1
|
Zhang X, Wang H, Dai R, Zhao P, Wang Y. MXene and Ru doping co-enhanced the hydrogen evolution reaction performance of cobalt pyridinedicarboxylic coordinated polymer. J Colloid Interface Sci 2025; 690:137278. [PMID: 40086331 DOI: 10.1016/j.jcis.2025.137278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025]
Abstract
Great efforts have been conducted to improve the hydrogen evolution reaction (HER) of metal-organic frameworks (MOFs). Nevertheless, the limited number of active sites and low electrical conductivity of MOFs have a detrimental impact on the HER performance. Herein, we modulate the electronic structure and improve the electrical conductivity of Co-pyridinedicarboxylic (Co-PDC) framework via Ru doping and hybridization with MXene nanosheets, which in turn enhance its HER performance. The as-prepared Ru-doped Co-PDC@MXene (RCPM) composite catalyst exhibits an overpotential of only 36.1 mV, enabling the achievement of a current density of 10 mA cm-2 for HER in 1 M KOH. Furthermore, the current density can still remain 93.6 % for 50 h of the stability test. The electrolytic water device with RCPM as the cathode and ruthenium oxide as the anode, requires a voltage of 1.58 V to drive water splitting at a current density of 10 mA cm-2, and demonstrates the stable operation for 50 h. Such excellent performance is attributed to the electronic modulation and synergistic effect between Co/Ru sites and MXene.
Collapse
Affiliation(s)
- Xiaoye Zhang
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China; Shanxi Key Laboratory of Efficient Hydrogen Storage & Production Technology and Application, North University of China, Taiyuan 030051, PR China
| | - Hong Wang
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China; Shanxi Key Laboratory of Efficient Hydrogen Storage & Production Technology and Application, North University of China, Taiyuan 030051, PR China
| | - Ruizhang Dai
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
| | - Peihua Zhao
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
| | - Yanzhong Wang
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China; Shanxi Key Laboratory of Efficient Hydrogen Storage & Production Technology and Application, North University of China, Taiyuan 030051, PR China.
| |
Collapse
|
2
|
Gao W, Wang C, Wen W, Wang S, Zhang X, Yan D, Wang S. Electrochemical Hydrogen Production Coupling with the Upgrading of Organic and Inorganic Chemicals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2503198. [PMID: 40395197 DOI: 10.1002/adma.202503198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/04/2025] [Indexed: 05/22/2025]
Abstract
Electrocatalytic water splitting powered by renewable energy is a green and sustainable method for producing high-purity H2. However, in conventional water electrolysis, the anodic oxygen evolution reaction (OER) involves a four-electron transfer process with inherently sluggish kinetics, which severely limits the overall efficiency of water splitting. Recently, replacing OER with thermodynamically favorable oxidation reactions, coupled with the hydrogen evolution reaction, has garnered significant attention and achieved remarkable progress. This strategy not only offers a promising route for energy-saving H₂ production but also enables the simultaneous synthesis of high-value-added products or the removal of pollutants at the anode. Researchers successfully demonstrate the upgrading of numerous organic and inorganic alternatives through this approach. In this review, the latest advances in the coupling of electrocatalytic H2 production and the upgrading of organic and inorganic alternative chemicals are summarized. What's more, the optimization strategy of catalysts, structure-performance relationship, and catalytic mechanism of various reactions are well discussed in each part. Finally, the current challenges and future prospects in this field are outlined, aiming to inspire further innovative breakthroughs in this exciting area of research.
Collapse
Affiliation(s)
- Wenqi Gao
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Chen Wang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Wei Wen
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Shengfu Wang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Xiuhua Zhang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Dafeng Yan
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Biosensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410081, China
| |
Collapse
|
3
|
He J, Butson JD, Gu R, Loy ACM, Fan Q, Qu L, Li GK, Gu Q. MXene-Supported Single-Atom Electrocatalysts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414674. [PMID: 40150844 PMCID: PMC12061334 DOI: 10.1002/advs.202414674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/19/2025] [Indexed: 03/29/2025]
Abstract
MXenes, a novel member of the 2D material family, shows promising potential in stabilizing isolated atoms and maximizing the atom utilization efficiency for catalytic applications. This review focuses on the role of MXenes as support for single-atom catalysts (SACs) for various electrochemical reactions, namely the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), and nitrogen reduction reaction (NRR). First, state-of-the-art characterization and synthesis methods of MXenes and MXene-supported SACs are discussed, highlighting how the unique structure and tunable functional groups enhance the catalytic performance of pristine MXenes and contribute to stabilizing SAs. Then, recent studies of MXene-supported SACs in different electrocatalytic areas are examined, including experimental and theoretical studies. Finally, this review discusses the challenges and outlook of the utilization of MXene-supported SACs in the field of electrocatalysis.
Collapse
Affiliation(s)
- Jianan He
- Department of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Joshua D. Butson
- Department of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Ruijia Gu
- Department of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Adrian Chun Minh Loy
- Department of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Qining Fan
- Department of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Longbing Qu
- Department of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Gang Kevin Li
- Department of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Qinfen Gu
- Department of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
- Australian SynchrotronANSTO800 Blackburn RdClaytonVIC3168Australia
| |
Collapse
|
4
|
Nguyen TH, Tran DT, Malhotra D, Tran PKL, Dinh VA, Ta TTN, Dong CL, Kim NH, Lee JH. D-Orbital-Modulated Ruthenium Embedded within Functionalized Hollow MXene Networks for Enhanced Hydrazine-Assisted Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502553. [PMID: 40249384 DOI: 10.1002/smll.202502553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/26/2025] [Indexed: 04/19/2025]
Abstract
Electrochemical green hydrogen production via water splitting is an attractive and sustainable pathway; however, the sluggish kinetics of anodic oxygen evolution reaction is still a critical challenge. In this study, an effective electrocatalyst engineering approach is demonstrated by preparing an innovative hybrid of ruthenium d-orbitals-regulated nanoclusters embedding within functionalized hollow Ti3C2 MXene networks (Ru0.91Ni0.09-N/O-Ti3C2) to promote the hydrazine-assisted hydrogen production. A specific charge redistribution is revealed, locally concentrating at interfaces derived from stable Ru(Ni)-N/O-Ti coordination and d-p orbital hybridization. The charge transfer effect from Ni to Ru within Ru0.91Ni0.09 structure and Ru0.91Ni0.09 to N/O-Ti3C2 tailors electronic features of Ru sites to enable reasonable adsorption/desorption toward reactant intermediates. The Ru0.91Ni0.09-N/O-Ti3C2 requires an overpotential of only 29.3 mV for cathodic hydrogen evolution and a low potential of -29.9 mV for anodic hydrazine oxidation to reach 10 mA cm-2, showing excellent stability. The hydrazine-assisted hydrogen production system based on Ru0.91Ni0.09-N/O-Ti3C2 electrodes delivers small cell voltages of 0.02 V at 10 mA cm-2 and 0.92 V at industrial current level of 1.0 A cm-2. This work may open a new electrocatalysis strategy from lab scale to industry for robust and efficient green hydrogen production.
Collapse
Affiliation(s)
- Thanh Hai Nguyen
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Duy Thanh Tran
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Deepanshu Malhotra
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Phan Khanh Linh Tran
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Van An Dinh
- Department of Precision Engineering, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Thi Thuy Nga Ta
- Department of Physics, Tamkang University, New Taipei City, 25137, Taiwan
| | - Chung-Li Dong
- Department of Physics, Tamkang University, New Taipei City, 25137, Taiwan
| | - Nam Hoon Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Joong Hee Lee
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
- Center for Carbon Composite Materials, Department of Polymer & Nano Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| |
Collapse
|
5
|
Wang W, Ma M, Song Y, Ma Y, Yan C, Wang Z, Ma D, Wang X, Zhu X. External Electric Field Enhanced Ti 3C 2 MXene Surface Passivation for Realizing Ultra-Long Cycling Stability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502325. [PMID: 40244814 DOI: 10.1002/smll.202502325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Indexed: 04/19/2025]
Abstract
External electric field (EEF), as a stimulating factor, is an effective method for optimizing the surface composition and structure of materials. Ti3C2 MXene surface enriched with negatively charged functional groups (─OH, ─O, etc.) will exhibit high sensitivity to EEF. However, the impact of EEF on the interaction mechanisms between the guest ions and MXene surface remains unclear and requires further investigation. Herein, the density functional theory (DFT) is employed to simulate the adsorption energies between butyl trimethylammonium ion (BTA+) and MXene surfaces under different intensities of EEFs (±0.9, ±0.7, ±0.5, ±0.3, ±0.1, and 0 V Å-1), indicating EEF can effectively regulate adsorption. It will increase the encapsulation degree of BTA+ on the MXene surface, thereby enhancing surface passivation. Based on theoretical predictions, quaternary-ammonium ions with different chain-lengths (BTA+, DTA+, STA+) are selected as guest ions to unveil the mechanism of EEF on MXene surface passivation. The applied-EEF promotes the formation of Ti─O─N bonds between ─OH and ammonium groups to construct more-denser protective layer, leading to enhancement of surface passivation and obviously increasing the capacitance retention after 100,000 cycles (50.8% to 97.5%). This work provides a new pathway and theoretical support for the surface passivation of MXene.
Collapse
Affiliation(s)
- Weixin Wang
- Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, P. R. China
| | - Mingzhu Ma
- Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, P. R. China
| | - Yuting Song
- Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, P. R. China
| | - Yujie Ma
- Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, P. R. China
| | - Chong Yan
- Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, P. R. China
| | - Zhongliao Wang
- Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, P. R. China
| | - Dongwei Ma
- Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, P. R. China
| | - Xin Wang
- Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, P. R. China
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei, 235000, P. R. China
- Anhui Province Key Laboratory of Intelligent Computing and Applications, Huaibei Normal University, Huaibei, 235000, P. R. China
| | - Xuebin Zhu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
6
|
Zhang Y, Pu Y, Li W, Lin Y, Li H, Wu Y, Duan T. Local Electronic Regulation by Oxygen Coordination with Single- Atomic Iridium on Ultrathin Cobalt Hydroxide Nanosheets for Electrocatalytic Oxygen Evolution. Inorg Chem 2025; 64:6742-6750. [PMID: 40146658 DOI: 10.1021/acs.inorgchem.5c00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Rationally optimizing the atomic and electronic structure of electrocatalysts is an effective strategy to improve the activity of the electrocatalytic oxygen evolution reaction (OER), yet it remains challenging. In this work, atomic heterointerface engineering is developed to accelerate OER by decorating iridium atoms on low-crystalline cobalt hydroxide nanosheets (Ir-Co(OH)x) via oxygen-coordinated bonds to modulate the local electronic structure. Leveraging detailed spectroscopic characterizations, the Ir species were proved to promote charge transfer through Ir-O-Co coordination between the Ir atom and the Co(OH)x support. As a result, the optimized Ir-Co(OH)x exhibits excellent electrocatalytic OER activity with a low overpotential of 251 mV to drive 10 mA cm-2, which is 63 mV lower than that of pristine Co(OH)x. The experimental results and density functional theory calculations reveal that the isolated Ir atoms can regulate the local coordination environment and electronic configuration of Co(OH)x, thus accelerating the catalytic OER kinetics. This work provides an atomistic strategy for the electronic modulation of metal active sites in the design of high-performance electrocatalysts.
Collapse
Affiliation(s)
- Youkui Zhang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Yujuan Pu
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Wenhao Li
- State Key Laboratory of Environment-Friendly Energy Materials, School of Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Yunxiang Lin
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei 230601, China
| | - Haoyuan Li
- State Key Laboratory of Environment-Friendly Energy Materials, School of Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Yingshuo Wu
- State Key Laboratory of Environment-Friendly Energy Materials, School of Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Tao Duan
- State Key Laboratory of Environment-Friendly Energy Materials, School of Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| |
Collapse
|
7
|
Hu Y, Chao T, Dou Y, Xiong Y, Liu X, Wang D. Isolated Metal Centers Activate Small Molecule Electrooxidation: Mechanisms and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418504. [PMID: 39865965 DOI: 10.1002/adma.202418504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/24/2024] [Indexed: 01/28/2025]
Abstract
Electrochemical oxidation of small molecules shows great promise to substitute oxygen evolution reaction (OER) or hydrogen oxidation reaction (HOR) to enhance reaction kinetics and reduce energy consumption, as well as produce high-valued chemicals or serve as fuels. For these oxidation reactions, high-valence metal sites generated at oxidative potentials are typically considered as active sites to trigger the oxidation process of small molecules. Isolated atom site catalysts (IASCs) have been developed as an ideal system to precisely regulate the oxidation state and coordination environment of single-metal centers, and thus optimize their catalytic property. The isolated metal sites in IASCs inherently possess a positive oxidation state, and can be more readily produce homogeneous high-valence active sites under oxidative potentials than their nanoparticle counterparts. Meanwhile, IASCs merely possess the isolated metal centers but lack ensemble metal sites, which can alter the adsorption configurations of small molecules as compared with nanoparticle counterparts, and thus induce various reaction pathways and mechanisms to change product selectivity. More importantly, the construction of isolated metal centers is discovered to limit metal d-electron back donation to CO 2p* orbital and reduce the overly strong adsorption of CO on ensemble metal sites, which resolve the CO poisoning problems in most small molecules electro-oxidation reactions and thus improve catalytic stability. Based on these advantages of IASCs in the fields of electrochemical oxidation of small molecules, this review summarizes recent developments and advancements in IASCs in small molecules electro-oxidation reactions, focusing on anodic HOR in fuel cells and OER in electrolytic cells as well as their alternative reactions, such as formic acid/methanol/ethanol/glycerol/urea/5-hydroxymethylfurfural (HMF) oxidation reactions as key reactions. The catalytic merits of different oxidation reactions and the decoding of structure-activity relationships are specifically discussed to guide the precise design and structural regulation of IASCs from the perspective of a comprehensive reaction mechanism. Finally, future prospects and challenges are put forward, aiming to motivate more application possibilities for diverse functional IASCs.
Collapse
Affiliation(s)
- Yanmin Hu
- Center of Advanced Nanocatalysis (CAN), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Tingting Chao
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Yuhai Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Yuli Xiong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Xiangwen Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
8
|
Zhang H, Bai Y, Sun W, Yang X, Ma R, Dai L, Li CM. Realizing the Synergy of Interface and Dual-Defect Engineering for Molybdenum Disulfide Enables Efficient Sodium-Ion Storage. ACS NANO 2025; 19:9081-9095. [PMID: 40016089 DOI: 10.1021/acsnano.4c17967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Engineering-rich electrocatalyst defects play a critical role in greatly promoting the charge storage/transfer capability of an energy storage/conversion system. Here, an ingenious and effective two-step strategy was used to synthesize a bimetallic sulfide/oxide composite with a coaxial carbon coating, starting from mixing well-dispersed MoO3 nanobelts and Co-PAA compound, followed by a selective etching process. The simultaneous formation of dual defects of interlayer defect and sulfur-rich vacancies as well as MoO2/MoS2-x/CoS heterojunctions noticeably enhances both electron transfer and ion diffusion kinetics. The ultrathin carbon protective layer on the surface of the composite ensures its high conductivity and excellent structural stability. The composite electrode shows a high reversible capacity (158.3 mAh g-1 at 10 A g-1 after 4000 cycles) and outstanding long-cycle stability (0.04% per cycle over 2100 cycles at 20 A g-1). A full cell based on MoO2/MoS2-x/CoS@N, S-C anode, and Na3V2(PO4)3 cathode can maintain a reversible capacity of 128.1 mAh g-1 after 600 cycles at 1 A g-1, surpassing that based on MoO2/MoS2 and is very comparable in performance with the state-of-the-art Na-ion full cells. Moreover, density functional theory (DFT) calculations, electrochemical kinetics analysis, and in situ Raman and ex-situ X-ray diffraction characterization were carried out to elucidate the involved scientific mechanisms of sodium storage.
Collapse
Affiliation(s)
- Heng Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Youcun Bai
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wei Sun
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, PR China
| | - Xiaogang Yang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ruguang Ma
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Liming Dai
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052 Australia
| | - Chang Ming Li
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
9
|
Wang L, Dou Y, Gan R, Zhao Q, Ma Q, Liao Y, Cheng G, Zhang Y, Wang D. The Single Atom Anchoring Strategy: Rational Design of MXene-Based Single-Atom Catalysts for Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410772. [PMID: 39945089 DOI: 10.1002/smll.202410772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/03/2025] [Indexed: 03/20/2025]
Abstract
Single-atom catalysts (SACs) are a class of catalysts with low dosage, low cost, and the presence of metal atom-carrier interactions with high catalytic activity, which are considered to possess significant potential in the field of electrocatalysis. The most important aspect in the synthesis of SACs is the selection of suitable carriers. Metal carbides, nitrides, or carbon-nitrides (MXenes) are widely used as a new type of 2D materials with good electrical conductivity and tunable surface properties. The abundance of surface functional groups and vacancy defects on MXenes is an ideal anchoring site for metal single atoms and is therefore regarded as a good carrier for single-atom loading. In this work, the preparation method of MXenes, the loading mode of SACs, the characterization of the catalysts, and the electrochemical catalytic performance are described in detail, and some of the hot issues of the current research and future research directions are also summarized. The aim of this work is to promote the development of MXene-based SACs within the realm of electrocatalysis. With ongoing research and innovation, these materials are expected to be crucial in the future of energy conversion and storage solutions.
Collapse
Affiliation(s)
- Lixiang Wang
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yuhai Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Rong Gan
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Qin Zhao
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Quanlei Ma
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yijing Liao
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Guidan Cheng
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yan Zhang
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Dingsheng Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
Li J, Ma Y, Mu X, Wang X, Li Y, Ma H, Guo Z. Recent Advances and Perspectives on Coupled Water Electrolysis for Energy-Saving Hydrogen Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411964. [PMID: 39777433 PMCID: PMC11831450 DOI: 10.1002/advs.202411964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Overall water splitting (OWS) to produce hydrogen has attracted large attention in recent years due to its ecological-friendliness and sustainability. However, the efficiency of OWS has been forced by the sluggish kinetics of the four-electron oxygen evolution reaction (OER). The replacement of OER by alternative electrooxidation of small molecules with more thermodynamically favorable potentials may fundamentally break the limitation and achieve hydrogen production with low energy consumption, which may also be accompanied by the production of more value-added chemicals than oxygen or by electrochemical degradation of pollutants. This review critically assesses the latest discoveries in the coupled electrooxidation of various small molecules with OWS, including alcohols, aldehydes, amides, urea, hydrazine, etc. Emphasis is placed on the corresponding electrocatalyst design and related reaction mechanisms (e.g., dual hydrogenation and N-N bond breaking of hydrazine and C═N bond regulation in urea splitting to inhibit hazardous NCO- and NO- productions, etc.), along with emerging alternative electrooxidation reactions (electrooxidation of tetrazoles, furazans, iodide, quinolines, ascorbic acid, sterol, trimethylamine, etc.). Some new decoupled electrolysis and self-powered systems are also discussed in detail. Finally, the potential challenges and prospects of coupled water electrolysis systems are highlighted to aid future research directions.
Collapse
Affiliation(s)
- Jiachen Li
- Department of ChemistryThe University of Hong KongHong Kong999077China
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical EngineeringNorthwest UniversityXi'an710069China
| | - Yuqiang Ma
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical EngineeringNorthwest UniversityXi'an710069China
| | | | | | - Yang Li
- Shaanxi Key Laboratory of Degradable Biomedical MaterialsSchool of Chemical EngineeringNorthwest UniversityXi'an710069China
| | - Haixia Ma
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical EngineeringNorthwest UniversityXi'an710069China
- Zhijian LaboratoryXi'an710025China
| | - Zhengxiao Guo
- Department of ChemistryThe University of Hong KongHong Kong999077China
| |
Collapse
|
11
|
Lei Z, Ali S, Sathish CI, Ahmed M, Qu J, Zheng R, Xi S, Yu X, Breese MBH, Liu C, Zhang J, Qi S, Guan X, Perumalsamy V, Fawaz M, Yang JH, Bououdina M, Domen K, Vinu A, Qiao L, Yi J. Transition Metal Carbonitride MXenes Anchored with Pt Sub-Nanometer Clusters to Achieve High-Performance Hydrogen Evolution Reaction at All pH Range. NANO-MICRO LETTERS 2025; 17:123. [PMID: 39888566 PMCID: PMC11785901 DOI: 10.1007/s40820-025-01654-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/01/2025] [Indexed: 02/01/2025]
Abstract
Transition metal carbides, known as MXenes, particularly Ti3C2Tx, have been extensively explored as promising materials for electrochemical reactions. However, transition metal carbonitride MXenes with high nitrogen content for electrochemical reactions are rarely reported. In this work, transition metal carbonitride MXenes incorporated with Pt-based electrocatalysts, ranging from single atoms to sub-nanometer dimensions, are explored for hydrogen evolution reaction (HER). The fabricated Pt clusters/MXene catalyst exhibits superior HER performance compared to the single-atom-incorporated MXene and commercial Pt/C catalyst in both acidic and alkaline electrolytes. The optimized sample shows low overpotentials of 28, 65, and 154 mV at a current densities of 10, 100, and 500 mA cm-2, a small Tafel slope of 29 mV dec-1, a high mass activity of 1203 mA mgPt-1 and an excellent turnover frequency of 6.1 s-1 in the acidic electrolyte. Density functional theory calculations indicate that this high performance can be attributed to the enhanced active sites, increased surface functional groups, faster charge transfer dynamics, and stronger electronic interaction between Pt and MXene, resulting in optimized hydrogen absorption/desorption toward better HER. This work demonstrates that MXenes with a high content of nitrogen may be promising candidates for various catalytic reactions by incorporating single atoms or clusters.
Collapse
Affiliation(s)
- Zhihao Lei
- Global Innovative Center of Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Sajjad Ali
- Energy, Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, 11586, Riyadh, Saudi Arabia
| | - C I Sathish
- Global Innovative Center of Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - MuhammadIbrar Ahmed
- Global Innovative Center of Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jiangtao Qu
- School of Physics, University of Sydney, Sydney, NSW, 2000, Australia
| | - Rongkun Zheng
- School of Physics, University of Sydney, Sydney, NSW, 2000, Australia
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, A*STAR, Singapore, 627833, Singapore
| | - Xiaojiang Yu
- Singapore Synchrotron Light Source, National University of Singapore, Singapore, 117603, Singapore
| | - M B H Breese
- Singapore Synchrotron Light Source, National University of Singapore, Singapore, 117603, Singapore
| | - Chao Liu
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Jizhen Zhang
- Guangdong Provincial Key Laboratory of Natural Rubber Processing, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524001, People's Republic of China
| | - Shuai Qi
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Xinwei Guan
- Global Innovative Center of Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Vibin Perumalsamy
- Global Innovative Center of Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mohammed Fawaz
- Global Innovative Center of Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jae-Hun Yang
- Global Innovative Center of Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mohamed Bououdina
- Energy, Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, 11586, Riyadh, Saudi Arabia
| | - Kazunari Domen
- Research Initiative for Supra-Materials Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 4-17-1, Wakasato, Nagano-shi, Nagano, 380-8533, Japan
| | - Ajayan Vinu
- Global Innovative Center of Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Liang Qiao
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
| | - Jiabao Yi
- Department of Chemical Engineering and Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia.
| |
Collapse
|
12
|
Sundarraj S, Vadivel N, Murthy AP, Theerthagiri J, Choi MY. MXene Electrocatalysts: Transformative Approaches in Hydrogen Production with Alternative Anode Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407120. [PMID: 39558686 DOI: 10.1002/smll.202407120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/26/2024] [Indexed: 11/20/2024]
Abstract
Water electrolyzer is crucial for producing clean hydrogen, but the traditional approach faces challenges owing to the oxygen evolution reaction (OER) slow kinetics at the anode. Hybrid water splitting replaces the OER with the oxidation of an organic molecule to enhance hydrogen production along with value-added products. The scarcity of affordable and highly effective catalysts remains a major challenge. MXene, a 2D nanomaterial, has gained substantial attention for its enviable properties, for instance high conductivity, hydrophilicity, and substantial surface area. This review discusses experimental methods for synthesizing MXene and MXene-based nanocomposites. Furthermore, the small molecules oxidation such as benzyl alcohol, methanol, ethanol, urea, hydrazine, furfural, and formic acid as alternatives to the oxygen evolution reaction is examined. Finally, an understanding of imminent research and the development of MXene-associated materials in electrocatalytic applications are presented.
Collapse
Affiliation(s)
- Sreenisa Sundarraj
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Neshanth Vadivel
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Arun Prasad Murthy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Jayaraman Theerthagiri
- Core-facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Myong Yong Choi
- Core-facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| |
Collapse
|
13
|
Liu M, Zhe T, Li F, Zhu L, Ouyang S, Wang L. An ultrasensitive electrochemical sensor based on NiFe-LDH-MXene and ruthenium nanoparticles composite for detection of nitrofurantoin in food samples. Food Chem 2024; 461:140915. [PMID: 39181055 DOI: 10.1016/j.foodchem.2024.140915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/11/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
The excessive use of nitrofurantoin (NFT) represents a threat to ecosystems and food safety, making it necessary to develop efficient and accurate detection methods. Herein, the Ru/NiFe-LDH-MXene/SPCE electrode was successfully synthesized by one-step electrodeposition and employed to the NFT electrochemical sensing. Combining 2D MXenes with multifunctional 2D layered double hydroxides (LDHs) creates synergistic interactions within the MXene-LDH heterostructures, modifying the electrochemical performance. Furthermore, the incorporation of noble metal nanoparticles and nanoclusters can significantly enhance electrochemical performance by promoting favorable interactions at the metal-carrier interface and optimizing the rearrangement of electronic structure. Based on this, the developed Ru/NiFe-LDH-MXene/SPCE sensor demonstrates remarkable sensitivity (152.44 μA μM-1 cm-2) and an ultralow detection limit (2.2 nM). Notably, the sensor was employed for NFT detection in food samples with satisfactory recoveries, making it a promising electrochemical sensor for the detection of NFT.
Collapse
Affiliation(s)
- Mengru Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Taotao Zhe
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Fan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Limin Zhu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Shaohui Ouyang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, PR China..
| |
Collapse
|
14
|
Zhang F, Zhang H, Zhao Y, Li J, Guan C, Li J, Wang X, Mu Y, Zan WY, Zhu S. Partial thermal atomization of residual Ni NPs in single-walled carbon nanotubes for efficient CO 2 electroreduction. Chem Sci 2024; 15:20565-20572. [PMID: 39600498 PMCID: PMC11587534 DOI: 10.1039/d4sc07291j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
CO2 electroreduction (CO2RR) is an important solution for converting inert CO2 into high value-added fuels and chemicals under mild conditions. The decisive factor lies in the rational design and preparation of cost-effective and high-performance electrocatalysts. Herein, we first prepare a novel f-SWNTs-650 catalyst via a facile partial thermal atomization strategy, where the residual Ni particles in single-walled carbon nanotubes (SWNTs) are partially converted into atomically dispersed NiN4 species. CO2RR results show that the competitive evolution hydrogen reaction (HER) predominates on pristine SWNTs, while f-SWNTs-650 switches the CO2 reduction product to CO, achieving a CO faradaic efficiency (FECO) of 97.9% and a CO partial current density (j CO) of -15.6 mA cm-2 at -0.92 V vs. RHE. Moreover, FECO is higher than 95% and j CO remains at -10.0 mA cm-2 at -0.82 V vs. RHE after 48 h potentiostatic electrolysis. Combined with systematic characterization and density functional theory (DFT) calculations, the superior catalytic performance of f-SWNTs-650 is attributed to the synergistic effect between the NiN4 sites and adjacent Ni NPs, that is, Ni NPs inject electrons into NiN4 sites to form electron-enriched Ni centers and reduce the energy barrier for CO2 activation to generate the rate-limiting *COOH intermediate, thus implementing the efficient electroreduction of CO2.
Collapse
Affiliation(s)
- Fengwei Zhang
- Institute of Crystalline Materials, Institute of Molecular Science, Key Lab of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University Taiyuan 030006 P. R. China
| | - Han Zhang
- Institute of Crystalline Materials, Institute of Molecular Science, Key Lab of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University Taiyuan 030006 P. R. China
| | - Yang Zhao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 Liaoning P. R. China
| | - Jingjing Li
- Address Research Institute of Resource-based Economy Transformation and Development, Shanxi University of Finance and Economics Taiyuan 030006 P. R. China
| | - Chong Guan
- Institute of Crystalline Materials, Institute of Molecular Science, Key Lab of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University Taiyuan 030006 P. R. China
| | - Jijie Li
- Institute of Crystalline Materials, Institute of Molecular Science, Key Lab of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University Taiyuan 030006 P. R. China
| | - Xuran Wang
- Institute of Crystalline Materials, Institute of Molecular Science, Key Lab of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University Taiyuan 030006 P. R. China
| | - Yuewen Mu
- Institute of Crystalline Materials, Institute of Molecular Science, Key Lab of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University Taiyuan 030006 P. R. China
| | - Wen-Yan Zan
- Institute of Crystalline Materials, Institute of Molecular Science, Key Lab of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University Taiyuan 030006 P. R. China
| | - Sheng Zhu
- Institute of Crystalline Materials, Institute of Molecular Science, Key Lab of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University Taiyuan 030006 P. R. China
- Institute for Carbon-Based Thin Film Electronics, Peking University, Shanxi (ICTFE-PKU) Taiyuan 030012 P. R. China
| |
Collapse
|
15
|
Kan Q, Hou P, Wang C, Lu K, Dong S, Zeng H, Li M, Meng X, Huang Q, Mao L. The Impact of Metal Ions on MXene Membranes: Critical Role of Titanium Vacancies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19861-19871. [PMID: 39437006 DOI: 10.1021/acs.est.4c08260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Two-dimensional transition metal carbides and nitrides (MXenes) and MXene-based membranes hold promise for applications including water purification and seawater desalination; however, their environmental behavior and fate in these matrices remain unknown. In this study, we systematically assessed the reaction efficiencies of Ti3C2Tx at varying important environmental conditions. Our experiments revealed that copper and iron ions accelerated the oxidation rate of Ti3C2Tx 55.4 and 33.4 times, respectively. TiO2 and amorphous carbon were identified as the primary solid products. Based on in situ water-phase atomic force microscopy, atomic high-angle annular dark-field scanning transmission electron microscopy, and theoretical results, we postulate that metal ions enhance Ti3C2Tx oxidation by spontaneously migrating and anchoring at Ti vacancies, which then become active sites for this reaction. This process increases the adsorption of H2O and oxygen, making the Ti vacancy-rich surface convex area the most vulnerable site to attack. The findings in this study provide useful information for a comprehensive understanding of the interaction between MXene structural defects and metal ions as well as for the design and modification of MXene membranes resistant to metal ion impact.
Collapse
Affiliation(s)
- Qihui Kan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Pengfei Hou
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Chunxiao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Kun Lu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Shipeng Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hang Zeng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mian Li
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
- Qianwan Institute of CNiTECH, Ningbo, Zhejiang 315336, China
| | - Xing Meng
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Qing Huang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
- Qianwan Institute of CNiTECH, Ningbo, Zhejiang 315336, China
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Yue W, Ye Z, Liu C, Xu Z, Wang L, Cao X, Yamashita H, Zhang J. Enhanced Photocatalytic Hydrogen Evolution Activity Driven by the Synergy Between Surface Vacancies and Cocatalysts: Surface Reaction Matters. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407092. [PMID: 39319636 DOI: 10.1002/advs.202407092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/19/2024] [Indexed: 09/26/2024]
Abstract
The incorporation of defects and cocatalysts is known to be effective in improving photocatalytic activity, yet their coupled contribution to the photocatalytic hydrogen evolution process has not been well-explored. In this study, We demonstrate that the incorporation of S vacancies and NiSe can contribute to the improvement of charge separation efficiency via the formation of a strong electric field within the bulk ZnIn2S4 (ZIS) and on its surface. More importantly, We also demonstrate that the synergy of S vacancies and NiSe benefits the overall hydrogen evolution activity by facilitating the H2O adsorption and dissociation process. This is particularly important for hydrogen evolution taking place under alkaline conditions where the proton concentration is low, allowing ZISv-NiSe (containing abundant S vacancies) to outperform ZIS-NiSe under alkaline conditions. In contrast, under acid conditions, since there are already sufficient amounts of protons available for reaction, the hydrogen evolution activity became governed by the hydrogen adsorption/desorption process rather than the H2O dissociation process. This leads to ZIS-NiSe exhibiting higher activity than ZISv-NiSe due to its more favorable hydrogen adsorption energy. The findings thus provide insights into how defect and cocatalyst modification strategies can be tailor-made to improve hydrogen evolution activity under different pH conditions.
Collapse
Affiliation(s)
- Wenhui Yue
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Ziwei Ye
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Cong Liu
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Zehong Xu
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Lingzhi Wang
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Xiaoming Cao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| |
Collapse
|
17
|
Zhang Y, Liu J, Xu Y, Xie C, Wang S, Yao X. Design and regulation of defective electrocatalysts. Chem Soc Rev 2024; 53:10620-10659. [PMID: 39268976 DOI: 10.1039/d4cs00217b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Electrocatalysts are the key components of electrochemical energy storage and conversion devices. High performance electrocatalysts can effectively reduce the energy barrier of the chemical reactions, thereby improving the conversion efficiency of energy devices. The electrocatalytic reaction mainly experiences adsorption and desorption of molecules (reactants, intermediates and products) on a catalyst surface, accompanied by charge transfer processes. Therefore, surface control of electrocatalysts plays a pivotal role in catalyst design and optimization. In recent years, many studies have revealed that the rational design and regulation of a defect structure can result in rearrangement of the atomic structure on the catalyst surface, thereby efficaciously promoting the electrocatalytic performance. However, the relationship between defects and catalytic properties still remains to be understood. In this review, the types of defects, synthesis methods and characterization techniques are comprehensively summarized, and then the intrinsic relationship between defects and electrocatalytic performance is discussed. Moreover, the application and development of defects are reviewed in detail. Finally, the challenges existing in defective electrocatalysts are summarized and prospected, and the future research direction is also suggested. We hope that this review will provide some principal guidance and reference for researchers engaged in defect and catalysis research, better help researchers understand the research status and development trends in the field of defects and catalysis, and expand the application of high-performance defective electrocatalysts to the field of electrocatalytic engineering.
Collapse
Affiliation(s)
- Yiqiong Zhang
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, Hunan, 410114, P. R. China.
| | - Jingjing Liu
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, Hunan, 410114, P. R. China.
| | - Yangfan Xu
- School of Advanced Energy, Sun Yat-Sen University (Shenzhen), Shenzhen, Guangdong 518107, P. R. China.
| | - Chao Xie
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Xiangdong Yao
- School of Advanced Energy, Sun Yat-Sen University (Shenzhen), Shenzhen, Guangdong 518107, P. R. China.
| |
Collapse
|
18
|
Zhu ZS, Zhong S, Cheng C, Zhou H, Sun H, Duan X, Wang S. Microenvironment Engineering of Heterogeneous Catalysts for Liquid-Phase Environmental Catalysis. Chem Rev 2024; 124:11348-11434. [PMID: 39383063 DOI: 10.1021/acs.chemrev.4c00276] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Environmental catalysis has emerged as a scientific frontier in mitigating water pollution and advancing circular chemistry and reaction microenvironment significantly influences the catalytic performance and efficiency. This review delves into microenvironment engineering within liquid-phase environmental catalysis, categorizing microenvironments into four scales: atom/molecule-level modulation, nano/microscale-confined structures, interface and surface regulation, and external field effects. Each category is analyzed for its unique characteristics and merits, emphasizing its potential to significantly enhance catalytic efficiency and selectivity. Following this overview, we introduced recent advancements in advanced material and system design to promote liquid-phase environmental catalysis (e.g., water purification, transformation to value-added products, and green synthesis), leveraging state-of-the-art microenvironment engineering technologies. These discussions showcase microenvironment engineering was applied in different reactions to fine-tune catalytic regimes and improve the efficiency from both thermodynamics and kinetics perspectives. Lastly, we discussed the challenges and future directions in microenvironment engineering. This review underscores the potential of microenvironment engineering in intelligent materials and system design to drive the development of more effective and sustainable catalytic solutions to environmental decontamination.
Collapse
Affiliation(s)
- Zhong-Shuai Zhu
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shuang Zhong
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Cheng Cheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongyu Zhou
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia, Perth Western Australia 6009, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| |
Collapse
|
19
|
Zhong Y, Zhang Q, Lan S, Feng H, Zhao Y, Li Q, Li X, Huang T. Microwave-Assisted Efficient Intercalation for Fast Fabrication of High-Quality and Large-Size Single-Layer Ti 3C 2T x Nanosheets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405686. [PMID: 38953348 PMCID: PMC11434240 DOI: 10.1002/advs.202405686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Indexed: 07/04/2024]
Abstract
A novel microwave-assisted intercalation (MAI) strategy is proposed for fast and efficient intercalation of layered MXene to prepare large-size single-layer MXene. After LiF-HCl etching of Ti3AlC2, the as-prepared multi-layer Ti3C2Tx (M-T) are intercalated with Li3AlF6 as an intercalator and ethylene glycol (EG) as a solvent under microwave irradiation for 5 min. Furthermore, the dispersed high-quality large-sized single-layer Ti3C2Tx (S-T) nanosheets with a thickness of 1.66 nm and a large lateral size over 20 µm are achieved with a yield of over 60% after a further ultrasonic delamination followed by electrostatic precipitation, acid washing, and calcination. In addition, Pd/S-T composite catalyst, which is constructed with Pd nanoparticles supported on the as-prepared S-T nanosheets, exhibits an excellent performance for rapid and efficient selective hydrogenation of nitroarenes with H2 under a mild condition. At room temperature, full conversion of nitrobenzene and 100% aniline selectivity are achieved over Pd/S-T catalyst in 20 min with 0.5 MPa of H2 pressure. This work provides a novel method for facile, fast, and large-scale preparation of single-layer MXene and develops a new approach for constructing efficient nanocatalytic systems.
Collapse
Affiliation(s)
- Yitian Zhong
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of EducationCollege of Chemistry and Materials ScienceSouth‐Central Minzu UniversityWuhan430074China
| | - Qixi Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of EducationCollege of Chemistry and Materials ScienceSouth‐Central Minzu UniversityWuhan430074China
| | - Shuling Lan
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of EducationCollege of Chemistry and Materials ScienceSouth‐Central Minzu UniversityWuhan430074China
| | - Haosheng Feng
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of EducationCollege of Chemistry and Materials ScienceSouth‐Central Minzu UniversityWuhan430074China
| | - Yanxi Zhao
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of EducationCollege of Chemistry and Materials ScienceSouth‐Central Minzu UniversityWuhan430074China
| | - Qin Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of EducationCollege of Chemistry and Materials ScienceSouth‐Central Minzu UniversityWuhan430074China
| | - Xianghong Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of EducationCollege of Chemistry and Materials ScienceSouth‐Central Minzu UniversityWuhan430074China
| | - Tao Huang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of EducationCollege of Chemistry and Materials ScienceSouth‐Central Minzu UniversityWuhan430074China
| |
Collapse
|
20
|
Wu B, Li M, Mazánek V, Liao Z, Ying Y, Oliveira FM, Dekanovsky L, Jan L, Hou G, Antonatos N, Wei Q, Li M, Pal B, He J, Koňáková D, Vejmělková E, Sofer Z. In Situ Vanadium-Deficient Engineering of V 2C MXene: A Pathway to Enhanced Zinc-Ion Batteries. SMALL METHODS 2024; 8:e2301461. [PMID: 38243881 DOI: 10.1002/smtd.202301461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/28/2023] [Indexed: 01/22/2024]
Abstract
This research examines vanadium-deficient V2C MXene, a two-dimensional (2D) vanadium carbide with exceptional electrochemical properties for rechargeable zinc-ion batteries. Through a meticulous etching process, a V-deficient, porous architecture with an expansive surface area is achieved, fostering three-dimensional (3D) diffusion channels and boosting zinc ion storage. Analytical techniques like scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller, and X-ray diffraction confirm the formation of V2C MXene and its defective porous structure. X-ray photoelectron spectroscopy further verifies its transformation from the MAX phase to MXene, noting an increase in V3+ and V4+ states with etching. Cyclic voltammetry reveals superior de-zincation kinetics, evidenced by consistent V3+/V4+ oxidation peaks at varied scanning rates. Overall, this V-deficient MXene outperforms raw MXenes in capacity and rate, although its capacity diminishes over extended cycling due to structural flaws. Theoretical analyses suggest conductivity rises with vacancies, enhancing 3D ionic diffusion as vacancy size grows. This work sheds light on enhancing V-based MXene structures for optimized zinc-ion storage.
Collapse
Affiliation(s)
- Bing Wu
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Min Li
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague, 12843, Czech Republic
| | - Vlastimil Mazánek
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Zhongquan Liao
- Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), Maria-Reiche-Strasse 2, 01109, Dresden, Germany
| | - Yulong Ying
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Filipa M Oliveira
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Lukas Dekanovsky
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Luxa Jan
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Guorong Hou
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Nikolas Antonatos
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Qiliang Wei
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, P. R. China
| | - Min Li
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Bhupender Pal
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Junjie He
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague, 12843, Czech Republic
| | - Dana Koňáková
- Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, Prague 6, 166 29, Czech Republic
| | - Eva Vejmělková
- Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, Prague 6, 166 29, Czech Republic
| | - Zdenek Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| |
Collapse
|
21
|
Wan J, Liu D, Feng C, Zhang H, Wang Y. Efficient N 2 electroreduction enabled by linear charge transfer over atomically dispersed W sites. Chem Sci 2024; 15:12796-12805. [PMID: 39148797 PMCID: PMC11323330 DOI: 10.1039/d4sc03612c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024] Open
Abstract
Electrocatalytic nitrogen reduction reaction (NRR) presents a sustainable alternative to the Haber-Bosch process for ammonia (NH3) production. However, developing efficient catalysts for NRR and deeply elucidating their catalytic mechanism remain daunting challenges. Herein, we pioneered the successful embedding of atomically dispersed (single/dual) W atoms into V2-x CT y via a self-capture method, and subsequently uncovered a quantifiable relationship between charge transfer and NRR performance. The prepared n-W/V2-x CT y shows an exceptional NH3 yield of 121.8 μg h-1 mg-1 and a high faradaic efficiency (FE) of 34.2% at -0.1 V (versus reversible hydrogen electrode (RHE)), creating a new record at this potential. Density functional theory (DFT) computations reveal that neighboring W atoms synergistically collaborate to significantly lower the energy barrier, achieving a remarkable limiting potential (U L) of 0.32 V. Notably, the calculated U L values for the constructed model show a well-defined linear relationship with integrated-crystal orbital Hamilton population (ICOHP) (y = 0.0934x + 1.0007, R 2 = 0.9889), providing a feasible activity descriptor. Furthermore, electronic property calculations suggest that the NRR activity is rooted in d-2π* coupling, which can be explained by the "donation and back-donation" hypothesis. This work not only designs efficient atomic catalysts for NRR, but also sheds new insights into the role of neighboring single atoms in improving reaction kinetics.
Collapse
Affiliation(s)
- Jin Wan
- The School of Chemistry and Chemical Engineering, Chongqing University 174 Shazheng Street, Shapingba District Chongqing City 400044 P. R. China
| | - Dong Liu
- The School of Chemistry and Chemical Engineering, Chongqing University 174 Shazheng Street, Shapingba District Chongqing City 400044 P. R. China
| | - Chuanzhen Feng
- The School of Chemistry and Chemical Engineering, Chongqing University 174 Shazheng Street, Shapingba District Chongqing City 400044 P. R. China
| | - Huijuan Zhang
- The School of Chemistry and Chemical Engineering, Chongqing University 174 Shazheng Street, Shapingba District Chongqing City 400044 P. R. China
- College of Chemistry and Environmental Science, Inner Mongolia Normal University Huhehaote 010022 P. R. China
| | - Yu Wang
- The School of Chemistry and Chemical Engineering, Chongqing University 174 Shazheng Street, Shapingba District Chongqing City 400044 P. R. China
- College of Chemistry and Environmental Science, Inner Mongolia Normal University Huhehaote 010022 P. R. China
| |
Collapse
|
22
|
Li Y, Niu S, Liu P, Pan R, Zhang H, Ahmad N, Shi Y, Liang X, Cheng M, Chen S, Du J, Hu M, Wang D, Chen W, Li Y. Ruthenium Nanoclusters and Single Atoms on α-MoC/N-Doped Carbon Achieves Low-Input/Input-Free Hydrogen Evolution via Decoupled/Coupled Hydrazine Oxidation. Angew Chem Int Ed Engl 2024; 63:e202316755. [PMID: 38739420 DOI: 10.1002/anie.202316755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/13/2024] [Accepted: 05/13/2024] [Indexed: 05/14/2024]
Abstract
The hydrazine oxidation-assisted H2 evolution method promises low-input and input-free hydrogen production. However, developing high-performance catalysts for hydrazine oxidation (HzOR) and hydrogen evolution (HER) is challenging. Here, we introduce a bifunctional electrocatalyst α-MoC/N-C/RuNSA, merging ruthenium (Ru) nanoclusters (NCs) and single atoms (SA) into cubic α-MoC nanoparticles-decorated N-doped carbon (α-MoC/N-C) nanowires, through electrodeposition. The composite showcases exceptional activity for both HzOR and HER, requiring -80 mV and -9 mV respectively to reach 10 mA cm-2. Theoretical and experimental insights confirm the importance of two Ru species for bifunctionality: NCs enhance the conductivity, and its coexistence with SA balances the H ad/desorption for HER and facilitates the initial dehydrogenation during the HzOR. In the overall hydrazine splitting (OHzS) system, α-MoC/N-C/RuNSA excels as both anode and cathode materials, achieving 10 mA cm-2 at just 64 mV. The zinc hydrazine (Zn-Hz) battery assembled with α-MoC/N-C/RuNSA cathode and Zn foil anode can exhibit 97.3 % energy efficiency, as well as temporary separation of hydrogen gas during the discharge process. Therefore, integrating Zn-Hz with OHzS system enables self-powered H2 evolution, even in hydrazine sewage. Overall, the amalgamation of NCs with SA achieves diverse catalytic activities for yielding multifold hydrogen gas through advanced cell-integrated-electrolyzer system.
Collapse
Affiliation(s)
- Yapeng Li
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shuwen Niu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shangdong, 266071, P. R. China
| | - Peigen Liu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Rongrong Pan
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Huaikun Zhang
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Nazir Ahmad
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yi Shi
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiao Liang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Mingyu Cheng
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shenghua Chen
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Junyi Du
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, P. R. China
| | - Maolin Hu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wei Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
23
|
Kaushik S, Wu D, Zhang Z, Xiao X, Zhen C, Wang W, Huang NY, Gu M, Xu Q. Universal Synthesis of Single-Atom Catalysts by Direct Thermal Decomposition of Molten Salts for Boosting Acidic Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401163. [PMID: 38639567 DOI: 10.1002/adma.202401163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/02/2024] [Indexed: 04/20/2024]
Abstract
Single-atom catalysts (SACs) are considered prominent materials in the field of catalysis due to their high metal atom utilization and selectivity. However, the wide-ranging applications of SACs remain a significant challenge due to their complex preparation processes. Here, a universal strategy is reported to prepare a series of noble metal single atoms on different non-noble metal oxides through a facile one-step thermal decomposition of molten salts. By using a mixture of non-noble metal nitrate and a small-amount noble metal chloride as the precursor, noble metal single atoms can be easily introduced into the non-noble metal oxide lattice owing to the cation exchange in the in situ formed molten salt, followed by the thermal decomposition of nitrate anions during the heating process. Analyses using aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and extended X-ray absorption fine structure spectroscopy confirm the formation of the finely dispersed single atoms. Specially, the as-synthesized Ir single atoms (10.97 wt%) and Pt single atoms (4.60 wt%) on the Co3O4 support demonstrate outstanding electrocatalytic activities for oxygen evolution reaction and hydrogen evolution reaction, respectively.
Collapse
Affiliation(s)
- Shubham Kaushik
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Chemistry, Department of Materials Science and Engineering and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Duojie Wu
- Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, P. R. China
| | - Zhen Zhang
- Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin Xiao
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Chemistry, Department of Materials Science and Engineering and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Cheng Zhen
- Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wenjuan Wang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Chemistry, Department of Materials Science and Engineering and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Ning-Yu Huang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Chemistry, Department of Materials Science and Engineering and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Meng Gu
- Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Chemistry, Department of Materials Science and Engineering and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
24
|
Li H, Liu L, Yuan T, Zhang J, Wang T, Hou J, Chen J. Advances in MXene surface functionalization modification strategies for CO 2 reduction. NANOSCALE 2024; 16:11480-11495. [PMID: 38847092 DOI: 10.1039/d4nr01517g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
MXenes, 2D transition metal carbides and nitrides, show great potential in electrocatalytic CO2 reduction reaction (ECO2RR) applications owing to their tunable structure, abundant surface functional groups, large specific surface area and remarkable conductivity. However, the ECO2RR has a complex pathway involving various reaction intermediates. The reaction process yields various products alongside a competitive electrolytic water-splitting reaction. These factors limit the application of MXenes in ECO2RRs. Therefore, this review begins by examining the functionalized modification of MXenes to enhance their catalytic activity and stability via the regulation of interactions between carriers and the catalytic centre. The review firstly covers the synthesis methods and characterisation techniques for functionalized MXenes reported in recent years. Secondly, it presents the methods applied for the functionalized modification of carriers through surface loading of single atoms, clusters, and nanoparticles and construction of composites. These methods regulate the stability, active sites, and metal-carrier electronic interactions. Finally, the article discusses the challenges, opportunities, pressing issues, and future prospects related to MXene-based electrocatalysts.
Collapse
Affiliation(s)
- Hailong Li
- College of Sciences/Xinjiang Production & Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technologies, Shihezi University, Shihezi, 832003, China.
| | - Linhao Liu
- College of Sciences/Xinjiang Production & Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technologies, Shihezi University, Shihezi, 832003, China.
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Tianbin Yuan
- College of Sciences/Xinjiang Production & Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technologies, Shihezi University, Shihezi, 832003, China.
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Jianwen Zhang
- College of Sciences/Xinjiang Production & Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technologies, Shihezi University, Shihezi, 832003, China.
| | - Tiantian Wang
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Juan Hou
- College of Sciences/Xinjiang Production & Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technologies, Shihezi University, Shihezi, 832003, China.
| | - Jiangzhao Chen
- College of Sciences/Xinjiang Production & Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technologies, Shihezi University, Shihezi, 832003, China.
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| |
Collapse
|
25
|
Geng B, Hu J, He X, Zhang Z, Cai J, Pan D, Shen L. Single Atom Catalysts Remodel Tumor Microenvironment for Augmented Sonodynamic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313670. [PMID: 38490191 DOI: 10.1002/adma.202313670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/06/2024] [Indexed: 03/17/2024]
Abstract
The immunosuppressive tumor microenvironment (TME) is a huge hurdle in immunotherapy. Sono-immunotherapy is a new treatment modality that can reverse immunosuppressive TME, but the sonodynamic effects are compromised by overexpressed glutathione (GSH) and hypoxia in the TME. Herein, this work reports a new sono-immunotherapy strategy using Pdδ+ single atom catalysts to enhance positive sonodynamic responses to the immunosuppressive and sono-suppressive TME. To demonstrate this technique, this work employs rich and reductive Ti vacancies in Ti3-xC2Ty nanosheets to construct the atomically dispersed Pd-C3 single atom catalysts (SAC) with Pd content up to 2.5 wt% (PdSA/Ti3-xC2Ty). Compared with Pd nanoparticle loaded Ti3-xC2Ty, PdSA/Ti3-xC2Ty single-atom enzyme showed augmented sonodynamic effects that are ascribed to SAC facilitated electron-hole separation, rapid depletion of overexpressed GSH by ultrasound (US) excited holes, and catalytic decomposition of endogenous H2O2 for relieving hypoxia. Importantly, the sono-immunotherapy strategy can boost abscopal antitumor immune responses by driving maturation of dendritic cells and polarization of tumor-associated macrophages into the antitumoral M1 phenotype. Bilateral tumor models demonstrate the complete eradication of localized tumors and enhance metastatic regression. Th strategy highlights the potential of single-atom catalysts for robust sono-immunotherapy by remodeling the tumor microenvironment.
Collapse
Affiliation(s)
- Bijiang Geng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jinyan Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xialing He
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Zhenlin Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jinming Cai
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Dengyu Pan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Longxiang Shen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Department of Orthopedic Surgery, Sheyang County People's Hospital, Yancheng, Jiangsu, 224300, China
| |
Collapse
|
26
|
Song Z, Niu X, Chen H. Leveraging an all-fixed transfer framework to predict the interpretable formation energy of MXenes with hybrid terminals. Phys Chem Chem Phys 2024; 26:14847-14856. [PMID: 38727050 DOI: 10.1039/d4cp00386a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
MXenes have attracted substantial attention for their various applications in energy storage, sensors, and catalysts. Experimental exploration of MXenes with hybrid terminal surfaces offers a unique means of property tailoring that is crucial for expanding the performance space of MXenes, wherein the formation energy of an MXene with mixed surface terminals plays a key role in determining its relative stability and practical applications. However, the challenge of identifying energetically stable MXenes with multifunctional surfaces persists, primarily due to the absence of precise surface modification during experiments and the vast structural space for DFT calculations. Herein, we use an all-fixed transfer (AFT) framework combined with first-principles calculations to predict the formation energies of MXenes terminated by binary elements from groups VIA and VIIA. The trained model exhibits a high average R2 of 0.99, maintaining transferability and accuracy in predicting larger supercells from smaller-sized MXenes and datasets despite the structural imbalance between the training and prediction sets. The underlying interpretation of the high accuracy is revealed through the capture of main attributes and comparison of node features. Additionally, it is important to mention that the factors influencing the average formation energy include the types of element pairs, the ratio of terminal groups, and the distribution of terminations on two surfaces, with the first one being dominant. Finally, we successfully streamline the diverse structural cardinality of a large hybrid terminated MXene space of over 700 million, thereby facilitating the rapid screening of the top 5 stable MXene classes with binary terminal elements (FO, FCl, FBr, FS, and FSe). Besides, in the scenarios of lithium storage, the TL-predicted MXene can enhance its relative stability by increasing the fluorine ratio where the capacity can be optimized by different surface group combinations. All results indicate that the AFT framework has the advantages of screening functional MXenes with a huge structure space from smaller and imbalanced data sets.
Collapse
Affiliation(s)
- Zihao Song
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Xiaobin Niu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Haiyuan Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
27
|
Quan L, Jiang H, Mei G, Sun Y, You B. Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting. Chem Rev 2024; 124:3694-3812. [PMID: 38517093 DOI: 10.1021/acs.chemrev.3c00332] [Citation(s) in RCA: 99] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production.
Collapse
Affiliation(s)
- Li Quan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Guoliang Mei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
28
|
Hu J, Guo T, Zhong X, Li J, Mei Y, Zhang C, Feng Y, Sun M, Meng L, Wang Z, Huang B, Zhang L, Wang Z. In Situ Reconstruction of High-Entropy Heterostructure Catalysts for Stable Oxygen Evolution Electrocatalysis under Industrial Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310918. [PMID: 38170168 DOI: 10.1002/adma.202310918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/28/2023] [Indexed: 01/05/2024]
Abstract
Despite of urgent needs for highly stable and efficient electrochemical water-splitting devices, it remains extremely challenging to acquire highly stable oxygen evolution reaction (OER) electrocatalysts under harsh industrial conditions. Here, a successful in situ synthesis of FeCoNiMnCr high-entropy alloy (HEA) and high-entropy oxide (HEO) heterocatalysts via a Cr-induced spontaneous reconstruction strategy is reported, and it is demonstrated that they deliver excellent ultrastable OER electrocatalytic performance with a low overpotential of 320 mV at 500 mA cm-2 and a negligible activity loss after maintaining at 100 mA cm-2 for 240 h. Remarkably, the heterocatalyst holds outstanding long-term stability under harsh industrial condition of 6 m KOH and 85 °C at a current density of as high as 500 mA cm-2 over 500 h. Density functional theory calculations reveal that the formation of the HEA-HEO heterostructure can provide electroactive sites possessing robust valence states to guarantee long-term stable OER process, leading to the enhancement of electroactivity. The findings of such highly stable OER heterocatalysts under industrial conditions offer a new perspective for designing and constructing efficient high-entropy electrocatalysts for practical industrial water splitting.
Collapse
Affiliation(s)
- Jue Hu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming, 650093, China
- Southwest United Graduate School, Kunming, 650092, China
| | - Tianqi Guo
- International Iberian Nanotechnology Laboratory (INL), Braga, 4715-330, Portugal
| | - Xinyu Zhong
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiong Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Yunjie Mei
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming, 650093, China
| | - Chengxu Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Yuebin Feng
- Faculty of Science, Kunming University of Science and Technology, Kunming, 650093, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Lijian Meng
- CIETI, ISEP, Polytechnic of Porto, Rua Sr. António Bernardino de Almeida, Porto, 4249-015, Portugal
| | - Zhiyuan Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming, 650093, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Libo Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming, 650093, China
- Southwest United Graduate School, Kunming, 650092, China
| | - Zhongchang Wang
- International Iberian Nanotechnology Laboratory (INL), Braga, 4715-330, Portugal
| |
Collapse
|
29
|
Yin ZH, Huang Y, Song K, Li TT, Cui JY, Meng C, Zhang H, Wang JJ. Ir Single Atoms Boost Metal-Oxygen Covalency on Selenide-Derived NiOOH for Direct Intramolecular Oxygen Coupling. J Am Chem Soc 2024; 146:6846-6855. [PMID: 38424010 DOI: 10.1021/jacs.3c13746] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
This investigation probes the intricate interplay of catalyst dynamics and reaction pathways during the oxygen evolution reaction (OER), highlighting the significance of atomic-level and local ligand structure insights in crafting highly active electrocatalysts. Leveraging a tailored ion exchange reaction followed by electrochemical dynamic reconstruction, we engineered a novel catalytic structure featuring single Ir atoms anchored to NiOOH (Ir1@NiOOH). This novel approach involved the strategic replacement of Fe with Ir, facilitating the transition of selenide precatalysts into active (oxy)hydroxides. This elemental substitution promoted an upward shift in the O 2p band and intensified the metal-oxygen covalency, thereby altering the OER mechanism toward enhanced activity. The shift from a single-metal site mechanism (SMSM) in NiOOH to a dual-metal-site mechanism (DMSM) in Ir1@NiOOH was substantiated by in situ differential electrochemical mass spectrometry (DEMS) and supported by theoretical insights. Remarkably, the Ir1@NiOOH electrode exhibited exceptional electrocatalytic performance, achieving overpotentials as low as 142 and 308 mV at current densities of 10 and 1000 mA cm-2, respectively, setting a new benchmark for the electrocatalysis of OER.
Collapse
Affiliation(s)
- Zhao-Hua Yin
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yuan Huang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Kepeng Song
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tian-Tian Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Jun-Yuan Cui
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Chao Meng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Huigang Zhang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jian-Jun Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| |
Collapse
|
30
|
Wu PF, Yang YQ, Xi HY, Si Y, Chu YH, Su XZ, Yan WS, You TT, Gao YK, Wang Y, Chen WX, Huang YY, Yin PG. Operando Spectroscopy Observation of Mo Clusters-Ti 3 C 2 T X Catalyst/Support Interface's Dynamic Evolution in Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306716. [PMID: 37863816 DOI: 10.1002/smll.202306716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/01/2023] [Indexed: 10/22/2023]
Abstract
The interaction between catalyst and support plays an important role in electrocatalytic hydrogen evolution (HER), which may explain the improvement in performance by phase transition or structural remodeling. However, the intrinsic behavior of these catalysts (dynamic evolution of the interface under bias, structural/morphological transformation, stability) has not been clearly monitored, while the operando technology does well in capturing the dynamic changes in the reaction process in real time to determine the actual active site. In this paper, nitrogen-doped molybdenum atom-clusters on Ti3 C2 TX (MoACs /N-Ti3 C2 TX ) is used as a model catalyst to reveal the dynamic evolution of MoAcs on Ti3 C2 TX during the HER process. Operando X-ray absorption structure (XAS) theoretical calculation and in situ Raman spectroscopy showed that the Mo cluster structure evolves to a 6-coordinated monatomic Mo structure under working conditions, exposing more active sites and thus improving the catalytic performance. It shows excellent HER performance comparable to that of commercial Pt/C, including an overpotential of 60 mV at 10 mA cm-2 , a small Tafel slope (56 mV dec-1 ), and high activity and durability. This study provides a unique perspective for investigating the evolution of species, interfacial migration mechanisms, and sources of activity-enhancing compounds in the process of electroreduction.
Collapse
Affiliation(s)
- Peng Fei Wu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Yu Qi Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hong Yan Xi
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Yang Si
- Laboratory of Zhangjiang, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Yong Heng Chu
- Laboratory of Zhangjiang, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Xiao Zhi Su
- Laboratory of Zhangjiang, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Wen Sheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Ting Ting You
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Yu Kun Gao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Yu Wang
- Laboratory of Zhangjiang, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Wen Xing Chen
- Energy and Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yu Ying Huang
- Laboratory of Zhangjiang, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Peng Gang Yin
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
| |
Collapse
|
31
|
Wu X, Wang Y, Wu ZS. Recent advancement and key opportunities of MXenes for electrocatalysis. iScience 2024; 27:108906. [PMID: 38318370 PMCID: PMC10839268 DOI: 10.1016/j.isci.2024.108906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
MXenes are promising materials for electrocatalysis due to their excellent metallic conductivity, hydrophilicity, high specific surface area, and excellent electrochemical properties. Herein, we summarize the recent advancement of MXene-based materials for electrocatalysis and highlight their key challenges and opportunities. In particular, this review emphasizes on the major design principles of MXene-based electrocatalysts, including (1) coupling MXene with active materials or heteroatomic doping to create highly active synergistic catalyst sites; (2) construction of 3D MXene structure or introducing interlayer spacers to increase active areas and form fast mass-charge transfer channel; and (3) protecting edge of MXene or in situ transforming the surface of MXene to stable active substance that inhibits the oxidation of MXene and then enhances the stability. Consequently, MXene-based materials exhibit outstanding performance for a variety of electrocatalytic reactions. Finally, the key challenges and promising prospects of the practical applications of MXene-based electrocatalysts are briefly proposed.
Collapse
Affiliation(s)
- Xianhong Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
32
|
Guan S, Yuan Z, Zhuang Z, Zhang H, Wen H, Fan Y, Li B, Wang D, Liu B. Why do Single-Atom Alloys Catalysts Outperform both Single-Atom Catalysts and Nanocatalysts on MXene? Angew Chem Int Ed Engl 2024; 63:e202316550. [PMID: 38038407 DOI: 10.1002/anie.202316550] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023]
Abstract
Single-atom alloys (SAAs), combining the advantages of single-atom and nanoparticles (NPs), play an extremely significant role in the field of heterogeneous catalysis. Nevertheless, understanding the catalytic mechanism of SAAs in catalysis reactions remains a challenge compared with single atoms and NPs. Herein, ruthenium-nickel SAAs (RuNiSAAs ) synthesized by embedding atomically dispersed Ru in Ni NPs are anchored on two-dimensional Ti3 C2 Tx MXene. The RuNiSAA-3 -Ti3 C2 Tx catalysts exhibit unprecedented activity for hydrogen evolution from ammonia borane (AB, NH3 BH3 ) hydrolysis with a mass-specific activity (rmass ) value of 333 L min-1 gRu -1 . Theoretical calculations reveal that the anchoring of SAAs on Ti3 C2 Tx optimizes the dissociation of AB and H2 O as well as the binding ability of H* intermediates during AB hydrolysis due to the d-band structural modulation caused by the alloying effect and metal-supports interactions (MSI) compared with single atoms and NPs. This work provides useful design principles for developing and optimizing efficient hydrogen-related catalysts and demonstrates the advantages of SAAs over NPs and single atoms in energy catalysis.
Collapse
Affiliation(s)
- Shuyan Guan
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, 454000, Jiaozuo, P. R. China
| | - Zhenluo Yuan
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, 454000, Jiaozuo, P. R. China
| | - Zechao Zhuang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Huanhuan Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, 454000, Jiaozuo, P. R. China
| | - Hao Wen
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, 450001, Zhengzhou, P. R. China
| | - Yanping Fan
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, 454000, Jiaozuo, P. R. China
| | - Baojun Li
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, 450001, Zhengzhou, P. R. China
| | - Dingsheng Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Baozhong Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, 454000, Jiaozuo, P. R. China
| |
Collapse
|
33
|
Wang M, Hu Y, Pu J, Zi Y, Huang W. Emerging Xene-Based Single-Atom Catalysts: Theory, Synthesis, and Catalytic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303492. [PMID: 37328779 DOI: 10.1002/adma.202303492] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/07/2023] [Indexed: 06/18/2023]
Abstract
In recent years, the emergence of novel 2D monoelemental materials (Xenes), e.g., graphdiyne, borophene, phosphorene, antimonene, bismuthene, and stanene, has exhibited unprecedented potentials for their versatile applications as well as addressing new discoveries in fundamental science. Owing to their unique physicochemical, optical, and electronic properties, emerging Xenes have been regarded as promising candidates in the community of single-atom catalysts (SACs) as single-atom active sites or support matrixes for significant improvement in intrinsic activity and selectivity. In order to comprehensively understand the relationships between the structure and property of Xene-based SACs, this review represents a comprehensive summary from theoretical predictions to experimental investigations. Firstly, theoretical calculations regarding both the anchoring of Xene-based single-atom active sites on versatile support matrixes and doping/substituting heteroatoms at Xene-based support matrixes are briefly summarized. Secondly, controlled synthesis and precise characterization are presented for Xene-based SACs. Finally, current challenges and future opportunities for the development of Xene-based SACs are highlighted.
Collapse
Affiliation(s)
- Mengke Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Yi Hu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Junmei Pu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - You Zi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Weichun Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| |
Collapse
|
34
|
Wang W, Bai Y, Yang P, Yuan S, Li F, Zhao W, Jin B, Zhang X, Liu S, Yuan D, Zhao Q. Metal ion assistant transformation strategy to synthesize catechol-based metal-organic frameworks from Ti 3C 2T x precursors. Sci Bull (Beijing) 2023; 68:2180-2189. [PMID: 37558535 DOI: 10.1016/j.scib.2023.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/14/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
Chemical transformation strategy is capable of fabricating nanomaterials with well-defined structures and fascinating performance via controllable crystallization kinetics in the phase transformation. V2CTx MXene has been used as precursors to fabricate vanadium porphyrin metal-organic frameworks (V-PMOFs) via the coordination of deprotonated carboxylic acid ligands. However, the rational and in-depth exploration of synthesis mechanism with the aim of enriching the variety of MXene (i.e., Ti3C2Tx) and organic ligands (i.e., catechol-based) to design new MOFs is rarely reported. Herein, we have first developed a metal ion assistant transformation strategy to synthesize three-dimensional catechol-based TiCu-HHTP (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) MOFs with a non-interpenetrating SrSi2 (srs) framework using two-dimensional Ti3C2Tx as precursors. The unique synergetic transformation mechanism involves the electron transfer from Ti3C2Tx to electrostatically adsorbed Cu2+ ion for redox reaction, the subsequent Ti-C bond rupture for Ti4+ ion release, and the continuous chelation coordination between Ti4+/Cu2+ and HHTP. Ti3C2Tx precursors and auxiliary metal ion could be rationally substituted by V2CTx and Mn+ (e.g., Ni2+, Co2+, Mn2+, and Zn2+), respectively. This strategy lays the foundation for the design and synthesis of innovative and multifarious MOFs derived from MXene or other unconventional metal precursors.
Collapse
Affiliation(s)
- Weikang Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yan Bai
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Pin Yang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Shuai Yuan
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feiyang Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Weiwei Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Beibei Jin
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xuan Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| |
Collapse
|
35
|
Feng C, Lv M, Shao J, Wu H, Zhou W, Qi S, Deng C, Chai X, Yang H, Hu Q, He C. Lattice Strain Engineering of Ni 2 P Enables Efficient Catalytic Hydrazine Oxidation-Assisted Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305598. [PMID: 37433070 DOI: 10.1002/adma.202305598] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
Hydrazine-assisted water electrolysis provides new opportunities to enable energy-saving hydrogen production while solving the issue of hydrazine pollution. Here, the synthesis of compressively strained Ni2 P as a bifunctional electrocatalyst for boosting both the anodic hydrazine oxidation reaction (HzOR) and cathodic hydrogen evolution reaction (HER) is reported. Different from a multistep synthetic method that induces lattice strain by creating core-shell structures, a facile strategy is developed to tune the strain of Ni2 P via dual-cation co-doping. The obtained Ni2 P with a compressive strain of -3.62% exhibits significantly enhanced activity for both the HzOR and HER than counterparts with tensile strain and without strain. Consequently, the optimized Ni2 P delivers current densities of 10 and 100 mA cm-2 at small cell voltages of 0.16 and 0.39 V for hydrazine-assisted water electrolysis, respectively. Density functional theory (DFT) calculations reveal that the compressive strain promotes water dissociation and concurrently tunes the adsorption strength of hydrogen intermediates, thereby facilitating the HER process on Ni2 P. As for the HzOR, the compressive strain reduces the energy barrier of the potential-determining step for the dehydrogenation of *N2 H4 to *N2 H3 . Clearly, this work paves a facile pathway to the synthesis of lattice-strained electrocatalysts via the dual-cation co-doping.
Collapse
Affiliation(s)
- Chao Feng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Miaoyuan Lv
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Jiaxin Shao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Hanyang Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Weiliang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Shuai Qi
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Chen Deng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Xiaoyan Chai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Hengpan Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Qi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| |
Collapse
|
36
|
Li M, Li T, Jing Y. Nb 2S 2C Monolayers with Transition Metal Atoms Embedded at the S Vacancy Are Promising Single-Atom Catalysts for CO Oxidation. ACS OMEGA 2023; 8:31051-31059. [PMID: 37663518 PMCID: PMC10468833 DOI: 10.1021/acsomega.3c02984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/07/2023] [Indexed: 09/05/2023]
Abstract
Single atoms anchored on stable and robust two-dimensional (2D) materials are attractive catalysts for carbon monoxide (CO) oxidation. Here, 3d (Fe-Zn), 4d (Ru-Cd), and 5d (Os-Hg) transition metal-decorated Nb2S2C monolayers were systematically studied as potential single-atom catalysts for low-temperature CO oxidation reactions by performing first-principles calculations. Sulfur vacancies are essential for stabilizing the transition metals anchored on the surface of defective Nb2S2C. After estimating the structure stability, the aggregation trend of the embedded metal atoms, and adsorption strength of reactants and products, Zn-decorated defective Nb2S2C is predicted to be a promising catalyst to facilitate CO oxidation through the Langmuir-Hinshelwood (LH) mechanism with an energy barrier of only 0.25 eV. Our investigation indicates that defective carbosulfides can be promising substrates to generate efficient and low-cost single-atom catalysts for low-temperature CO oxidation.
Collapse
Affiliation(s)
- Manman Li
- Jiangsu Co-Innovation Centre
of Efficient Processing and Utilization of Forest Resources, College
of Chemical Engineering, Nanjing Forestry
University, Nanjing 210037, China
| | - Tianchun Li
- Jiangsu Co-Innovation Centre
of Efficient Processing and Utilization of Forest Resources, College
of Chemical Engineering, Nanjing Forestry
University, Nanjing 210037, China
| | - Yu Jing
- Jiangsu Co-Innovation Centre
of Efficient Processing and Utilization of Forest Resources, College
of Chemical Engineering, Nanjing Forestry
University, Nanjing 210037, China
| |
Collapse
|
37
|
Wang J, Xu Q, Liu J, Kong W, Shi L. Electrostatic Self-Assembly of MXene on Ruthenium Dioxide-Modified Carbon Cloth for Electrochemical Detection of Kaempferol. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301709. [PMID: 37093500 DOI: 10.1002/smll.202301709] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/26/2023] [Indexed: 05/03/2023]
Abstract
A superior composite material consisting of MXene and ruthenium dioxide-modified carbon cloth is synthesized by pulsed laser deposition and electrostatic self-assembly, which is further utilized to construct a class of novel electrochemical (EC) sensors for kaempferol (KA) detection. The carbon-cloth-based electrodes modified by ruthenium dioxide and then MXene are characterized by X-ray diffraction, scanning electron microscope, and X-ray photoemission spectroscopy. The EC process on the modified electrodes is analyzed by cyclic voltammetry, EC impedance spectroscopy, and differential pulse voltammetry. It is found that positively charged RuO2 not only possesses the remarkable electrical conductivity and electrocatalysis activity but also hampers the restacking of MXene, which accordingly enhances the exposure of the active surface area and greatly boosts the electrocatalysis activity of the entire composite. Consequently, this newly developed composite-based EC sensor exhibits a high sensitivity, selectivity, and remarkable stability to detect KA with two linear ranges of 0.06-1 and 1-15 µM. The inferred limit of detection is 0.039 µM via differential pulse voltammetry. More importantly, this novel EC sensor is found to be applicable for detecting KA in practical traditional Chinese medicines.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, P. R. China
| | - Qingbin Xu
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, P. R. China
| | - Jinxin Liu
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, P. R. China
| | - Weijun Kong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, P. R. China
| | - Linchun Shi
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, P. R. China
| |
Collapse
|
38
|
Li M, Wang P, Zhang K, Zhang H, Bao Y, Li Y, Zhan S, Crittenden JC. Single cobalt atoms anchored on Ti 3C 2T x with dual reaction sites for efficient adsorption-degradation of antibiotic resistance genes. Proc Natl Acad Sci U S A 2023; 120:e2305705120. [PMID: 37428922 PMCID: PMC10629531 DOI: 10.1073/pnas.2305705120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/31/2023] [Indexed: 07/12/2023] Open
Abstract
The assimilation of antibiotic resistance genes (ARGs) by pathogenic bacteria poses a severe threat to public health. Here, we reported a dual-reaction-site-modified CoSA/Ti3C2Tx (single cobalt atoms immobilized on Ti3C2Tx MXene) for effectively deactivating extracellular ARGs via peroxymonosulfate (PMS) activation. The enhanced removal of ARGs was attributed to the synergistic effect of adsorption (Ti sites) and degradation (Co-O3 sites). The Ti sites on CoSA/Ti3C2Tx nanosheets bound with PO43- on the phosphate skeletons of ARGs via Ti-O-P coordination interactions, achieving excellent adsorption capacity (10.21 × 1010 copies mg-1) for tetA, and the Co-O3 sites activated PMS into surface-bond hydroxyl radicals (•OHsurface), which can quickly attack the backbones and bases of the adsorbed ARGs, resulting in the efficient in situ degradation of ARGs into inactive small molecular organics and NO3. This dual-reaction-site Fenton-like system exhibited ultrahigh extracellular ARG degradation rate (k > 0.9 min-1) and showed the potential for practical wastewater treatment in a membrane filtration process, which provided insights for extracellular ARG removal via catalysts design.
Collapse
Affiliation(s)
- Mingmei Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
| | - Pengfei Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin300401, China
| | - Kaida Zhang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
| | - Hongxiang Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environmental, Nanchang University, Nanchang, Jiangxi330031, China
| | - Yueping Bao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
| | - Yi Li
- Department of Chemistry, Tianjin University, Tianjin300072, China
| | - Sihui Zhan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
| | - John C. Crittenden
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA30332
| |
Collapse
|
39
|
Zhu L, Huang J, Meng G, Wu T, Chen C, Tian H, Chen Y, Kong F, Chang Z, Cui X, Shi J. Active site recovery and N-N bond breakage during hydrazine oxidation boosting the electrochemical hydrogen production. Nat Commun 2023; 14:1997. [PMID: 37032360 PMCID: PMC10083172 DOI: 10.1038/s41467-023-37618-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/24/2023] [Indexed: 04/11/2023] Open
Abstract
Substituting hydrazine oxidation reaction for oxygen evolution reaction can result in greatly reduced energy consumption for hydrogen production, however, the mechanism and the electrochemical utilization rate of hydrazine oxidation reaction remain ambiguous. Herein, a bimetallic and hetero-structured phosphide catalyst has been fabricated to catalyze both hydrazine oxidation and hydrogen evolution reactions, and a new reaction path of nitrogen-nitrogen single bond breakage has been proposed and confirmed in hydrazine oxidation reaction. The high electro-catalytic performance is attributed to the instantaneous recovery of metal phosphide active site by hydrazine and the lowered energy barrier, which enable the constructed electrolyzer using bimetallic phosphide catalyst at both sides to reach 500 mA cm-2 for hydrogen production at 0.498 V, and offer an enhanced hydrazine electrochemical utilization rate of 93%. Such an electrolyzer can be powered by a bimetallic phosphide anode-equipped direct hydrazine fuel cell, achieving self-powered hydrogen production at a rate of 19.6 mol h-1 m-2.
Collapse
Affiliation(s)
- Libo Zhu
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jian Huang
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Ge Meng
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tiantian Wu
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Chang Chen
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Han Tian
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Yafeng Chen
- Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Fantao Kong
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Ziwei Chang
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, P. R. China
| | - Xiangzhi Cui
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China.
| | - Jianlin Shi
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| |
Collapse
|
40
|
Huang P, Han WQ. Recent Advances and Perspectives of Lewis Acidic Etching Route: An Emerging Preparation Strategy for MXenes. NANO-MICRO LETTERS 2023; 15:68. [PMID: 36918453 PMCID: PMC10014646 DOI: 10.1007/s40820-023-01039-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/05/2023] [Indexed: 05/31/2023]
Abstract
Since the discovery in 2011, MXenes have become the rising star in the field of two-dimensional materials. Benefiting from the metallic-level conductivity, large and adjustable gallery spacing, low ion diffusion barrier, rich surface chemistry, superior mechanical strength, MXenes exhibit great application prospects in energy storage and conversion, sensors, optoelectronics, electromagnetic interference shielding and biomedicine. Nevertheless, two issues seriously deteriorate the further development of MXenes. One is the high experimental risk of common preparation methods such as HF etching, and the other is the difficulty in obtaining MXenes with controllable surface groups. Recently, Lewis acidic etching, as a brand-new preparation strategy for MXenes, has attracted intensive attention due to its high safety and the ability to endow MXenes with uniform terminations. However, a comprehensive review of Lewis acidic etching method has not been reported yet. Herein, we first introduce the Lewis acidic etching from the following four aspects: etching mechanism, terminations regulation, in-situ formed metals and delamination of multi-layered MXenes. Further, the applications of MXenes and MXene-based hybrids obtained by Lewis acidic etching route in energy storage and conversion, sensors and microwave absorption are carefully summarized. Finally, some challenges and opportunities of Lewis acidic etching strategy are also presented.
Collapse
Affiliation(s)
- Pengfei Huang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Wei-Qiang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|
41
|
Fang J, Chen Q, Li Z, Mao J, Li Y. The synthesis of single-atom catalysts for heterogeneous catalysis. Chem Commun (Camb) 2023; 59:2854-2868. [PMID: 36752217 DOI: 10.1039/d2cc06406e] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Heterogeneous catalysis is an important class of reactions in industrial production, especially in green chemical synthesis, and environmental and organic catalysis. Single-atom catalysts (SACs) have emerged as promising candidates for heterogeneous catalysis, due to their outstanding catalytic activity, high selectivity, and maximum atomic utilization efficiency. The high specific surface energy of SACs, however, results in the migration and aggregation of isolated atoms under typical reaction conditions. The controllable preparation of highly efficient and stable SACs has been a serious challenge for applications. Herein, we summarize the recent progress in the precise synthesis of SACs and their different heterogeneous catalyses, especially involving the oxidation and reduction reactions of small organic molecules. At the end of this review, we also introduce the challenges confronted by single-atom materials in heterogeneous catalysis. This review aims to promote the generation of novel high-efficiency SACs by providing an in-depth and comprehensive understanding of the current development in this research field.
Collapse
Affiliation(s)
- Jiaojiao Fang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Qingqing Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Zhi Li
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Yadong Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China. .,Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China. .,College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
42
|
Khan S, Shah SS, Janjua NK, Yurtcan AB, Nazir MT, Katubi KM, Alsaiari NS. Alumina supported copper oxide nanoparticles (CuO/Al 2O 3) as high-performance electrocatalysts for hydrazine oxidation reaction. CHEMOSPHERE 2023; 315:137659. [PMID: 36603674 DOI: 10.1016/j.chemosphere.2022.137659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/30/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Direct hydrazine liquid fuel cell (DHFC) is perceived as effectual energy generating mean owing to high conversion efficiency and energy density. However, the development of well-designed, cost effective and high performance electrocatalysts is the paramount to establish DHFCs as efficient energy generating technology. Herein, gamma alumina supported copper oxide nanocatalysts (CuO/Al2O3) are synthesized via impregnation method and investigated for their electrocatalytic potential towards hydrazine oxidation reaction. CuO with different weight percentages i.e., 4%, 8%, 12%, 16% and 20% are impregnated on gamma alumina support. X-ray diffraction analysis revealed the cubic crystal structure and nanosized particles of the prepared metal oxides. Transmission electron microscopy also referred to the cubic morphology and nanoparticle formation. Electrochemical oxidation potential of the CuO/Al2O3 nanoparticles is explored via cyclic voltammetry as the analytical tool. Optimization of conditions and electrocatalytic studies shown that 16% CuO/Al2O3 presented the best electronic properties towards N2H2 oxidation reaction. BET analysis ascertained the high surface area (131.2546 m2 g1) and large pore diameter (0.279605 cm³ g-1) for 16% CuO/Al2O3. Nanoparticle formation, high porosity and enlarged surface area of the proposed catalysts resulted in significant oxidation current output (600 μA), high current density (8.2 mA cm-2) and low charge transfer resistance (3.7 kΩ). Electrooxidation of hydrazine on such an affordable and novel electrocatalyst opens a gateway to further explore the metal oxide impregnated alumina materials for different electrochemical applications.
Collapse
Affiliation(s)
- Safia Khan
- Department of Chemistry, Quaid-i-Azam University Islamabad, 45320, Pakistan; Faculty of Chemical Engineering, Ataturk University, Erzurum, 25240, Turkey.
| | - Syed Sakhawat Shah
- Department of Chemistry, Quaid-i-Azam University Islamabad, 45320, Pakistan.
| | | | | | - Muhammad Tariq Nazir
- School of Manufacturing Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Khadijah Mohammedsaleh Katubi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia.
| | - Norah Salem Alsaiari
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia.
| |
Collapse
|
43
|
Li W, Chen Z, Jiang X, Jiang J, Zhang Y. Recent advances in the design of single-atom electrocatalysts by defect engineering. Front Chem 2022; 10:1011597. [PMID: 36186588 PMCID: PMC9520354 DOI: 10.3389/fchem.2022.1011597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/24/2022] [Indexed: 11/15/2022] Open
Abstract
Single-atom catalysts (SACs) with isolated metal atoms dispersed on supports have attracted increasing attention due to their maximum atomic utilization and excellent catalytic performance in various electrochemical reactions. However, SACs with a high surface-to-volume ratio are fundamentally less stable and easily agglomerate, which weakens their activity. In addition, another issue that restricts the application of SACs is the low metal loading. Defect engineering is the most effective strategy for the precise synthesis of nanomaterials to catch and immobilize single atoms through the modulation of the electronic structure and coordination environment. Herein, in this mini-review, the latest advances in designing SACs by defect engineering have been first highlighted. Then, the heteroatom doping or intrinsic defects of carbon-based support and anion vacancies or cation vacancies of metal-based supports are systematically evaluated. Subsequently, the structure–activity relationships between a single-atom coupled defect structure and electrocatalytic performance are illustrated by combining experimental results and theoretical calculations. Finally, a perspective to reveal the current challenges and opportunities for controllable preparation, in situ characterization, and commercial applications is further proposed.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhikai Chen
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoli Jiang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinxia Jiang
- Chongqing Medical and Pharmaceutical College, Chongqing, China
- *Correspondence: Jinxia Jiang, ; Yagang Zhang,
| | - Yagang Zhang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Jinxia Jiang, ; Yagang Zhang,
| |
Collapse
|