1
|
Chen H, Si H, Ma J, Geng S, Liu F. Hybrid heterojunction containing rich oxygen vacancies for suppressing lattice oxygen release of Li-rich Mn-based layered oxides cathodes. J Colloid Interface Sci 2025; 691:137392. [PMID: 40138811 DOI: 10.1016/j.jcis.2025.137392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Li-rich manganese-based layered oxides (LLOs) cathode materials possess the high theoretical capacity (>250 mAh g-1), which have garnered significant global attention as promising cathode materials for the next generation of high-energy density lithium-ion batteries. However, the irreversible release of lattice oxygen in LLOs severely limits its commercial application. Herein, a facile ultrasonic-assisted calcination method is employed to induce the formation of hybrid heterojunction containing rich oxygen vacancies (HROV) composed of C3N4@LLOs and Li3PO4@LLOs on the surface of LLOs, thereby obtaining modified LLOs (M-LLOs). M-LLOs exhibit enhanced initial Coulombic efficiency from 80.18 % to 85.1 %, elevated initial discharge specific capacity from 270.2mAh g-1 to 311.5 mAh g-1, and improved capacity retention rate after 300 cycles at 1C from 58.8 % to 84.2 %. Combining in-situ characterization techniques with density functional theory (DFT) calculations reveal the performance improvement mechanism of M-LLOs, which demonstrates that HROV effectively suppresses the irreversible release of lattice oxygen, enhances the binding strength of Mn-O bonds in M-LLOs, and consequently stabilize the structural phase transitions during charge/discharge processes. These results provide insights into understanding the functional role of hybrid heterojunctions in suppressing lattice oxygen release of LLOs, and provide essential theoretical foundations to accelerate the commercialization process of LLOs.
Collapse
Affiliation(s)
- Huai Chen
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang, Guizhou 550025, China
| | - HanJie Si
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang, Guizhou 550025, China
| | - Jun Ma
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang, Guizhou 550025, China.
| | - Shuo Geng
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang, Guizhou 550025, China
| | - Fei Liu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang, Guizhou 550025, China
| |
Collapse
|
2
|
Tang Q, Fan Q, He L, Yu P, Huang Q, Chen Y, Fan B, Liang K. Few-Layered MXene Modulating In Situ Growth of Carbon Nanotubes for Enhanced Microwave Absorption. Molecules 2025; 30:1625. [PMID: 40286234 PMCID: PMC11990155 DOI: 10.3390/molecules30071625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
MXene is widely used in the fields of microwave absorption and electromagnetic shielding to balance electromagnetic pollution with the development of communication technologies and human health, due to its excellent surface functional groups and tunable electronic properties. Although pure multilayered MXene has an excellent accordion-like structure, the weak dielectric loss and lack of magnetic loss result in poor microwave absorption performance. Here, we propose a strategy for the catalytic growth of CNTs by the electrophoretic deposition of adsorbed metal ions, leading to the successful preparation of Ni-MWCNTs/Ti3C2Tx composites with a "layer-by-layer" structure, achieved through in situ regulated growth of CNTs. By introducing dielectric-magnetic synergy to improve the impedance matching conditions, and by regulating the diameter of the CNTs to alter the electromagnetic parameters of Ni-MWCNTs/Ti3C2Tx, the 2-Ni-MWCNTs/Ti3C2Tx composite achieves the best reflection loss (RL) value of -44.08 dB and an effective absorption bandwidth of 1.52 GHz at only 2.49 mm thickness. This unique layered structure and the regulation strategy provide new opportunities for the development of few-layered MXene composites.
Collapse
Affiliation(s)
- Qing Tang
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China;
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (Q.F.); (L.H.); (Q.H.)
| | - Qi Fan
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (Q.F.); (L.H.); (Q.H.)
| | - Lei He
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (Q.F.); (L.H.); (Q.H.)
| | - Ping Yu
- School of Electronic and Information Engineering, Ningbo University of Technology, Ningbo 315211, China;
| | - Qing Huang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (Q.F.); (L.H.); (Q.H.)
- Qianwan Institute of CNITECH, Ningbo 315201, China
| | - Yuanming Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Bingbing Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Kun Liang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (Q.F.); (L.H.); (Q.H.)
- Qianwan Institute of CNITECH, Ningbo 315201, China
| |
Collapse
|
3
|
Xie S, Abdiryim T, Jamal R, Zhang G, Tang X, Zhang Y, Song Y, Abdukirim N. Stereo Assembly of Bimetallic PtPd on Ti 3C 2T x/PProDOT for Efficient Methanol Oxidation Reaction in Both Acidic and Alkaline Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500402. [PMID: 40103498 DOI: 10.1002/smll.202500402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/06/2025] [Indexed: 03/20/2025]
Abstract
The rational construction of efficient and stable electrocatalysts for methanol oxidation reaction (MOR) in acidic and alkaline media affects the commercialization of direct methanol fuel cells (DMFCs). Here, poly(3,4-propylenedioxythiophene) (PProDOT)-embedded Ti3C2Tx flakes for the growth of platinum and palladium bimetallic nanoparticles (PtPd) by a chemically reduced hydrothermal process are assembled. The constructed Ti3C2Tx/PProDOT/PtPd hybrids exhibit 3D-layered stereoscopic structures. After the embedding of PProDOT, the re-stacking of MXene flakes is suppressed and the interlayer spacing between flakes is extended, allowing the Ti3C2Tx/PProDOT interface to promote nanoparticle deposition, active site exposure, and charge transport. The electrochemical test outcomes reveal that the catalytic activity of Ti3C2Tx/PProDOT/PtPd for MOR far exceeds that of Ti3C2Tx/PtPd and Pt/C. In acidic electrolytes, the mass activity (MA) of Ti3C2Tx/PProDOT/PtPd is 2206.1 mA mg-1, which is 4.4 and 5.8 times higher than that of Ti3C2Tx/PtPd and Pt/C, respectively. In alkaline electrolytes, the MA of Ti3C2Tx/PProDOT/PtPd reaches 4180 mA mg-1, which is 2.1 and 4.8 times higher than that of Ti3C2Tx/PtPd and Pt/C, respectively. Meanwhile, its stability and CO tolerance improve significantly. Besides, Ti3C2Tx/PProDOT/PtPd also exhibits enhanced catalytic activity toward ethanol oxidation.
Collapse
Affiliation(s)
- Shuyue Xie
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, China
| | - Tursun Abdiryim
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, China
| | - Ruxangul Jamal
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, China
| | - Guoliang Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, China
| | - Xinsheng Tang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, China
| | - Yu Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, China
| | - Yanyan Song
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, China
| | - Nuramina Abdukirim
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, China
| |
Collapse
|
4
|
Lu W, Liu H, Li S, Zhu J, Chao Y, Wang Z, Tian Y, Cui X. Boron and defects co-doped MXene enables high-performance Na-Se batteries. J Colloid Interface Sci 2025; 683:655-666. [PMID: 39742746 DOI: 10.1016/j.jcis.2024.12.226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/22/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Sodium selenium (Na-Se) batteries are considered promising candidates for next-generation energy storage devices due to their high volumetric energy density. However, the Se cathode still faces the problems of the shuttling effect and sluggish selenium reduction kinetics. Improving the surface adsorption and catalytic process of selenium cathode can greatly solve the above issues and achieve excellent performance to enhance the application of Na-Se batteries. Herein, experimental and theoretical simulation results indicate that the boron and defects co-doped MXene (BD-MXene) could initiate the redistribution of electrons and improve the surface polarity, promoting chemical adsorption, thus effectively suppressing the shuttle effect. More importantly, the BD-MXene can promote the conversion between polyselenide, accelerating the electrochemical reaction kinetics of Sodium polyselenide. As a result, the obtained Se@BD-MXene exhibits a high rate performance of 502 mAh g-1 at 50 A g-1 (calculated based on Se@BD-MXene) and excellent cycling stability with a decay per cycle of 0.001 % over 4500 at 10 A g-1. This work provides a viable strategy to design Se cathodes for Na-Se batteries with high-rate capability and long-term cycling.
Collapse
Affiliation(s)
- Wei Lu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan 450003, PR China
| | - Hongpo Liu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan 450003, PR China
| | - Shiquan Li
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan 450003, PR China
| | - Jianhua Zhu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan 450003, PR China
| | - Yunfeng Chao
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan 450003, PR China
| | - Zhuosen Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan 450003, PR China.
| | - Yapeng Tian
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan 450003, PR China.
| | - Xinwei Cui
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan 450003, PR China
| |
Collapse
|
5
|
Gentile A, Pianta N, Fracchia M, Pollastri S, Ferrara C, Marchionna S, Aquilanti G, Tosoni S, Ghigna P, Ruffo R. Ti 3C 2T x MXenes as Anodes for Sodium-Ion Batteries: the In Situ Comprehension of the Electrode Reaction. ACS APPLIED ENERGY MATERIALS 2025; 8:2229-2238. [PMID: 40018387 PMCID: PMC11863289 DOI: 10.1021/acsaem.4c02777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 03/01/2025]
Abstract
Since their appearance on the scene, MXenes have been recognized as promising anode materials for rechargeable batteries, thanks to the combination of structural and electronic features. The layered structure with a suitable interlayer distance, good electronic conductivity, and moldability in composition makes MXenes exploitable both as active and support materials for the fabrication of nanocomposites providing both capacitive and Faradaic contributions to the final capacity. Although a variety of possibilities has been explored, the fundamental mechanism of the electrode reaction is still hazy. We herein report the investigation of Ti3C2T x MXenes, the benchmark composition for application in energy storage, through the combined operando X-ray absorption spectroscopy (XAS) and Raman analysis supported by density functional theory (DFT) calculations with the aim of clarifying the origin and nature of capacity when the material was cycled vs Na. The electrode reaction determined was Ti3C2X2 + 1Na → Na1Ti3C2X2, defining the theoretical capacity.
Collapse
Affiliation(s)
- Antonio Gentile
- Ricerca
sul Sistema Energetico, RSE S.p.A., Via R. Rubattino 54, Milano 20134, Italy
| | - Nicolò Pianta
- Department
of Materials Science, University Milano
Bicocca, via Cozzi 55, 20125 Milano, Italy
| | - Martina Fracchia
- Dipartimento
di Chimica, Università degli studi
di Pavia, via Taramelli
9, 27100 Pavia, Italy
- INSTM,
Consorzio Interuniversitario per la Scienza e Tecnologia dei Materiali, via Giusti 9, I-50121 Firenze, Italy
| | | | - Chiara Ferrara
- Department
of Materials Science, University Milano
Bicocca, via Cozzi 55, 20125 Milano, Italy
- National
Reference Center for Electrochemical Energy Storage (GISEL), Consorzio
Interuniversitario Nazionale per la Scienza e Tecnologia Dei Materiali
(INSTM), via Giusti 9, Firenze 50121, Italy
| | - Stefano Marchionna
- Ricerca
sul Sistema Energetico, RSE S.p.A., Via R. Rubattino 54, Milano 20134, Italy
| | | | - Sergio Tosoni
- Department
of Materials Science, University Milano
Bicocca, via Cozzi 55, 20125 Milano, Italy
| | - Paolo Ghigna
- Dipartimento
di Chimica, Università degli studi
di Pavia, via Taramelli
9, 27100 Pavia, Italy
- INSTM,
Consorzio Interuniversitario per la Scienza e Tecnologia dei Materiali, via Giusti 9, I-50121 Firenze, Italy
| | - Riccardo Ruffo
- Department
of Materials Science, University Milano
Bicocca, via Cozzi 55, 20125 Milano, Italy
- National
Reference Center for Electrochemical Energy Storage (GISEL), Consorzio
Interuniversitario Nazionale per la Scienza e Tecnologia Dei Materiali
(INSTM), via Giusti 9, Firenze 50121, Italy
| |
Collapse
|
6
|
Hou P, Tian Y, Xie Y, Li Q, Chen G, Du F, Wu J, Ma Y, Meng X. Proton-Driven Dynamic Behavior of Nanoconfined Water in Hydrophilic MXene Sheets. Angew Chem Int Ed Engl 2024; 63:e202411849. [PMID: 39162073 DOI: 10.1002/anie.202411849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
Liquid water under nanoscale confinement has attracted intensive attention due to its pivotal role in understanding various phenomena across many scientific fields. MXenes serve an ideal paradigm for investigating the dynamic behaviors of nanoconfined water in a hydrophilic environment. Combining deep neural networks and an active learning scheme, here we elucidate the proton-driven dynamics of water molecules confined between V2CTx sheets using molecular dynamics simulation. Firstly, we have found that the Eigen and Zundel cations can inhibit water-induced oxidation by adjusting the orientation of water molecules, thus proposing a general antioxidant strategy. Besides, we also identified a hexagonal ice phase with abnormal bonding rules at room temperature, rather than only at ultralow temperatures as other studies reported, and further captured the proton-induced water phase transition. This highlighted the importance of protons in the maintaining stable crystal phase and phase transition of water. Furthermore, we discussed the conversions of different water structures and water diffusivity with changing proton concentrations in detail. The results provide useful guidance in practical applications of MXenes including developing antioxidant strategies, identifying novel 2D water phases and optimizing energy storage and conversion.
Collapse
Affiliation(s)
- Pengfei Hou
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, P. R. China
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun, 130012, China
| | - Yumiao Tian
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, P. R. China
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun, 130012, China
| | - Yu Xie
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, P. R. China
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun, 130012, China
| | - Quan Li
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun, 130012, China
- International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Gang Chen
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Fei Du
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, 92521, USA
| | - Yanming Ma
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun, 130012, China
- International Center of Future Science, Jilin University, Changchun, 130012, China
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Xing Meng
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, P. R. China
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun, 130012, China
| |
Collapse
|
7
|
Zheng X, Shi Z, Han C, Mu H, Cheng S, Yan X. Convenient in situ self-assembled formation of dual-functional Ag/MXene nanozymes for efficient chemiluminescence sensing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8324-8332. [PMID: 39526932 DOI: 10.1039/d4ay00584h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
MXenes are attracting increasing interest as a low-cost carrier for the development of nanozymes with enhanced peroxidase or oxidase-like activity. In this work, silver nanoparticles (AgNPs) were synthesized and loaded on Ti3C2 MXene nanosheets (denoted as Ag/MXene) by a simple method, using MXene as a support and reducing agent. The synthesized Ag/MXene composites exhibited satisfactory stability and the peroxidase activity was higher than that of the single components. In the presence of luminol and hydrogen peroxide (H2O2), Ag/MXene could catalyze H2O2 to produce reactive oxygen species (ROS) and act on luminol to generate strong chemiluminescent (CL) signals. Free radical scavenging experiments and electron paramagnetic resonance spectroscopy confirmed the production of these radicals. In this regard, we fabricated a facile biosensor for glutathione (GSH) and uric acid (UA) detection and the results showed good linear relationship between GSH and UA. The linear ranges of GSH and UA were 50 nM to 20 μM and 1 μM to 35 μM, respectively, with low detection limits of 0.83 nM and 0.37 μM. The sensor platform established in this study provides the possibility for developing MXene biosensors with high sensitivity and performance, and lays the solid foundation for expanding the application of MXene in biosensors.
Collapse
Affiliation(s)
- Xiangjuan Zheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- Chongqing Research Institute of Nanchang University, Chongqing 402660, China
| | - Zhiying Shi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Chun Han
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Nanchang Centre for Disease Control and Prevention, Nanchang, P. R. China, 330038
| | - Hongyi Mu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Shiyun Cheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xiluan Yan
- College of Pharmacy, Nanchang University, Nanchang 330031, China.
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| |
Collapse
|
8
|
Han T, Zhang M, Zhang A, Chi Y, Guo W, Li J, Ding F, Zhao W. Exploration of molybdenum oxide precursors: a theoretical study of Mo xO y ( x = 1-10) clusters. Phys Chem Chem Phys 2024; 26:26556-26565. [PMID: 39400228 DOI: 10.1039/d4cp02973a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Transition metal oxides are essential in the synthesis of 2D transition metal-based materials. This study focuses on molybdenum oxide clusters (MoxOy, where x = 1, 2, …, 10) to investigate their stability in varying chemical environments. By integrating density functional theory and a particle swarm optimization algorithm, we evaluated 2133 unique MoxOy cluster structures, identifying 211 most stable isomers, and constructed a comprehensive database of stable configurations. Notably, monocyclic ring-shaped structures with an oxygen-to-molybdenum ratio of 3 : 1 were found to be stable across a wide range of chemical potentials. Our findings elucidate the stability trends and structural evolution mechanisms of MoxOy clusters, enhancing the understanding of molybdenum oxide precursors. This research provides valuable insights into the controlled synthesis of high-quality 2D transition metal-based materials and sheds light on other transition metal oxide precursors.
Collapse
Affiliation(s)
- Tongying Han
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Mingxiang Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Aixinye Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Yuhua Chi
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Wenyue Guo
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Jia Li
- Institute of Materials Research and Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Feng Ding
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen 518055, China
| | - Wen Zhao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
9
|
Ji G, Wang J, Wang Z, Zhang S, Fang Z, Wang Y, Gao Z. Transient paper-based electrochemical biosensor Fabricated by superadditive Cu-TCPP(Fe)/Mxene for Multipathway non-invasive, highly sensitive detection of Bodily metabolites. Biosens Bioelectron 2024; 261:116509. [PMID: 38914028 DOI: 10.1016/j.bios.2024.116509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
Current advances in non-invasive fluid diagnostics highlight unique benefits for monitoring metabolic diseases. However, the low concentrations and complex compositions of biomarkers in fluids such as sweat, urine, and saliva impose stringent demands on the sensitivity and stability of detection technologies. Here, we developed a high-sensitivity, low-cost instantaneous electrochemical sensor based on the superadditive effect mechanism of Cu-TCPP(Fe)/Mxene (MMs Paper-ECL Sensor), which has been successfully applied for the simultaneous real-time detection of glucose and uric acid. Strong interfacial interactions between Mxene and Cu-TCPP(Fe) were revealed through precise simulation calculations and multi-dimensional characterization analysis, significantly enhancing the sensor's electrocatalytic performance and reaction kinetics. Experimentally, this exceptional electrocatalytic activity was demonstrated in its unprecedented high sensitivity and wide linear detection range for glucose and uric acid, with a non-invasive linear range from 0.001 nM to 5 mM, 0.025 nM-5 mM, detection limits as low as 1.88 aM and 5.80 pM, and stability extending up to 100 days. This represents not only a breakthrough in sensitivity and stability but also provides an effective, low-cost solution that overcomes the limitations of existing electronic devices, enabling multi-channel simultaneous detection. The universality of this sensor holds vast potential for application in the field of non-invasive fluid diagnostics.
Collapse
Affiliation(s)
- Guangna Ji
- Military Medical Sciences Academy, Tianjin, 300050, PR China; Department of Toxicology and Health Inspection and Quarantine, School of Public Health, Tianjin Medical University, Tianjin, 300070, PR China
| | - Jingyi Wang
- Military Medical Sciences Academy, Tianjin, 300050, PR China
| | - Zixi Wang
- Military Medical Sciences Academy, Tianjin, 300050, PR China
| | - Shengli Zhang
- Military Medical Sciences Academy, Tianjin, 300050, PR China
| | - Zhongze Fang
- Department of Toxicology and Health Inspection and Quarantine, School of Public Health, Tianjin Medical University, Tianjin, 300070, PR China
| | - Yu Wang
- Military Medical Sciences Academy, Tianjin, 300050, PR China.
| | - Zhixian Gao
- Military Medical Sciences Academy, Tianjin, 300050, PR China.
| |
Collapse
|
10
|
Liu C, Feng Z, Yin T, Wan T, Guan P, Li M, Hu L, Lin CH, Han Z, Xu H, Cheng W, Wu T, Liu G, Zhou Y, Peng S, Wang C, Chu D. Multi-Interface Engineering of MXenes for Self-Powered Wearable Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403791. [PMID: 38780429 DOI: 10.1002/adma.202403791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/04/2024] [Indexed: 05/25/2024]
Abstract
Self-powered wearable devices with integrated energy supply module and sensitive sensors have significantly blossomed for continuous monitoring of human activity and the surrounding environment in healthcare sectors. The emerging of MXene-based materials has brought research upsurge in the fields of energy and electronics, owing to their excellent electrochemical performance, large surface area, superior mechanical performance, and tunable interfacial properties, where their performance can be further boosted via multi-interface engineering. Herein, a comprehensive review of recent progress in MXenes for self-powered wearable devices is discussed from the aspects of multi-interface engineering. The fundamental properties of MXenes including electronic, mechanical, optical, and thermal characteristics are discussed in detail. Different from previous review works on MXenes, multi-interface engineering of MXenes from termination regulation to surface modification and their impact on the performance of materials and energy storage/conversion devices are summarized. Based on the interfacial manipulation strategies, potential applications of MXene-based self-powered wearable devices are outlined. Finally, proposals and perspectives are provided on the current challenges and future directions in MXene-based self-powered wearable devices.
Collapse
Affiliation(s)
- Chao Liu
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ziheng Feng
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Tao Yin
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Tao Wan
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Peiyuan Guan
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mengyao Li
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chun-Ho Lin
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Zhaojun Han
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- CSIRO Manufacturing, 36 Bradfield Road, Lindfield, NSW, 2070, Australia
| | - Haolan Xu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, South Australia, 5095, Australia
| | - Wenlong Cheng
- School of Biomedical Engineering, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Tom Wu
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Guozhen Liu
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHK(SZ)-Boyalife Regenerative Medicine Engineering Joint Laboratory, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Yang Zhou
- School of Mechanical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shuhua Peng
- School of Mechanical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chun Wang
- School of Mechanical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Dewei Chu
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
11
|
Jiang S, Yang L, Ma X, Zhang H, Guo S, Ren H, Yin W, He X. Fracture Mechanisms and Crack Propagation in Monolayer Ti 3C 2T x under Nanoindentation: The Influence of Surface Terminations and Vacancy Defects. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48113-48125. [PMID: 39215692 DOI: 10.1021/acsami.4c10022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Monolayer MXenes are a novel class of two-dimensional transition metal carbides/nitrides with fascinating physicochemical properties. Despite recent advances in the study of MXenes' mechanical properties, a comprehensive understanding of the fundamental physical mechanisms that affect fracture due to surface terminations and vacancy defects in MXenes under nanoindentation remains largely unexplored. Here, we address this gap using molecular dynamics simulations and nanoindentation theory to investigate the effects of surface terminations and vacancy defects on the fracture behavior of Ti3C2Tx MXenes. By inducing the rupture of monolayer MXenes through nanoindentation, we find that bare Ti3C2 exhibits brittle fracture behavior. The presence of surface terminations and vacancy defects reduces the load-carrying capacity and flexibility of MXenes. Interestingly, surface terminations increase the stiffness of the structure, while vacancy defects have the opposite effect. We also find that high concentrations of surface oxidation impart ductile fracture characteristics to MXenes and increase the maximum crack length at failure. Additionally, defects exceeding the critical concentration can effectively prevent brittle crack propagation by causing frequent crack deflection and blunting crack tips. Combining these findings, we propose a new strategy to synergistically enhance the fracture toughness of MXenes through high concentrations of surface oxidation and vacancy defects exceeding the critical concentration without significantly affecting strength and stiffness, thereby avoiding catastrophic failure in MXene monolayers due to brittle fracture. This work provides fundamental insights into the mechanical properties and fracture mechanisms of monolayer MXenes.
Collapse
Affiliation(s)
- Shenda Jiang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
| | - Lin Yang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
| | - Xiaoliang Ma
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
| | - Hongchi Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
| | - Shuai Guo
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
| | - Hongzhao Ren
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
| | - Weilong Yin
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
| | - Xiaodong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
12
|
Mei X, Yang C, Chen F, Wang Y, Zhang Y, Man Z, Lu W, Xu J, Wu G. Interfacially Ordered NiCoMoS Nanosheets Arrays on Hierarchical Ti 3C 2T x MXene for High-Energy-Density Fiber-Shaped Supercapacitors with Accelerated Pseudocapacitive Kinetics. Angew Chem Int Ed Engl 2024; 63:e202409281. [PMID: 38837579 DOI: 10.1002/anie.202409281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Balancing electrochemical activity and structural reversibility of fibrous electrodes with accelerated Faradaic charge transfer kinetics and pseudocapacitive storage are highly crucial for fiber-shaped supercapacitors (FSCs). Herein, we report novel core-shell hierarchical fibers for high-performance FSCs, in which the ordered NiCoMoS nanosheets arrays are chemically anchored on Ti3C2Tx fibers. Beneficial from architecting stable polymetallic sulfide arrays and conductive networks, the NiCoMoS-Ti3C2Tx fiber maintains fast charge transfer, low diffusion and OH- adsorption barrier, and stabilized multi-electronic reaction kinetics of polymetallic sulfide. Consequently, the NiCoMoS-Ti3C2Tx fiber exhibits a large volumetric capacitance (2472.3 F cm-3) and reversible cycling performance (20,000 cycles). In addition, the solid-state symmetric FSCs deliver a high energy density of 50.6 mWh cm-3 and bending stability, which can significantly power electronic devices and offer sensitive detection for dopamine.
Collapse
Affiliation(s)
- Xiaotong Mei
- National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Chao Yang
- National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Fangyuan Chen
- National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Yuting Wang
- National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Yang Zhang
- National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Zengming Man
- National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Wangyang Lu
- National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Jianhong Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Guan Wu
- National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| |
Collapse
|
13
|
Li J, Wang C, Yu Z, Chen Y, Wei L. MXenes for Zinc-Based Electrochemical Energy Storage Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304543. [PMID: 37528715 DOI: 10.1002/smll.202304543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/08/2023] [Indexed: 08/03/2023]
Abstract
As an economical and safer alternative to lithium, zinc (Zn) is promising for realizing new high-performance electrochemical energy storage devices, such as Zn-ion batteries, Zn-ion hybrid capacitors, and Zn-air batteries. Well-designed electrodes are needed to enable efficient Zn electrochemistry for energy storage. Two-dimensional transition metal carbides and nitrides (MXenes) are emerging materials with unique electrical, mechanical, and electrochemical properties and versatile surface chemistry. They are potential material candidates for constructing high-performance electrodes of Zn-based energy storage devices. This review first briefly introduces the working mechanisms of the three Zn-based energy storage devices. Then, the recent progress on the synthesis, chemical functionalization, and structural design of MXene-based electrodes is summarized. Their performance in Zn-based devices is analyzed to establish relations between material properties, electrode structures, and device performance. Last, several research topics are proposed to be addressed for developing practical MXene-based electrodes for Zn-based energy storage devices to enable their commercialization and broad adoption in the near future.
Collapse
Affiliation(s)
- Jing Li
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales, 2006, Australia
| | - Chaojun Wang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales, 2006, Australia
| | - Zixun Yu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales, 2006, Australia
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales, 2006, Australia
| | - Li Wei
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales, 2006, Australia
| |
Collapse
|
14
|
Wu H, Zhang G, Yang X. Labeled sandwich-type electrochemical immunosensor based on Ti 3C 2T x/AuNP and Ti 3C 2T x/HKUST-1/TB composites for early liver cancer detection. Mikrochim Acta 2024; 191:565. [PMID: 39192061 DOI: 10.1007/s00604-024-06618-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024]
Abstract
A novel sandwich-type electrochemical immunosensor for the detection of the liver cancer marker alpha-fetoprotein (AFP) in human serum is proposed. The two-dimensional MXene material Ti3C2Tx was first prepared using etching and ultrasonic stripping, and then Ti3C2Tx was used to reduce chloroauric acid to form Ti3C2Tx/AuNP composites which were modified on the surface of the glassy carbon electrodes to form probe-type sensors. The Ti3C2Tx/AuNPs provide a large number of binding sites for the AFP capture antibody (Ab1) and increase the electrochemical reaction active site. The Ti3C2Tx/copper metal-organic frameworks HKUST-1 composite was also prepared by solvothermal method and combined with toluidine blue (TB) and AFP detection antibody (Ab2) to form a labeled sandwich-type electrochemical immunosensor. The sensor achieved trace detection of AFP from 0.1 to 100 ng/mL with a detection limit of 0.073 pg/mL and possesses good selectivity, stability, and reproducibility. The sensor performs well in clinical samples and has good potential for clinical applications.
Collapse
Affiliation(s)
- Haotian Wu
- Department of Physics and Energy, Chongqing University of Technology, Chongqing, 400054, China
| | - Gang Zhang
- Institute of High Performance Computing, ASTAR S138632, Singapore, Singapore
| | - Xiaozhan Yang
- Department of Physics and Energy, Chongqing University of Technology, Chongqing, 400054, China.
- Chongqing Key Laboratory of Green Energy Materials Technology and Systems, Chongqing, 400054, China.
| |
Collapse
|
15
|
Gu Q, Cao Y, Lu M, Zhang B. MXene materials in electrochemical energy storage systems. Chem Commun (Camb) 2024; 60:8339-8349. [PMID: 39016016 DOI: 10.1039/d4cc02659d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
MXenes, due to their unique geometric structure, rich elemental composition, and intrinsic physicochemical properties, have multi-functional applications. In the field of electrochemical energy storage, MXenes can be used as active components, conductive agents, supports, and catalysts in ion-intercalated batteries, metal-sulfur batteries, and supercapacitors. The electrochemical performance of MXene materials is closely related to their distinctive physical and chemical properties, which depend on their geometry, surface functional groups, and elemental composition. How to regulate MXene materials to optimize electrochemical functions is a key scientific challenge. Herein, we correlated the function of MXene materials with their interlayer structure, surface functional groups, and specific catalytic sites, analyzed the electrochemical function of MXene materials, and showed how to design the electrochemical function of MXene materials based on ion/electron transport. Additionally, this feature article provides an outlook on the opportunities and challenges for MXenes, offering theoretical and technical guidance on using MXene materials in energy storage systems.
Collapse
Affiliation(s)
- Qinhua Gu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China.
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, Liaoning, China
| | - Yiqi Cao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China.
- The Joint Laboratory of MXene Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, Jilin, China.
| | - Ming Lu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China.
- The Joint Laboratory of MXene Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, Jilin, China.
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China.
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, Liaoning, China
| |
Collapse
|
16
|
Wu H, Luo S, Wang H, Li L, Fang Y, Zhang F, Gao X, Zhang Z, Yuan W. A Review of Anode Materials for Dual-Ion Batteries. NANO-MICRO LETTERS 2024; 16:252. [PMID: 39046572 PMCID: PMC11269562 DOI: 10.1007/s40820-024-01470-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/29/2024] [Indexed: 07/25/2024]
Abstract
Distinct from "rocking-chair" lithium-ion batteries (LIBs), the unique anionic intercalation chemistry on the cathode side of dual-ion batteries (DIBs) endows them with intrinsic advantages of low cost, high voltage, and eco-friendly, which is attracting widespread attention, and is expected to achieve the next generation of large-scale energy storage applications. Although the electrochemical reactions on the anode side of DIBs are similar to that of LIBs, in fact, to match the rapid insertion kinetics of anions on the cathode side and consider the compatibility with electrolyte system which also serves as an active material, the anode materials play a very important role, and there is an urgent demand for rational structural design and performance optimization. A review and summarization of previous studies will facilitate the exploration and optimization of DIBs in the future. Here, we summarize the development process and working mechanism of DIBs and exhaustively categorize the latest research of DIBs anode materials and their applications in different battery systems. Moreover, the structural design, reaction mechanism and electrochemical performance of anode materials are briefly discussed. Finally, the fundamental challenges, potential strategies and perspectives are also put forward. It is hoped that this review could shed some light for researchers to explore more superior anode materials and advanced systems to further promote the development of DIBs.
Collapse
Affiliation(s)
- Hongzheng Wu
- School of Chemistry and Chemical Engineering, Guangdong Province, South China University of Technology, Guangzhou, 510641, People's Republic of China
- Zhuhai Modern Industrial Innovation Research Institute of South China University of Technology, Zhuhai, 519125, Guangdong Province, People's Republic of China
| | - Shenghao Luo
- School of Chemistry and Chemical Engineering, Guangdong Province, South China University of Technology, Guangzhou, 510641, People's Republic of China
- Zhuhai Modern Industrial Innovation Research Institute of South China University of Technology, Zhuhai, 519125, Guangdong Province, People's Republic of China
| | - Hubing Wang
- School of Chemistry and Chemical Engineering, Guangdong Province, South China University of Technology, Guangzhou, 510641, People's Republic of China
| | - Li Li
- School of Environment and Energy, Guangdong Province, South China University of Technology, Guangzhou, 510641, People's Republic of China
| | - Yaobing Fang
- Zhuhai Modern Industrial Innovation Research Institute of South China University of Technology, Zhuhai, 519125, Guangdong Province, People's Republic of China
| | - Fan Zhang
- Zhuhai Modern Industrial Innovation Research Institute of South China University of Technology, Zhuhai, 519125, Guangdong Province, People's Republic of China
| | - Xuenong Gao
- School of Chemistry and Chemical Engineering, Guangdong Province, South China University of Technology, Guangzhou, 510641, People's Republic of China.
- Zhuhai Modern Industrial Innovation Research Institute of South China University of Technology, Zhuhai, 519125, Guangdong Province, People's Republic of China.
| | - Zhengguo Zhang
- School of Chemistry and Chemical Engineering, Guangdong Province, South China University of Technology, Guangzhou, 510641, People's Republic of China.
- Zhuhai Modern Industrial Innovation Research Institute of South China University of Technology, Zhuhai, 519125, Guangdong Province, People's Republic of China.
| | - Wenhui Yuan
- School of Chemistry and Chemical Engineering, Guangdong Province, South China University of Technology, Guangzhou, 510641, People's Republic of China.
- Zhuhai Modern Industrial Innovation Research Institute of South China University of Technology, Zhuhai, 519125, Guangdong Province, People's Republic of China.
| |
Collapse
|
17
|
Liu Y, Song Y, Lu Q, Zhang L, Du L, Yu S, Zhang Y. Covalent Bonding of MXene/COF Heterojunction for Ultralong Cycling Li-Ion Battery Electrodes. Molecules 2024; 29:2899. [PMID: 38930966 PMCID: PMC11207039 DOI: 10.3390/molecules29122899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Covalent organic frameworks (COFs) have emerged as promising renewable electrode materials for LIBs and gained significant attention, but their capacity has been limited by the densely packed 2D layer structures, low active site availability, and poor electronic conductivity. Combining COFs with high-conductivity MXenes is an effective strategy to enhance their electrochemical performance. Nevertheless, simply gluing them without conformal growth and covalent linkage restricts the number of redox-active sites and the structural stability of the composite. Therefore, in this study, a covalently assembled 3D COF on Ti3C2 MXenes (Ti3C2@COF) is synthesized and serves as an ultralong cycling electrode material for LIBs. Due to the covalent bonding between the COF and Ti3C2, the Ti3C2@COF composite exhibits excellent stability, good conductivity, and a unique 3D cavity structure that enables stable Li+ storage and rapid ion transport. As a result, the Ti3C2-supported 3D COF nanosheets deliver a high specific capacity of 490 mAh g-1 at 0.1 A g-1, along with an ultralong cyclability of 10,000 cycles at 1 A g-1. This work may inspire a wide range of 3D COF designs for high-performance electrode materials.
Collapse
Affiliation(s)
- Yongbiao Liu
- Shanghai Putailai New Energy Technology Co., Ltd., Shanghai 210315, China
| | - Yang Song
- Henan Electric Power Transmission & Transformation Construction Co., Ltd., Zhengzhou 450001, China
| | - Quanbing Lu
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Linsen Zhang
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan International Joint Laboratory of Ceramic Energy Materials, Zhengzhou 450001, China
| | - Lulu Du
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Shiying Yu
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yongshang Zhang
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
18
|
Sandhu ZA, Imtiaz K, Raza MA, Ashraf A, Tubassum A, Khan S, Farwa U, Bhalli AH, Al-Sehemi AG. Beyond graphene: exploring the potential of MXene anodes for enhanced lithium-sulfur battery performance. RSC Adv 2024; 14:20032-20047. [PMID: 38911835 PMCID: PMC11191053 DOI: 10.1039/d4ra02704c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/04/2024] [Indexed: 06/25/2024] Open
Abstract
The high theoretical energy density of Li-S batteries makes them a viable option for energy storage systems in the near future. Considering the challenges associated with sulfur's dielectric properties and the synthesis of soluble polysulfides during Li-S battery cycling, the exceptional ability of MXene materials to overcome these challenges has led to a recent surge in the usage of these materials as anodes in Li-S batteries. The methods for enhancing anode performance in Li-S batteries via the use of MXene interfaces are thoroughly investigated in this study. This study covers a wide range of techniques such as surface functionalization, heteroatom doping, and composite structure design for enhancing MXene interfaces. Examining challenges and potential downsides of MXene-based anodes offers a thorough overview of the current state of the field. This review encompasses recent findings and provides a thorough analysis of advantages and disadvantages of adding MXene interfaces to improve anode performance to assist researchers and practitioners working in this field. This review contributes significantly to ongoing efforts for the development of reliable and effective energy storage solutions for the future.
Collapse
Affiliation(s)
- Zeshan Ali Sandhu
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Kainat Imtiaz
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Muhammad Asam Raza
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Adnan Ashraf
- Department of Chemistry, The University of Lahore Lahore Pakistan
| | - Areej Tubassum
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Sajawal Khan
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Umme Farwa
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Ali Haider Bhalli
- Department of Physics, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Abdullah G Al-Sehemi
- Department of Chemistry, College of Science, King Khalid University Abha 61413 Saudi Arabia
| |
Collapse
|
19
|
Jiang Y, Lao J, Dai G, Ye Z. Advanced Insights on MXenes: Categories, Properties, Synthesis, and Applications in Alkali Metal Ion Batteries. ACS NANO 2024; 18:14050-14084. [PMID: 38781048 DOI: 10.1021/acsnano.3c12543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The development and optimization of promising anode material for next-generation alkali metal ion batteries are significant for clean energy evolution. 2D MXenes have drawn extensive attention in electrochemical energy storage applications, due to their multiple advantages including excellent conductivity, robust mechanical properties, hydrophilicity of its functional terminations, and outstanding electrochemical storage capability. In this review, the categories, properties, and synthesis methods of MXenes are first outlined. Furthermore, the latest research and progress of MXenes and their composites in alkali metal ion storage are also summarized comprehensively. A special emphasis is placed on MXenes and their hybrids, ranging from material design and fabrication to fundamental understanding of the alkali ion storage mechanisms to battery performance optimization strategies. Lastly, the challenges and personal perspectives of the future research of MXenes and their composites for energy storage are presented.
Collapse
Affiliation(s)
- Ying Jiang
- School of Material Science and Engineering, Tianjin Key Lab of Photoelectric Materials & Devices, Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin University of Technology, Tianjin 300384, P.R. China
| | - Junchao Lao
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P.R. China
| | - Guangfu Dai
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Material Science and Engineering, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Zhengqing Ye
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Material Science and Engineering, Hebei University of Technology, Tianjin 300401, P.R. China
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, P.R. China
| |
Collapse
|
20
|
Jiang M, Li M, Cui C, Wang J, Cheng Y, Wang Y, Zhang X, Qin J, Cao M. Molecular-Level Interfacial Chemistry Regulation of MXene Enables Energy Storage beyond Theoretical Limit. ACS NANO 2024; 18:7532-7545. [PMID: 38412072 DOI: 10.1021/acsnano.3c12329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Ti3C2Tx MXene often suffers from poor lithium storage behaviors due to its electrochemically unfavorable OH terminations. Herein, we propose molecular-level interfacial chemistry regulation of Ti3C2Tx MXene with phytic acid (PA) to directly activate its OH terminations. Through constructing hydrogen bonds (H-bonds) between oxygen atoms of PA and OH terminations on Ti3C2Tx surface, interfacial charge distribution of Ti3C2Tx has been effectively regulated, thereby enabling sufficient ion-storage sites and expediting ion transport kinetics for high-performance energy storage. The results show that Li ions preferably bind to H-bond acceptors (oxygen atoms from PA), and the flexibility of H-bonds therefore renders their interactions with adsorbed Li ions chemically "tunable", thus alleviating undesirable localized geometric changes of the OH terminations. Meanwhile the H-bond-induced microscopic dipoles can act as directional Li-ion pumps to expedite ion diffusion kinetics with lower energy barrier. As a result, the as-designed Ti3C2Tx/PA achieves a 2.4-fold capacity enhancement compared with pristine Ti3C2Tx (even beyond theoretical capacity), superior long-term cyclability (220.0 mAh g-1 after 2000 cycles at 2.0 A g-1), and broad temperature adaptability (-20 to 50 °C). This work offers a promising interface engineering strategy to regulate microenvironments of inherent terminations for breaking through the energy storage performance of MXenes.
Collapse
Affiliation(s)
- Minxia Jiang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Minxi Li
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chang Cui
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jie Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yang Cheng
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yixin Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xing Zhang
- China Academy of Aerospace Science and Innovation, No. 2, Taihe Third Street, Yizhuang Zone, Daxing District, Beijing 100176, P. R. China
| | - Jinwen Qin
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Minhua Cao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
21
|
Liu N, Yuan J, Zhang X, Ren Y, Yu F, Ma J. 3D grape string-like heterostructures enable high-efficiency sodium ion capture in Ti 3C 2T x MXene/fungi-derived carbon nanoribbon hybrids. MATERIALS HORIZONS 2024; 11:1223-1233. [PMID: 38126361 DOI: 10.1039/d3mh01028g] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
2D transition metal carbides and carbonitrides (MXenes) have emerged as promising electrode materials for electrochemistry ion capture but always suffer from severe layer-restacking and irreversible oxidation that restrains their electrochemical performance. Here we design a dual strategy of microstructure tailoring and heterostructure construction to synthesize a unique 3D grape string-like heterostructure consisting of Ti3C2Tx MXene hollow microspheres wrapped by fungi-derived N-doping carbon nanoribbons (denoted as GMNC). The 3D grape string-like heterostructure effectively avoids the aggregation of Ti3C2Tx MXene sheets and enhances the stability of MXenes, providing abundant active sites for ion capture, and an interconnected conductive bionic nanofiber network for high-rate electron transport. In consequence, GMNC achieves a superior adsorption capacity for sodium ions (Na+) in capacitive deionization (CDI) (162.37 mg gNaCl-1) with an ultra-high instantaneous adsorption rate (30.52 mg g-1 min-1) at an applied voltage of 1.6 V and satisfactory cycle stability over 100 cycles, which is a strong performer among the state-of-the-art values for MXene-based CDI electrodes. In addition, in situ electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D) measurement combined with density functional theory (DFT) reveals the mechanisms of the Na+ capture process in the GMNC heterostructure. This work opens a new avenue for designing high-performance MXenes with a 3D hierarchical heterostructure for advanced electrochemical applications.
Collapse
Affiliation(s)
- Ningning Liu
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China.
| | - Jianhua Yuan
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China.
| | - Xiaochen Zhang
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China.
| | - Yifan Ren
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China.
| | - Fei Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, P. R. China
| | - Jie Ma
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China.
- School of Civil Engineering, Kashi University, Kashi 844000, China
| |
Collapse
|
22
|
Zhou M, Shen Y, Lv L, Zhang Y, Meng X, Yang X, He Q, Zhang B, Pang L, E P, Zhou Z. Lattice matching and halogen regulation for synergistically induced large Li and Na storage by halogenated MXene V 3C 2Cl 2. Phys Chem Chem Phys 2024; 26:7554-7562. [PMID: 38362637 DOI: 10.1039/d3cp05878f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Suffering from the formation of metal-ion dendrites and low storage capacity, MXene materials exhibit unsatisfactory performance in Li and Na storage. In this study, we demonstrate that the MXene V3C2Cl2 structure can induce uniform Li and Na deposition. This is achieved through coherent heterogeneous interface reconstruction and regulated ion tiling by halogen surface termination. The high lattice matching (91% and 99%) between MXenes and Li/Na, along with positive Cl terminal regulation, guides Li/Na ions to nucleate uniformly on the V3C2Cl2 MXene matrix and grow in a planar manner. Cl termination proves effective in regulating Li/Na ions due to its moderate adsorption and diffusion coefficients. Furthermore, upon adsorption onto the Cl-terminated V3C2Cl2 monolayer, Li4 and Na4 clusters undergo dissociation, favoring uniform adsorption over cluster adsorption. V3C2Cl2 MXenes exhibit impressive Li/Na storage capacities of 434.07 mA h g-1 for Li and 217.03 mA h g-1 for Na, surpassing the Li storage capacity of Ti3C2Cl2 by three-fold and the Na storage capacity of V2C by 1.4 times. This study highlights the regulatory role of Cl surface terminals in dendrite formation and Li/Na ion deposition, with potential applications to other metal-ion storage electrodes.
Collapse
Affiliation(s)
- Min Zhou
- School of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Yanqing Shen
- School of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Heilongjiang Provincial Key Laboratory of Plasma Physics and Application Technology, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - LingLing Lv
- School of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Yu Zhang
- School of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Xianghui Meng
- School of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Xin Yang
- School of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Qirui He
- School of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Bing Zhang
- School of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Long Pang
- School of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Peng E
- School of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhongxiang Zhou
- School of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Heilongjiang Provincial Key Laboratory of Plasma Physics and Application Technology, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
23
|
Rong C, Su T, Li Z, Chu T, Zhu M, Yan Y, Zhang B, Xuan FZ. Elastic properties and tensile strength of 2D Ti 3C 2T x MXene monolayers. Nat Commun 2024; 15:1566. [PMID: 38378699 PMCID: PMC10879101 DOI: 10.1038/s41467-024-45657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
Two-dimensional (2D) transition metal nitrides and carbides (MXenes), represented by Ti3C2Tx, have broad applications in flexible electronics, electromechanical devices, and structural membranes due to their unique physical and chemical properties. Despite the Young's modulus of 2D Ti3C2Tx has been theoretically predicted to be 0.502 TPa, which has not been experimentally confirmed so far due to the measurement is extremely restricted. Here, by optimizing the sample preparation, cutting, and transfer protocols, we perform the direct in-situ tensile tests on monolayer Ti3C2Tx nanosheets using nanomechanical push-to-pull equipment under a scanning electron microscope. The effective Young's modulus is 0.484 ± 0.013 TPa, which is much closer to the theoretical value of 0.502 TPa than the previously reported 0.33 TPa by the disputed nanoindentation method, and the measured elastic stiffness is ~948 N/m. Moreover, during the process of tensile loading, the monolayer Ti3C2Tx shows an average elastic strain of ~3.2% and a tensile strength as large as ~15.4 GPa. This work corrects the previous reports by nanoindentation method and demonstrates that the Ti3C2Tx indeed keeps immense potential for broad range of applications.
Collapse
Affiliation(s)
- Chao Rong
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ting Su
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhenkai Li
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Tianshu Chu
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Mingliang Zhu
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yabin Yan
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China.
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China.
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Bowei Zhang
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China.
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China.
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Fu-Zhen Xuan
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China.
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China.
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| |
Collapse
|
24
|
Hu X, Gong N, Zhang Q, Chen Q, Xie T, Liu H, Li Y, Li Y, Peng W, Zhang F, Fan X. N-Terminalized Ti 3 C 2 T x MXene for Supercapacitor with Extraordinary Pseudocapacitance Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306997. [PMID: 37823688 DOI: 10.1002/smll.202306997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/25/2023] [Indexed: 10/13/2023]
Abstract
MXenes have demonstrated significant potential in electrochemical energy storage, particularly in supercapacitors, owing to their exceptional properties. The surface terminal groups of MXene play a pivotal role in pseudocapacitive mechanism. Considering the hindered electrolyte ion transport caused by -F terminal groups and the limited ion binding sites associated with -O terminal groups, this study proposes a novel strategy of replacing -F with -N terminal groups. The modulated MXene-N electrode, featuring a substantial number of -N terminal groups, demonstrates an exceptionally high gravimetric capacitance of 566 F g-1 (at a scan rate of 2 mV s-1 ) or 588 F g-1 (at a discharge rate of 1 A g-1 ) in 1 м H2 SO4 electrolyte, and the potential window is significantly increased. Furthermore, subsequent spectra analysis and density functional theory calculations are employed to investigate the mechanism associated with -N terminal groups. This work exemplifies the significance of terminal modulation in the context of electrochemical energy storage.
Collapse
Affiliation(s)
- Xuewen Hu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Ning Gong
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Qicheng Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Qiming Chen
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Tianzhu Xie
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Huibin Liu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Yan Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Yang Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Fengbao Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing, Zhejiang, 312300, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
25
|
Meng D, Xu M, Li S, Ganesan M, Ruan X, Ravi SK, Cui X. Functional MXenes: Progress and Perspectives on Synthetic Strategies and Structure-Property Interplay for Next-Generation Technologies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304483. [PMID: 37730973 DOI: 10.1002/smll.202304483] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Indexed: 09/22/2023]
Abstract
MXenes are a class of 2D materials that include layered transition metal carbides, nitrides, and carbonitrides. Since their inception in 2011, they have garnered significant attention due to their diverse compositions, unique structures, and extraordinary properties, such as high specific surface areas and excellent electrical conductivity. This versatility has opened up immense potential in various fields, catalyzing a surge in MXene research and leading to note worthy advancements. This review offers an in-depth overview of the evolution of MXenes over the past 5 years, with an emphasis on synthetic strategies, structure-property relationships, and technological prospects. A classification scheme for MXene structures based on entropy is presented and an updated summary of the elemental constituents of the MXene family is provided, as documented in recent literature. Delving into the microscopic structure and synthesis routes, the intricate structure-property relationships are explored at the nano/micro level that dictate the macroscopic applications of MXenes. Through an extensive review of the latest representative works, the utilization of MXenes in energy, environmental, electronic, and biomedical fields is showcased, offering a glimpse into the current technological bottlenecks, such asstability, scalability, and device integration. Moreover, potential pathways for advancing MXenes toward next-generation technologies are highlighted.
Collapse
Affiliation(s)
- Depeng Meng
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Minghua Xu
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Shijie Li
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Muthusankar Ganesan
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, SAR, Hong Kong
| | - Xiaowen Ruan
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, SAR, Hong Kong
| | - Sai Kishore Ravi
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, SAR, Hong Kong
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
26
|
Zhang Y, Ni G, Li Y, Xu C, Li D, Liu B, Zhang X, Huo P. Recent advances and promise of MXene-based composites as electrode materials for sodium-ion and potassium-ion batteries. Dalton Trans 2023; 53:15-32. [PMID: 38018446 DOI: 10.1039/d3dt03176d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
With the increasing demand for sustainable energy and concerns about the scarcity of lithium resources, sodium and potassium ion batteries have emerged as promising alternative energy storage technologies. MXene, as a novel two-dimensional material, possesses exceptional electrical conductivity, high surface area, and tunable structural features that make it an ideal candidate for high-performance electrode materials. However, its limited theoretical capacity hinders its widespread application. To overcome this limitation, MXene has been combined with other materials through synergistic effects between different components to enhance the overall electrochemical performance and expand its application in sodium/potassium ion batteries. Recently, substantial advancements have been realized in the exploration of MXene-based composites as energy storage materials, encompassing their synthesis, design, and the comprehension of charge storage mechanisms. This paper aims to propose a comprehensive summary of the latest developments in MXene-based composites as electrode materials for sodium ion batteries and potassium ion batteries, with a particular emphasis on the enhanced physicochemical properties resulting from composite formation. Moreover, the challenges faced by MXene materials in sodium ion batteries and potassium ion batteries are thoroughly discussed, and future research directions to further advance this field are proposed.
Collapse
Affiliation(s)
- Yingjie Zhang
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Guoxu Ni
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Yuzheng Li
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Chengxiao Xu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Daming Li
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Xuliang Zhang
- Analysis and Testing Center, Shandong University of Technology, 266 Xincun Xi road, Zibo, 255000, PR China
| | - Peipei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
27
|
Qi J, Zhang Y, Wen J, Zhai H, Li M, Zhang Y, Xu H, Yang W, Li C, Wang H, Peng W, Liu J. Freestanding defective ammonium Vanadate@MXene hybrid films cathode for high performance aqueous zinc ion batteries. J Colloid Interface Sci 2023; 652:285-293. [PMID: 37595445 DOI: 10.1016/j.jcis.2023.08.081] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
Aqueous zinc ion batteries (AZIBs) have gained extensive attention due to the numerous advantages of zinc, such as low redox potential, high abundance, low cost as well as high theoretical specific capacity. However, the development of AZIBs is still hampered due to the lack of suitable cathodes. In this work, the freestanding defective ammonium vanadate@MXene (d-NVO@MXene) hybrid film was synthesized by simple vacuum filtration strategy. Due to the presence of the hierarchical freestanding structure, outstanding MXene conductive networks and abundant oxygen vacancy (in the d-NVO nanoribbons), the d-NVO@MXene hybrid film can not only expose more active sites but also possess outstanding conductivity and kinetics of charge transfer/ion diffusion. When the d-NVO@MXene hybrid film was directly used as the cathode, it displayed a high specific capacity of 498 mAh/g at 0.5 A/g and superior cycling stability performance with near 100 % coulomb efficiency. Furthermore, the corresponding storage mechanism was elucidated by ex situ various characterizations. This work provides new ideas for the development of freestanding vanadium-based cathode materials for AZIBs.
Collapse
Affiliation(s)
- Junjie Qi
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Yufen Zhang
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Jinjin Wen
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Haonan Zhai
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Meng Li
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Yaning Zhang
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Huiting Xu
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Wenyue Yang
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Chunli Li
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Honghai Wang
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jiapeng Liu
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
28
|
Geng X, Yang L, Song P. Application of MXene-Based Materials for Cathode in Lithium-Sulfur Batteries. Chemistry 2023:e202303451. [PMID: 38050760 DOI: 10.1002/chem.202303451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
The lithium-sulfur (Li-S) batteries have a high theoretical specific capacity of 1675 mAh ⋅ g-1 and have become the most promising high-energy storage system for the next generation batteries technology. However, their applications are hindered by insulated feature and volume expansion of sulfur, as well as the "shuttle effect" of polysulfides. MXenes own metallic conductivity and strong ability of polysulfides adsorption. Besides, their unique two-dimensional (2D) structure, large specific surface area, abundant functional groups, and adjustability are beneficial to overcome the drawbacks of the sulfur cathode. In this review, different mainstream preparation methods and excellent properties of MXenes are summarized. Significant achievements and recent progress of MXene-based cathodes and interlayers applied to Li-S cathodes are concluded later. Finally, the challenges, possible solutions and potential applications of MXenes for Li-S batteries are also presented.
Collapse
Affiliation(s)
- Xianwei Geng
- State Key Laboratory of Low-Carbon Smart Coal-Fired, Power Generation and Ultra-Clean Emission, China Energy and Technology Research Institute Co., Ltd, Nanjing, 210023, China
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Li Yang
- Department of Chemistry, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Pengfei Song
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| |
Collapse
|
29
|
Saraf M, Zhang T, Averianov T, Shuck CE, Lord RW, Pomerantseva E, Gogotsi Y. Vanadium and Niobium MXenes-Bilayered V 2 O 5 Asymmetric Supercapacitors. SMALL METHODS 2023; 7:e2201551. [PMID: 36802207 DOI: 10.1002/smtd.202201551] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/18/2023] [Indexed: 06/18/2023]
Abstract
MXenes offer high metallic conductivity and redox capacitance that are attractive for high-power, high-energy storage devices. However, they operate limitedly under high anodic potentials due to irreversible oxidation. Pairing them with oxides to design asymmetric supercapacitors may expand the voltage window and increase the energy storage capabilities. Hydrated lithium preintercalated bilayered V2 O5 ( δ-Lix V2 O5 ·nH2 O) is attractive for aqueous energy storage due to its high Li capacity at high potentials; however, its poor cyclability remains a challenge. To overcome its limitations and achieve a wide voltage window and excellent cyclability, it is combined with V2 C and Nb4 C3 MXenes. Asymmetric supercapacitors employing lithium intercalated V2 C (Li-V2 C) or tetramethylammonium intercalated Nb4 C3 (TMA-Nb4 C3 ) MXenes as the negative electrode, and a δ-Lix V2 O5 ·nH2 O composite with carbon nanotubes as the positive electrode in 5 m LiCl electrolyte operate over wide voltage windows of 2 and 1.6 V, respectively. The latter shows remarkably high cyclability-capacitance retention of ≈95% after 10 000 cycles. This work highlights the importance of selecting appropriate MXenes to achieve a wide voltage window and a long cycle life in combination with oxide anodes to demonstrate the potential of MXenes beyond Ti3 C2 in energy storage.
Collapse
Affiliation(s)
- Mohit Saraf
- A.J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Teng Zhang
- A.J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Timofey Averianov
- A.J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Christopher E Shuck
- A.J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Robert W Lord
- A.J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Ekaterina Pomerantseva
- A.J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Yury Gogotsi
- A.J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
30
|
Xue Y, Yang T, Zheng Y, Wang K, Wang E, Wang H, Zhu L, Du Z, Wang H, Chou K, Hou X. Heterojunction Engineering Enhanced Self-Polarization of PVDF/CsPbBr 3 /Ti 3 C 2 T x Composite Fiber for Ultra-High Voltage Piezoelectric Nanogenerator. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300650. [PMID: 37166066 PMCID: PMC10288227 DOI: 10.1002/advs.202300650] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/10/2023] [Indexed: 05/12/2023]
Abstract
Piezoelectric nanogenerator (PENG) for practical application is constrained by low output and difficult polarization. In this work, a kind of flexible PENG with high output and self-polarization is fabricated by constructing CsPbBr3 -Ti3 C2 Tx heterojunctions in PVDF fiber. The polarized charges rapidly migrate to the electrodes from the Ti3 C2 Tx nanosheets by forming heterojunctions, achieving the maximum utilization of polarized charges and leading to enhanced piezoelectric output macroscopically. Optimally, PVDF/4wt%CsPbBr3 /0.6wt%Ti3 C2 Tx -PENG exhibits an excellent voltage output of 160 V under self-polarization conditions, which is higher than other self-polarized PENG previously. Further, the working principle and self-polarization mechanism are uncovered by calculating the interfacial charge and electric field using first-principles calculation. In addition, PVDF/4wt%CsPbBr3 /0.6wt%Ti3 C2 Tx -PENG exhibits better water and thermal stability attributed to the protection of PVDF. It is also evaluated in practice by harvesting the energy from human palm taps and successfully lighting up 150 LEDs and an electronic watch. This work presents a new idea of design for high-performance self-polarization PENG.
Collapse
Affiliation(s)
- You Xue
- Institute for Carbon NeutralityUniversity of Science and Technology Beijing100083BeijingChina
| | - Tao Yang
- Institute for Carbon NeutralityUniversity of Science and Technology Beijing100083BeijingChina
| | - Yapeng Zheng
- Institute for Carbon NeutralityUniversity of Science and Technology Beijing100083BeijingChina
| | - Kang Wang
- Institute for Carbon NeutralityUniversity of Science and Technology Beijing100083BeijingChina
| | - Enhui Wang
- Institute for Carbon NeutralityUniversity of Science and Technology Beijing100083BeijingChina
| | - Hongyang Wang
- State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental Sciences100012BeijingChina
| | - Laipan Zhu
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of Sciences100083BeijingChina
| | - Zhentao Du
- MOE Key Laboratory of New Processing Technology for Non‐ferrous Metals and MaterialsGuangxi Key Laboratory of Processing for Non‐ferrous Metals and Featured MaterialsGuangxi University530004NanningChina
| | - Hailong Wang
- School of Materials Science EngineeringZhengzhou University450001ZhengzhouP. R. China
| | - Kuo‐Chih Chou
- Institute for Carbon NeutralityUniversity of Science and Technology Beijing100083BeijingChina
| | - Xinmei Hou
- Institute for Carbon NeutralityUniversity of Science and Technology Beijing100083BeijingChina
| |
Collapse
|
31
|
Li Z, Wei Y, Liu Y, Yan S, Wu M. Dual Strategies of Metal Preintercalation and In Situ Electrochemical Oxidization Operating on MXene for Enhancement of Ion/Electron Transfer and Zinc-Ion Storage Capacity in Aqueous Zinc-Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206860. [PMID: 36646513 PMCID: PMC10015861 DOI: 10.1002/advs.202206860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/15/2022] [Indexed: 05/27/2023]
Abstract
As an emerging two-dimensional material, MXenes exhibit enormous potentials in the fields of energy storage and conversion, due to their superior conductivity, effective surface chemistry, accordion-like layered structure, and numerous ordered nanochannels. However, interlayer accumulation and chemical sluggishness of structural elements have hampered the demonstration of the superiorities of MXenes. By metal preintercalation and in situ electrochemical oxidization strategies on V2 CTx , MXene has enlarged its interplanar spacing and excited the outermost vanadium atoms to achieve frequent transfer and high storage capacity of Zn ions in aqueous zinc-ion batteries (ZIBs). Benefiting from the synergistic effects of these strategies, the resulting VOx /Mn-V2 C electrode exhibits the high capacity of 530 mA h g-1 at 0.1 A g-1 , together with a remarkable energy density of 415 W h kg-1 and a power density of 5500 W kg-1 . Impressively, the electrode delivers excellent cycling stability with Coulombic efficiency of nearly 100% in 2000 cycles at 5 A g-1 . The satisfactory electrochemical performances bear comparison with those in reported vanadium-based and MXene-based aqueous ZIBs. This work provides a new methodology for safe preparation of outstanding vanadium-based electrodes and extends the applications of MXenes in the energy storage field.
Collapse
Affiliation(s)
- Zhonglin Li
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yifan Wei
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002P. R. China
- College of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Yongyao Liu
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002P. R. China
| | - Shuai Yan
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002P. R. China
- College of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Mingyan Wu
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
32
|
Li N, Zhan Y, Wu H, Fan J, Jia J. Synergistically boosting the anchoring effect and catalytic activity of MXenes as bifunctional electrocatalysts for sodium-sulfur batteries by single-atom catalyst engineering. NANOSCALE 2023; 15:2747-2755. [PMID: 36655846 DOI: 10.1039/d2nr05930d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
MXene based sulfur hosts have attracted enormous attention in room temperature sodium-sulfur (RT Na-S) batteries due to their strong affinity towards soluble sodium polysulfides (NaPSs). However, their electrocatalytic performance needs further improvement. Here, a series of single non-noble transition metal (TM = Fe, Co, Ni, and Cu) atoms anchored on Ti2CS2 (TM@Ti2CS2) were proposed as bifunctional sulfur hosts for Na-S batteries. The results testify that the introduction of TMs dramatically enhanced the chemical interaction between sulfur-containing species and Ti2CS2, which is attributed to the co-formation of TM-S and Na-S covalent bonds. Importantly, compared with pristine Ti2CS2, the sulfur reduction reaction (SRR) is thermodynamically more favorable on TM@Ti2CS2. In addition, the incorporation of Fe, Co, and Ni atoms is also conducive to promoting the dissociation of Na2S. The density of states (DOS) results suggest that TM@Ti2CS2 maintains metallic conductivity during the whole charge and discharge process. Overall, constructing single atom catalysts is an effective strategy to further improve the electrochemical performance of MXene based sulfur hosts for Na-S batteries.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030000, People's Republic of China.
| | - Yulu Zhan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Haishun Wu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030000, People's Republic of China.
| | - Jun Fan
- Department of Materials Science& Engineering, City University of Hong Kong, Hong Kong, China.
- Center for Advance Nuclear Safety and Sustainable Development, City University of Hong Kong, Hong Kong, China
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030000, People's Republic of China.
| |
Collapse
|