode development for potential industrial applications.
Collapse
Affiliation(s)
- Limeng Sun
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia
| | - Xianjun Cao
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia
| | - Li Gao
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Jiayi Li
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Chen Qian
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Jinhu Wu
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Xinming Nie
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, People's Republic of China.
| | - Hong Gao
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Peng Huang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, People's Republic of China.
| | - Yufei Zhao
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia.
| | - Yong Wang
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Jinqiang Zhang
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia.
| | - Guoxiu Wang
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia
| | - Hao Liu
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia.
| |
Collapse
|
3
|
Bai X, He Y, Wang Y, Feng J, Yan L. Built-In "Vesicle-Like Structures" Electrolytes to Form Ion Channels for Dendrite-Free and Durable Zinc-Ion Hybrid Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40380903 DOI: 10.1021/acsami.5c03547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2025]
Abstract
Aqueous zinc-ion hybrid supercapacitors (ZHSCs) have stimulated wide attention due to their features of low cost and nontoxic nature. Nevertheless, the growth of zinc dendrites, parasitic reactions, and a narrow electrochemical stable window (ESW) have severely limited the development of ZHSCs. Here, the distinct vesicle-like structure using polyethylene glycol monomethyl ether (MPEG) and ethylene glycol dimethyl ether (DME) is creatively represented, which is named the bicelle electrolyte. In this unique vesicle-like structure, the O of -OH and C-O-C in MPEG extends to the interior, encapsulating aqueous Zn(ClO4)2. The hydrophobic groups of MPEG and DME accumulate due to hydrophobic interactions, forming a hydrophobic domain. Due to the presence of a hydrophobic domain, the internal active water molecules are prevented from directly contacting the Zn foil. The external hydrophilic groups form hydrogen bonds with free water, which also greatly suppress the activity of free water, thus inhibiting the harmful side reactions (hydrogen evolution reactions) related to water. The electrochemical stable window (ESW) was widened to 3.03 V. Furthermore, this vesicle-like structure formed by the head-to-head of MPEG and DME hydrophobic groups creates a Zn2+ channel that promotes rapid and uniform deposition of Zn2+, thereby inhibiting zinc dendrite growth and promoting the cycling stability of the cell. The experiments show that a high ion conductivity of 51.87 mS cm-1 and a Zn2+ transference number (tZn2+) of 0.70 can be achieved in the bicelle system. The assembled asymmetric supercapacitor can have a specific capacity of 95.47 mAh g-1 at 5 A g-1, and it still maintains a high capacity retention rate of 84.40% after 8000 cycles. The symmetric cell delivers a long lifespan of over 1300 h at 1 mA cm-2.
Collapse
Affiliation(s)
- Xinyuan Bai
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Jinzai Road 96, 230026 Anhui, China
| | - Yapeng He
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Jinzai Road 96, 230026 Anhui, China
| | - Yating Wang
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Jinzai Road 96, 230026 Anhui, China
| | - Jianming Feng
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Jinzai Road 96, 230026 Anhui, China
| | - Lifeng Yan
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Jinzai Road 96, 230026 Anhui, China
| |
Collapse
|
4
|
Luo D, Niu B, Du P, Lin Q, Hu L, Jiang Y, Peng C, He X. Pre-Established Ion Transport Pathways Through Electrolyte Initiator for High-Efficiency Polymer Interface Enabling Ultra-Stable Aqueous Zinc-Metal Anodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418741. [PMID: 40159766 DOI: 10.1002/adma.202418741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/25/2025] [Indexed: 04/02/2025]
Abstract
Achieving stable zinc-metal anodes is pivotal to realizing high-performance aqueous zinc-metal batteries (AZMBs). The construction of a functional polymer interface layer on the zinc-metal anode surface is confirmed as an effective strategy for mitigating dendrite growth and side reactions, thereby significantly enhancing the stability of zinc-metal anode. However, polymers capable of withstanding electrolyte environments over the long term typically suffer from elevated interfacial impedance, which hinders Zn2+ transport. Here, a pioneering zinc-metal anode enabled by a functional polymer interface layer with high-efficiency ion transport is introduced. This polymer layer is polymerized in situ on the zinc-metal anode surface through an innovative redox initiation system, where zinc trifluoromethanesulfonate (Zn(OTf)2) salts function as both reductant and ion transport pre-pathways, ensuring high-efficiency ion transport. The resultant interface layer achieves an ideal balance of ionic conductivity, water resistance, adhesion, and mechanical properties, effectively suppressing dendrite growth and side reactions. Symmetric cells assembled with this interface layer deliver an impressive lifespan of 8800 and 1600 h under 1 and 5 mA cm-2, respectively. This interface layer further demonstrates exceptional feasibility and versatility in Zn-NVO and Zn-PANI batteries. This work provides groundbreaking insights into the strategic design of high-performance polymer interface layers for AZMBs.
Collapse
Affiliation(s)
- Die Luo
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Ben Niu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Pan Du
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Qiurui Lin
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Liwen Hu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Yuting Jiang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Chen Peng
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Xianru He
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| |
Collapse
|
5
|
Wang R, Zhu J, Yang M, Niu Z. Simultaneous Manipulation of Anions and Water Molecules by Lewis Acid-Base for Highly Stable Zn Anodes. Angew Chem Int Ed Engl 2025; 64:e202501327. [PMID: 40098259 DOI: 10.1002/anie.202501327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/28/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
In aqueous zinc-ion batteries (ZIBs), Zn anodes often suffer from Zn dendrite and hydrogen evolution reaction (HER) in traditional electrolytes. Herein, fumed silica with both Lewis acid-base functional groups were introduced into traditional electrolytes. Owing to the strong Lewis acid-base interactions between Si─O─Si functional groups and SO4 2- ions, the Zn2+ ion transference number is significantly increased in electrolyte, and thus more Zn2+ ions reach the Zn anode surface. As a result, the distribution of Zn2+ ions will be more homogeneous and dendrites growth will be suppressed on the Zn anode surface. In addition, Si─OH functional groups on fumed silica can also constrain the free and solvated H2O molecules in electrolyte simultaneously through Lewis acid-base interactions between electronegative O atoms in Si─OH functional groups and electropositive H atoms in H2O molecules, ensuring that the HER is inhibited on Zn anodes. Therefore, in the fumed silica-contained electrolyte, the Zn anodes exhibit a high reversibility and Zn||MnO2 full batteries demonstrate a superior cycling performance.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Jiacai Zhu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Min Yang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Zhiqiang Niu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| |
Collapse
|
6
|
Xian J, Fu R, Liu K, Yang P. Insights into Dendrite Regulation by Polymer Hydrogels for Aqueous Batteries. ACS NANO 2025; 19:13491-13504. [PMID: 40168584 DOI: 10.1021/acsnano.5c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Aqueous batteries, renowned for their high capacity, safety, and low cost, have emerged as promising candidates for next-generation, sustainable energy storage. However, their large-scale application is hindered by challenges, such as dendrite formation and side reactions at the anode. Hydrogel electrolytes, which integrate the advantages of liquid and solid phases, exhibit superior ionic conductivity and interfacial compatibility, giving them potential to suppress dendrite evolution. This Perspective first briefly introduces the fundamentals underlying dendrite formation and the unique features of hydrogels. It then identifies the key role of water and polymer networks in inhibiting dendrite formation, highlighting their regulation of water activity, ion transport, and electrode kinetics. By elucidating the principles of hydrogels in dendrite suppression, this work aims to provide valuable insights to advance the implementation of aqueous batteries incorporating polymer hydrogels.
Collapse
Affiliation(s)
- Jinglin Xian
- The Institute of Technological Sciences, MOE Key Laboratory of Hydrodynamic Transients, Wuhan University, Wuhan 430072, China
| | - Rui Fu
- The Institute of Technological Sciences, MOE Key Laboratory of Hydrodynamic Transients, Wuhan University, Wuhan 430072, China
| | - Kang Liu
- The Institute of Technological Sciences, MOE Key Laboratory of Hydrodynamic Transients, Wuhan University, Wuhan 430072, China
| | - Peihua Yang
- The Institute of Technological Sciences, MOE Key Laboratory of Hydrodynamic Transients, Wuhan University, Wuhan 430072, China
| |
Collapse
|
7
|
Wang P, Yu K, Wang H, Jia T, Wang X, Liang C. Synergistic interface regulation for achieving fast kinetics and highly reversible zinc metal anodes. J Colloid Interface Sci 2025; 683:688-698. [PMID: 39742749 DOI: 10.1016/j.jcis.2024.12.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/17/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Uncontrolled zinc dendrite growth and adverse side reactions at the Zn anode interface severely limit its practical application. Based on theoretical calculations, this study in situ constructs a functional interface (ICFI Zn) on the Zn anode surface, consisting of a surface-textured structure and a zinc-philic protective layer. Benefiting from the synergistic effect of ion regulation and atomic anchoring of this functional interface, the ICFI Zn anode achieves homogenised regulation of ion fluxes, facilitates ion transport kinetics, effectively suppresses side reactions and guides the deposition of dendrite-free Zn. Consequently, this functional interface endows the zinc anode with significantly enhanced cycling stability, lower nucleation barriers, and reduced voltage polarization. Surprisingly, the ICFI Zn anode exhibits over 3000 h of stable cycling performance at a high current density of 2 mA cm-2. Even at high current densities of 5, 10, and 20 mA cm-2, it still maintains high reversibility. Furthermore, in practical applications with the ICFI Zn||MnO2 battery, it also demonstrates ultra-long cycling stability. The one-step in situ construction of this functional interface provides a novel strategy for developing zinc metal anodes with rapid kinetics and high reversibility.
Collapse
Affiliation(s)
- Pengtao Wang
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Kaifeng Yu
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130022, China.
| | - Haonan Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Tingting Jia
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Xiaofeng Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ce Liang
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130022, China.
| |
Collapse
|
8
|
Shi R, Jiao S, Yang Z, Bo Z, Jiao J, Zhao Y. Regulating Interfacial Wettability for Fast Mass Transfer in Rechargeable Metal-Based Batteries. ACS NANO 2025; 19:8462-8508. [PMID: 40009058 DOI: 10.1021/acsnano.4c17836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The interfacial wettability between electrodes and electrolytes could ensure sufficient physical contact and fast mass transfer at the gas-solid-liquid, solid-liquid, and solid-solid interfaces, which could improve the reaction kinetics and cycle stability of rechargeable metal-based batteries (RMBs). Herein, interfacial wettability engineering at multiphase interfaces is summarized from the electrolyte and electrode aspects to promote the interface reaction rate and durability of RMBs, which illustrates the revolution that is taking place in this field and thus provides inspiration for future developments in RMBs. Specifically, this review presents the principle of interfacial wettability at macro- and microscale and summarizes emerging applications concerning the interfacial wettability effect on mass transfer in RMBs. Moreover, deep insight into the future development of interfacial wettability is provided in the outlook. Therefore, this review not only provides insights into interfacial wettability engineering but also offers strategic guidance for wettability modification and optimization toward stable electrode-electrolyte interfaces for fast mass transfer in RMBs.
Collapse
Affiliation(s)
- Ruijuan Shi
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R China
| | - Shilong Jiao
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R China
| | - Zirui Yang
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R China
| | - Zhihui Bo
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R China
| | - Junrong Jiao
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R China
| | - Yong Zhao
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R China
| |
Collapse
|
9
|
Zhang Y, Shi Z, Liu Y, He X, Fu X, Shi R, Jiao S, Zhao Y. Accelerating the Zn 2+ Transport Kinetics in the Pre-Solvated Artificial Protective Layer via Preferential Electrostatic Interactions for Stable Zinc Anode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411968. [PMID: 39887531 DOI: 10.1002/smll.202411968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/23/2025] [Indexed: 02/01/2025]
Abstract
The intrinsic safety and cost-effectiveness of the aqueous zinc ion batteries hold the potential for grid-scale energy storage. However, the uncontrolled dendrite growth, parasitic reactions, and electrochemical corrosion of the anode due to the random Zn2+ transport near the anode hinder its practical applications. Herein, a pre-solvated artificial protective layer (ps-APL) with a nitrogen-containing functional group is constructed by an in situ polymerization strategy to stabilize the Zn anode via boosted Zn2+ mass transport kinetics and oriented exposure of the Zn(002) facets. The preferential electrostatic interaction between the nitrogen atoms and Zn2+ induces accelerated migration kinetics in the partially solvated protective layer, which homogenizes the ion flux and nucleation sites. Moreover, the optimized adsorption behavior of the polymer on the Zn surfaces facilitates the Zn(002)-orientated deposition, which substantially suppresses the dendrites growth. Consequently, the ps-APL-coated Zn anode delivers a stability for 2200 h at 1 mA cm-2, enabling an 8.8-time enhancement in comparison to the bare Zn anode. More impressively, the protected Zn anode stably cycles for over 1000 h at a high current density of 5 mA cm-2, displaying a 10-time enhancement. Consequently, Zn||VO2 full battery exhibits stable cycling for 2100 cycles with excellent safety at 1 A g-1.
Collapse
Affiliation(s)
- Yan Zhang
- Key Lab for Spec ial Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High Efficiency Display and Lighting Technology, School of Nano Science and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475 004, P. R. China
| | - Zena Shi
- Key Lab for Spec ial Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High Efficiency Display and Lighting Technology, School of Nano Science and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475 004, P. R. China
| | - Ye Liu
- Key Lab for Spec ial Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High Efficiency Display and Lighting Technology, School of Nano Science and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475 004, P. R. China
| | - Xiaoxiao He
- Key Lab for Spec ial Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High Efficiency Display and Lighting Technology, School of Nano Science and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475 004, P. R. China
| | - Xianwei Fu
- Engineering Research Center for Nanomaterials, National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, Henan, 475 004, P. R. China
| | - Ruijuan Shi
- Key Lab for Spec ial Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High Efficiency Display and Lighting Technology, School of Nano Science and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475 004, P. R. China
| | - Shilong Jiao
- Key Lab for Spec ial Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High Efficiency Display and Lighting Technology, School of Nano Science and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475 004, P. R. China
| | - Yong Zhao
- Key Lab for Spec ial Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High Efficiency Display and Lighting Technology, School of Nano Science and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475 004, P. R. China
| |
Collapse
|
10
|
Dai Z, Liu J, Hou Q, Yang C, Zhang X, Okhawilai M, Pattananuwat P, Zhang X, Qin J. Design of Highly Stable Binder-Free Sn-Al Sol Coating for Zinc Metal Anode. ACS APPLIED MATERIALS & INTERFACES 2025; 17:12208-12217. [PMID: 39936875 PMCID: PMC11873941 DOI: 10.1021/acsami.4c20613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/18/2025] [Accepted: 02/08/2025] [Indexed: 02/13/2025]
Abstract
The construction of artificial solid electrolyte interfaces on zinc anodes is recognized as an effective strategy to mitigate zinc dendrite formation and side reactions; however, existing methods are often complex and time-consuming. In this study, we successfully fabricated a highly stable Sn-Al sol protective layer on the surface of the zinc anode using a simple spray-coating technique. This protective layer significantly enhances the electrochemical performance of zinc symmetric cells, achieving stable cycling for over 2500 h at 1 mA cm-2. In Zn//Cu half-cells, the Sn-Al sol coating improves charge-discharge efficiency and cycling stability, with over 500 and 950 cycles at 1 and 5 mA cm-2, respectively. The average charge-discharge efficiency during stable cycling reaches 95.7%, in contrast to 85.0% for bare Zn, indicating improved utilization of Zn2+. Additionally, the Sn-Al sol coating offers enhanced corrosion resistance and effectively promotes uniform Zn2+ growth along the (101) crystal plane, reducing dendrite formation. Overall, this simple spray-coating approach presents significant potential for high-stability modifications of zinc anodes, offering a novel strategy for the industrial application of zinc-ion batteries.
Collapse
Affiliation(s)
- Zhiqiang Dai
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Jie Liu
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Qizhi Hou
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Chengwu Yang
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China
- Center
of Excellence on Advanced Materials for Energy Storage, Department
of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Xueqing Zhang
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Manunya Okhawilai
- Department
of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prasit Pattananuwat
- Center
of Excellence on Advanced Materials for Energy Storage, Department
of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Xinyu Zhang
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Jiaqian Qin
- Center
of Excellence on Advanced Materials for Energy Storage, Department
of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
11
|
Tan H, Meng C, Chen H, Yang JL, Cao JM, Wu XL, Wang JJ. Breaking the Ice: Hofmeister Effect-Inspired Hydrogen Bond Network Reconstruction in Hydrogel Electrolytes for High-Performance Zinc-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410746. [PMID: 39737618 DOI: 10.1002/smll.202410746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/18/2024] [Indexed: 01/01/2025]
Abstract
Gel electrolytes have emerged as a promising solution for enhancing the performance of zinc-ion batteries (ZIBs), particularly in flexible devices. However, they face challenges such as low-temperature inefficiency, constrained ionic conductivity, and poor mechanical strength. To address these issues, this study presents a novel PAMCD gel electrolyte with tunable freezing point and mechanical properties for ZIBs, blending the high ionic conductivity of polyacrylamide with the anion interaction capability of β-cyclodextrin. Leveraging the Hofmeister effect, the chaotropic anions of ClO4 - are integrated to weaken hydrogen bonds, enhancing the mechanical and anti-freezing properties. The chaotropic salt disrupts the hydrogen bond network within water molecules, increasing weaker bonds and forming contact ion pairs, while polyacrylamide chains bind water molecules, further destabilizing hydrogen bonds. These changes improve Zn2+ ion mobility, mechanical resilience, and reduce the freezing point, significantly boosting ZIB performance. Consequently, the Zn-Zn symmetric cells achieve remarkable lifespans over 5290 hours at 0.5 mA cm-2 and 1960 hours at 5 mA cm-2, and the Zn-polyaniline full batteries maintain a high capacity of 100.8 mAh g-1 at 2 A g-1, even at -40 °C, over 7600 cycles, showcasing superior cyclability and rate performance.
Collapse
Affiliation(s)
- Hao Tan
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Chao Meng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Hao Chen
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
- Shandong Research Institute of Industrial Technology, Jinan, 250100, P. R. China
| | - Jia-Lin Yang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, 130024, P. R. China
| | - Jun-Ming Cao
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xing-Long Wu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, 130024, P. R. China
| | - Jian-Jun Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
- Shenzhen Research Institute, Shandong University, Shenzhen, 518057, China
| |
Collapse
|
12
|
Zhai Y, Xie B, Zheng C, Lang H, Li L, Yang Y, Luo Y, Tan X, Zheng Q, Lam KH, Lin D. Trace alcohol ether electrolytes with dual-site hydrogen bonds and modulated solvation structures for ultralong-life zinc-ion batteries. J Colloid Interface Sci 2025; 678:886-895. [PMID: 39222608 DOI: 10.1016/j.jcis.2024.08.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Aqueous zinc-ion batteries (AZIBs) are highly regarded for their affordability, stability, safety, and eco-friendliness. Nevertheless, their practical application is hindered by severe side reactions and the formation of zinc (Zn) dendrites on the Zn metal anode surface. In this study, we employ tetrahydrofuran alcohol (THFA), an efficient and cost-effective alcohol ether electrolyte, to mitigate these issues and achieve ultralong-life AZIBs. Theoretical calculations and experimental findings demonstrate that THFA acts as both a hydrogen bonding donor and acceptor, effectively anchoring H2O molecules through dual-site hydrogen bonding. This mechanism restricts the activity of free water molecules. Moreover, the two oxygen (O) atoms in THFA serve as dual solvation sites, enhancing the desolvation kinetics of [Zn(H2O)6]2+ and improving the deposition dynamics of Zn2+ ions. As a result, even trace amounts of THFA significantly suppress adverse reactions and the formation of Zn dendrites, enabling highly reversible Zn metal anodes for ultralong-life AZIBs. Specifically, a Zn-based symmetric cell containing 2 % THFA achieves an ultralong cycle life of 8,800 h at 0.5 mA cm-2/0.5 mAh cm-2, while a Zn//VO2 full cell containing 2 % THFA maintains a remarkable 80.03 % capacity retention rate at 5 A g-1 over 2,000 cycles. This study presents a practical strategy to develop dendrite-free, cost-effective, and highly efficient aqueous energy storage systems by leveraging alcohol ether compounds with dual-site hydrogen bonding capabilities.
Collapse
Affiliation(s)
- Yijun Zhai
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Bin Xie
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Chaohe Zheng
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Haoran Lang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Linwei Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Yi Yang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Yijia Luo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Xin Tan
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, China.
| | - Qiaoji Zheng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China.
| | - Kwok-Ho Lam
- Centre for Medical and Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow, Scotland, UK.
| | - Dunmin Lin
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China.
| |
Collapse
|
13
|
Park J, Dutta S, Sun H, Jo J, Karanth P, Weber D, Tavabi AH, Durmus YE, Dzieciol K, Jodat E, Karl A, Kungl H, Pivak Y, Garza HHP, George C, Mayer J, Dunin‐Borkowski RE, Basak S, Eichel R. Toward Quantitative Electrodeposition via In Situ Liquid Phase Transmission Electron Microscopy: Studying Electroplated Zinc Using Basic Image Processing and 4D STEM. SMALL METHODS 2024; 8:e2400081. [PMID: 38686691 PMCID: PMC11672167 DOI: 10.1002/smtd.202400081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/01/2024] [Indexed: 05/02/2024]
Abstract
High energy density electrochemical systems such as metal batteries suffer from uncontrollable dendrite growth on cycling, which can severely compromise battery safety and longevity. This originates from the thermodynamic preference of metal nucleation on electrode surfaces, where obtaining the crucial information on metal deposits in terms of crystal orientation, plated volume, and growth rate is very challenging. In situ liquid phase transmission electron microscopy (LPTEM) is a promising technique to visualize and understand electrodeposition processes, however a detailed quantification of which presents significant difficulties. Here by performing Zn electroplating and analyzing the data via basic image processing, this work not only sheds new light on the dendrite growth mechanism but also demonstrates a workflow showcasing how dendritic deposition can be visualized with volumetric and growth rate information. These results along with additionally corroborated 4D STEM analysis take steps to access information on the crystallographic orientation of the grown Zn nucleates and toward live quantification of in situ electrodeposition processes.
Collapse
Affiliation(s)
- Junbeom Park
- Institute of Energy and Climate ResearchFundamental Electrochemistry (IEK‐9)Forschungszentrum Jülich GmbH52425JülichGermany
| | - Sarmila Dutta
- Institute of Energy and Climate ResearchFundamental Electrochemistry (IEK‐9)Forschungszentrum Jülich GmbH52425JülichGermany
| | - Hongyu Sun
- DENSsolutions B.V.Informaticalaan 12Delft2628 ZDNetherlands
| | - Janghyun Jo
- Ernst Ruska‐Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg InstituteForschungszentrum Jülich GmbH52425JülichGermany
| | - Pranav Karanth
- Department of Radiation Science and TechnologyDelft University of TechnologyMekelweg 15Delft2629JBNetherlands
| | - Dieter Weber
- Ernst Ruska‐Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg InstituteForschungszentrum Jülich GmbH52425JülichGermany
| | - Amir H. Tavabi
- Ernst Ruska‐Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg InstituteForschungszentrum Jülich GmbH52425JülichGermany
| | - Yasin Emre Durmus
- Institute of Energy and Climate ResearchFundamental Electrochemistry (IEK‐9)Forschungszentrum Jülich GmbH52425JülichGermany
| | - Krzysztof Dzieciol
- Institute of Energy and Climate ResearchFundamental Electrochemistry (IEK‐9)Forschungszentrum Jülich GmbH52425JülichGermany
| | - Eva Jodat
- Institute of Energy and Climate ResearchFundamental Electrochemistry (IEK‐9)Forschungszentrum Jülich GmbH52425JülichGermany
| | - André Karl
- Institute of Energy and Climate ResearchFundamental Electrochemistry (IEK‐9)Forschungszentrum Jülich GmbH52425JülichGermany
| | - Hans Kungl
- Institute of Energy and Climate ResearchFundamental Electrochemistry (IEK‐9)Forschungszentrum Jülich GmbH52425JülichGermany
| | - Yevheniy Pivak
- DENSsolutions B.V.Informaticalaan 12Delft2628 ZDNetherlands
| | | | | | - Joachim Mayer
- Ernst Ruska‐Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg InstituteForschungszentrum Jülich GmbH52425JülichGermany
- Central Facility for Electron Microscopy (GFE)RWTH Aachen University52074AachenGermany
| | - Rafal E. Dunin‐Borkowski
- Ernst Ruska‐Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg InstituteForschungszentrum Jülich GmbH52425JülichGermany
| | - Shibabrata Basak
- Institute of Energy and Climate ResearchFundamental Electrochemistry (IEK‐9)Forschungszentrum Jülich GmbH52425JülichGermany
| | - Rüdiger‐A Eichel
- Institute of Energy and Climate ResearchFundamental Electrochemistry (IEK‐9)Forschungszentrum Jülich GmbH52425JülichGermany
- Institute of Physical ChemistryRWTH Aachen University52074AachenGermany
| |
Collapse
|
14
|
Hou Z, Lu W, Zheng H, Chen N, Jiang H, Zhang D, Du F. An Mn-Enriched Interfacial Layer for Reversible Aqueous Mn Metal Batteries. NANO LETTERS 2024; 24:14034-14041. [PMID: 39437155 DOI: 10.1021/acs.nanolett.4c03815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Aqueous manganese metal batteries have emerged as promising candidates for stationary storage due to their natural abundance, safety, and high energy density. However, the high chemical reactivity and sluggish migration kinetics of the Mn metal anode induce a severe hydrogen evolution reaction (HER) and dendrite formation, respectively. The situation deteriorates in the low-concentration electrolyte especially. Here, we propose a novel approach to construct an Mn-enriched interfacial layer (Mn@MIL) on the Mn metal anode surface to address these challenges simultaneously. The Mn@MIL acts as a physical barrier to not only suppress HER but also accelerate the Mn2+ diffusion kinetics through the Mn2+ saturated interfacial layer to inhibit dendrite growth. Therefore, in the low-concentration electrolyte (1 M MnCl2), the Mn||Mn symmetric cells and Mn||V2O5 full cells with high mass loading demonstrate promising cycling stability with minimal polarization and parasitic reactions, making them more suitable for practical applications in a smart grid.
Collapse
Affiliation(s)
- Zhichao Hou
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Wenqiang Lu
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Hongbao Zheng
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Nan Chen
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Heng Jiang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Dong Zhang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Fei Du
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
15
|
Cao J, Wang X, Qian S, Zhang D, Luo D, Zhang L, Qin J, Zhang X, Yang X, Lu J. De-Passivation and Surface Crystal Plane Reconstruction via Chemical Polishing for Highly Reversible Zinc Anodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410947. [PMID: 39328016 DOI: 10.1002/adma.202410947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/07/2024] [Indexed: 09/28/2024]
Abstract
Despite the widespread adoption of Zn anodes for aqueous energy storage, the presence of an inherent passivation layer and the polycrystalline interface of commercial Zn foil consistently lead to non-uniform electrodeposition, undermining stability and practicality. Herein, the study introduces a chemically polished Zn metal anode (CP-Zn) fabricated via a simple immersion method. This "chemically polishing" process can effectively remove the interfacial passivation layer (de-passivation), providing ample active sites for plating/stripping and ensuring the uniformly distributed electric field and Zn2+ ion flux. Additionally, selective etching during chemical polishing exposes more (002) crystal planes, promoting homogeneous and smooth zinc deposition while suppressing related side reactions. Demonstrated by CP-Zn anode, the symmetric cell exhibits stable cycling over 4600 h at 1 mA cm-2 and 240 h at 50% depth of discharge (DOD), with a CP-Zn||VO2 full cell maintaining ≈75.3% capacity retention over 1000 cycles at 3 A g-1. This chemically polishing strategy presents a promising avenue for advancing the commercialization of aqueous zinc-ion batteries.
Collapse
Affiliation(s)
- Jin Cao
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei, 443002, P. R. China
- Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, Hubei, 443002, P. R. China
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Xu Wang
- Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, Hubei, 443002, P. R. China
| | - Shangshu Qian
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Dongdong Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, P. R. China
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, 110870, P. R. China
| | - Ding Luo
- Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, Hubei, 443002, P. R. China
| | - Lulu Zhang
- Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, Hubei, 443002, P. R. China
| | - Jiaqian Qin
- Center of Excellence on Advanced Materials for Energy Storage, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Xinyu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Xuelin Yang
- Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, Hubei, 443002, P. R. China
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
16
|
Gao J, Xie Y, Wang L, Zeng P, Zhang L. Modulating Interfacial Zn 2+ Desolvation and Transport Kinetics through Coordination Interaction toward Stable Anodes in Aqueous Zn-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405522. [PMID: 39221554 DOI: 10.1002/smll.202405522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Aqueous Zn-ion batteries (AZIBs) are promising candidates for grid-scale energy-storage applications, but uneven Zn2+ flux distribution and undesirable water-related interfacial side reactions seriously hinder their practical application. Herein, a strategy of regulating the coordination interaction between Zn2+ and artificial interphase layers (AILs) to modulate the interfacial Zn2+ desolvation/transport behaviors and relieve side reactions for building stable Zn anodes is proposed. By selectively choosing appropriate polymers with different functional groups, it is shown that compared with the strong interaction offered by aryl groups in polystyrene-based AILs, cyano groups in polyacrylonitrile (PAN)-based AILs provide a moderate coordination interaction with Zn2+, which not only accelerates interfacial Zn2+desolvation kinetics but also enables efficient Zn2+ transport within AILs. Moreover, the Zn2+ transport kinetics of PAN-based AILs can be further enhanced with the incorporation of an ionic conductor, zinc phosphate (ZP). Because of these advantages, the Zn anodes decorated with the hybrid AILs composed of PAN and ZP can steadily operate for >2000 h at 0.2 mA cm-2 and >350 h at a high current density of 10 mA cm-2. This work provides a valuable guideline for selective design of AILs at the molecular level for durable AZIBs.
Collapse
Affiliation(s)
- Jiechang Gao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Yawen Xie
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Lei Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Pan Zeng
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Liang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
17
|
Zeng Z, Liao S, Ma G, Qu J. High-Conductivity and Ultrastretchable Self-Healing Hydrogels for Flexible Zinc-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58961-58972. [PMID: 39432458 DOI: 10.1021/acsami.4c13058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Aqueous zinc-ion batteries are promising candidates for flexible energy storage devices due to their safety, economic efficiency, and environmental friendliness. However, the uncontrollable dendrite growth and side reactions at the zinc anode hinder their commercial application. Herein, we designed and synthesized a dual network self-healing hydrogel electrolyte with zwitterionic groups (PAM-PAAS-QCS), which can be used for the large deformations of flexible devices due to its excellent stretchability (ε = 5100%). The incorporation of zwitterionic groups into the PAM-PAAS-QCS hydrogel electrolyte endows it with high ionic conductivity (33.61 mS/cm), a wide electrochemical stability window, and the ability to suppress zinc dendrite formation and side reactions. Besides, the Zn//Zn symmetric cell with PAM-PAAS-QCS can stably plate and strip zinc for 1500 h at 0.5 mA/cm2, and the Zn//Polyaniline full cell retains 82.4% of its capacity after 1500 cycles at 1 A/g. Additionally, flexible batteries based on both the original and self-healed PAM-PAAS-QCS hydrogel electrolytes demonstrate good cycling stability and stable charge-discharge performance under various bending conditions. This self-healing hydrogel electrolyte with excellent stretchability and high ionic conductivity is expected to pave the way for the development of high-performance flexible energy storage and wearable devices.
Collapse
Affiliation(s)
- Zhifeng Zeng
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510641, People's Republic of China
| | - Shanshan Liao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510641, People's Republic of China
| | - Guanhao Ma
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510641, People's Republic of China
| | - Jinqing Qu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510641, People's Republic of China
| |
Collapse
|
18
|
Farooq A, Zhao R, Han X, Yang J, Hu Z, Wu C, Bai Y. Towards Superior Aqueous Zinc-Ion Batteries: The Insights of Artificial Protective Interfaces. CHEMSUSCHEM 2024; 17:e202301942. [PMID: 38735842 DOI: 10.1002/cssc.202301942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Aqueous zinc ion batteries (AZIBs) with metallic Zn anode have the potential for large-scale energy storage application due to their cost-effectiveness, safety, environmental-friendliness, and ease of preparation. However, the concerns regarding dendrite growth and side reactions on Zn anode surface hamper the commercialization of AZIBs. This review aims to give a comprehensive evaluation of the protective interphase construction and provide guidance to further improve the electrochemical performance of AZIBs. The failure behaviors of the Zn metal anode including dendrite growth, corrosion, and hydrogen evolution are analyzed. Then, the applications and mechanisms of the constructed interphases are introduced, which are classified by the material species. The fabrication methods of the artificial interfaces are summarized and evaluated, including the in-situ strategy and ex-situ strategy. Finally, the characterization means are discussed to give a full view for the study of Zn anode protection. Based on the analysis of this review, a stable and high-performance Zn anode could be designed by carefully choosing applied material, corresponding protective mechanism, and appropriate construction technique. Additionally, this review for Zn anode modification and construction techniques for anode protection in AZIBs may be helpful in other aqueous metal batteries with similar problems.
Collapse
Affiliation(s)
- Asad Farooq
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ran Zhao
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiaomin Han
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jingjing Yang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zhifan Hu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Chuan Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, PR China
| | - Ying Bai
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, PR China
| |
Collapse
|
19
|
Qin S, Zhang J, Xu M, Xu P, Zou J, Li J, Luo D, Zhang Y, Dou H, Chen Z. Formulating Self-Repairing Solid Electrolyte Interface via Dynamic Electric Double Layer for Practical Zinc Ion Batteries. Angew Chem Int Ed Engl 2024; 63:e202410422. [PMID: 39039835 DOI: 10.1002/anie.202410422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/24/2024]
Abstract
Zinc ion batteries (ZIBs) encounter interface issues stemming from the water-rich electrical double layer (EDL) and unstable solid-electrolyte interphase (SEI). Herein, we propose the dynamic EDL and self-repairing hybrid SEI for practical ZIBs via incorporating the horizontally-oriented dual-site additive. The rearrangement of distribution and molecular configuration of additive constructs the robust dynamic EDL under different interface charges. And, a self-repairing organic-inorganic hybrid SEI is constructed via the electrochemical decomposition of additive. The dynamic EDL and self-repairing SEI accelerate interfacial kinetics, regulate deposition and suppress side reactions in the both stripping and plating during long-term cycles, which affords high reversibility for 500 h at 42.7 % depth of discharge or 50 mA ⋅ cm-1. Remarkably, Zn//NVO full cells deliver the impressive cycling stability for 10000 cycles with 100 % capacity retention at 3 A ⋅ g-1 and for over 3000 cycles even at lean electrolyte (7.5 μL ⋅ mAh-1) and high loading (15.26 mg ⋅ cm-2). Moreover, effectiveness of this strategy is further demonstrated in the low-temperature full cell (-30 °C).
Collapse
Affiliation(s)
- Siqi Qin
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Jie Zhang
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Mi Xu
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Peiwen Xu
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Jiabin Zou
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Jianhui Li
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Dan Luo
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Yongguang Zhang
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Haozhen Dou
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Zhongwei Chen
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| |
Collapse
|
20
|
Ba J, Yin X, Duan F, Cheng Y, Pu X, Zhu YL, Wei Y, Wang Y. Synergistic Cation-π Interactions and PEDOT-Based Protective Double-Layer for High Performance Zinc Anode. SMALL METHODS 2024; 8:e2301731. [PMID: 38426647 DOI: 10.1002/smtd.202301731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Ensuring effective and controlled zinc ion transportation is crucial for functionality of the solid electrolyte interphase (SEI) and overall performance in zinc-based battery systems. Herein the first-ever demonstration of incorporate cation-π interactions are provided in the SEI to effectively facilitate uniform zinc ion flux. The artificial SEI design involves the immobilization of 4-amino-p-terphenyl (TPA), a strong amphiphilic cation-π interaction donor, as a monolayer onto a conductive poly(3,4-ethylenedioxythiophene) (PEDOT) matrix, which enable the establishment of a robust network of cation-π interactions. Through a carefully-designed interfacial polymerization process, a high-quality, large-area, robust is achieved, thin polymeric TPA/PEDOT (TP) film for the use of artificial SEI. Consequently, this interphase exhibits exceptional cycling stability with low overpotential and enables high reversibility of Zn plating/stripping. Symmetrical cells with TP/Zn electrodes can be cycled for more than 3200 hours at 1 mA cm-2 and 1 mAh cm-2. And the asymmetric cells can cycle 3000 cycles stably with a high Coulomb efficiency of 99.78%. Also, under the extreme conditions of lean electrolyte and low N/P ratio, the battery with TP protective layer can still achieve ultra-stable cycle.
Collapse
Affiliation(s)
- Junjie Ba
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, China
| | - Xiuxiu Yin
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Fengxue Duan
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, China
| | - Yingjie Cheng
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, China
| | - Xin Pu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - You-Liang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yingjin Wei
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, China
- Chongqing Research Institute, Jilin University, Chongqing, 401123, China
| | - Yizhan Wang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, China
- Chongqing Research Institute, Jilin University, Chongqing, 401123, China
| |
Collapse
|
21
|
Bai Y, Deng D, Wang J, Wang Y, Chen Y, Zheng H, Liu M, Zheng X, Jiang J, Zheng H, Yi M, Li W, Fang G, Wang D, Lei Y. Inhibited Passivation by Bioinspired Cell Membrane Zn Interface for Zn-Air Batteries with Extended Temperature Adaptability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411404. [PMID: 39188196 DOI: 10.1002/adma.202411404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Indexed: 08/28/2024]
Abstract
Due to the slow dynamics of mass and charge transfer at Zn|electrolyte interface, the stable operation of Zn-air batteries (ZABs) is challenging, especially at low temperature. Herein, inspired by cell membrane, a hydrophilic-hydrophobic dual modulated Zn|electrolyte interface is constructed. This amphiphilic design enables the quasi-solid-state (QSS) ZABs to display a long-term cyclability of 180 h@50 mA cm-2 at 25 °C. Moreover, a record-long time of 173 h@4 mA cm-2 at -60 °C is also achieved, which is almost threefolds of untreated QSS ZABs. Control experiments and (in situ) characterization reveal that the growth of insulating ZnO passivation layers is largely inhibited by tuned hydrophilic-hydrophobic behavior. Thus, the enhanced transfer dynamic of Zn2+ at Zn|electrolyte interface from 25 to -60 °C is attained. As an extension, the QSS Al-air batteries (AABs) with bioinspired interface also show unprecedented discharge stability of 420 h@1 mA cm-2 at -40 °C, which is about two times of untreated QSS AABs. This bioinspired-hydrophilic-hydrophobic dual modulation strategy may provide a reference for energy transform and storage devices with broad temperature adaptability.
Collapse
Affiliation(s)
- Yu Bai
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Danni Deng
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Jinxian Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Yuchao Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Yingbi Chen
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Huanran Zheng
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Mengjie Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Xinran Zheng
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Jiabi Jiang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Haitao Zheng
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Maozhong Yi
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Weijie Li
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Guozhao Fang
- Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yongpeng Lei
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
22
|
Xu M, Li J, Wang L, Wang Z, Wang M, Li L, Cai X, Li L, Shangguan E. Engineering Sb/Zn 4(OH) 6SO 4·5H 2O interfacial layer by in situ chemically reacting for stable Zn anode. J Colloid Interface Sci 2024; 671:742-750. [PMID: 38824747 DOI: 10.1016/j.jcis.2024.05.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/04/2024]
Abstract
Rechargeable aqueous zinc ion batteries with abundant resources and high safety have gained extensive attention in energy storage technology. However, the cycle stability is largely limited by notorious Zn dendrite growth and water-induced interfacial side reactions. Here, a uniform and robust protection layer consisting of metal antimony (Sb) nanoparticles and micrometer-size sheets Zn4(OH)6SO4·5H2O (ZHS) is purposely designed to stabilize Zn anode via an in situ chemical reaction strategy. The two-phase protection layers (Sb/ZHS) induce a reinforcement effect on the Zn anode (Zn@Sb/ZHS). Specifically, Sb nanoparticles play the part of nucleation sites to facilitate uniform Zn plating and homogenize the electric field around the Zn surface. ZHS micrometer-size sheets possess sufficient electrolyte wettability, fast ion transfer kinetics, and anti-corrosion, thus guaranteeing uniform ion flux and inhibiting H2O decomposition. As expected, the symmetric Zn@Sb/ZHS//Zn@Sb/ZHS cells achieve a minimal voltage hysteresis and a reversible cycle of over 2000 h at 1 mA cm-2. By pairing with the MnO2 cathode, the full cell exhibits a significantly improved stability (∼94.17 % initial capacity after 1500 cycles). This study provides a new strategy to design artificial protection layers.
Collapse
Affiliation(s)
- Mingyang Xu
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China
| | - Jing Li
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China; School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Liyuan Wang
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhitao Wang
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China
| | - Mingyu Wang
- Henan Chaoli New Energy Co., Ltd, Xinxiang 453007, China
| | - Liangsheng Li
- Henan Chaoli New Energy Co., Ltd, Xinxiang 453007, China
| | - Xiaowu Cai
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China
| | - Linpo Li
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Enbo Shangguan
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China; School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China; Henan Chaoli New Energy Co., Ltd, Xinxiang 453007, China.
| |
Collapse
|
23
|
Ju Z, Zheng T, Zhang B, Yu G. Interfacial chemistry in multivalent aqueous batteries: fundamentals, challenges, and advances. Chem Soc Rev 2024; 53:8980-9028. [PMID: 39158505 DOI: 10.1039/d4cs00474d] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
As one of the most promising electrochemical energy storage systems, aqueous batteries are attracting great interest due to their advantages of high safety, high sustainability, and low costs when compared with commercial lithium-ion batteries, showing great promise for grid-scale energy storage. This invited tutorial review aims to provide universal design principles to address the critical challenges at the electrode-electrolyte interfaces faced by various multivalent aqueous battery systems. Specifically, deposition regulation, ion flux homogenization, and solvation chemistry modulation are proposed as the key principles to tune the inter-component interactions in aqueous batteries, with corresponding interfacial design strategies and their underlying working mechanisms illustrated. In the end, we present a critical analysis on the remaining obstacles necessitated to overcome for the use of aqueous batteries under different practical conditions and provide future prospects towards further advancement of sustainable aqueous energy storage systems with high energy and long durability.
Collapse
Affiliation(s)
- Zhengyu Ju
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Tianrui Zheng
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Bowen Zhang
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
24
|
Li F, Zhou C, Zhang J, Gao Y, Nan Q, Luo J, Xu Z, Zhao Z, Rao P, Li J, Kang Z, Shi X, Tian X. Mullite Mineral-Derived Robust Solid Electrolyte Enables Polyiodide Shuttle-Free Zinc-Iodine Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408213. [PMID: 39054683 DOI: 10.1002/adma.202408213] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Zinc dendrite, active iodine dissolution, and polyiodide shuttle caused by the strong interaction between liquid electrolyte and solid electrode are the chief culprits for the capacity attenuation of aqueous zinc-iodine batteries (ZIBs). Herein, mullite is adopted as raw material to prepare Zn-based solid-state electrolyte (Zn-ML) for ZIBs through zinc ion exchange strategy. Owing to the merits of low electronic conductivity, low zinc diffusion energy barrier, and strong polyiodide adsorption capability, Zn-ML electrolyte can effectively isolate the redox reactions of zinc anode and AC@I2 cathode, guide the reversible zinc deposition behavior, and inhibit the active iodine dissolution as well as polyiodide shuttle during cycling process. As expected, wide operating voltage window of 2.7 V (vs Zn2+/Zn), high Zn2+ transference number of 0.51, and low activation energy barrier of 29.7 kJ mol-1 can be achieved for the solid-state Zn//Zn cells. Meanwhile, high reversible capacity of 127.4 and 107.6 mAh g-1 can be maintained at 0.5 and 1 A g-1 after 3 000 and 2 100 cycles for the solid-state Zn//AC@I2 batteries, corresponding to high-capacity retention ratio of 85.2% and 80.7%, respectively. This study will inspire the development of mineral-derived solid electrolyte, and facilitate its application in Zn-based secondary batteries.
Collapse
Affiliation(s)
- Fulong Li
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Chuancong Zhou
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Jie Zhang
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Yating Gao
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Qing Nan
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Junming Luo
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Zhenming Xu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Zejun Zhao
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Peng Rao
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Jing Li
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Zhenye Kang
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Xiaodong Shi
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Xinlong Tian
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| |
Collapse
|
25
|
Peng H, Wang D, Zhang F, Yang L, Jiang X, Zhang K, Qian Z, Yang J. Improvements and Challenges of Hydrogel Polymer Electrolytes for Advanced Zinc Anodes in Aqueous Zinc-Ion Batteries. ACS NANO 2024; 18:21779-21803. [PMID: 39132720 DOI: 10.1021/acsnano.4c06502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Aqueous zinc-ion batteries (AZIBs) are widely regarded as desirable energy storage devices due to their inherent safety and low cost. Hydrogel polymer electrolytes (HPEs) are cross-linked polymers filled with water and zinc salts. They are not only widely used in flexible batteries but also represent an ideal electrolyte candidate for addressing the issues associated with the Zn anode, including dendrite formation and side reactions. In HPEs, an abundance of hydrophilic groups can form strong hydrogen bonds with water molecules, reducing water activity and inhibiting water decomposition. At the same time, special Zn2+ transport channels can be constructed in HPEs to homogenize the Zn2+ flux and promote uniform Zn deposition. However, HPEs still face issues in practical applications, including poor ionic conductivity, low mechanical strength, poor interface stability, and narrow electrochemical stability windows. This Review discusses the issues associated with HPEs for advanced AZIBs, and the recent progresses are summarized. Finally, the Review outlines the opportunities and challenges for achieving high performance HPEs, facilitating the utilization of HPEs in AZIBs.
Collapse
Affiliation(s)
- Huili Peng
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Dongdong Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Fenglong Zhang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Lishan Yang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Xiaolei Jiang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Kaiyuan Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Zhao Qian
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China
| | - Jian Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
26
|
Liu Q, Yu Z, Fan K, Huang H, Zhang B. Asymmetric Hydrogel Electrolyte Featuring a Customized Anode and Cathode Interfacial Chemistry for Advanced Zn-I 2 Batteries. ACS NANO 2024; 18:22484-22494. [PMID: 39103244 DOI: 10.1021/acsnano.4c07880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
An integrated asymmetric hydrogel electrolyte with a tailored composition and chemical structure on the cathode/anode-electrolyte interface is designed to boost the cost-effective, high-energy Zn-I2 battery. Such a configuration concurrently addresses the parasitic reactions on the Zn anode side and the polyiodide shuttle issue afflicting the cathode. Specifically, the Zn2+-cross-linked sodium alginate and carrageenan dual network (Carra-Zn-Alg) is adopted to guide the Zn2+ transport, achieving a dendrite-free morphology on the Zn surface and ensuring long-term stability. For the cathode side, the poly(vinyl alcohol)-strengthened poly(3,4-ethylenedioxythiophene)polystyrenesulfonate hydrogel (PVA-PEDOT) with high conductivity is employed to trap polyiodide and accelerate electron transfer for mitigating the shuttle effect and facilitating I2/I- redox kinetics. Attributing to the asymmetrical architecture with a customized interfacial chemistry, the optimized Zn-I2 cell exhibits a superior Coulombic efficiency of 99.84% with a negligible capacity degradation at 0.1 A g-1 and an enhanced stability of 10 000 cycles at 5 A g-1. The proposed asymmetric hydrogel provides a promising route to simultaneously resolve the distinct challenges encountered by the cathode and anode interfaces in rechargeable batteries.
Collapse
Affiliation(s)
- Qun Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Zhenlu Yu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Ke Fan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Haitao Huang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Biao Zhang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| |
Collapse
|
27
|
Zhang F, Liao T, Qi DC, Wang T, Xu Y, Luo W, Yan C, Jiang L, Sun Z. Zn-ion ultrafluidity via bioinspired ion channel for ultralong lifespan Zn-ion battery. Natl Sci Rev 2024; 11:nwae199. [PMID: 39050980 PMCID: PMC11267990 DOI: 10.1093/nsr/nwae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 07/27/2024] Open
Abstract
Rechargeable aqueous Zn-ion batteries have been deemed a promising energy storage device. However, the dendrite growth and side reactions have hindered their practical application. Herein, inspired by the ultrafluidic and K+ ion-sieving flux through enzyme-gated potassium channels (KcsA) in biological plasma membranes, a metal-organic-framework (MOF-5) grafted with -ClO4 groups (MOF-ClO4) as functional enzymes is fabricated to mimic the ultrafluidic lipid-bilayer structure for gating Zn2+ 'on' and anions 'off' states. The MOF-ClO4 achieved perfect Zn2+/SO4 2- selectivity (∼10), enhanced Zn2+ transfer number ([Formula: see text]) and the ultrafluidic Zn2+ flux (1.9 × 10-3 vs. 1.67 mmol m-2 s-1 for KcsA). The symmetric cells based on MOF-ClO4 achieve a lifespan of over 5400 h at 10 mA cm-2/20 mAh cm-2. Specifically, the performance of the PMCl-Zn//V2O5 pouch cell keeps 81% capacity after 2000 cycles at 1 A g-1. The regulated ion transport, by learning from a biological plasma membrane, opens a new avenue towards ultralong lifespan aqueous batteries.
Collapse
Affiliation(s)
- Fan Zhang
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - Ting Liao
- School of Mechanical Medical and Process Engineering, Queensland University of Technology, Brisbane 4000, Australia
| | - Dong-Chen Qi
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Tony Wang
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Yanan Xu
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Cheng Yan
- School of Mechanical Medical and Process Engineering, Queensland University of Technology, Brisbane 4000, Australia
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney 2007, Australia
| | - Ziqi Sun
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| |
Collapse
|
28
|
Xu D, Zhang H, Xie J, Zhou L, Yang F, Ma J, Yu Y, Wang G, Lu X. Highly Reversible Tin Film Anode Guided via Interfacial Coordination Effect for High Energy Aqueous Acidic Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408067. [PMID: 38923636 DOI: 10.1002/adma.202408067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Sn metal is a preferable choice as anode material for aqueous acidic batteries due to its acid-tolerance, non-toxicity, and ease of recycling. However, the large size and irregular deposition morphology of polyhedral Sn particles are bad for constructing stable and high-capacity Sn metal anode because of severe hydrogen evolution and metal shedding. To tackle this critical issue, 4-tert-octylphenol pentaethoxylate (POPE) is used as an electrolyte additive to generate a thin-film Sn anode with reversible stripping/plating behavior. POPE can not only induce homogeneous surface chemistry by adsorbing on the Sn surface via coordination bonds but also inhibit hydrogen evolution by modulating the solvation shell of Sn2+. The Sn film anode delivers improved electrochemical stability over 480 h with satisfactory rate performance and low polarization. Moreover, the as-assembled PbO2//Sn battery can also provide outstanding durability at 10 mAh cm-2. This work offers new inspiration for developing a reversible Sn metal film anode.
Collapse
Affiliation(s)
- Diyu Xu
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Haozhe Zhang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Jinhao Xie
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Lijun Zhou
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Fan Yang
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jianfeng Ma
- Department of Biomaterials, International Centre for Bamboo and Rattan, Beijing, 100102, P. R. China
| | - Yanxia Yu
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Guizhen Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou, Hainan, 570228, P. R. China
| | - Xihong Lu
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
29
|
Chen M, Gong Y, Zhao Y, Song Y, Tang Y, Zeng Z, Liang S, Zhou P, Lu B, Zhang X, Zhou J. Spontaneous grain refinement effect of rare earth zinc alloy anodes enables stable zinc batteries. Natl Sci Rev 2024; 11:nwae205. [PMID: 39071097 PMCID: PMC11275459 DOI: 10.1093/nsr/nwae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 07/30/2024] Open
Abstract
Irreversible interfacial reactions at the anodes pose a significant challenge to the long-term stability and lifespan of zinc (Zn) metal batteries, impeding their practical application as energy storage devices. The plating and stripping behavior of Zn ions on polycrystalline surfaces is inherently influenced by the microscopic structure of Zn anodes, a comprehensive understanding of which is crucial but often overlooked. Herein, commercial Zn foils were remodeled through the incorporation of cerium (Ce) elements via the 'pinning effect' during the electrodeposition process. By leveraging the electron-donating effect of Ce atoms segregated at grain boundaries (GBs), the electronic configuration of Zn is restructured to increase active sites for Zn nucleation. This facilitates continuous nucleation throughout the growth stage, leading to a high-rate instantaneous-progressive composite nucleation model that achieves a spatially uniform distribution of Zn nuclei and induces spontaneous grain refinement. Moreover, the incorporation of Ce elements elevates the site energy of GBs, mitigating detrimental parasitic reactions by enhancing the GB stability. Consequently, the remodeled ZnCe electrode exhibits highly reversible Zn plating/stripping with an accumulated capacity of up to 4.0 Ah cm-2 in a Zn symmetric cell over 4000 h without short-circuit behavior. Notably, a ∼0.4 Ah Zn||NH4V4O10 pouch cell runs over 110 cycles with 83% capacity retention with the high-areal-loading cathode (≈20 mg cm-2). This refining-grains strategy offers new insights into designing dendrite-free metal anodes in rechargeable batteries.
Collapse
Affiliation(s)
- Manjing Chen
- School of Materials Science & Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University, Changsha 410083, China
| | - Yuxiang Gong
- School of Materials Science & Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University, Changsha 410083, China
| | - Yunxiang Zhao
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yexin Song
- School of Materials Science & Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University, Changsha 410083, China
| | - Yan Tang
- School of Materials Science & Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University, Changsha 410083, China
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Shuquan Liang
- School of Materials Science & Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University, Changsha 410083, China
| | - Peng Zhou
- Hunan Provincial Key Defense Laboratory of High Temperature Wear-Resisting Materials and Preparation Technology, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Xiaotan Zhang
- School of Materials Science & Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University, Changsha 410083, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Jiang Zhou
- School of Materials Science & Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University, Changsha 410083, China
| |
Collapse
|
30
|
Luo L, Wu Z, Ding Q, Wang H, Luo Y, Yu J, Guo H, Tao K, Zhang S, Huo F, Wu J. In Situ Structural Densification of Hydrogel Network and Its Interface with Electrodes for High-Performance Multimodal Artificial Skin. ACS NANO 2024; 18:15754-15768. [PMID: 38830235 DOI: 10.1021/acsnano.4c02359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The multisensory responsiveness of hydrogels positions them as promising candidates for artificial skin, whereas the mismatch of modulus between soft hydrogels and hard electrodes as well as the poor adhesion and conductance at the interface greatly impairs the stability of electronics devices. Herein, we propose an in situ postprocessing approach utilizing electrochemical reactions between metals (Zn, etc.) and hydrogels to synergistically achieve strong adhesion of the hydrogel-electrode interface, low interfacial impedance, and local strain isolation due to the structural densification of the hydrogel network. The mechanism is that Zn electrochemically oxidizes to Zn2+ and injects into the hydrogel, gradually forming a mechanically interlocked structure, Zn2+-polymer dual-helix structural nodes, and a high-modulus ZnO from the surface to the interior. Compared to untreated samples, the treated sample displays 8.7 times increased interfacial adhesion energy between the hydrogel and electrode (87 J/m2), 95% decreased interfacial impedance (218.8 Ω), and a high-strain isolation efficiency (εtotal/εisolation > 400). Akin to human skin, the prepared sensor demonstrates multimodal sensing capabilities, encompassing highly sensitive strain perception and simultaneous perception of temperature, humidity, and oxygen content unaffected by strain interference. This easy on-chip preparation of hydrogel-based multimodal sensor array shows great potential for health and environment monitoring as artificial skin.
Collapse
Affiliation(s)
- Luqi Luo
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Transducer Technology, Shanghai 200050, China
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
- Research Center of Flexible Sensing Materials and Devices, School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yibing Luo
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiahao Yu
- The Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Hui Guo
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Kai Tao
- The Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Sheng Zhang
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Fengwei Huo
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, Fujian, China
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510641, China
- State Key Laboratory of Transducer Technology, Shanghai 200050, China
| |
Collapse
|
31
|
Ai Y, Yang C, Yin Z, Wang T, Gai T, Feng J, Li K, Zhang W, Li Y, Wang F, Chao D, Wang Y, Zhao D, Li W. Biomimetic Superstructured Interphase for Aqueous Zinc-Ion Batteries. J Am Chem Soc 2024; 146:15496-15505. [PMID: 38785353 DOI: 10.1021/jacs.4c03943] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The practical application of aqueous zinc-ion batteries (AZIBs) is greatly challenged by rampant dendrites and pestilent side reactions resulting from an unstable Zn-electrolyte interphase. Herein, we report the construction of a reliable superstructured solid electrolyte interphase for stable Zn anodes by using mesoporous polydopamine (2D-mPDA) platelets as building blocks. The interphase shows a biomimetic nacre's "brick-and-mortar" structure and artificial transmembrane channels of hexagonally ordered mesopores in the plane, overcoming the mechanical robustness and ionic conductivity trade-off. Experimental results and simulations reveal that the -OH and -NH groups on the surface of artificial ion channels can promote rapid desolvation kinetics and serve as an ion sieve to homogenize the Zn2+ flux, thus inhibiting side reactions and ensuring uniform Zn deposition without dendrites. The 2D-mPDA@Zn electrode achieves an ultralow nucleation potential of 35 mV and maintains a Coulombic efficiency of 99.8% over 1500 cycles at 5 mA cm-2. Moreover, the symmetric battery exhibits a prolonged lifespan of over 580 h at a high current density of 20 mA cm-2. This biomimetic superstructured interphase also demonstrates the high feasibility in Zn//VO2 full cells and paves a new route for rechargeable aqueous metal-ion batteries.
Collapse
Affiliation(s)
- Yan Ai
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Chaochao Yang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Ziqing Yin
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Tong Wang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Tianyu Gai
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Jiayou Feng
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Kailin Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Wei Zhang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Yefei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Fei Wang
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
| | - Dongliang Chao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Yonggang Wang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Dongyuan Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
32
|
Guo C, Huang X, Huang J, Tian X, Chen Y, Feng W, Zhou J, Li Q, Chen Y, Li SL, Lan YQ. Zigzag Hopping Site Embedded Covalent Organic Frameworks Coating for Zn Anode. Angew Chem Int Ed Engl 2024; 63:e202403918. [PMID: 38519423 DOI: 10.1002/anie.202403918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Precise design and tuning of Zn hopping/transfer sites with deeper understanding of the dendrite-formation mechanism is vital in artificial anode protective coating for aqueous Zn-ion batteries (AZIBs). Here, we probe into the role of anode-coating interfaces by designing a series of anhydride-based covalent organic frameworks (i.e., PI-DP-COF and PI-DT-COF) with specifically designed zigzag hopping sites and zincophilic anhydride groups that can serve as desired platforms to investigate the related Zn2+ hopping/transfer behaviours as well as the interfacial interaction. Combining theoretical calculations with experiments, the ABC stacking models of these COFs endow the structures with specific zigzag sites along the 1D channel that can accelerate Zn2+ transfer kinetics, lower surface-energy, homogenize ion-distribution or electric-filed. Attributed to these superiorities, thus-obtained optimal PI-DT-COF cells offer excellent cycling lifespan in both symmetric-cell (2000 cycles at 60 mA cm-2) and full-cell (1600 cycles at 2 A g-1), outperforming almost all the reported porous crystalline materials.
Collapse
Affiliation(s)
- Can Guo
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Xin Huang
- School of Chemistry and Materials Science, Nanjing Normal University, South China Normal University, 210023, Nanjing, P. R. China
| | - Jianlin Huang
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Xi Tian
- School of Chemistry and Materials Science, Nanjing Normal University, South China Normal University, 210023, Nanjing, P. R. China
| | - Yuting Chen
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Wenhai Feng
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Jie Zhou
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Qi Li
- School of Chemistry and Materials Science, Nanjing Normal University, South China Normal University, 210023, Nanjing, P. R. China
| | - Yifa Chen
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Shun-Li Li
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| |
Collapse
|
33
|
Li H, Chen Z, Zheng L, Wang J, Adenusi H, Passerini S, Zhang H. Electrolyte Strategies Facilitating Anion-Derived Solid-Electrolyte Interphases for Aqueous Zinc-Metal Batteries. SMALL METHODS 2024; 8:e2300554. [PMID: 37421218 DOI: 10.1002/smtd.202300554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Indexed: 07/10/2023]
Abstract
Rechargeable aqueous zinc-metal batteries (AZBs) are a promising complimentary technology to the existing lithium-ion batteries and the re-emerging lithium-metal batteries to satisfy the increasing demands on energy storage. Despite considerable progress achieved in the past years, the fundamental understanding of the solid-electrolyte interphase (SEI) formation and how its composition influences the SEI properties are limited. This review highlights the functionalities of anion-tuned SEI on the reversibility of zinc-metal anode, with a specific emphasis on new structural insights obtained through advanced characterizations and computational techniques. Recent efforts in terms of key variables that govern the interfacial behaviors to improve the long-term stability of zinc anode, i.e., Coulombic efficiency, plating morphology, dendrite formation, and side-reactions, are comprehensively reviewed. Lastly, the remaining challenges and future perspectives are presented, providing insights into the rational design of practical high-performance AZBs.
Collapse
Affiliation(s)
- Huihua Li
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Zhen Chen
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Leilei Zheng
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jian Wang
- Helmholtz Institute Ulm (HIU), D-89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT), D-76021, Karlsruhe, Germany
| | - Henry Adenusi
- Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China
- Hong Kong Quantum AI Lab, Hong Kong, P. R. China
| | - Stefano Passerini
- Helmholtz Institute Ulm (HIU), D-89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT), D-76021, Karlsruhe, Germany
- Chemistry Department, Sapienza University of Rome, Rome, 00185, Italy
| | - Huang Zhang
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing, 401135, P. R. China
| |
Collapse
|
34
|
Dong W, Liu C, Ji X, Yao H, Li J, Du H, Cheng S. Construction of Cation-Sieving Function Layers Enabling Dendrite-Free Zinc Metal Anodes for Durable Aqueous Systems. SMALL METHODS 2024; 8:e2300799. [PMID: 37728187 DOI: 10.1002/smtd.202300799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/24/2023] [Indexed: 09/21/2023]
Abstract
Rechargeable aqueous zinc-ion batteries are considered as promising candidates for safe and green energy storage. Yet, Zn anodes still suffer from serious challenges. Herein, an effective cation-sieve of polyethersulfone-modified sulfonated polyether ether ketone is developed as protective coating layer of the Zn anodes. Cation-only transmission and dense property of the layer can protect the Zn from active water and anions, inhibiting corrosion, hydrogen evolution reaction (HER), and passivation. Zincophilic property of the layer can homogenize Zn2+ flow, and promote uniform plating of Zn. Therefore, protected symmetric Zn||Zn cell can maintain as long as 5600 h with a low polarization at 1.0 mA cm-2 and 0.5 mAh cm-2, and still long as 800 h at 5.0 mA cm-2 and 5.0 mAh cm-2. It is found that not only the dendrites but also the popular existed passivation product of Zn4SO4(OH)6·5H2O can be inhibited effectively. In asymmetric Zn||Ti cells, average Coulombic efficiency can reach 98.2%, suggesting corrosion and HER are restrained effectively. Matched with MnO2 cathode, full cells using coated Zn exhibit much better cycling performance than that using bare Zn. Moreover, Zn4O3(SO4)·7H2O (ZSH)-assisted reversible conversion mechanism between the ZSH and ZnxHyMnO2 is revealed through operando Raman.
Collapse
Affiliation(s)
- Wenju Dong
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China
| | - Chenxu Liu
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China
| | - Xu Ji
- College of Automation, Zhongkai University of Agriculture and Engineering, 510225, Guangzhou, China
| | - Huan Yao
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China
| | - Juan Li
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China
| | - Heliang Du
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China
| | - Shuang Cheng
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China
| |
Collapse
|
35
|
Yang N, Gao Y, Bu F, Cao Q, Yang J, Cui J, Wang Y, Chen J, Liu X, Guan C. Backside Coating for Stable Zn Anode with High Utilization Rate. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312934. [PMID: 38349956 DOI: 10.1002/adma.202312934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/07/2024] [Indexed: 02/15/2024]
Abstract
Stable Zn anodes with high utilization rate are urgently required to promote the specific and volumetric energy densities of Zn-ion batteries for practical applications. Herein, contrary to the widely utilized surface coating on Zn anodes, this work shows that a zinc foil with a backside coated layer delivers much enhanced cycling stability even under high depth of discharge. The backside coating significantly reduces stress concentration, accelerates heat diffusion, and facilitates electron transfer, thus effectively preventing dendrite growth and structural damage at high Zn utilization. As a result, the developed anode can be stably cycled for 334 h at 85.5% Zn utilization, which outperforms bare Zn and previously reported results on surface-coated Zn foils. An NVO-based full cell also shows stable performance with high Zn utilization rate (69.4%), low negative-positive electrodes ratio (1.44), and high specific/volumetric energy densities (155.8 Wh kg-1/178 Wh L-1), which accelerates the progress toward practical zinc-ion batteries.
Collapse
Affiliation(s)
- Nute Yang
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Yong Gao
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Fan Bu
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Qinghe Cao
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Jiayu Yang
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Jiaojiao Cui
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yuxuan Wang
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jipeng Chen
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiangye Liu
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Cao Guan
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| |
Collapse
|
36
|
Dong J, Su L, Peng H, Wang D, Zong H, Wang G, Yang J. Spontaneous Molecule Aggregation for Nearly Single-Ion Conducting Sol Electrolyte to Advance Aqueous Zinc Metal Batteries: The Case of Tetraphenylporphyrin. Angew Chem Int Ed Engl 2024; 63:e202401441. [PMID: 38533760 DOI: 10.1002/anie.202401441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 03/28/2024]
Abstract
Zn metal as a promising anode of aqueous batteries faces severe challenges from dendrite growth and side reactions. Here, tetraphenylporphyrin tetrasulfonic acid (TPPS) is explored as an electrolyte additive for advanced Zn anodes. It is interesting to note that TPPS spontaneously assembles into unique aggregates. As they adsorb on the Zn anode, the aggregates enhance the resistance to electrolyte percolation and dendrite growth compared to single molecules. Meanwhile, TPPS facilitates anion association in the solvation sheath of Zn2+, and boosts the transference number of Zn2+ up to 0.95. Therefore, anion-related side reactions and anion-induced electrode overpotentials are reduced accordingly. In this context, the electrolyte containing TPPS exhibits excellent electrochemical performance. Even under a high loading of MnO2 (25 mg cm-2), a limited Zn supply (N/P ratio=1.7), and a lean electrolyte (15 μL mAh-1), the full cells still represent a higher cumulative capacity compared to the reported data. The advantages of this electrolyte are also adapted to other cathode materials. The pouch cells of Zn||NaV3O8 ⋅ 1.5H2O realize a capacity of ~0.35 Ah at 0.4 C under harsh conditions.
Collapse
Affiliation(s)
- Jingjing Dong
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Long Su
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Huili Peng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
- School Chemistry and Chemical Engineering Linyi University, Linyi, 276000, P. R. China
| | - Dongdong Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Hanwen Zong
- College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Gulian Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Jian Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
37
|
Chen L, Xiao T, Yang JL, Liu Y, Xian J, Liu K, Zhao Y, Fan HJ, Yang P. In-Situ Spontaneous Electropolymerization Enables Robust Hydrogel Electrolyte Interfaces in Aqueous Batteries. Angew Chem Int Ed Engl 2024; 63:e202400230. [PMID: 38520070 DOI: 10.1002/anie.202400230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/25/2024]
Abstract
Hydrogels hold great promise as electrolytes for emerging aqueous batteries, for which establishing a robust electrode-hydrogel interface is crucial for mitigating side reactions. Conventional hydrogel electrolytes fabricated by ex situ polymerization through either thermal stimulation or photo exposure cannot ensure complete interfacial contact with electrodes. Herein, we introduce an in situ electropolymerization approach for constructing hydrogel electrolytes. The hydrogel is spontaneously generated during the initial cycling of the battery, eliminating the need of additional initiators for polymerization. The involvement of electrodes during the hydrogel synthesis yields well-bonded and deep infiltrated electrode-electrolyte interfaces. As a case study, we attest that, the in situ-formed polyanionic hydrogel in Zn-MnO2 battery substantially improves the stability and kinetics of both Zn anode and porous MnO2 cathode owing to the robust interfaces. This research provides insight to the function of hydrogel electrolyte interfaces and constitutes a critical advancement in designing highly durable aqueous batteries.
Collapse
Affiliation(s)
- Liangyuan Chen
- The Institute of Technological Sciences MOE Key Laboratory of Hydrodynamic Transients, Wuhan University, Wuhan, 430072, China
| | - Tuo Xiao
- The Institute of Technological Sciences MOE Key Laboratory of Hydrodynamic Transients, Wuhan University, Wuhan, 430072, China
| | - Jin-Lin Yang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yipu Liu
- Key Laboratory of Pico Electron Microscopy of Hainan Province School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Jinglin Xian
- The Institute of Technological Sciences MOE Key Laboratory of Hydrodynamic Transients, Wuhan University, Wuhan, 430072, China
| | - Kang Liu
- The Institute of Technological Sciences MOE Key Laboratory of Hydrodynamic Transients, Wuhan University, Wuhan, 430072, China
| | - Yan Zhao
- The Institute of Technological Sciences MOE Key Laboratory of Hydrodynamic Transients, Wuhan University, Wuhan, 430072, China
| | - Hong Jin Fan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Peihua Yang
- The Institute of Technological Sciences MOE Key Laboratory of Hydrodynamic Transients, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
38
|
Tang L, Peng H, Kang J, Chen H, Zhang M, Liu Y, Kim DH, Liu Y, Lin Z. Zn-based batteries for sustainable energy storage: strategies and mechanisms. Chem Soc Rev 2024; 53:4877-4925. [PMID: 38595056 DOI: 10.1039/d3cs00295k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Batteries play a pivotal role in various electrochemical energy storage systems, functioning as essential components to enhance energy utilization efficiency and expedite the realization of energy and environmental sustainability. Zn-based batteries have attracted increasing attention as a promising alternative to lithium-ion batteries owing to their cost effectiveness, enhanced intrinsic safety, and favorable electrochemical performance. In this context, substantial endeavors have been dedicated to crafting and advancing high-performance Zn-based batteries. However, some challenges, including limited discharging capacity, low operating voltage, low energy density, short cycle life, and complicated energy storage mechanism, need to be addressed in order to render large-scale practical applications. In this review, we comprehensively present recent advances in designing high-performance Zn-based batteries and in elucidating energy storage mechanisms. First, various redox mechanisms in Zn-based batteries are systematically summarized, including insertion-type, conversion-type, coordination-type, and catalysis-type mechanisms. Subsequently, the design strategies aiming at enhancing the electrochemical performance of Zn-based batteries are underscored, focusing on several aspects, including output voltage, capacity, energy density, and cycle life. Finally, challenges and future prospects of Zn-based batteries are discussed.
Collapse
Affiliation(s)
- Lei Tang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Haojia Peng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Jiarui Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Han Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Mingyue Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Yan Liu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Dong Ha Kim
- Department of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| | - Yijiang Liu
- College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, P. R. China.
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
- Department of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
39
|
Zhang M, Meng X, Wu X, Yang L, Long H, Wang C, Xie T, Wu X, Wu X. Polycarbonyl polymer with zincophilic sites as protective coating for highly reversible zinc metal anodes. J Colloid Interface Sci 2024; 662:738-747. [PMID: 38377693 DOI: 10.1016/j.jcis.2024.02.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
The Zn anode of aqueous zinc ion batteries (AZIBs) have suffered from a series of rampant side reactions such as dendrite growth and corrosion, which seriously affect the reversibility and stability of Zn anodes. Herein, a polycarbonyl polymer poly(1,4,5,8-naphthalene tetracarboxylic anhydride anthraquinone) imine (PNAQI) as the protective coating is synthesized through a simple solvothermal method with the raw materials of the equimolar 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA) and 2, 6-aminoanthraquinone (2,6-DAAQ). A series of characterizations such as contact angle measurement and ex-situ XRD analysis confirm that it can effectively prevent some side reactions. Moreover, CO on PNAQI can regulate the uniform distribution of zinc, thereby preventing the occurrence of zinc dendrites. Finally, the PNAQI@Zn//PNAQI@Zn symmetrical cell demonstrates a long cycle life exceeding 1000 h at current density of 1.0 mA cm-2 and a capacity of 1.0 mAh cm-2. The result significantly outperforms the cycling performance of the cell with bare zinc anode. Especially, the full battery of PNAQI@Zn//NH4V4O10 demonstrates an excellent capacity retention and prolonged cycle life (96.9 mAh/g after 1000 cycles at 1.0 A/g) compared to Zn//NH4V4O10. This work provides an effective, simple and low-cost solution for developing high-performance AZIBs.
Collapse
Affiliation(s)
- Mengfan Zhang
- School of Chemistry and Chemistry Engineering, Jishou University, Jishou 416000, PR China
| | - Xuemei Meng
- School of Chemistry and Chemistry Engineering, Jishou University, Jishou 416000, PR China
| | - Xiuting Wu
- School of Chemistry and Chemistry Engineering, Jishou University, Jishou 416000, PR China
| | - Lingzhuo Yang
- School of Chemistry and Chemistry Engineering, Jishou University, Jishou 416000, PR China
| | - Huan Long
- School of Chemistry and Chemistry Engineering, Jishou University, Jishou 416000, PR China
| | - Chuang Wang
- School of Chemistry and Chemistry Engineering, Jishou University, Jishou 416000, PR China
| | - Tao Xie
- School of Chemistry and Chemistry Engineering, Jishou University, Jishou 416000, PR China
| | - Xianming Wu
- School of Chemistry and Chemistry Engineering, Jishou University, Jishou 416000, PR China.
| | - Xianwen Wu
- School of Chemistry and Chemistry Engineering, Jishou University, Jishou 416000, PR China; National Demonstration Center for Experimental Chemistry Education, Jishou University, Jishou 416000, PR China.
| |
Collapse
|
40
|
Yang JL, Xiao T, Xiao T, Li J, Yu Z, Liu K, Yang P, Fan HJ. Cation-Conduction Dominated Hydrogels for Durable Zinc-Iodine Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313610. [PMID: 38348791 DOI: 10.1002/adma.202313610] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/01/2024] [Indexed: 02/21/2024]
Abstract
Zinc-iodine batteries have the potential to offer high energy-density aqueous energy storage, but their lifetime is limited by the rampant dendrite growth and the concurrent parasite side reactions on the Zn anode, as well as the shuttling of polyiodides. Herein, a cation-conduction dominated hydrogel electrolyte is designed to holistically enhance the stability of both zinc anode and iodine cathode. In this hydrogel electrolyte, anions are covalently anchored on hydrogel chains, and the major mobile ions in the electrolyte are restricted to be Zn2+. Specifically, such a cation-conductive electrolyte results in a high zinc ion transference number (0.81) within the hydrogel and guides epitaxial Zn nucleation. Furthermore, the optimized Zn2+ solvation structure and the reconstructed hydrogen bond networks on hydrogel chains contribute to the reduced desolvation barrier and suppressed corrosion side reactions. On the iodine cathode side, the electrostatic repulsion between negative sulfonate groups and polyiodides hinders the loss of the iodine active material. This all-round electrolyte design renders zinc-iodine batteries with high reversibility, low self-discharge, and long lifespan.
Collapse
Affiliation(s)
- Jin-Lin Yang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Tuo Xiao
- The Institute of Technological Sciences, MOE Key Laboratory of Hydrodynamic Transients, Wuhan University, Wuhan, 430072, China
| | - Tao Xiao
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jia Li
- Rolls-Royce@NTU Corporate Lab, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zehua Yu
- The Institute of Technological Sciences, MOE Key Laboratory of Hydrodynamic Transients, Wuhan University, Wuhan, 430072, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Kang Liu
- The Institute of Technological Sciences, MOE Key Laboratory of Hydrodynamic Transients, Wuhan University, Wuhan, 430072, China
| | - Peihua Yang
- The Institute of Technological Sciences, MOE Key Laboratory of Hydrodynamic Transients, Wuhan University, Wuhan, 430072, China
| | - Hong Jin Fan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
41
|
Ma C, Wang X, Lu W, Yang K, Chen N, Jiang H, Wang C, Yue H, Zhang D, Du F. Dual-Parasitic Effect Enables Highly Reversible Zn Metal Anode for Ultralong 25,000 Cycles Aqueous Zinc-Ion Batteries. NANO LETTERS 2024; 24:4020-4028. [PMID: 38517395 DOI: 10.1021/acs.nanolett.4c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The use of electrolyte additives is an efficient approach to mitigating undesirable side reactions and dendrites. However, the existing electrolyte additives do not effectively regulate both the chaotic diffusion of Zn2+ and the decomposition of H2O simultaneously. Herein, a dual-parasitic method is introduced to address the aforementioned issues by incorporating 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIm]OTf) as cosolvent into the Zn(OTf)2 electrolyte. Specifically, the OTf- anion is parasitic in the solvent sheath of Zn2+ to decrease the number of active H2O. Additionally, the EMIm+ cation can construct an electrostatic shield layer and a hybrid organic/inorganic solid electrolyte interface layer to optimize the deposition behavior of Zn2+. This results in a Zn anode with a reversible cycle life of 3000 h, the longest cycle life of full cells (25,000 cycles), and an extremely high initial capacity (4.5 mA h cm-2), providing a promising electrolyte solution for practical applications of rechargeable aqueous zinc-ion batteries.
Collapse
Affiliation(s)
- Chenhui Ma
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, PR China
| | - Xin Wang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, PR China
| | - Wenqiang Lu
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, PR China
| | - Konghua Yang
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130012, PR China
| | - Nan Chen
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, PR China
| | - Heng Jiang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, PR China
| | - Chunzhong Wang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, PR China
| | - Huijuan Yue
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Dong Zhang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, PR China
| | - Fei Du
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, PR China
| |
Collapse
|
42
|
Qu Z, Ma J, Huang Y, Li T, Tang H, Wang X, Liu S, Zhang K, Lu J, Karnaushenko DD, Karnaushenko D, Zhu M, Schmidt OG. A Photolithographable Electrolyte for Deeply Rechargeable Zn Microbatteries in On-Chip Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310667. [PMID: 38232386 DOI: 10.1002/adma.202310667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/27/2023] [Indexed: 01/19/2024]
Abstract
Zn batteries show promise for microscale applications due to their compatibility with air fabrication but face challenges like dendrite growth and chemical corrosion, especially at the microscale. Despite previous attempts in electrolyte engineering, achieving successful patterning of electrolyte microscale devices has remained challenging. Here, successful patterning using photolithography is enabled by incorporating caffeine into a UV-crosslinked polyacrylamide hydrogel electrolyte. Caffeine passivates the Zn anode, preventing chemical corrosion, while its coordination with Zn2+ ions forms a Zn2+-conducting complex that transforms into ZnCO3 and 2ZnCO3·3Zn(OH)2 over cycling. The resulting Zn-rich interphase product significantly enhances Zn reversibility. In on-chip microbatteries, the resulting solid-electrolyte interphase allows the Zn||MnO2 full cell to cycle for over 700 cycles with an 80% depth of discharge. Integrating the photolithographable electrolyte into multilayer microfabrication creates a microbattery with a 3D Swiss-roll structure that occupies a footprint of 0.136 mm2. This tiny microbattery retains 75% of its capacity (350 µAh cm-2) for 200 cycles at a remarkable 90% depth of discharge. The findings offer a promising solution for enhancing the performance of Zn microbatteries, particularly for on-chip microscale devices, and have significant implications for the advancement of autonomous microscale devices.
Collapse
Affiliation(s)
- Zhe Qu
- Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), TU Chemnitz, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, TU Chemnitz, 09107, Chemnitz, Germany
| | - Jiachen Ma
- Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), TU Chemnitz, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, TU Chemnitz, 09107, Chemnitz, Germany
| | - Yang Huang
- Advanced Materials Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guanzhou, 511400, China
| | - Tianming Li
- Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), TU Chemnitz, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, TU Chemnitz, 09107, Chemnitz, Germany
| | - Hongmei Tang
- Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), TU Chemnitz, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, TU Chemnitz, 09107, Chemnitz, Germany
| | - Xiaoyu Wang
- School of Science, TU Dresden, 01062, Dresden, Germany
| | - Siyuan Liu
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, 37077, Göttingen, Germany
| | - Kai Zhang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, 37077, Göttingen, Germany
| | - Jing Lu
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing, 100871, China
| | - Dmitriy D Karnaushenko
- Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), TU Chemnitz, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, TU Chemnitz, 09107, Chemnitz, Germany
| | - Daniil Karnaushenko
- Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), TU Chemnitz, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, TU Chemnitz, 09107, Chemnitz, Germany
| | - Minshen Zhu
- Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), TU Chemnitz, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, TU Chemnitz, 09107, Chemnitz, Germany
| | - Oliver G Schmidt
- Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), TU Chemnitz, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, TU Chemnitz, 09107, Chemnitz, Germany
- School of Science, TU Dresden, 01062, Dresden, Germany
| |
Collapse
|
43
|
Sun X, Lv X, Zhang M, Shi K, Li Z, Pan X, Lian T, Chen R, Wu F, Li L. Construction of Selective Ion Transport Polymer at Anode-Electrolyte Interface for Stable Aqueous Zinc-Ion Batteries. ACS NANO 2024; 18:8452-8462. [PMID: 38427806 DOI: 10.1021/acsnano.3c13127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Rampant dendrite formation and serious adverse parasitic reactions induced by migration of dissolved V/Mn cathode ions on Zn anode have hampered the high performance of aqueous zinc-ion batteries (AZIBs). Inspired by the coordination chemistry between functional groups of polymer and electrolyte ions, a freestanding layer consisting of dopamine-functionalized polypyrrole (DA-PPy) nanowires served as a selective ion transport layer at the anode-electrolyte interface to address these two issues, which could simultaneously avoid polarization caused by the introduction of an additional interface. On the one hand, the DA-PPy layer displays excellent zinc ion and charge transfer ability, as well as provides chemical homochanneling for zinc ions at the interface, which endow the DA-PPy layer with properties as a chemical guider and physical barrier for dendrite inhibition. On the other hand, the DA-PPy layer can trap excess transition metal ions fleeing from the cathodes, thus serving as a chemical barrier, preventing the formation of Vx+/Mnx+-passivation on the surface of the zinc anode. Consequently, the AZIBs based on V2O5 and MnO2 cathodes involving the DA-PPy functional layer show a great improvement in the capacity retention.
Collapse
Affiliation(s)
- Xuan Sun
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Xiaowei Lv
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Man Zhang
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan 250300, People's Republic of China
| | - Keqing Shi
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan 250300, People's Republic of China
| | - Zhujie Li
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan 250300, People's Republic of China
| | - Xinhui Pan
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan 250300, People's Republic of China
| | - Tong Lian
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan 250300, People's Republic of China
| | - Renjie Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan 250300, People's Republic of China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, People's Republic of China
| | - Feng Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan 250300, People's Republic of China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, People's Republic of China
| | - Li Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan 250300, People's Republic of China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, People's Republic of China
| |
Collapse
|
44
|
Wang Y, Liao X, Wang W, Chen S, Chen J, Wang H. Direct Growth of a Polymer Film to Induce Horizontal Orientation of Zn 4(OH) 6SO 4· xH 2O for Stable Zn Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38489228 DOI: 10.1021/acsami.4c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
The loose and randomly oriented byproduct (i.e., Zn4(OH)6SO4·xH2O, ZHS) in situ formed on the zinc (Zn) surface is recognized to be the primary cause for dendritic Zn growth and side reactions. Switching the detrimental passivation film into a dense and kinetically favorable solid electrolyte interphase (SEI) is a straightforward strategy to tackle these issues faced by Zn metal anodes but remains largely unexplored. Herein, a new polymer film directly grown on Zn metal through room-temperature plasma-enhanced chemical vapor deposition is proposed to induce the lateral growth of ZHS nanosheets and decrease the Zn2+ desolvation barrier, thereby forming a beneficial composite SEI for suppressing Zn dendrite growth and surface corrosion. As a result of the joint effect, we realize an impressively stable cycling behavior in symmetric cell over 3400 h at 2 mA cm-2. Moreover, full cells also demonstrate prolonged lifespans. This work opens a new avenue for stabilizing Zn metal batteries by turning detrimental ZHS into a favorable interlayer.
Collapse
Affiliation(s)
- Yaxin Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xuelong Liao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shan Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jialei Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Huan Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
45
|
Xiao T, Yang JL, Zhang B, Wu J, Li J, Mai W, Fan HJ. All-Round Ionic Liquids for Shuttle-Free Zinc-Iodine Battery. Angew Chem Int Ed Engl 2024; 63:e202318470. [PMID: 38179860 DOI: 10.1002/anie.202318470] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
The practical implementation of aqueous zinc-iodine batteries (ZIBs) is hindered by the rampant Zn dendrites growth, parasite corrosion, and polyiodide shuttling. In this work, ionic liquid EMIM[OAc] is employed as an all-round solution to mitigate challenges on both the Zn anode and the iodine cathode side. First, the EMIM+ embedded lean-water inner Helmholtz plane (IHP) and inert solvation sheath modulated by OAc- effectively repels H2 O molecules away from the Zn anode surface. The preferential adsorption of EMIM+ on Zn metal facilitates uniform Zn nucleation via a steric hindrance effect. Second, EMIM+ can reduce the polyiodide shuttling by hindering the iodine dissolution and forming an EMIM+ -I3 - dominated phase. These effects holistically enhance the cycle life, which is manifested by both Zn || Zn symmetric cells and Zn-I2 full cells. ZIBs with EAc deliver a capacity decay rate of merely 0.01 ‰ per cycle after over 18,000 cycles at 4 A g-1 , and lower self-discharge and better calendar life than the ZIBs without ionic liquid EAc additive.
Collapse
Affiliation(s)
- Tao Xiao
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jin-Lin Yang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Bao Zhang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jiawen Wu
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- Institute of Flexible Electronics Technology, Tsinghua University, Jiaxing, 314000, China
| | - Jinliang Li
- Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Wenjie Mai
- Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Hong Jin Fan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
46
|
Zhang H, Gan X, Yan Y, Zhou J. A Sustainable Dual Cross-Linked Cellulose Hydrogel Electrolyte for High-Performance Zinc-Metal Batteries. NANO-MICRO LETTERS 2024; 16:106. [PMID: 38305845 PMCID: PMC10837397 DOI: 10.1007/s40820-024-01329-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024]
Abstract
Aqueous rechargeable Zn-metal batteries (ARZBs) are considered one of the most promising candidates for grid-scale energy storage. However, their widespread commercial application is largely plagued by three major challenges: The uncontrollable Zn dendrites, notorious parasitic side reactions, and sluggish Zn2+ ion transfer. To address these issues, we design a sustainable dual cross-linked cellulose hydrogel electrolyte, which has excellent mechanical strength to inhibit dendrite formation, high Zn2+ ions binding capacity to suppress side reaction, and abundant porous structure to facilitate Zn2+ ions migration. Consequently, the Zn||Zn cell with the hydrogel electrolyte can cycle stably for more than 400 h under a high current density of 10 mA cm-2. Moreover, the hydrogel electrolyte also enables the Zn||polyaniline cell to achieve high-rate and long-term cycling performance (> 2000 cycles at 2000 mA g-1). Remarkably, the hydrogel electrolyte is easily accessible and biodegradable, making the ARZBs attractive in terms of scalability and sustainability.
Collapse
Affiliation(s)
- Haodong Zhang
- Hubei Engineering Center of Natural Polymers-Based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Xiaotang Gan
- Hubei Engineering Center of Natural Polymers-Based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yuyang Yan
- Hubei Engineering Center of Natural Polymers-Based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Jinping Zhou
- Hubei Engineering Center of Natural Polymers-Based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
47
|
Diao WY, Xie D, Sang Y, Tao FY, Liu C, Sun HZ, Li WL, Wu XL, Zhang JP. Self-Adaptive Liquid Film: Dynamic Realization of Dendrite-Free Zn Deposition Toward Ultralong-Life Aqueous Zn Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306195. [PMID: 37789582 DOI: 10.1002/smll.202306195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/14/2023] [Indexed: 10/05/2023]
Abstract
The poor reversibility and stability of Zn metal anode (ZMA) caused by uncontrolled Zn deposition behaviors and serious side reactions severely impeded the practical application of aqueous Zn metal battery. Herein, a liquid-dynamic and self-adaptive protective layer (LSPL) was constructed on the ZMA surface for inhibiting dendrites and by-products formation. Interestingly, the outer LSPL consists of liquid perfluoropolyether (PFPE), which can dynamically adapt volume change during repeat cycling and inhibit side reactions. Moreover, it can also decrease the de-solvation energy barrier of Zn2+ by strong interaction between C-F bond and foreign Zn2+ , improving Zn2+ transport kinetics. For the LSPL inner region, in-situ formed ZnF2 through the spontaneous chemical reaction between metallic Zn and part PFPE can establish an unimpeded Zn2+ migration pathway for accelerating ion transfer, thereby restricting Zn dendrites formation. Consequently, the LSPL-modified ZMA enables reversible Zn deposition/dissolution up to 2000 h at 1 mA cm-2 and high coulombic efficiency of 99.8% at 4 mA cm-2 . Meanwhile, LSPL@Zn||NH4 V4 O10 full cells deliver an ultralong cycling lifespan of 100 00 cycles with 0.0056% per cycle decay rate at 10 A g-1 . This self-adaptive layer provides a new strategy to improve the interface stability for next-generation aqueous Zn battery.
Collapse
Affiliation(s)
- Wan-Yue Diao
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Dan Xie
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Yuan Sang
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Fang-Yu Tao
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Chang Liu
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Hai-Zhu Sun
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Wen-Liang Li
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Xing-Long Wu
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Jing-Ping Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| |
Collapse
|
48
|
Liu H, Xin Z, Cao B, Zhang B, Fan HJ, Guo S. Versatile MXenes for Aqueous Zinc Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305806. [PMID: 37985557 PMCID: PMC10885665 DOI: 10.1002/advs.202305806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/27/2023] [Indexed: 11/22/2023]
Abstract
Aqueous zinc-ion batteries (AZIBs) are gaining popularity for their cost-effectiveness, safety, and utilization of abundant resources. MXenes, which possess outstanding conductivity, controllable surface chemistry, and structural adaptability, are widely recognized as a highly versatile platform for AZIBs. MXenes offer a unique set of functions for AZIBs, yet their significance has not been systematically recognized and summarized. This review article provides an up-to-date overview of MXenes-based electrode materials for AZIBs, with a focus on the unique functions of MXenes in these materials. The discussion starts with MXenes and their derivatives on the cathode side, where they serve as a 2D conductive substrate, 3D framework, flexible support, and coating layer. MXenes can act as both the active material and a precursor to the active material in the cathode. On the anode side, the functions of MXenes include active material host, zinc metal surface protection, electrolyte additive, and separator modification. The review also highlights technical challenges and key hurdles that MXenes currently face in AZIBs.
Collapse
Affiliation(s)
- Huan Liu
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Zijun Xin
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Bin Cao
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Bao Zhang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Hong Jin Fan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
49
|
Hu W, Zhang Y, Ju J, Wang Y, Zhang Z, Kang W. Nanofiber-Reinforced Composite Gel Enabling High Ionic Conductivity and Ultralong Cycle Life for Zn Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305140. [PMID: 37726240 DOI: 10.1002/smll.202305140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/15/2023] [Indexed: 09/21/2023]
Abstract
Despite the impressive merits of gel electrolytes for aqueous Zn-ion batteries, it remains a significant challenge to design and develop the gel electrolyte with high ionic conductivity, excellent dimensional stability, and long cycle life. Herein, a composite electrolyte (PTP) with thermolastic polyurethane -poly(m-phenylene isophthalamide) nanofiber-reinforced polyvinyl alcohol gel strategy is proposed for highly reversible Zn plating/stripping. Mechanically robust and ultrathin PTP contains functional groups for building ion migration channels and immobilizing water molecules, which accelerates Zn2+ migration and mitigates water-related side reactions. Thus, the Zn anodes exhibit excellent electrochemical performance involving high cycling stability (6500 h at 5 mA cm-2 , 5 mA h cm-2 ) and achieving an exceptional cumulative capacity of more than 16 000 mA h cm-2 . This enhancement is well maintained when combined with MnO2 cathode. This work provides a reasonable solution for stabilizing Zn anodes and also provides new ideas for the modification of nanofiber-reinforced gel electrolytes.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Separation Separators and Separator Processes, National Center for International Joint Research on Separation Separators, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yixuan Zhang
- State Key Laboratory of Separation Separators and Separator Processes, National Center for International Joint Research on Separation Separators, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Jingge Ju
- State Key Laboratory of Separation Separators and Separator Processes, National Center for International Joint Research on Separation Separators, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yuanyuan Wang
- State Key Laboratory of Separation Separators and Separator Processes, National Center for International Joint Research on Separation Separators, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zehao Zhang
- State Key Laboratory of Separation Separators and Separator Processes, National Center for International Joint Research on Separation Separators, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Weimin Kang
- State Key Laboratory of Separation Separators and Separator Processes, National Center for International Joint Research on Separation Separators, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
50
|
Cui Y, Chen W, Xin W, Ling H, Hu Y, Zhang Z, He X, Zhao Y, Kong XY, Wen L, Jiang L. Gradient Quasi-Solid Electrolyte Enables Selective and Fast Ion Transport for Robust Aqueous Zinc-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308639. [PMID: 37923399 DOI: 10.1002/adma.202308639] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/17/2023] [Indexed: 11/07/2023]
Abstract
The quasi-solid electrolytes (QSEs) attract extensive attention due to their improved ion transport properties and high stability, which is synergistically based on tunable functional groups and confined solvent molecules among the polymetric networks. However, the trade-off effect between the polymer content and ionic conductivity exists in QSEs, limiting their rate performance. In this work, the epitaxial polymerization strategy is used to build the gradient hydrogel networks (GHNs) covalently fixed on zinc anode. Then, it is revealed that the asymmetric distribution of negative charges benefits GHNs with fast and selective ionic transport properties, realizing a higher Zn2+ transference number of 0.65 than that (0.52) for homogeneous hydrogel networks (HHNs) with the same polymer content. Meanwhile, the high-density networks formed at Zn/GHNs interface can efficiently immobilize free water molecules and homogenize the Zn2+ flux, greatly inhibiting the water-involved parasitic reactions and dendrite growth. Thus, the GHNs enable dendrite-free stripping/plating over 1000 h at 8 mA cm-2 and 1 mAh cm-2 in a Zn||Zn symmetric cell, as well as the evidently prolonged cycles in various full cells. This work will shed light on asymmetric engineering of ion transport channels in advanced quasi-solid battery systems to achieve high energy and safety.
Collapse
Affiliation(s)
- Yanglansen Cui
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weipeng Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weiwen Xin
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haoyang Ling
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuhao Hu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhehua Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaofeng He
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yong Zhao
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|