1
|
Cui H, Li J. Hydrogel adhesives for tissue recovery. Adv Colloid Interface Sci 2025; 341:103496. [PMID: 40168713 DOI: 10.1016/j.cis.2025.103496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/11/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025]
Abstract
Hydrogel adhesives (HAs) are promising and rewarding tools for improving tissue therapy management. Such HAs had excellent properties and potential applications in biological tissues, such as suture replacement, long-term administration, and hemostatic sealing. In this review, the common designs and the latest progress of HAs based on various methodologies are systematically concluded. Thereafter, how to deal with interfacial water to form a robust wet adhesion and how to balance the adhesion and non-adhesion are underlined. This review also provides a brief description of gelation strategies and raw materials. Finally, the potentials of wound healing, hemostatic sealing, controlled drug delivery, and the current applications in dermal, dental, ocular, cardiac, stomach, and bone tissues are discussed. The comprehensive insight in this review will inspire more novel and practical HAs in the future.
Collapse
Affiliation(s)
- Haohao Cui
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jingguo Li
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Xing X, Gong Z, Chen C, Lin Y, Liu P, Xiao T, Yu H, Li Y, Lin Y, Tan G, Ning C, Wu Z, Wang L, Zhou L. Injectable bioresponsive bone adhesive hydrogels inhibit NLRP3 inflammasome on demand to accelerate diabetic fracture healing. Biomaterials 2025; 317:123059. [PMID: 39731843 DOI: 10.1016/j.biomaterials.2024.123059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/16/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
Diabetes is associated with excessive inflammation, which negatively impacts the fracture healing process and delays bone repair. Previously, growing evidence indicated that activation of the nod-like receptor (NLR) family, such as nod-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome induces a vicious cycle of chronic low-grade inflammatory responses in diabetic fracture. Here, we describe the synthesis of a bone adhesive hydrogel that can be locally injected into the fracture site and releases a natural inhibitor of NLRP3 (rutin) in response to pathological cue reactive oxygen species activity (ROS). The hydrogel (denoted as RPO) was facilely formed by the cross-linking of rutin-functionalized gelatin, poly(vinyl alcohol), and oxidized starch based on the dynamic schiff base and boronate ester bond. Specifically, rutin is conjugated in the RPO hydrogel via a ROS linker and is released as the linker is cleaved by active ROS. In vitro studies demonstrate that RPO hydrogel effectively mitigates oxidative stress, alleviates mitochondrial dysfunction, and limits the overactivation of NLRP3 inflammasome in bone marrow derived macrophages, thereby promoting osteogenic differentiation of bone marrow mesenchymal stem cells. In a diabetic rat fracture model, RPO hydrogel significantly accelerates bone repair by modulating the inflammatory microenvironment. Our results demonstrate that local, on-demand NLRP3 inhibition for the treatment of diabetic fracture is achievable by using an injectable bioresponsive adhesive RPO hydrogel.
Collapse
Affiliation(s)
- Xudan Xing
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Zunlei Gong
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Chuke Chen
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Yeyin Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Peiyi Liu
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Tianhua Xiao
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Hui Yu
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Yuanxin Li
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Yucong Lin
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Guoxin Tan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Chengyun Ning
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510641, PR China
| | - Zenghui Wu
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China.
| | - Le Wang
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China.
| | - Lei Zhou
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China.
| |
Collapse
|
3
|
Kim K, Min S, Thangam R, Tag KR, Lee HJ, Heo J, Jung H, Swe TT, Zare I, Song G, Najafabadi AH, Lee J, Jung HD, Kim JS, Hur S, Song HC, Park SG, Zhang K, Zhao P, Bian L, Kim SH, Yoon J, Ahn JP, Kim HK, Kang H. Dynamic hierarchical ligand anisotropy for competing macrophage regulation in vivo. Bioact Mater 2025; 47:121-135. [PMID: 39897585 PMCID: PMC11787691 DOI: 10.1016/j.bioactmat.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/30/2024] [Accepted: 01/10/2025] [Indexed: 02/04/2025] Open
Abstract
Diverse connective tissues exhibit hierarchical anisotropic structures that intricately regulate homeostasis and tissue functions for dynamic immune response modulation. In this study, remotely manipulable hierarchical nanostructures are tailored to exhibit multi-scale ligand anisotropy. Hierarchical nanostructure construction involves coupling liganded nanoscale isotropic/anisotropic Au (comparable to few integrin molecules-scale) to the surface of microscale isotropic/anisotropic magnetic Fe3O4 (comparable to integrin cluster-scale) and then elastically tethering them to a substrate. Systematic independent tailoring of nanoscale or microscale ligand isotropy versus anisotropy in four different hierarchical nanostructures with constant liganded surface area demonstrates similar levels of integrin molecule bridging and macrophage adhesion on the nanoscale ligand isotropy versus anisotropy. Conversely, the levels of integrin cluster bridging across hierarchical nanostructures and macrophage adhesion are significantly promoted by microscale ligand anisotropy compared with microscale ligand isotropy. Furthermore, microscale ligand anisotropy dominantly activates the host macrophage adhesion and pro-regenerative M2 polarization in vivo over the nanoscale ligand anisotropy, which can be cyclically reversed by substrate-proximate versus substrate-distant magnetic manipulation. This unprecedented scale-specific regulation of cells can be diversified by unlimited tuning of the scale, anisotropy, dimension, shape, and magnetism of hierarchical structures to decipher scale-specific dynamic cell-material interactions to advance immunoengineering strategies.
Collapse
Affiliation(s)
- Kanghyeon Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Kyong-Ryol Tag
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyun-Jeong Lee
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jeongyun Heo
- Center for Theragnosis, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hwapyung Jung
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Thet Thet Swe
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd., Shiraz, 7178795844, Iran
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | | | - Junmin Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
| | - Hyun-Do Jung
- Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Sunghoon Hur
- Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Hyun-Cheol Song
- Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sung-Gyu Park
- Department of Nano-Bio Convergence, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 51508, Republic of Korea
- Department of Future Convergence Materials, Korea University, Seoul, 02841, Republic of Korea
| | - Kunyu Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Pengchao Zhao
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Se Hoon Kim
- Center for Theragnosis, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jae-Pyoung Ahn
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hong-Kyu Kim
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Department of Future Convergence Materials, Korea University, Seoul, 02841, Republic of Korea
- College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
4
|
Zhou D, Wang W, Ma W, Xian Y, Zhang Z, Pan Z, Li Y, Huang L, Liu L, Zheng Z, Liu H, Wu D. Cartilage-Adaptive Hydrogels via the Synergy Strategy of Protein Templating and Mechanical Training. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414081. [PMID: 40143783 DOI: 10.1002/adma.202414081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/12/2025] [Indexed: 03/28/2025]
Abstract
Cartilage, as a load-bearing tissue with high-water content, exhibits excellent elasticity and high strength. However, it is still a grand challenge to develop cartilage-adaptive biomaterials for replacement or regeneration of damaged cartilage tissue. Herein, protein templating and mechanical training is integrated to fabricate crystal-mediated oriented chitosan nanofibrillar hydrogels (O-CN gels) with similar mechanical properties and water content of cartilage. The O-CN gels with an ≈74 wt% water content exhibit high tensile strength (≈15.4 MPa) and Young's modulus (≈24.1 MPa), as well as excellent biocompatibility, antiswelling properties, and antibacterial capabilities. When implanted in the box defect of rat's tails, the O-CN gels seal the cartilage (annulus fibrosus) defect, maintain the intervertebral disc height and finally prevent the nucleus herniation. This synergy strategy of protein templating and mechanical training opens up a new possibility to design highly mechanical hydrogels, especially for the replacement and regeneration of load-bearing tissues.
Collapse
Affiliation(s)
- Dan Zhou
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wantao Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wenzheng Ma
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yiwen Xian
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zijie Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zheng Pan
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yixi Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Pain Research Center, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Hongmei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Decheng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
5
|
Hu L, Luo H, Xie J, Li M, Lu H, Shen H, Cui W, Ran R. Mixed-Solvent-Induced Phase Separation Enables Anisotropy and Strengthening of Hydrogels Composed of Flexible Network Chains. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410734. [PMID: 39916560 DOI: 10.1002/smll.202410734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/29/2025] [Indexed: 04/03/2025]
Abstract
Achieving anisotropy in hydrogels is key to replicating the structural and mechanical properties of biological tissues. However, inducing anisotropy in hydrogel systems composed solely of flexible amorphous polymers is challenging, as these polymers typically exhibit thermally unstable anisotropic states, i.e., they are easy to disorient. In this study, a mixed-solvent-induced phase-separation approach to stabilize the orientation of such hydrogel networks after pre-stretching is introduced. Using polyacrylamide, a flexible polymer with a persistence length on the order of 10-1 nm, as a model system, it is demonstrated that phase separation in a mixed solvent leads to the formation of dense and dilute polymer phases, with the dense phase effectively locking the anisotropy through robust inter- and intra-polymer interactions. A series of characterizations confirm that partial orientation can be preserved in the prestretched, phase-separated gel upon relaxation, resulting in significant mechanical enhancement along the orientation direction, including improvements in fracture stress, Young's modulus, and fracture toughness. The generality of this method, showing its effectiveness in other hydrogel systems and its adaptability to different solvent combinations is also validated. This work presents an unconventional strategy for preparing anisotropic hydrogels that typically struggle to maintain structural integrity.
Collapse
Affiliation(s)
- Longyu Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Hongmei Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiacen Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Min Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Honglang Lu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Huanwei Shen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Wei Cui
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Rong Ran
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
6
|
Chen Z, Xu C, Chen X, Huang J, Guo Z. Advances in Electrically Conductive Hydrogels: Performance and Applications. SMALL METHODS 2025; 9:e2401156. [PMID: 39529563 DOI: 10.1002/smtd.202401156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Electrically conductive hydrogels are highly hydrated 3D networks consisting of a hydrophilic polymer skeleton and electrically conductive materials. Conductive hydrogels have excellent mechanical and electrical properties and have further extensive application prospects in biomedical treatment and other fields. Whereas numerous electrically conductive hydrogels have been fabricated, a set of general principles, that can rationally guide the synthesis of conductive hydrogels using different substances and fabrication methods for various application scenarios, remain a central demand of electrically conductive hydrogels. This paper systematically summarizes the processing, performances, and applications of conductive hydrogels, and discusses the challenges and opportunities in this field. In view of the shortcomings of conductive hydrogels in high electrical conductivity, matchable mechanical properties, as well as integrated devices and machines, it is proposed to synergistically design and process conductive hydrogels with applications in complex surroundings. It is believed that this will present a fresh perspective for the research and development of conductive hydrogels, and further expand the application of conductive hydrogels.
Collapse
Affiliation(s)
- Zhiwei Chen
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| | - Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xionggang Chen
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| |
Collapse
|
7
|
Choi S, Fan Z, Im J, Nguyen TL, Park N, Choi Y, Lee JY, Kim J. Tendon-mimicking anisotropic alginate-based double-network composite hydrogels with enhanced mechanical properties and high impact absorption. Carbohydr Polym 2025; 352:123193. [PMID: 39843095 DOI: 10.1016/j.carbpol.2024.123193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/22/2024] [Accepted: 12/25/2024] [Indexed: 01/24/2025]
Abstract
Tendons are anisotropic tissues with exceptional mechanical properties, which result from their unique anisotropic structure and mechanical behavior under stress. While research has focused on replicating anisotropic structures and mechanical properties of tendons, fewer studies have examined their specific mechanical behaviors. Here, we present a simple method for creating calcium-crosslinked alginate-based double-network hydrogels that mimics tendons by exhibiting anisotropic structure, high mechanical strength and toughness, and a distinctive "toe region" when stretched. The tendon-mimicking hydrogel was fabricated using alginate/polyacrylamide double-network embedded with various mesoporous silica particles, followed by pre-stretching and fixation. Our findings show that hydrogels embedded with high aspect-ratio rod-shaped mesoporous silica microparticles and subjected to multiple pre-stretching cycles in the elastic range, exhibited the most favorable mechanical properties, including a toe region, closely resembling natural tendons. The hydrogels exhibited elastic modulus of 13.3 MPa, tensile strength of 5 MPa, and toughness of 3.5 MJ m-3, even in its swollen state. An impact absorption test demonstrated the hydrogel's high energy dissipation and damping capacity, effectively absorbing external forces and functioning similarly to tendons. These anisotropic composite hydrogels, with their superior mechanical properties, offer considerable potential for applications in artificial tissue engineering, particularly where tendon-like mechanical characteristics are needed.
Collapse
Affiliation(s)
- Suji Choi
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Ziwen Fan
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jihye Im
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Thanh Loc Nguyen
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Nuri Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Youngjin Choi
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jun Yup Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Department of MetaBioHealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| |
Collapse
|
8
|
Chen J, Xiong S, Li N, Yu J, Wang Y, Hu Z. Liquid Metal Particles Decorated by Poly(imidazole-urea) as Versatile Adhesive and Recyclable Inks for Substrate-Irrelevant Direct Writing. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16000-16009. [PMID: 40013748 DOI: 10.1021/acsami.4c21108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Liquid metals (LMs) with fluidity and conductivity are widely applied in flexible electronics. However, the surface patterning of liquid metals (LMs) is restricted by the low adhesion effect on the substrates because of the intrinsic high surface tension. In this study, a versatile adhesive conductive poly(imidazole-urea)/eutectic Ga75.5In24.5 alloy (PIU/EGaIn) ink is proposed by wrapping the EGaIn particles with PIU through metal coordination to realize substrate-independent direct writing. The adhesion of PIU guarantees that the PIU/EGaIn ink can be written smoothly on different substrates, ranging from flexible to rigid and plane to camber. Complex patterns can also be stamped on the substrate by transfer printing. The maximum conductivity of the handwriting trace can reach as high as 1.3 × 106 S/m due to the highly efficient stability of EGaIn particles with a low content of residue PIU. The written circuit demonstrates high stability and maintains constant conductivity after 500 cycles of deformations (folding, bending, and stretching), thanks to the good adhesion effect of PIU with substrates. In addition, the resistance touch sensor was patterned to detect finger contact as a demonstration of potential application. The PIU/EGaIn ink waste can be recycled using an alkaline solution owing to the intrinsic degradability of PIU. This strategy offers a new choice for universal adhesive conductive ink that is suitable for environmentally friendly flexible electronics.
Collapse
Affiliation(s)
- Jingjing Chen
- State Key Laboratory of Advanced Fiber Materials, Key Laboratory of High Performance Fibers & Products, Ministry of Education, College of Materials Science and Engineering, Donghua University, 201620 Shanghai, P. R. China
| | - Shuqiang Xiong
- Shanghai Aerospace Equipments Manufacturer Co. Ltd., Shanghai Engineering Research Center of Specialized Polymer Materials for Aerospace, 200245 Shanghai, P. R. China
| | - Na Li
- State Key Laboratory of Advanced Fiber Materials, Key Laboratory of High Performance Fibers & Products, Ministry of Education, College of Materials Science and Engineering, Donghua University, 201620 Shanghai, P. R. China
| | - Junrong Yu
- State Key Laboratory of Advanced Fiber Materials, Key Laboratory of High Performance Fibers & Products, Ministry of Education, College of Materials Science and Engineering, Donghua University, 201620 Shanghai, P. R. China
| | - Yan Wang
- State Key Laboratory of Advanced Fiber Materials, Key Laboratory of High Performance Fibers & Products, Ministry of Education, College of Materials Science and Engineering, Donghua University, 201620 Shanghai, P. R. China
| | - Zuming Hu
- State Key Laboratory of Advanced Fiber Materials, Key Laboratory of High Performance Fibers & Products, Ministry of Education, College of Materials Science and Engineering, Donghua University, 201620 Shanghai, P. R. China
| |
Collapse
|
9
|
Dai X, Wu D, Xu K, Ming P, Cao S, Yu L. Viscoelastic Mechanics: From Pathology and Cell Fate to Tissue Regeneration Biomaterial Development. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8751-8770. [PMID: 39899815 DOI: 10.1021/acsami.4c18174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Viscoelasticity is the mechanical feature of living tissues and the cellular extracellular matrix (ECM) and has been recognized as an essential biophysical cue in cell function and fate regulation, tissue development and homeostasis maintenance, and disease progression. These findings provide new insights for the development of biomaterials with comparable viscoelastic properties as native ECMs and the tissue matrix, displaying promising applications in regeneration medicine. In this review, the relationship between matrix viscoelasticity and tissue functions (e.g., development and regeneration) in physiological conditions and disease progression (e.g., aging, degenerative, fibrosis, and tumor) in pathological conditions will be especially highlighted to figure out the potential therapeutic target for disease treatment and inspiration for tissue regeneration related biomaterial development. Furthermore, findings and an understanding of the cell response to ECM viscoelasticity and the mechanism behind it are comprehensively summarized to provide a pathophysiological basis for viscoelastic biomaterials design. The advances of viscoelastic biomaterials on defect tissue repair are also reviewed, suggesting the significance of the native matrix matchable microenvironment on tissue regeneration. Although challenging, tunable viscoelastic biomaterials that match the mechanical properties of native tissues and ECMs show great promise. They could promote tissue regeneration, treat degenerative diseases, and support the development of organoids and artificial organs.
Collapse
Affiliation(s)
- Xinyu Dai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Dan Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Ke Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Piaoye Ming
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Shuqin Cao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Leixiao Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| |
Collapse
|
10
|
Li S, Yin W, Liu Y, Yang C, Zhai Z, Xie M, Ye Z, Song X. Anisotropic conductive scaffolds for post-infarction cardiac repair. Biomater Sci 2025; 13:542-567. [PMID: 39688676 DOI: 10.1039/d4bm01109k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Myocardial infarction (MI) remains one of the most common and lethal cardiovascular diseases (CVDs), leading to the deterioration of cardiac function due to myocardial cell necrosis and fibrous scar tissue formation. Myocardial infarction (MI) remains one of the most common and lethal cardiovascular diseases (CVDs), leading to the deterioration of cardiac function due to myocardial cell necrosis and fibrous scar tissue formation. After MI, the anisotropic structural properties of myocardial tissue are destroyed, and its mechanical and electrical microenvironment also undergoes a series of pathological changes, such as ventricular wall stiffness, abnormal contraction, conduction network disruption, and irregular electrical signal propagation, which may further induce myocardial remodeling and even lead to heart failure. Therefore, bionic reconstruction of the anisotropic structural-mechanical-electrical microenvironment of the infarct area is key to repairing damaged myocardium. This article first summarizes the pathological changes in muscle fibre structure and conductive microenvironment after cardiac injury, and focuses on the classification and preparation methods of anisotropic conductive materials. In addition, the effects of these anisotropic conductive materials on the behavior of cardiac resident cells after myocardial infarction, such as directional growth, maturation, proliferation and migration, and the differentiation fate of stem cells and the possible molecular mechanisms involved are summarized. The design strategies for anisotropic conductive scaffolds for myocardial repair in future clinical research are also discussed, with the aim of providing new insights for researchers in related fields.
Collapse
Affiliation(s)
- Shimin Li
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.
| | - Wenming Yin
- Department of Neurology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Yali Liu
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong 528000, China
| | - Chang Yang
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.
| | - Zitong Zhai
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.
| | - Mingxiang Xie
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.
| | - Ziyi Ye
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.
| | - Xiaoping Song
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.
- Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
11
|
Xu C, Yang R, Wen R, Dai Y, Lu X, Fang S, Peng Y, Zhang Z, Zhou C, Zeng Q, Li Q, Xu S. Woven Cement Slurry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2418158. [PMID: 39865853 DOI: 10.1002/adma.202418158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/16/2025] [Indexed: 01/28/2025]
Abstract
Weaving, a pivotal technique in human construction activities since the Neolithic era, remains unattainable in modern concrete construction. Here, a novel particle-polymer coalescence strategy is proposed, which involves electrostatic, bridging, coordinating, and hydrogen bonding interactions, to establish balanced particle cohesion, enabling the fabrication of stretchable cement slurry. The bending, knotting, coiling, winding, and interlacing of cement filaments for structural textiles is successfully realized beyond traditional formwork casting, grouting, and 3D-printing, and fabricate the first-ever Chinese knot woven with cement. Weaving construction builds a triaxially cross-penetrating structure that greatly promotes interlayer strength and toughness by ≈208.5% and 676.5% compared to the state-of-the-art layer-by-layer 3D printed structure. These findings not only make a breakthrough in concrete construction technology but also provide solutions for fabricating multi-directional woven structures with great engineering-application potentials.
Collapse
Affiliation(s)
- Chengji Xu
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
| | - Rijiao Yang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
| | - Rongjia Wen
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
| | - Yuqing Dai
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
- Institute for Building Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Xiaohan Lu
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
| | - Sen Fang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
| | - Yu Peng
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
| | - Zhidong Zhang
- Institute for Building Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Chunsheng Zhou
- School of Civil Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Qiang Zeng
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
| | - Qinghua Li
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
| | - Shilang Xu
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
12
|
Chen K, Liu Z, Zhou X, Zheng W, Cao H, Yang Z, Wang Z, Ning C, Li Q, Zhao H. Hierarchy Reproduction: Multiphasic Strategies for Tendon/Ligament-Bone Junction Repair. Biomater Res 2025; 29:0132. [PMID: 39844867 PMCID: PMC11751208 DOI: 10.34133/bmr.0132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/15/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
Tendon/ligament-bone junctions (T/LBJs) are susceptible to damage during exercise, resulting in anterior cruciate ligament rupture or rotator cuff tear; however, their intricate hierarchical structure hinders self-regeneration. Multiphasic strategies have been explored to fuel heterogeneous tissue regeneration and integration. This review summarizes current multiphasic approaches for rejuvenating functional gradients in T/LBJ healing. Synthetic, natural, and organism-derived materials are available for in vivo validation. Both discrete and gradient layouts serve as sources of inspiration for organizing specific cues, based on the theories of biomaterial topology, biochemistry, mechanobiology, and in situ delivery therapy, which form interconnected network within the design. Novel engineering can be constructed by electrospinning, 3-dimensional printing, bioprinting, textiling, and other techniques. Despite these efforts being limited at present stage, multiphasic scaffolds show great potential for precise reproduction of native T/LBJs and offer promising solutions for clinical dilemmas.
Collapse
Affiliation(s)
- Kaiting Chen
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| | - Zezheng Liu
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| | - Xinying Zhou
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| | - Wanyu Zheng
- School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - He Cao
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| | - Zijian Yang
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| | - Zhengao Wang
- School of Materials Science and Engineering,
South China University of Technology, Guangzhou 510006, P. R. China
| | - Chengyun Ning
- School of Materials Science and Engineering,
South China University of Technology, Guangzhou 510006, P. R. China
| | - Qingchu Li
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| | - Huiyu Zhao
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| |
Collapse
|
13
|
Zhang Y, Yang J, Wan W, Zhao Q, Di M, Zhang D, Liu G, Chen C, Sun X, Zhang W, Bian H, Liu Y, Tian Y, Xue L, Dou Y, Wang Z, Li Q, Yang Q. Evaluation of biological performance of 3D printed trabecular porous tantalum spine fusion cage in large animal models. J Orthop Translat 2025; 50:185-195. [PMID: 39895865 PMCID: PMC11786794 DOI: 10.1016/j.jot.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 02/04/2025] Open
Abstract
Background The materials for artificial bone scaffolds have long been a focal point in biomaterials research. Tantalum, with its excellent bioactivity and tissue compatibility, has gradually become a promising alternative material. 3D printing technology shows unique advantages in designing complex structures, reducing costs, and providing personalized customization in the manufacture of porous tantalum fusion cages. Here we report the pre-clinical large animal (sheep) study on the newly developed 3D printed biomimetic trabecular porous tantalum fusion cage for assessing the long-term intervertebral fusion efficacy and safety. Methods Porous tantalum fusion cages were fabricated using laser powder bed fusion (LPBF) and chemical vapor deposition (CVD) methods. The fusion cages were characterized using scanning electron microscopy (SEM) and mechanical compression tests. Small-Tailed Han sheep served as the animal model, and the two types of fusion cages were implanted in the C3/4 cervical segments and followed for up to 12 months. Imaging techniques, including X-ray, CT scans, and Micro CT, were used to observe the bone integration of the fusion cages. Hard tissue sections were used to assess osteogenic effects and bone integration. The range of motion (ROM) of the motion segments was evaluated using a biomechanical testing machine. Serum biochemical indicators and pathological analysis of major organs were conducted to assess biocompatibility. Results X-ray imaging showed that both the 3D-printed and chemical vapor deposition porous tantalum fusion cages maintained comparable average intervertebral disc heights. Due to the presence of metal artifacts, CT and Micro CT imaging could not effectively analyze bone integration. Histomorphology data indicated that both the 3D-printed and chemical vapor deposition porous tantalum fusion cages exhibited similar levels of bone contact and integration at 3, 6, and 12 months, with bone bridging observed at 12 months. Both groups of fusion cages demonstrated consistent mechanical stability across all time points. Serum biochemistry showed no abnormalities, and no significant pathological changes were observed in the heart, liver, spleen, lungs, and kidneys. Conclusion This study confirms that 3D-printed and chemical vapor deposition porous tantalum fusion cages exhibit comparable, excellent osteogenic effects and long-term biocompatibility. Additionally, 3D-printed porous tantalum fusion cages offer unique advantages in achieving complex structural designs, low-cost manufacturing, and personalized customization, providing robust scientific support for future clinical applications. The translational potential of this article The translational potential of this paper is to use 3D printed biomimetic trabecular porous tantalum spine fusion cage with bone trabecular structure and validating its feasibility in large animal models (sheep). This study provides a basis for further research into the clinical application of the 3D printed biomimetic trabecular porous tantalum spine fusion cage.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Jingzhou Yang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Guangdong, China
- Shenzhen Dazhou Medical Technology Co., Ltd., Guangdong, China
| | - Wentao Wan
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Qingqian Zhao
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Mingyuan Di
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Dachen Zhang
- Shenzhen Dazhou Medical Technology Co., Ltd., Guangdong, China
| | - Gang Liu
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Chao Chen
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Wei Zhang
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Hebei Medical University, Hebei, China
| | - Hanming Bian
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Yang Liu
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Ye Tian
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Lu Xue
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Zheng Wang
- Department of Orthopedics, No.1 Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiulin Li
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Guangdong, China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, China
| |
Collapse
|
14
|
Jiang Y, Zhu C, Ma X, Fan D. Smart hydrogel-based trends in future tendon injury repair: A review. Int J Biol Macromol 2024; 282:137092. [PMID: 39489238 DOI: 10.1016/j.ijbiomac.2024.137092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Despite advances in tissue engineering for tendon repair, rapid functional repair is still challenging due to its specificity and is prone to complications such as postoperative infections and tendon adhesions. Smart responsive hydrogels provide new ideas for tendon therapy with their flexibly designed three-dimensional cross-linked polymer networks that respond to specific stimuli. In recent years, a variety of smart-responsive hydrogels have been developed for the treatment of tendon disorders, showing great research promise and ability to address complex challenges. This article provides a comprehensive review of recent advances in the field of smart-responsive hydrogels for the treatment of tendon disorders, with a special focus on their response properties to different physical, chemical and biological stimuli. The multiple functional properties of these innovative materials are discussed in depth, including excellent biocompatibility and biodegradability, excellent mechanical properties, biomimetic structural design, convenient injectability, and unique self-healing capabilities. These properties enable the smart-responsive hydrogels to demonstrate significant advantages in solving difficult problems in the treatment of tendon disorders, such as precise drug delivery, tendon adhesion prevention and postoperative infection control. In addition, the article looks at the future prospects of smart-responsive hydrogels and analyses the challenges they may face in achieving widespread application.
Collapse
Affiliation(s)
- Yingxue Jiang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China
| | - Xiaoxuan Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China.
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
15
|
Feng H, Wang S, Chen K, Zhang X, Feng C, Li X, Yang W, Zhang D, Ge S. Strong Bonding of Robust Lubricating Hydrogels to Porous Substrates for Joint Replacement. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64074-64086. [PMID: 39513524 DOI: 10.1021/acsami.4c16046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Hydrogels with excellent mechanical and lubrication properties have been developed rapidly, laying the foundation for their application in cartilage replacement. However, the combination of robust hydrogels and substrates under different forms of movement is a great challenge. In addition, due to differences in modulus, the stress shielding effect caused by implantable artificial joint metal materials can lead to bone resorption. Here, we proposed to combine a 3D printed porous titanium alloy with a high-strength lubricating hydrogel to construct an integrated joint substitute material. The porous titanium alloy TC4 substrate constructed by 3D printing possesses a modulus similar to that of human bone. The strong bonding of the hydrogel and TC4 was achieved through two strategies: mechanical interlocking and chemical bonding. The combination of the alloy substrate and hydrogel realizes the construction of a bionic lubricating cartilage layer on the surface of traditional artificial joint materials. The hydrogel has excellent bonding properties with the porous substrate under different test conditions. Truly human-like joint sockets were prepared for the first time with soft-soft and soft-hard contact modes. Under conditions simulating human motion, the hydrogel maintains a low friction coefficient and still has excellent substrate adhesion after 100,000 cycles. This study further pushes the application of hydrogels in biolubrication into practice.
Collapse
Affiliation(s)
- Haiyan Feng
- School of Chemical Engineering and Technology, School of Materials Science and Physics, School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Song Wang
- School of Chemical Engineering and Technology, School of Materials Science and Physics, School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Kai Chen
- School of Chemical Engineering and Technology, School of Materials Science and Physics, School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xinyue Zhang
- School of Chemical Engineering and Technology, School of Materials Science and Physics, School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Cunao Feng
- School of Chemical Engineering and Technology, School of Materials Science and Physics, School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Xiaowei Li
- School of Chemical Engineering and Technology, School of Materials Science and Physics, School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Weibo Yang
- Zhejiang Guanlin Machinery Inc., Huzhou 313000, China
| | - Dekun Zhang
- School of Chemical Engineering and Technology, School of Materials Science and Physics, School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Shirong Ge
- School of Mechanical Electronic and Information Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
| |
Collapse
|
16
|
Yang S, Zhu Y, Ji C, Zhu H, Lao A, Zhao R, Hu Y, Zhou Y, Zhou J, Lin K, Xu Y. A five-in-one novel MOF-modified injectable hydrogel with thermo-sensitive and adhesive properties for promoting alveolar bone repair in periodontitis: Antibacterial, hemostasis, immune reprogramming, pro-osteo-/angiogenesis and recruitment. Bioact Mater 2024; 41:239-256. [PMID: 39149594 PMCID: PMC11324614 DOI: 10.1016/j.bioactmat.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/07/2024] [Accepted: 07/13/2024] [Indexed: 08/17/2024] Open
Abstract
Periodontitis is a chronic inflammatory disease caused by plaque that destroys the alveolar bone tissues, resulting in tooth loss. Poor eradication of pathogenic microorganisms, persistent malignant inflammation and impaired osteo-/angiogenesis are currently the primary challenges to control disease progression and rebuild damaged alveolar bone. However, existing treatments for periodontitis fail to comprehensively address these issues. Herein, an injectable composite hydrogel (SFD/CS/ZIF-8@QCT) encapsulating quercetin-modified zeolitic imidazolate framework-8 (ZIF-8@QCT) is developed. This hydrogel possesses thermo-sensitive and adhesive properties, which can provide excellent flowability and post-injection stability, resist oral fluid washout as well as achieve effective tissue adhesion. Inspirationally, it is observed that SFD/CS/ZIF-8@QCT exhibits a rapid localized hemostatic effect following implantation, and then by virtue of the sustained release of zinc ions and quercetin exerts excellent collective functions including antibacterial, immunomodulation, pro-osteo-/angiogenesis and pro-recruitment, ultimately facilitating excellent alveolar bone regeneration. Notably, our study also demonstrates that the inhibition of osteo-/angiogenesis of PDLSCs under the periodontitis is due to the strong inhibition of energy metabolism as well as the powerful activation of oxidative stress and autophagy, whereas the synergistic effects of quercetin and zinc ions released by SFD/CS/ZIF-8@QCT are effective in reversing these biological processes. Overall, our study presents innovative insights into the advancement of biomaterials to regenerate alveolar bone in periodontitis.
Collapse
Affiliation(s)
- Shiyuan Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yan Zhu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chunxiao Ji
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huimin Zhu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - An Lao
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Zhao
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Hu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yuning Zhou
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jia Zhou
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Kaili Lin
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanjin Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
17
|
Wang D, Feng S, Yang M. Multi-Gradient Bone-Like Nanocomposites Induced by Strain Distribution. ACS NANO 2024; 18:29636-29647. [PMID: 39425938 DOI: 10.1021/acsnano.4c08442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The heterogeneity of bones is elegantly adapted to the local strain environment, which is critical for maintaining mechanical functions. Such an adaptation enables the strong correlation between strain distributions and multiple gradients, underlying a promising pathway for creating complex gradient structures. However, this potential remains largely unexplored for the synthesis of functional gradient materials. In this work, heterogeneous bone-like nanocomposites with complex structural and compositional gradients comparable to bones are synthesized by inducing strain distributions within the polymer matrix containing amorphous calcium phosphate (ACP). Uniaxial stretching of composite films exerts the highest strain in the center, which ceases gradually toward the sides, resulting in the gradual decrease of polymer alignment and crystallinity. Simultaneously, the center with high orientation traps most ACP during stretching due to the nanoconfinement effect, which in turn promotes the formation of aligned nanofibrous structures. The sides experiencing the least strain have the smallest amounts of ACP, characteristic of porous architectures. Further crystallization of ACP produces oriented apatite nanorods in the center with a larger crystalline/amorphous ratio than the sides because of template-induced crystallization. The combination of structural and compositional gradients leads to gradient mechanical properties, and the gradient span and magnitude correlate nicely with strain distributions. Accompanying bone-like mechanical gradients, the center is less adhesive and self-healable than the sides, which allows a better recovery after a complete cutting. Our work may represent a general strategy for the synthesis of biomimetic materials with complex gradients thanks to the ubiquitous presence of strain distributions in load-bearing structures.
Collapse
Affiliation(s)
- Di Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Ming Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
18
|
Zhang L, Han C, Luo W, Chen X, Chen X, Yan L. Curving-Stretching Induced Alignment in Hydrogel Actuators for Enhanced Grip Strength and Rapid Response. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39356308 DOI: 10.1021/acsami.4c11895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Natural tissues, like ligaments and tendons, display not just robust mechanical performance but also complex anisotropic structures extending beyond one-directional arrangements. However, fabricating hydrogel actuators with biomimetic three-dimensional anisotropy remains challenging. Herein, a simple strategy involving curving-stretching induced alignment is proposed to prepare anisotropic Fe3+-cross-linked poly(acrylic acid)-poly(acrylamide) hydrogel actuators. These hydrogels exhibit exceptional mechanical properties, boasting a fracture stress of 7.1 MPa and a superior modulus of 33.2 MPa when prestretched to 200% strain, which are 2.3 times and 4.9 times higher than their unstretched counterparts. The stretched anisotropic hydrogel gripper, stronger than its unstretched counterpart, can lift heavy objects while also achieving rapid responsiveness to stimuli. This work introduces a novel and effective method for fabricating anisotropic hydrogels, highlighting their broad applicability in fields such as soft robotics, biomedical devices, and beyond.
Collapse
Affiliation(s)
- Lixin Zhang
- Department of Polymer Materials and Engineering, School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
| | - Conghui Han
- Department of Polymer Materials and Engineering, School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
| | - Weihua Luo
- Department of Polymer Materials and Engineering, School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
| | - Xushuai Chen
- Department of Polymer Materials and Engineering, School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
| | - Xi Chen
- Department of Polymer Materials and Engineering, School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
| | - Luke Yan
- Department of Polymer Materials and Engineering, School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
| |
Collapse
|
19
|
Shen S, Lin Y, Sun J, Liu Y, Chen Y, Lu J. A New Tissue Engineering Strategy to Promote Tendon-bone Healing: Regulation of Osteogenic and Chondrogenic Differentiation of Tendon-derived Stem Cells. Orthop Surg 2024; 16:2311-2325. [PMID: 39043618 PMCID: PMC11456719 DOI: 10.1111/os.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/25/2024] Open
Abstract
In the field of sports medicine, repair surgery for anterior cruciate ligament (ACL) and rotator cuff (RC) injuries are remarkably common. Despite the availability of relatively effective treatment modalities, outcomes often fall short of expectations. This comprehensive review aims to thoroughly examine current strategies employed to promote tendon-bone healing and analyze pertinent preclinical and clinical research. Amidst ongoing investigations, tendon-derived stem cells (TDSCs), which have comparatively limited prior exploration, have garnered increasing attention in the context of tendon-bone healing, emerging as a promising cell type for regenerative therapies. This review article delves into the potential of combining TDSCs with tissue engineering methods, with ACL reconstruction as the main focus. It comprehensively reviews relevant research on ACL and RC healing to address the issues of graft healing and bone tunnel integration. To optimize tendon-bone healing outcomes, our emphasis lies in not only reconstructing the original microstructure of the tendon-bone interface but also achieving proper bone tunnel integration, encompassing both cartilage and bone formation. In this endeavor, we thoroughly analyze the transcriptional and molecular regulatory variables governing TDSCs differentiation, incorporating a retrospective analysis utilizing single-cell sequencing, with the aim of unearthing relevant signaling pathways and processes. By presenting a novel strategy rooted in TDSCs-driven osteogenic and chondrogenic differentiation for tendon-bone healing, this study paves the way for potential future research avenues and promising therapeutic applications. It is anticipated that the findings herein will contribute to advancing the field of tendon-bone healing and foster the exploration of TDSCs as a viable option for regenerative therapies in the future.
Collapse
Affiliation(s)
- Sinuo Shen
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Yucheng Lin
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Jiachen Sun
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Yuanhao Liu
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Yuzhi Chen
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Jun Lu
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| |
Collapse
|
20
|
Yao K, Hong G, Yuan X, Kong W, Xia P, Li Y, Chen Y, Liu N, He J, Shi J, Hu Z, Zhou Y, Xie Z, He Y. 3D Printing of Tough Hydrogel Scaffolds with Functional Surface Structures for Tissue Regeneration. NANO-MICRO LETTERS 2024; 17:27. [PMID: 39342523 PMCID: PMC11439863 DOI: 10.1007/s40820-024-01524-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/01/2024] [Indexed: 10/01/2024]
Abstract
Hydrogel scaffolds have numerous potential applications in the tissue engineering field. However, tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties. Inspired by Chinese ramen, we propose a universal fabricating method (printing-P, training-T, cross-linking-C, PTC & PCT) for tough hydrogel scaffolds to fill this gap. First, 3D printing fabricates a hydrogel scaffold with desired structures (P). Then, the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance (T). Finally, the training results are fixed by photo-cross-linking processing (C). The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa (622-fold untreated) and have excellent biocompatibility. Furthermore, this scaffold possesses functional surface structures from nanometer to micron to millimeter, which can efficiently induce directional cell growth. Interestingly, this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt, and many hydrogels, such as gelatin and silk, could be improved with PTC or PCT strategies. Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers, blood vessels, and nerves within 4 weeks, prompting the rapid regeneration of large-volume muscle loss injuries.
Collapse
Affiliation(s)
- Ke Yao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Gaoying Hong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310027, People's Republic of China
| | - Ximin Yuan
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Weicheng Kong
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Pengcheng Xia
- Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Yuanrong Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Yuewei Chen
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Nian Liu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Jing He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Jue Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310027, People's Republic of China
| | - Zihe Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310027, People's Republic of China
| | - Yanyan Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310027, People's Republic of China
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310027, People's Republic of China.
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310027, People's Republic of China.
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|
21
|
Xu C, Chen Y, Zhao S, Li D, Tang X, Zhang H, Huang J, Guo Z, Liu W. Mechanical Regulation of Polymer Gels. Chem Rev 2024; 124:10435-10508. [PMID: 39284130 DOI: 10.1021/acs.chemrev.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.
Collapse
Affiliation(s)
- Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730000, China
| | - Xing Tang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Haili Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
22
|
Liu Y, Gao Z, Chen T, Gao Y, Chen H, Ye H, Luo Q, Wu D, Zhang X. Versatile Fabrication of Biocompatible Antimicrobial Materials Enabled by Cationic Peptide Bundles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43918-43932. [PMID: 39126384 DOI: 10.1021/acsami.4c06381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Antimicrobial peptides (AMPs) are expected to be an alternative promising solution to the global public health problem of antibiotic resistance due to their unique antimicrobial mechanism. However, extensive efforts are still needed to improve the shortcomings of traditional AMPs, such as rapid proteolysis, hemolysis, slow response, toxicity, etc., by exploring AMP-based new antimicrobial strategies. Here, we develop cationic peptide bundles into novel antimicrobial architectures that can rapidly kill multiple types of bacteria including drug-resistant bacteria. Remarkably, cationic peptide bundles can be used as polymerization units to cross-link with other polymers through simple two-component polymerization to produce diverse antimicrobial materials. For the proof of concept, three materials were fabricated and investigated, including an antimicrobial hydrogel that can significantly accelerate the healing of infected wounds, a multifunctional antimicrobial bioadhesive that shows promise in antimicrobial coatings for medical devices, and a photo-cross-linked antimicrobial gelatin hydrogel with broad application potential. The integration of antimicrobial units into the materials' backbone endows their biocompatibility. Cationic peptide bundles not only represent a new antimicrobial strategy but also provide a versatile and promising processing method to create diversified, multifunctional, and biocompatible antimicrobial materials.
Collapse
Affiliation(s)
- Yin Liu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zhanshan Gao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Tianzi Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yue Gao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Haijin Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Haonan Ye
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qiuhao Luo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Dongdong Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
23
|
Deng C, Qin C, Li Z, Lu L, Tong Y, Yuan J, Yin F, Cheng Y, Wu C. Diatomite-incorporated hierarchical scaffolds for osteochondral regeneration. Bioact Mater 2024; 38:305-320. [PMID: 38745590 PMCID: PMC11091463 DOI: 10.1016/j.bioactmat.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Osteochondral regeneration involves the highly challenging and complex reconstruction of cartilage and subchondral bone. Silicon (Si) ions play a crucial role in bone development. Current research on Si ions mainly focuses on bone repair, by using silicate bioceramics with complex ion compositions. However, it is unclear whether the Si ions have important effect on cartilage regeneration. Developing a scaffold that solely releases Si ions to simultaneously promote subchondral bone repair and stimulate cartilage regeneration is critically important. Diatomite (DE) is a natural diatomaceous sediment that can stably release Si ions, known for its abundant availability, low cost, and environmental friendliness. Herein, a hierarchical osteochondral repair scaffold is uniquely designed by incorporating gradient DE into GelMA hydrogel. The adding DE microparticles provides a specific Si source for controlled Si ions release, which not only promotes osteogenic differentiation of rBMSCs (rabbit bone marrow mesenchymal stem cells) but also enhances proliferation and maturation of chondrocytes. Moreover, DE-incorporated hierarchical scaffolds significantly promoted the regeneration of cartilage and subchondral bone. The study suggests the significant role of Si ions in promoting cartilage regeneration and solidifies their foundational role in enhancing bone repair. Furthermore, it offers an economic and eco-friendly strategy for developing high value-added osteochondral regenerative bioscaffolds from low-value ocean natural materials.
Collapse
Affiliation(s)
- Cuijun Deng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, PR China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, PR China
| | - Chen Qin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Zhenguang Li
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, PR China
| | - Laiya Lu
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai, 200032, PR China
| | - Yifan Tong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, PR China
| | - Jiaqi Yuan
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, PR China
| | - Feng Yin
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai, 200032, PR China
| | - Yu Cheng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, PR China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| |
Collapse
|
24
|
Liu Z, Chen Y, Zhang S. Low-Temperature Rapid Polymerization of Intrinsic Conducting PAD/OC Hydrogels with a Self-Adhesive and Sensitive Sensor for Outdoor Damage Repair and Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36862-36877. [PMID: 38970565 DOI: 10.1021/acsami.4c03977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Intrinsic conducting hydrogels fabricated in situ at low temperatures with self-adhesive properties and excellent flexibility hold significant promise for energy applications and outdoor damage repair. However, challenges such as low polymerization rate and self adhesion, insufficient ionic conductivity, inflexibility, and poor stability under extreme cold conditions have hindered their utilization as high-performance sensors. In this study, we designed an intrinsic conducting hydrogel (PADOC) composed of acrylic acid, acryloyloxyethyltrimethylammonium chloride, N,N'-methylenebis(2-propenamide), self-fabricated oxidized curdlan (OC), and a water/glycerol binary solvent. The novel hydrogel exhibited rapid gelation (30 s) at 0 °C facilitated by the promotion of OC, without the need for external energy input. Our findings from FT-IR, NMR, XPS, XRD, EPR spectra, MS, and DSC analyses revealed that OC underwent selective oxidation via the evolved Fenton reaction at 30 °C, serving as bioaccelerators for PAD polymerization. Due to OC's reductive structure and increased solubility, the reaction activation energy of the PAD polymerization reaction significantly reduced from 103.2 to 54.4 kJ/mol. PADOC ionic hydrogels demonstrated an electrical conductivity of 1.00 S/m, 0.7% low hysteresis, 39.6 kPa self-adhesive strength, and 923% strain-at-break and kept even at -20 °C owing to dense hydrogen and ionic bonds between PAD and OC chains. Furthermore, PADOC ionic hydrogels exhibited antifatigue properties for 10 cycles (0-100%) due to electrostatic interactions and hydrogen bonding. Remarkably, using a self-designed device, the rapid polymerization of PADOC effectively repaired copper pipeline leakage under 86 kPa pressure and detected 1% strain variation as a strain sensor. This study opens a new avenue for the rapid gelation of self-adhesive and flexible intrinsic conducting hydrogels with robust sensor performance.
Collapse
Affiliation(s)
- Zhenghe Liu
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yukun Chen
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Shuidong Zhang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
25
|
Fernandez SV, Kim J, Sadat D, Marcus C, Suh E, Mclntosh R, Shah A, Dagdeviren C. A Dynamic Ultrasound Phantom with Tissue-Mimicking Mechanical and Acoustic Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400271. [PMID: 38647427 PMCID: PMC11165531 DOI: 10.1002/advs.202400271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/25/2024] [Indexed: 04/25/2024]
Abstract
Tissue-mimicking phantoms are valuable tools that aid in improving the equipment and training available to medical professionals. However, current phantoms possess limited utility due to their inability to precisely simulate multiple physical properties simultaneously, which is crucial for achieving a system understanding of dynamic human tissues. In this work, novel materials design and fabrication processes to produce various tissue-mimicking materials (TMMs) for skin, adipose, muscle, and soft tissue at a human scale are developed. Target properties (Young's modulus, density, speed of sound, and acoustic attenuation) are first defined for each TMM based on literature. Each TMM recipe is developed, associated mechanical and acoustic properties are characterized, and the TMMs are confirmed to have comparable mechanical and acoustic properties with the corresponding human tissues. Furthermore, a novel sacrificial core to fabricate a hollow, ellipsoid-shaped bladder phantom complete with inlet and outlet tubes, which allow liquids to flow through and expand this phantom, is adopted. This dynamic bladder phantom with realistic mechanical and acoustic properties to human tissues in combination with the developed skin, soft tissue, and subcutaneous adipose tissue TMMs, culminates in a human scale torso tank and electro-mechanical system that can be systematically utilized for characterizing various medical imaging devices.
Collapse
Affiliation(s)
- Sara V. Fernandez
- Media LabMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Jin‐Hoon Kim
- Media LabMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - David Sadat
- Media LabMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Colin Marcus
- Media LabMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Emma Suh
- Media LabMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Rachel Mclntosh
- Media LabMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Aastha Shah
- Media LabMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Canan Dagdeviren
- Media LabMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
26
|
Deng Y, Zhang Q, Feringa BL. Dynamic Chemistry Toolbox for Advanced Sustainable Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308666. [PMID: 38321810 PMCID: PMC11005721 DOI: 10.1002/advs.202308666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Indexed: 02/08/2024]
Abstract
Developing dynamic chemistry for polymeric materials offers chemical solutions to solve key problems associated with current plastics. Mechanical performance and dynamic function are equally important in material design because the former determines the application scope and the latter enables chemical recycling and hence sustainability. However, it is a long-term challenge to balance the subtle trade-off between mechanical robustness and dynamic properties in a single material. The rise of dynamic chemistry, including supramolecular and dynamic covalent chemistry, provides many opportunities and versatile molecular tools for designing constitutionally dynamic materials that can adapt, repair, and recycle. Facing the growing social need for developing advanced sustainable materials without compromising properties, recent progress showing how the toolbox of dynamic chemistry can be explored to enable high-performance sustainable materials by molecular engineering strategies is discussed here. The state of the art and recent milestones are summarized and discussed, followed by an outlook toward future opportunities and challenges present in this field.
Collapse
Affiliation(s)
- Yuanxin Deng
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Technology130 Meilong RoadShanghai200237China
- Stratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsFaculty of Science and EngineeringUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Technology130 Meilong RoadShanghai200237China
- Stratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsFaculty of Science and EngineeringUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| | - Ben L. Feringa
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Technology130 Meilong RoadShanghai200237China
- Stratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsFaculty of Science and EngineeringUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| |
Collapse
|
27
|
Gao F, Yang X, Song W. Bioinspired Supramolecular Hydrogel from Design to Applications. SMALL METHODS 2024; 8:e2300753. [PMID: 37599261 DOI: 10.1002/smtd.202300753] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Indexed: 08/22/2023]
Abstract
Nature offers a wealth of opportunities to solve scientific and technological issues based on its unique structures and function. The dynamic non-covalent interaction is considered to be the main base of living functions of creatures including humans, animals, and plants. Supramolecular hydrogels formed by non-covalent bonding interactions has become a unique platform for constructing promising materials for medicine, energy, electronic, and biological substitute. In this review, the self-assemble principle of supramolecular hydrogels is summarized. Next, the stimulation of external environment that triggers the assembly or disassembly of supramolecular hydrogels are recapitulated, including temperature, mechanics, light, pH, ions, etc. The main applications of bioinspired supramolecular hydrogels in terms of bionic objects including humans, animals, and plants are also described. Although so many efforts are done for revealing the synergized mechanism of the function and non-covalent interactions on the supramolecular hydrogel, the complexity and variability between stimulus and non-covalent bonding in the supramolecular system still require impeccable theories. As an outlook, the bioinspired supramolecular hydrogel is just beginning to exhibit its great potential in human life, offering significant opportunities in drug delivery and screening, implantable devices and substitutions, tissue engineering, micro-fluidic devices, and biosensors.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xuhao Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wenlong Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
28
|
Tan L, Huyan C, Wang Y, Li M, Liu D, Liu M, Luo Z, Cai K, Hu Y. Mechanically Robust Hemostatic Hydrogel Membranes with Programmable Strain-Adaptive Microdomain Entanglement for Wound Treatment in Dynamic Tissues. ACS NANO 2024; 18:8360-8382. [PMID: 38457334 DOI: 10.1021/acsnano.3c12950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Supramolecular hydrogels emerge as a promising paradigm for sutureless wound management. However, their translation is still challenged by the insufficient mechanical robustness in the context of complex wounds in dynamic tissues. Herein, we report a tissue-adhesive supramolecular hydrogel membrane based on biocompatible precursors for dressing wounds in highly dynamic tissues, featuring robust mechanical resilience through programmable strain-adaptive entanglement among microdomains. Specifically, the hydrogels are synthesized by incorporating a long-chain polyurethane segment into a Schiff base-ligated short-chain oxidized cellulose/quaternized chitosan network via acylhydrazone bonding, which readily establishes interpenetrating entangled microdomains in dynamic cross-linked hydrogel matrices to enhance their tear and fatigue resistance against extreme mechanical stresses. After being placed onto dynamic tissues, the hydrogel dressing could efficiently absorb blood to achieve rapid hemostasis. Moreover, metal ions released from ruptured erythrocytes could be scavenged by the Schiff base linkers to form additional ionic bonds, which would trigger the cross-linking of the short-chain components and establish abundant crystalline microdomains, eventually leading to the in situ stiffening of the hydrogels to endure heavy mechanical loads. Benefiting from its hemostatic capacity and strain adaptable mechanical performance, this hydrogel wound dressing shows promise for the clinical management of various traumatic wounds.
Collapse
Affiliation(s)
- Lu Tan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Chenxi Huyan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yanqiu Wang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Dong Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Minghan Liu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
29
|
Zhang S, Guo F, Li M, Yang M, Zhang D, Han L, Li X, Zhang Y, Cao A, Shang Y. Fast gelling, high performance MXene hydrogels for wearable sensors. J Colloid Interface Sci 2024; 658:137-147. [PMID: 38100970 DOI: 10.1016/j.jcis.2023.12.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Hydrogel-based functional materials had attracted great attention in the fields of artificial intelligence, soft robotics, and motion monitoring. However, the gelation of hydrogels induced by free radical polymerization typically required heating, light exposure, and other conditions, limiting their practical applications and development in real-life scenarios. In this study, a simple and direct method was proposed to achieve rapid gelation at room temperature by incorporating reductive MXene sheets in conjunction with metal ions into the chitosan network and inducing the formation of a polyacrylamide network in an extremely short time (10 s). This resulted in a dual-network MXene-crosslinked conductive hydrogel composite that exhibited exceptional stretchability (1350 %), remarkably low dissipated energy (0.40 kJ m-3 at 100 % strain), high sensitivity (GF = 2.86 at 300-500 % strain), and strong adhesion to various substrate surfaces. The study demonstrated potential applications in the reliable detection of various motions, including repetitive fine movements and large-scale human body motions. This work provided a feasible platform for developing integrated wearable health-monitoring electronic systems.
Collapse
Affiliation(s)
- Shipeng Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Fengmei Guo
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Meng Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China; School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mengdan Yang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Ding Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Lei Han
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China; School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xinjian Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Yingjiu Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Anyuan Cao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yuanyuan Shang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
30
|
Xu Z, Chen Y, Cao Y, Xue B. Tough Hydrogels with Different Toughening Mechanisms and Applications. Int J Mol Sci 2024; 25:2675. [PMID: 38473922 DOI: 10.3390/ijms25052675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/20/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Load-bearing biological tissues, such as cartilage and muscles, exhibit several crucial properties, including high elasticity, strength, and recoverability. These characteristics enable these tissues to endure significant mechanical stresses and swiftly recover after deformation, contributing to their exceptional durability and functionality. In contrast, while hydrogels are highly biocompatible and hold promise as synthetic biomaterials, their inherent network structure often limits their ability to simultaneously possess a diverse range of superior mechanical properties. As a result, the applications of hydrogels are significantly constrained. This article delves into the design mechanisms and mechanical properties of various tough hydrogels and investigates their applications in tissue engineering, flexible electronics, and other fields. The objective is to provide insights into the fabrication and application of hydrogels with combined high strength, stretchability, toughness, and fast recovery as well as their future development directions and challenges.
Collapse
Affiliation(s)
- Zhengyu Xu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yanru Chen
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, China
| |
Collapse
|
31
|
Jin H, Kang Y, Gao H, Lin Z, Huang D, Zheng Z, Zhao J, Wang L, Jiang J. Decellularization-Based Modification Strategy for Bioactive Xenografts Promoting Tendon Repair. Adv Healthc Mater 2024; 13:e2302660. [PMID: 37864473 DOI: 10.1002/adhm.202302660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/09/2023] [Indexed: 10/22/2023]
Abstract
Xenografts have emerged as a promising option for severe tendon defects treatment. However, despite undergoing decellularization, concerns still remain regarding the immunogenicity of xenografts. Because certain components within the extracellular matrix also possess immunogenicity. In this study, a novel strategy of post-decellularization modification aimed at preserving the endogenous capacity of cells on collagen synthesis to mask antigenic epitopes in extracellular matrix is proposed. To implement this strategy, a human-derived rosiglitazone-loaded decellularized extracellular matrix (R-dECM) is developed. R-dECM can release rosiglitazone for over 7 days in vitro. By suppressing M1 macrophage polarization, R-dECM protects the migration and collagen synthesis abilities of tendon-derived stem cells (TDSCs), while also stabilizing the phenotype of M2 macrophages in vitro. RNA sequencing reveals R-dECM can mitigate the detrimental crosstalk between TDSCs and inflammatory cells. When applied to a rat patellar tendon defect model, R-dECM effectively inhibits early inflammation, preventing chronic inflammation. Its duration of function far exceeds the release time of rosiglitazone, implying the establishment of immune evasion, confirming the effectiveness of the proposed strategy. And R-dECM demonstrates superior tendon repair outcomes compared to dECM. Thus, this study provides a novel bioactive scaffold with the potential to enhance the long-term clinical outcomes of xenogeneic tendon grafts.
Collapse
Affiliation(s)
- Haocheng Jin
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, P. R. China
| | - Yuhao Kang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, P. R. China
| | - Haihan Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, P. R. China
| | - Zhiqi Lin
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, P. R. China
| | - Dongcheng Huang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, P. R. China
| | - Zhi Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, P. R. China
| | - Jinzhong Zhao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, P. R. China
| | - Liren Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, P. R. China
| | - Jia Jiang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, P. R. China
| |
Collapse
|
32
|
An H, Zhang M, Huang Z, Xu Y, Ji S, Gu Z, Zhang P, Wen Y. Hydrophobic Cross-Linked Chains Regulate High Wet Tissue Adhesion Hydrogel with Toughness, Anti-hydration for Dynamic Tissue Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310164. [PMID: 37925614 DOI: 10.1002/adma.202310164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Indexed: 11/06/2023]
Abstract
Hydrogel adhesion materials are widely reported for tissue engineering repair applications, however, wet tissue surface moisture can reduce the wet-adhesion properties and mechanical strength of hydrogels limiting their application. Here, anti-hydration gelatin-acrylic acid-ethylene dimethacrylate (GAE) hydrogels with hydrophobic cross-linked chains are constructed. The prepared GAE hydrogel is soaked in PBS (3 days) with a volume change of 0.6 times of the original and the adhesive strength, Young's modulus, toughness, and burst pressure are maintained by ≈70% of the original. A simple and universal method is used to introduce hydrophobic chains as cross-linking points to prepare hydrogels with anti-hydration, toughness, and high wet state adhesion. The hydrophobic cross-linked chains not only restrict the movement of molecular chains but also hinder the intrusion of water molecules. Antihydration GAE hydrogels exhibit good biocompatibility, slow drug release, and dynamic oral wet-state tissue repair properties. Therefore, the anti-hydration hydrogel has excellent toughness, wet tissue adhesion properties, and good prospects for biological applications.
Collapse
Affiliation(s)
- Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Qingdao Hospital, Peking University People's Hospital, Beijing, 100044, China
| | - Zhe Huang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yongxiang Xu
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center ofStomatology & National Clinical Research Center for Oral Diseases & NationalEngineering Laboratory for Digital and Material Technology of Stomatology & BeijingKey Laboratory of Digital Stomatology & Research Center of Engineering and- 3 -Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratoryfor Dental Materials, Beijing, 100081, China
| | - Shen Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Zhen Gu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Peixun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Qingdao Hospital, Peking University People's Hospital, Beijing, 100044, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
33
|
Shi Y, Wu B, Sun S, Wu P. Peeling-Stiffening Self-Adhesive Ionogel with Superhigh Interfacial Toughness. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310576. [PMID: 38095148 DOI: 10.1002/adma.202310576] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/03/2023] [Indexed: 12/20/2023]
Abstract
Self-adhesive materials that can directly adhere to diverse solid surfaces are indispensable in modern life and technologies. However, it remains a challenge to develop self-adhesive materials with strong adhesion while maintaining its intrinsic softness for efficient tackiness. Here, a peeling-stiffening self-adhesive ionogel that reconciles the seemingly contradictory properties of softness and strong adhesion is reported. The ionogel contains two ionophilic repeating units with distinct associating affinities, which allows to adaptively wet rough surface in the soft dissipating state for adhering, and to dramatically stiffen to the glassy state upon peeling. The corresponding modulus increases by 117 times driven by strain-rate-induced phase separation, which greatly suppresses crack propagation and results in a super high interfacial toughness of 8046 J m-2 . The self-adhesive ionogel is also transparent, self-healable, recyclable, and can be easily removed by simple moisture treatment. This strategy provides a new way to design high-performance self-adhesive materials for intelligent soft devices.
Collapse
Affiliation(s)
- Yingkun Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering and Center for Advanced Low-dimension Materials, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Baohu Wu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) Forschungszentrum Jülich, Lichtenbergstr. 1, 85748, Garching, Germany
| | - Shengtong Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering and Center for Advanced Low-dimension Materials, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering and Center for Advanced Low-dimension Materials, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| |
Collapse
|
34
|
Gu X, Shu Z, Zheng X, Wei S, Ma M, He H, Shi Y, Gong X, Chen S, Wang X. A novel CT-responsive hydrogel for the construction of an organ simulation phantom for the repeatability and stability study of radiomic features. J Mater Chem B 2023; 11:11073-11081. [PMID: 37986572 DOI: 10.1039/d3tb01706k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Radiomic features have demonstrated reliable outcomes in tumor grading and detecting precancerous lesions in medical imaging analysis. However, the repeatability and stability of these features have faced criticism. In this study, we aim to enhance the repeatability and stability of radiomic features by introducing a novel CT-responsive hydrogel material. The newly developed CT-responsive hydrogel, mineralized by in situ metal ions, exhibits exceptional repeatability, stability, and uniformity. Moreover, by adjusting the concentration of metal ions, it achieves remarkable CT similarity comparable to that of human organs on CT scans. To create a phantom, the hydrogel was molded into a universal model, displaying controllable CT values ranging from 53 HU to 58 HU, akin to human liver tissue. Subsequently, 1218 radiomic features were extracted from the CT-responsive hydrogel organ simulation phantom. Impressively, 85-97.2% of the extracted features exhibited good repeatability and stability during coefficient of variability analysis. This finding emphasizes the potential of CT-responsive hydrogel in consistently extracting the same features, providing a novel approach to address the issue of repeatability in radiomic features.
Collapse
Affiliation(s)
- Xiaokai Gu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
- Department of Radiology, Zhejiang Provincial People's Hospital, Hangzhou 310014, P. R. China.
| | - Zhenyu Shu
- Department of Radiology, Zhejiang Provincial People's Hospital, Hangzhou 310014, P. R. China.
| | - Xiaoli Zheng
- Department of Radiology, Zhejiang Provincial People's Hospital, Hangzhou 310014, P. R. China.
| | - Sailong Wei
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Meng Ma
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Huiwen He
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yanqin Shi
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiangyang Gong
- Department of Radiology, Zhejiang Provincial People's Hospital, Hangzhou 310014, P. R. China.
| | - Si Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xu Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
35
|
Liang L, Li X, Tan Z, Liu M, Qiu Y, Yu Q, Yu C, Yao M, Guo B, Yao F, Che P, Zhang H, Li J. Injectable spontaneously formed asymmetric adhesive hydrogel with controllable removal for wound healing. J Mater Chem B 2023; 11:10845-10858. [PMID: 37937417 DOI: 10.1039/d3tb02014b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Healing large-scale wounds has been a long-standing challenge in the field of biomedicine. Herein, we propose an injectable oxidated sodium alginate/gelatin/3,3'-dithiobis(propionic hydrazide)-aurum (Alg-CHO/gelatin/DTPH-Au) hydrogel filler with asymmetric adhesion ability and removability, which is formed by the Schiff-base reaction between aldehyde-based sodium alginate and multi-amino crosslinkers (gelatin and DTPH), combined with the coordination interaction between Au nanoparticles and disulfide bond of DTPH. Consequently, the prepared Alg-CHO/gelatin/DTPH-Au hydrogel exhibits high mechanical properties and injectable behaviors owing to its multiple-crosslinked interactions. Moreover, because various types of interaction bonding form on the contact side with the tissue, denser crosslinking of the upper layer relative to the lower layer occurs. Combined with the temperature difference between the upper and lower surfaces, this results in asymmetric adhesive properties. Owing to the photothermal effect, the reversible coordination interaction between Au nanoparticles and DTPH and the change in the triple helix structure of gelatin to a coil structure impart the filler-phased removability and antibacterial ability. The choice of all natural polymers also allows for favorable degradability of the wound filler and outstanding biocompatibility. Based on these features, this versatile wound filler can achieve a wide range of applications in the field of all-skin wound repair.
Collapse
Affiliation(s)
- Lei Liang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xi Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhouying Tan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Min Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yuwei Qiu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Qingyu Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Chaojie Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Mengmeng Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Bingyan Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Pengcheng Che
- School of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan 063210, China
| | - Hong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
36
|
Zhou D, Yu J, Zhao Q, Zhang L. In situ molecular permeation of liquid cationic polymers into solid anionic polymer films enabling self-adaptive adhesion of hydrogel biosensors. MATERIALS HORIZONS 2023; 10:3622-3630. [PMID: 37337709 DOI: 10.1039/d3mh00597f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Self-adaptive adhesion is essential for hydrogel sensors. However, the traditional protocol involves covering a pre-prepared hydrogel sensor on a tested surface. As a result, the sensor cannot achieve self-adaptive adhesion owing to an air-layer hindrance between the sensor and tested surface, which inevitably leads to the loss of critical biological signals. To address the issue of air-layer hindrance, this work proposes an in situ permeation method that enables the self-adaptive adhesion of hydrogel biosensors on various surfaces. After applying a liquid solution of poly(methacrylamido propyl trimethyl ammonium chloride-co-acrylamide) (poly(MPTAC-co-AM)) on the testing surface, a thin film of poly(acrylic aminoethane sulfonic acid-co-acrylamide) (poly(AASA-co-AM)) is applied, where the electrostatic interaction between -SO3- and -Me3N+ facilitates rapid permeation of the solution into the solid film, leading to the formation of a hydrogel layer in situ. The coating of liquid poly(MPTAC-co-AM) sweeps away the air layer and works as a natural glue, enabling a strong bonding interaction between the hydrogel layer and the tested surface. Such a hydrogel layer is very thin (microscale), and can retain its self-adaptive adhesion even with deformation of the tested surface. When it is applied on the surface of an active frog heart, the weak heartbeats can be transduced to electrical signals. Moreover, this self-adaptive adhesion can work on both soft and hard surfaces including biological tissues, metals, rubbers, ceramics, and glass. Therefore, this in situ permeation method enables the hydrogel layer to detect weak dynamic changes on various soft and hard surfaces, which might offer a new pathway for physiological signal monitoring.
Collapse
Affiliation(s)
- Danqing Zhou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, People's Republic of China.
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, 200241, People's Republic of China.
| | - Jiahui Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, 200241, People's Republic of China.
| | - Qiuhua Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, People's Republic of China.
| | - Lidong Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, People's Republic of China.
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, People's Republic of China
| |
Collapse
|
37
|
Hu J, Liu S, Fan C. Applications of functionally-adapted hydrogels in tendon repair. Front Bioeng Biotechnol 2023; 11:1135090. [PMID: 36815891 PMCID: PMC9934866 DOI: 10.3389/fbioe.2023.1135090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Despite all the efforts made in tissue engineering for tendon repair, the management of tendon injuries still poses a challenge, as current treatments are unable to restore the function of tendons following injuries. Hydrogels, due to their exceptional biocompatibility and plasticity, have been extensively applied and regarded as promising candidate biomaterials in tissue regeneration. Varieties of approaches have designed functionally-adapted hydrogels and combined hydrogels with other factors (e.g., bioactive molecules or drugs) or materials for the enhancement of tendon repair. This review first summarized the current state of knowledge on the mechanisms underlying the process of tendon healing. Afterward, we discussed novel strategies in fabricating hydrogels to overcome the issues frequently encountered during the applications in tendon repair, including poor mechanical properties and undesirable degradation. In addition, we comprehensively summarized the rational design of hydrogels for promoting stem-cell-based tendon tissue engineering via altering biophysical and biochemical factors. Finally, the role of macrophages in tendon repair and how they respond to immunomodulatory hydrogels were highlighted.
Collapse
Affiliation(s)
- Jiacheng Hu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Shen Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| |
Collapse
|