1
|
Wang H, Li H, Xin Y, Chen W, Liu H, Chen Y, Chen Y, Chen L, Luo Y, Chen Z, Liu GS. Patterning silver nanowire network via the Gibbs-Thomson effect. MICROSYSTEMS & NANOENGINEERING 2025; 11:96. [PMID: 40389401 PMCID: PMC12089369 DOI: 10.1038/s41378-025-00945-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/17/2025] [Accepted: 04/01/2025] [Indexed: 05/21/2025]
Abstract
As transparent electrodes, patterned silver nanowire (AgNW) networks suffer from noticeable pattern visibility, which is an unsettled issue for practical applications such as display. Here, we introduce a Gibbs-Thomson effect (GTE)-based patterning method to effectively reduce pattern visibility. Unlike conventional top-down and bottom-up strategies that rely on selective etching, removal, or deposition of AgNWs, our approach focuses on fragmenting nanowires primarily at the junctions through the GTE. This is realized by modifying AgNWs with a compound of diphenyliodonium nitrate and silver nitrate, which aggregates into nanoparticles at the junctions of AgNWs. These nanoparticles can boost the fragmentation of nanowires at the junctions under an ultralow temperature (75 °C), allow pattern transfer through a photolithographic masking operation, and enhance plasmonic welding during UV exposure. The resultant patterned electrodes have trivial differences in transmittance (ΔT = 1.4%) and haze (ΔH = 0.3%) between conductive and insulative regions, with high-resolution patterning size down to 10 μm. To demonstrate the practicality of this novel method, we constructed a highly transparent, optoelectrical interactive tactile e-skin using the patterned AgNW electrodes.
Collapse
Affiliation(s)
- Hongteng Wang
- College of Physical & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Haichuan Li
- College of Physical & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Yijia Xin
- College of Physical & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Weizhen Chen
- Faculty of Natural, Mathematical & Engineering Sciences, King's College London, London, WC2R 2LS, UK
| | - Haogeng Liu
- College of Physical & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Ying Chen
- College of Physical & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Yaofei Chen
- College of Physical & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Key Laboratory of Visible Light Communications of Guangzhou, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China
| | - Lei Chen
- College of Physical & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China.
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Key Laboratory of Visible Light Communications of Guangzhou, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China.
| | - Yunhan Luo
- College of Physical & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China.
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Key Laboratory of Visible Light Communications of Guangzhou, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China.
| | - Zhe Chen
- College of Physical & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Key Laboratory of Visible Light Communications of Guangzhou, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China
| | - Gui-Shi Liu
- College of Physical & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China.
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Key Laboratory of Visible Light Communications of Guangzhou, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
2
|
Mei T, Chen F, Huang T, Feng Z, Wan T, Han Z, Li Z, Hu L, Lin CH, Lu Y, Cheng W, Qi DC, Chu D. Ion-Electron Interactions in 2D Nanomaterials-Based Artificial Synapses for Neuromorphic Applications. ACS NANO 2025; 19:17140-17172. [PMID: 40297996 DOI: 10.1021/acsnano.5c02397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
With the increasing limitations of conventional computing techniques, particularly the von Neumann bottleneck, the brain's seamless integration of memory and processing through synapses offers a valuable model for technological innovation. Inspired by biological synapse facilitating adaptive, low-power computation by modulating signal transmission via ionic conduction, iontronic synaptic devices have emerged as one of the most promising candidates for neuromorphic computing. Meanwhile, the atomic-scale thickness and tunable electronic properties of van der Waals two-dimensional (2D) materials enable the possibility of designing highly integrated, energy-efficient devices that closely replicate synaptic plasticity. This review comprehensively analyzes advancements in iontronic synaptic devices based on 2D materials, focusing on electron-ion interactions in both iontronic transistors and memristors. The challenges of material stability, scalability, and device integration are evaluated, along with potential solutions and future research directions. By highlighting these developments, this review offers insights into the potential of 2D materials in advancing neuromorphic systems.
Collapse
Affiliation(s)
- Tingting Mei
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Fandi Chen
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Tianxu Huang
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Zijian Feng
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Tao Wan
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Zhaojun Han
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane 4000, Australia
| | - Zhi Li
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Chun-Ho Lin
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Yuerui Lu
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 0200, Australia
| | - Wenlong Cheng
- School of Biomedical Engineering, University of Sydney, Darlington, NSW 2008, Australia
| | - Dong-Chen Qi
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Dewei Chu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Liu S, Zhang H, Peng X, Chen J, Kang L, Yin X, Yusuke Y, Ding B. Emerging Issues and Opportunities of 2D Layered Transition Metal Dichalcogenide Architectures for Supercapacitors. ACS NANO 2025; 19:13591-13636. [PMID: 40173358 DOI: 10.1021/acsnano.5c01512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Two-dimensional layered transition metal dichalcogenides (2D TMDs) have emerged as promising candidates for supercapacitor (SCs) owing to their tunable electronic properties, layered structures, and effective ion intercalation capabilities. Despite these advantages, challenges such as low electrical conductivity, the interlayer restacking, oxidation and structural collapse hinder their practical implementation. This review provides a comprehensive overview of recent advances in the development of 2D TMDs for SCs. We begin by outlining the charge storage mechanisms and design principles for SCs, followed by an in-depth discussion of the synthesis methods and the associated challenges in fabricating 2D TMD architectures. The subsequent sections explore their crystal structures and reaction mechanisms, illustrating their electrochemical potential in SCs. Furthermore, we highlight material modification strategies, including nanostructuring, defect engineering, phase control, and surface/interface modulation, which have been proposed to overcome existing challenges. Finally, we address critical issues and emerging opportunities for 2D TMDs to inspire the development of SC technologies.
Collapse
Affiliation(s)
- Shude Liu
- Engineering Research Center of Technical Textile, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Huilin Zhang
- Engineering Research Center of Technical Textile, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xue Peng
- Engineering Research Center of Technical Textile, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jieming Chen
- Engineering Research Center of Technical Textile, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Ling Kang
- School of Mechanical Engineering, Yonsei University, Seoul 120-749, South Korea
| | - Xia Yin
- Engineering Research Center of Technical Textile, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yamauchi Yusuke
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bin Ding
- Engineering Research Center of Technical Textile, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620 China
| |
Collapse
|
4
|
Zhang J, Xu B, Yang Y, Xie Z, Xu H. Dual-Terminal Ion-Modulation Multiplier-Based Ion-Doped Stacked Semiconducting Nanosheets for Multifunctional Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16998-17007. [PMID: 40048152 DOI: 10.1021/acsami.4c18930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Stacked semiconducting nanosheets (SSNs), which feature strong in-plane covalent bonds but weak van der Waals (vdWs) interactions between adjacent layers, hold substantial promise in next-generation, printable, and flexible devices. Among them, SSN-based transistors with high current multiplication offer significant potential for large-area, high-integration electronics and biomedical applications. However, the three-terminal configuration of the transistor inevitably increases the process step and power unit. Here, we demonstrate a dual-terminal ion modulation multiplier (IMM) based on ion-doped SSNs, which was obtained through a solution-processed and cost-effective method. We observed an ion-induced self-multiplication effect occurring in the IMM, which significantly enhanced the sensing performance, particularly in thermal sensing. The IMM thermal sensor exhibited a high resolution of 0.02 K and ultrahigh sensitivity of ∼27%/K, more than 7 times higher than that of ion-type thermal sensors. By combining the enhanced operational stability of IMMs, we successfully developed a dual-channel stretchable respiratory sensor (dSRS) based on IMMs, capable of real-time monitoring of subnasal respiratory signals. The dSRS effectively distinguished normal, rapid, and deep breathing states while accurately detecting abnormal respiration, including apnea and hypopnea. Utilizing the unique properties of IMMs, we developed a monolithically integrated and high-performance IMM glucose sensor with temperature compensation. This IMM glucose sensor demonstrated a high sensitivity of 0.91%/μM, a low detection limit of 100 nM, and a high detection accuracy under temperature interference. Our results clearly demonstrate that IMM devices endow SSNs with promising electrical and sensing capabilities, paving the way for next-generation electronics in the post-Moore era.
Collapse
Affiliation(s)
- Jiehua Zhang
- Department of Biomedical and Engineering, School of Medicine, Shenzhen University, Shenzhen 518061, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen 518061, China
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen 518061, China
| | - Baobao Xu
- Department of Biomedical and Engineering, School of Medicine, Shenzhen University, Shenzhen 518061, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen 518061, China
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen 518061, China
| | - Yiyi Yang
- Department of Biomedical and Engineering, School of Medicine, Shenzhen University, Shenzhen 518061, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen 518061, China
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen 518061, China
| | - Zhixin Xie
- Department of Biomedical and Engineering, School of Medicine, Shenzhen University, Shenzhen 518061, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen 518061, China
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen 518061, China
| | - Haihua Xu
- Department of Biomedical and Engineering, School of Medicine, Shenzhen University, Shenzhen 518061, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen 518061, China
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen 518061, China
| |
Collapse
|
5
|
Kong L, Wang S, Su Q, Liu Z, Liao G, Sun B, Shi T. Printed Two-Dimensional Materials for Flexible Photodetectors: Materials, Processes, and Applications. SENSORS (BASEL, SWITZERLAND) 2025; 25:1042. [PMID: 40006272 PMCID: PMC11860032 DOI: 10.3390/s25041042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
With the rapid development of micro-nano technology and wearable devices, flexible photodetectors (PDs) have drawn widespread interest in areas such as healthcare, consumer electronics, and intelligence interfaces. Two-dimensional (2D) materials with layered structures have excellent optoelectronic properties and mechanical flexibility, which attract a great deal of attention in flexible applications. Although photodetectors based on mechanically exfoliated 2D materials have demonstrated superior performance compared to traditional Si-based PDs, large-scale manufacturing and flexible integration remain significant challenges for achieving industrial production. The emerging various printing technology provides a low-cost and highly effective method for integrated manufacturing. In this review, we comprehensively introduce the most recent progress on printed flexible 2D material PDs. We first reviewed the most recent research on flexible photodetectors, in which the discussion is focused on substrate materials, functional materials, and performance figures of merits. Furthermore, the solution processing for 2D materials coupled with printing functional film strategies to produce PDs are summarized. Subsequently, the various applications of flexible PDs, such as image sensors, healthcare, and wearable electronics, are also summarized. Finally, we point out the potential challenges of the printed flexible 2D material PDs and expect this work to inspire the development of flexible PDs and promote the mass manufacturing process.
Collapse
Affiliation(s)
- Lingxian Kong
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.K.); (Z.L.); (G.L.)
| | - Shijie Wang
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (S.W.); (Q.S.)
| | - Qi Su
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (S.W.); (Q.S.)
| | - Zhiyong Liu
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.K.); (Z.L.); (G.L.)
| | - Guanglan Liao
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.K.); (Z.L.); (G.L.)
| | - Bo Sun
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (S.W.); (Q.S.)
- Shenzhen Research Institute, Huazhong University of Science and Technology, Shenzhen 518057, China
| | - Tielin Shi
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.K.); (Z.L.); (G.L.)
| |
Collapse
|
6
|
Zhao Z, Wang W, Xiang G, Jiang L, Jiang X. Capillary-Assisted Confinement Assembly for Advanced Sensor Fabrication: From Superwetting Interfaces to Capillary Bridge Patterning. ACS NANO 2025; 19:3019-3036. [PMID: 39814369 DOI: 10.1021/acsnano.4c17499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Precise patterning of sensing materials, particularly the long-range-ordered assembly of micro/nanostructures, is pivotal for improving sensor performance, facilitating miniaturization, and enabling seamless integration. This paper examines the importance of interfacial confined assembly in sensor patterning, including gas-liquid and liquid-liquid confined assembly, wettability-assisted or microstructure-assisted solid-liquid interfacial confined assembly, and tip-induced confined assembly. The application of capillary bridge confined assembly technology in chemical sensors, flexible electronics, and optoelectronics is highlighted. The advantages of capillary bridge confined assembly technology include the ability to achieve high-resolution patterning, scalability, and material arrangement in long-range order. It is, therefore, an ideal processing platform for next-generation sensors. Finally, the broad prospects of this technology in the miniaturization and integration of high-performance multifunctional sensors are discussed.
Collapse
Affiliation(s)
- Zhihao Zhao
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Weijie Wang
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Gongmo Xiang
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Lei Jiang
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangyu Jiang
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
| |
Collapse
|
7
|
Sun Y, He W, Jiang C, Li J, Liu J, Liu M. Wearable Biodevices Based on Two-Dimensional Materials: From Flexible Sensors to Smart Integrated Systems. NANO-MICRO LETTERS 2025; 17:109. [PMID: 39812886 PMCID: PMC11735798 DOI: 10.1007/s40820-024-01597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/08/2024] [Indexed: 01/16/2025]
Abstract
The proliferation of wearable biodevices has boosted the development of soft, innovative, and multifunctional materials for human health monitoring. The integration of wearable sensors with intelligent systems is an overwhelming tendency, providing powerful tools for remote health monitoring and personal health management. Among many candidates, two-dimensional (2D) materials stand out due to several exotic mechanical, electrical, optical, and chemical properties that can be efficiently integrated into atomic-thin films. While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene, the rapid development of new 2D materials with exotic properties has opened up novel applications, particularly in smart interaction and integrated functionalities. This review aims to consolidate recent progress, highlight the unique advantages of 2D materials, and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices. We begin with an in-depth analysis of the advantages, sensing mechanisms, and potential applications of 2D materials in wearable biodevice fabrication. Following this, we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body. Special attention is given to showcasing the integration of multi-functionality in 2D smart devices, mainly including self-power supply, integrated diagnosis/treatment, and human-machine interaction. Finally, the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of 2D materials for advanced biodevices.
Collapse
Affiliation(s)
- Yingzhi Sun
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Weiyi He
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Can Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Jing Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China.
| | - Jianli Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Mingjie Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| |
Collapse
|
8
|
Kwak K, Yoon H, Hong S, Kang BH. Advances in 2D Molybdenum Disulfide Transistors for Flexible and Wearable Electronics. MICROMACHINES 2024; 15:1476. [PMID: 39770229 PMCID: PMC11728206 DOI: 10.3390/mi15121476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025]
Abstract
As the trajectory of developing advanced electronics is shifting towards wearable electronics, various methods for implementing flexible and bendable devices capable of conforming to curvilinear surfaces have been widely investigated. In particular, achieving high-performance and stable flexible transistors remains a significant technical challenge, as transistors are fundamental components of electronics, playing a key role in overall performance. Among the wide range of candidates for flexible transistors, two-dimensional (2D) molybdenum disulfide (MoS2)-based transistors have emerged as potential solutions to address these challenges. Unlike other 2D materials, the 2D MoS2 offers numerous advantages, such as high carrier mobility, a tunable bandgap, superior mechanical strength, and exceptional chemical stability. This review emphasizes the novel techniques of the fabrication process, structure, and material to achieve flexible MoS2 transistor-based applications. Furthermore, the distinctive feature of this review is its focus on studies published in high-impact journals over the past decade, emphasizing their methods for developing MoS2 transistors into various applications. Finally, the review addresses technical challenges and provides an outlook for flexible and wearable MoS2 transistors.
Collapse
Affiliation(s)
- Kyoungwon Kwak
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Hyewon Yoon
- Department of Physics, Gachon University, Seongnam 13120, Republic of Korea
| | - Seongin Hong
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
- Department of Physics, Gachon University, Seongnam 13120, Republic of Korea
| | - Byung Ha Kang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
9
|
You K, Wang Z, Lin J, Guo X, Lin L, Liu Y, Li F, Huang W. On-Demand Picoliter-Level-Droplet Inkjet Printing for Micro Fabrication and Functional Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402638. [PMID: 39149907 DOI: 10.1002/smll.202402638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/29/2024] [Indexed: 08/17/2024]
Abstract
With the advent of Internet of Things (IoTs) and wearable devices, manufacturing requirements have shifted toward miniaturization, flexibility, environmentalization, and customization. Inkjet printing, as a non-contact picoliter-level droplet printing technology, can achieve material deposition at the microscopic level, helping to achieve high resolution and high precision patterned design. Meanwhile, inkjet printing has the advantages of simple process, high printing efficiency, mask-free digital printing, and direct pattern deposition, and is gradually emerging as a promising technology to meet such new requirements. However, there is a long way to go in constructing functional materials and emerging devices due to the uncommercialized ink materials, complicated film-forming process, and geometrically/functionally mismatched interface, limiting film quality and device applications. Herein, recent developments in working mechanisms, functional ink systems, droplet ejection and flight process, droplet drying process, as well as emerging multifunctional and intelligence applications including optics, electronics, sensors, and energy storage and conversion devices is reviewed. Finally, it is also highlight some of the critical challenges and research opportunities. The review is anticipated to provide a systematic comprehension and valuable insights for inkjet printing, thereby facilitating the advancement of their emerging applications.
Collapse
Affiliation(s)
- Kejia You
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Zhen Wang
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Jiasong Lin
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Xuan Guo
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350117, China
| | - Liangxu Lin
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Yang Liu
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Fushan Li
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou, 350117, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
10
|
Li T, Zhang C, Cai Y, Yue W, Liu J, Huang C, Guo Q, Jia T, Yu S. Sodium chloride-assisted CVD enables controlled synthesis of large single-layered MoS 2. RSC Adv 2024; 14:30982-30989. [PMID: 39351408 PMCID: PMC11440350 DOI: 10.1039/d4ra02510e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/05/2024] [Indexed: 10/04/2024] Open
Abstract
Thin-layer MoS2 has attracted much interest because of its potential in diverse technologies, including electronics, optoelectronics and catalysis these few years. In particular, finding a simple and effective solution for large-scale growth of thin-layer semiconductor nanosheets is a prerequisite for achieving their excellent performance. In this paper, we investigated four different substrates under identical conditions for MoS2 film growth and observed a strong correlation between substrate surface conditions and MoS2 growth. To enhance substrate performance, a low-concentration NaCl water solution (25 mg mL-1) was employed for pre-treating the substrate surface, thereby modifying its initial state. In the chemical vapor deposition (CVD) growth environment, the introduced halide ions served as surface dangling bonds. The pre-treated led to a remarkable 90% increase in the growth rate of MoS2 on the substrate surface, facilitating the production of large monolayer MoS2 sheets (∼200 μm). This growth mechanism further enabled the manufacturing of ultra-large single crystals (∼1 mm). Consequently, our research presents a straightforward and cost-effective approach for the large-scale production of nanosheets. Field-effect transistors (FETs) based on the pre-treated monolayer MoS2 exhibited high mobility (12 cm2 V-1 s-1) and a large on/off ratio (104). Therefore, our research provides a simple and low-cost approach for large-scale production of nanosheets for use in high-quality electronics over large areas.
Collapse
Affiliation(s)
- Ting Li
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
- School of Materials Science and Engineering, Shenzhen University Shenzhen 518055 China
| | - Chong Zhang
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
- School of Materials Science and Engineering, Hubei University Wuhan 430062 China
| | - Yali Cai
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
- School of Materials Science and Engineering, Hubei University Wuhan 430062 China
| | - Wenfeng Yue
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
- School of Instrumentation Science and Engineering, Harbin Institute of Technology Harbin 150001 China
| | - Jie Liu
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Chuanwei Huang
- School of Materials Science and Engineering, Shenzhen University Shenzhen 518055 China
| | - Quansheng Guo
- School of Materials Science and Engineering, Hubei University Wuhan 430062 China
| | - Tingting Jia
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
- School of Materials Science and Engineering, Hubei University Wuhan 430062 China
| | - Shuhui Yu
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| |
Collapse
|
11
|
Xue G, Qin B, Ma C, Yin P, Liu C, Liu K. Large-Area Epitaxial Growth of Transition Metal Dichalcogenides. Chem Rev 2024; 124:9785-9865. [PMID: 39132950 DOI: 10.1021/acs.chemrev.3c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Over the past decade, research on atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) has expanded rapidly due to their unique properties such as high carrier mobility, significant excitonic effects, and strong spin-orbit couplings. Considerable attention from both scientific and industrial communities has fully fueled the exploration of TMDs toward practical applications. Proposed scenarios, such as ultrascaled transistors, on-chip photonics, flexible optoelectronics, and efficient electrocatalysis, critically depend on the scalable production of large-area TMD films. Correspondingly, substantial efforts have been devoted to refining the synthesizing methodology of 2D TMDs, which brought the field to a stage that necessitates a comprehensive summary. In this Review, we give a systematic overview of the basic designs and significant advancements in large-area epitaxial growth of TMDs. We first sketch out their fundamental structures and diverse properties. Subsequent discussion encompasses the state-of-the-art wafer-scale production designs, single-crystal epitaxial strategies, and techniques for structure modification and postprocessing. Additionally, we highlight the future directions for application-driven material fabrication and persistent challenges, aiming to inspire ongoing exploration along a revolution in the modern semiconductor industry.
Collapse
Affiliation(s)
- Guodong Xue
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Biao Qin
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Chaojie Ma
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Peng Yin
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing 100872, China
| | - Can Liu
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing 100872, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing 100871, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| |
Collapse
|
12
|
Li W, Kong L, Xu M, Gao J, Luo L, Li Y, Wang K, Zhou Y, Li L, Yuan Wei, Zhang X, Zhao R, Chen M, Yan Y, Luo X, Dai Z, Zheng L, Wang X, Huang W. Microsecond-Scale Transient Thermal Sensing Enabled by Flexible Mo 1-xW xS 2 Alloys. RESEARCH (WASHINGTON, D.C.) 2024; 7:0452. [PMID: 39171118 PMCID: PMC11337116 DOI: 10.34133/research.0452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
Real-time thermal sensing through flexible temperature sensors in extreme environments is critically essential for precisely monitoring chemical reactions, propellant combustions, and metallurgy processes. However, despite their low response speed, most existing thermal sensors and related sensing materials will degrade or even lose their sensing performances at either high or low temperatures. Achieving a microsecond response time over an ultrawide temperature range remains challenging. Here, we design a flexible temperature sensor that employs ultrathin and consecutive Mo1-x W x S2 alloy films constructed via inkjet printing and a thermal annealing strategy. The sensing elements exhibit a broad work range (20 to 823 K on polyimide and 1,073 K on flexible mica) and a record-low response time (about 30 μs). These properties enable the sensors to detect instantaneous temperature variations induced by contact with liquid nitrogen, water droplets, and flames. Furthermore, a thermal sensing array offers the spatial mapping of arbitrary shapes, heat conduction, and cold traces even under bending deformation. This approach paves the way for designing unique sensitive materials and flexible sensors for transient sensing under harsh conditions.
Collapse
Affiliation(s)
- Weiwei Li
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE),
Northwestern Polytechnical University (NPU), Xi’an 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE),
Northwestern Polytechnical University (NPU), Xi’an 710072, China
- State Key Laboratory of Organic Electronics and Information Displays,
Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Lingyan Kong
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE),
Northwestern Polytechnical University (NPU), Xi’an 710072, China
| | - Manzhang Xu
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE),
Northwestern Polytechnical University (NPU), Xi’an 710072, China
| | - Jiuwei Gao
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE),
Northwestern Polytechnical University (NPU), Xi’an 710072, China
| | - Lei Luo
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE),
Northwestern Polytechnical University (NPU), Xi’an 710072, China
| | - Yingzhe Li
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE),
Northwestern Polytechnical University (NPU), Xi’an 710072, China
| | - Kexin Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE),
Northwestern Polytechnical University (NPU), Xi’an 710072, China
| | - Yilin Zhou
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE),
Northwestern Polytechnical University (NPU), Xi’an 710072, China
| | - Lei Li
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE),
Northwestern Polytechnical University (NPU), Xi’an 710072, China
| | - Yuan Wei
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE),
Northwestern Polytechnical University (NPU), Xi’an 710072, China
| | - Xiaoshan Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE),
Northwestern Polytechnical University (NPU), Xi’an 710072, China
| | - Ruoqing Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE),
Northwestern Polytechnical University (NPU), Xi’an 710072, China
| | - Mengdi Chen
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE),
Northwestern Polytechnical University (NPU), Xi’an 710072, China
| | - Yuting Yan
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE),
Northwestern Polytechnical University (NPU), Xi’an 710072, China
| | - Xiaoguang Luo
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE),
Northwestern Polytechnical University (NPU), Xi’an 710072, China
| | - Zhaohe Dai
- Department of Mechanics and Engineering Science, College of Engineering,
Peking University, Beijing 100871, China
| | - Lu Zheng
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE),
Northwestern Polytechnical University (NPU), Xi’an 710072, China
| | - Xuewen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE),
Northwestern Polytechnical University (NPU), Xi’an 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE),
Northwestern Polytechnical University (NPU), Xi’an 710072, China
- State Key Laboratory of Organic Electronics and Information Displays,
Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE),
Northwestern Polytechnical University (NPU), Xi’an 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE),
Northwestern Polytechnical University (NPU), Xi’an 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE),
Northwestern Polytechnical University (NPU), Xi’an, 710072, China
- State Key Laboratory of Organic Electronics and Information Displays,
Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM),
Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| |
Collapse
|
13
|
Huang Z, Yu S, Xu Y, Cao Z, Zhang J, Guo Z, Wu T, Liao Q, Zheng Y, Chen Z, Liao X. In-Sensor Tactile Fusion and Logic for Accurate Intention Recognition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407329. [PMID: 38966893 DOI: 10.1002/adma.202407329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Touch control intention recognition is an important direction for the future development of human-machine interactions (HMIs). However, the implementation of parallel-sensing functional modules generally requires a combination of different logical blocks and control circuits, which results in regional redundancy, redundant data, and low efficiency. Here, a location-and-pressure intelligent tactile sensor (LPI tactile sensor) unprecedentedly combined with sensing, computing, and logic is proposed, enabling efficient and ultrahigh-resolution action-intention interaction. The LPI tactile sensor eliminates the need for data transfer among the functional units through the core integration design of the layered structure. It actuates in-sensor perception through feature transmission, fusion, and differentiation, thereby revolutionizing the traditional von Neumann architecture. While greatly simplifying the data dimensionality, the LPI tactile sensor achieves outstanding resolution sensing in both location (<400 µm) and pressure (75 Pa). Synchronous feature fusion and decoding support the high-fidelity recognition of action and combinatorial logic intentions. Benefiting from location and pressure synergy, the LPI tactile sensor demonstrates robust privacy as an encrypted password device and interaction intelligence through pressure enhancement. It can recognize continuous touch actions in real time, map real intentions to target events, and promote accurate and efficient intention-driven HMIs.
Collapse
Affiliation(s)
- Zijian Huang
- Department of Electronic Science, Xiamen University, Xiamen, 361005, China
| | - Shifan Yu
- Department of Electronic Science, Xiamen University, Xiamen, 361005, China
| | - Yijing Xu
- Department of Electronic Science, Xiamen University, Xiamen, 361005, China
| | - Zhicheng Cao
- Department of Electronic Science, Xiamen University, Xiamen, 361005, China
| | - Jinwei Zhang
- Department of Electronic Science, Xiamen University, Xiamen, 361005, China
| | - Ziquan Guo
- Department of Electronic Science, Xiamen University, Xiamen, 361005, China
| | - Tingzhu Wu
- Department of Electronic Science, Xiamen University, Xiamen, 361005, China
| | - Qingliang Liao
- Academy for Advanced Interdisciplinary Science and Technology, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuanjin Zheng
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhong Chen
- Department of Electronic Science, Xiamen University, Xiamen, 361005, China
| | - Xinqin Liao
- Department of Electronic Science, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
14
|
Wang S, Li W, Xue J, Ge J, He J, Hou J, Xie Y, Li Y, Zhang H, Sofer Z, Lin Z. A library of 2D electronic material inks synthesized by liquid-metal-assisted intercalation of crystal powders. Nat Commun 2024; 15:6388. [PMID: 39079965 PMCID: PMC11289403 DOI: 10.1038/s41467-024-50697-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
Solution-processable 2D semiconductor inks based on electrochemical molecular intercalation and exfoliation of bulk layered crystals using organic cations has offered an alternative pathway to low-cost fabrication of large-area flexible and wearable electronic devices. However, the growth of large-piece bulk crystals as starting material relies on costly and prolonged high-temperature process, representing a critical roadblock towards practical and large-scale applications. Here we report a general liquid-metal-assisted approach that enables the electrochemical molecular intercalation of low-cost and readily available crystal powders. The resulted solution-processable MoS2 nanosheets are of comparable quality to those exfoliated from bulk crystals. Furthermore, this method can create a rich library of functional 2D electronic inks ( >50 types), including 2D wide-bandgap semiconductors of low electrical conductivity. Lastly, we demonstrated the all-solution-processable integration of 2D semiconductors with 2D conductors and 2D dielectrics for the fabrication of large-area thin-film transistors and memristors at a greatly reduced cost.
Collapse
Affiliation(s)
- Shengqi Wang
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Wenjie Li
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Junying Xue
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Jifeng Ge
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Jing He
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Junyang Hou
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Yu Xie
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Yuan Li
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Hao Zhang
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Zhaoyang Lin
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
15
|
Wang Z, Xiao M, Li Z, Wang X, Li F, Yang H, Chen Y, Zhu Z. Microneedle Patches-Integrated Transdermal Bioelectronics for Minimally Invasive Disease Theranostics. Adv Healthc Mater 2024; 13:e2303921. [PMID: 38341619 DOI: 10.1002/adhm.202303921] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Wearable epidermal electronics with non- or minimally-invasive characteristics can collect, transduce, communicate, and interact with accessible physicochemical health indicators on the skin. However, due to the stratum corneum layer, rich information about body health is buried under the skin stratum corneum layer, for example, in the skin interstitial fluid. Microneedle patches are typically designed with arrays of special microsized needles of length within 1000 µm. Such characteristics potentially enable the access and sample of biomolecules under the skin or give therapeutical treatment painlessly and transdermally. Integrating microneedle patches with various electronics allows highly efficient transdermal bioelectronics, showing their great promise for biomedical and healthcare applications. This comprehensive review summarizes and highlights the recent progress on integrated transdermal bioelectronics based on microneedle patches. The design criteria and state-of-the-art fabrication techniques for such devices are initially discussed. Next, devices with different functions, including but not limited to health monitoring, drug delivery, and therapeutical treatment, are highlighted in detail. Finally, key issues associated with current technologies and future opportunities are elaborated to sort out the state of recent research, point out potential bottlenecks, and provide future research directions.
Collapse
Affiliation(s)
- Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Min Xiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Xinghao Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Fangjie Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Huayuan Yang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- Health Industry Innovation Center, Xin-Huangpu Joint Innovation Institute of Chinese Medicine, 81 Xiangxue Middle Avenue, Huangpu District, Guangzhou, Guangdong Province, 510799, China
| |
Collapse
|
16
|
Dong H, Li X, Liu Y, Cheng W, Li X, Lu D, Shao C, Liu Y. Ultra-Flexible, Breathable, and Robust PAN/MWCNTs/PANI Nanofiber Networks for High-Performance Wearable Gas Sensor Application. ACS Sens 2024; 9:3085-3095. [PMID: 38840550 DOI: 10.1021/acssensors.4c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Wearable gas sensors have drawn great attention for potential applications in health monitoring, minienvironment detection, and advanced soft electronic noses. However, it still remains a great challenge to simultaneously achieve excellent flexibility, high sensitivity, robustness, and gas permeability, because of the inherent limitation of widely used traditional organic flexible substrates. Herein, an electrospinning polyacrylonitrile (PAN) nanofiber network was designed as a flexible substrate, on which an ultraflexible wearable gas sensor was prepared with in situ assembled polyaniline (PANI) and multiwalled carbon nanotubes (MWCNTs) as a sensitive layer. The unique nanofiber network and strong binding force between substrate and sensing materials endow the wearable gas sensor with excellent robustness, flexibility, and gas permeability. The wearable sensor can maintain stable NH3 sensing performance while sustaining extreme bending and stretching (50% of strain). The Young's modulus of wearable PAN/MWCNTs/PANI sensor is as low as 18.9 MPa, which is several orders of magnitude smaller than those of reported flexible sensors. The water vapor transmission rate of the sensor is 0.38 g/(cm2 24 h), which enables the wearing comfort of the sensor. Most importantly, due to the effective exposure of sensing sites as well as the heterostructure effect between MWCNTs and PANI, the sensor shows high sensitivity to NH3 at room temperature, and the theoretical limit of detection is as low as 300 ppb. This work provides a new avenue for the realization of reliable and high-performance wearable gas sensors.
Collapse
Affiliation(s)
- Haipeng Dong
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Xiaowei Li
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Yu Liu
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Wanying Cheng
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Xinghua Li
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Dongxiao Lu
- Nanophotonics and Biophotonics Key Laboratory of Jilin Province, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Changlu Shao
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Yichun Liu
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| |
Collapse
|
17
|
Lu P, Liao X, Guo X, Cai C, Liu Y, Chi M, Du G, Wei Z, Meng X, Nie S. Gel-Based Triboelectric Nanogenerators for Flexible Sensing: Principles, Properties, and Applications. NANO-MICRO LETTERS 2024; 16:206. [PMID: 38819527 PMCID: PMC11143175 DOI: 10.1007/s40820-024-01432-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024]
Abstract
The rapid development of the Internet of Things and artificial intelligence technologies has increased the need for wearable, portable, and self-powered flexible sensing devices. Triboelectric nanogenerators (TENGs) based on gel materials (with excellent conductivity, mechanical tunability, environmental adaptability, and biocompatibility) are considered an advanced approach for developing a new generation of flexible sensors. This review comprehensively summarizes the recent advances in gel-based TENGs for flexible sensors, covering their principles, properties, and applications. Based on the development requirements for flexible sensors, the working mechanism of gel-based TENGs and the characteristic advantages of gels are introduced. Design strategies for the performance optimization of hydrogel-, organogel-, and aerogel-based TENGs are systematically summarized. In addition, the applications of gel-based TENGs in human motion sensing, tactile sensing, health monitoring, environmental monitoring, human-machine interaction, and other related fields are summarized. Finally, the challenges of gel-based TENGs for flexible sensing are discussed, and feasible strategies are proposed to guide future research.
Collapse
Affiliation(s)
- Peng Lu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
| | - Xiaofang Liao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Xiaoyao Guo
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Chenchen Cai
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Yanhua Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Mingchao Chi
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Guoli Du
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Zhiting Wei
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Xiangjiang Meng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Shuangxi Nie
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China.
| |
Collapse
|
18
|
Dai Y, He Q, Huang Y, Duan X, Lin Z. Solution-Processable and Printable Two-Dimensional Transition Metal Dichalcogenide Inks. Chem Rev 2024; 124:5795-5845. [PMID: 38639932 DOI: 10.1021/acs.chemrev.3c00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) with layered crystal structures have been attracting enormous research interest for their atomic thickness, mechanical flexibility, and excellent electronic/optoelectronic properties for applications in diverse technological areas. Solution-processable 2D TMD inks are promising for large-scale production of functional thin films at an affordable cost, using high-throughput solution-based processing techniques such as printing and roll-to-roll fabrications. This paper provides a comprehensive review of the chemical synthesis of solution-processable and printable 2D TMD ink materials and the subsequent assembly into thin films for diverse applications. We start with the chemical principles and protocols of various synthesis methods for 2D TMD nanosheet crystals in the solution phase. The solution-based techniques for depositing ink materials into solid-state thin films are discussed. Then, we review the applications of these solution-processable thin films in diverse technological areas including electronics, optoelectronics, and others. To conclude, a summary of the key scientific/technical challenges and future research opportunities of solution-processable TMD inks is provided.
Collapse
Affiliation(s)
- Yongping Dai
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 99907, China
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zhaoyang Lin
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
19
|
Zhou K, Ding R, Ma X, Lin Y. Printable and flexible integrated sensing systems for wireless healthcare. NANOSCALE 2024; 16:7264-7286. [PMID: 38470428 DOI: 10.1039/d3nr06099c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The rapid development of wearable sensing devices and artificial intelligence has enabled portable and wireless tracking of human health, fulfilling the promise of digitalized healthcare applications. To achieve versatile design and integration of multi-functional modules including sensors and data transmission units onto various flexible platforms, printable technologies emerged as some of the most promising strategies. This review first introduces the commonly utilized printing technologies, followed by discussion of the printable ink formulations and flexible substrates to ensure reliable device fabrication and system integration. The advances of printable sensors for body status monitoring are then discussed. Moreover, the integration of wireless data transmission via printable approaches is also presented. Finally, the challenges in achieving printable sensing devices and wireless integrated systems with competitive performances are considered, so as to realize their practical applications for personalized healthcare.
Collapse
Affiliation(s)
- Kemeng Zhou
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Ruochen Ding
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xiaohao Ma
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yuanjing Lin
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
20
|
Liu K, Wang M, Huang C, Yuan Y, Ning Y, Zhang L, Wan P. Flexible Bioinspired Healable Antibacterial Electronics for Intelligent Human-Machine Interaction Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305672. [PMID: 38140748 PMCID: PMC10933681 DOI: 10.1002/advs.202305672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/04/2023] [Indexed: 12/24/2023]
Abstract
Flexible electronic sensors are receiving numerous research interests for their potential in electronic skins (e-skins), wearable human-machine interfacing, and smart diagnostic healthcare sensing. However, the preparation of multifunctional flexible electronics with high sensitivity, broad sensing range, fast response, efficient healability, and reliable antibacterial capability is still a substantial challenge. Herein, bioinspired by the highly sensitive human skin microstructure (protective epidermis/spinous sensing structure/nerve conduction network), a skin bionic multifunctional electronics is prepared by face-to-face assembly of a newly prepared healable, recyclable, and antibacterial polyurethane elastomer matrix with conductive MXene nanosheets-coated microdome array after ingenious templating method as protective epidermis layer/sensing layer, and an interdigitated electrode as signal transmission layer. The polyurethane elastomer matrix functionalized with triple dynamic bonds (reversible hydrogen bonds, oxime carbamate bonds, and copper (II) ion coordination bonds) is newly prepared, demonstrating excellent healability with highly healing efficiency, robust recyclability, and reliable antibacterial capability, as well as good biocompatibility. Benefiting from the superior mechanical performance of the polyurethane elastomer matrix and the unique skin bionic microstructure of the sensor, the as-assembled flexible electronics exhibit admirable sensing performances featuring ultrahigh sensitivity (up to 1573.05 kPa-1 ), broad sensing range (up to 325 kPa), good reproducibility, the fast response time (≈4 ms), and low detection limit (≈0.98 Pa) in diagnostic human healthcare monitoring, excellent healability, and reliable antibacterial performance.
Collapse
Affiliation(s)
- Kuo Liu
- College of Materials Science and Engineering, State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Mingcheng Wang
- College of Materials Science and Engineering, State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Chenlin Huang
- College of Materials Science and Engineering, State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Yue Yuan
- College of Materials Science and Engineering, State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Yao Ning
- College of Materials Science and Engineering, State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Liqun Zhang
- College of Materials Science and Engineering, State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Pengbo Wan
- College of Materials Science and Engineering, State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| |
Collapse
|
21
|
Wang X, Zhang J, Liu P, Wei D, Tian D, Liu S, Chen Q, Cao J, Wang Z, Huang X. Metal chalcogenide nanorings for temperature-strain dual-mode sensing. NANOSCALE 2024; 16:3484-3491. [PMID: 38269423 DOI: 10.1039/d3nr05561b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Most metal chalcogenides exhibit layered structures and anisotropic morphologies such as nanosheets, nanoplates, and nanotubes, as well as nanosheet-assembled nanoflowers. Unconventional morphologies such as nanorings may bring appealing properties to functional materials, but they have not been realized with metal chalcogenides. Herein, we report that Sn0.2Mo0.8S2 nanorings with a mixed 1T/2H phase were synthesized by etching SnS2 cores from Sn1-xMoxS2/SnS2 lateral heterostructures. Flexible electronic sensors based on these Sn0.2Mo0.8S2 nanorings exhibited excellent temperature and strain sensing performance, with a negative temperature coefficient of resistance of -0.013 °C-1 and a minimum detectable strain of 0.09%. In addition, the dual-functional flexible electronic sensors with easy fabrication and good wearability showed great promise for tracking human activities and monitoring inapparent health-related signals.
Collapse
Affiliation(s)
- Xiaoshan Wang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
- Ningxia Key Laboratory of Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan 750021, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Jinhao Zhang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Peiyuan Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Danlin Wei
- Ningxia Key Laboratory of Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan 750021, China
| | - Daobo Tian
- Ningxia Key Laboratory of Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan 750021, China
| | - Shipeng Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Qian Chen
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Jiacheng Cao
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Zhiwei Wang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| |
Collapse
|
22
|
Gong S, Lu Y, Yin J, Levin A, Cheng W. Materials-Driven Soft Wearable Bioelectronics for Connected Healthcare. Chem Rev 2024; 124:455-553. [PMID: 38174868 DOI: 10.1021/acs.chemrev.3c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In the era of Internet-of-things, many things can stay connected; however, biological systems, including those necessary for human health, remain unable to stay connected to the global Internet due to the lack of soft conformal biosensors. The fundamental challenge lies in the fact that electronics and biology are distinct and incompatible, as they are based on different materials via different functioning principles. In particular, the human body is soft and curvilinear, yet electronics are typically rigid and planar. Recent advances in materials and materials design have generated tremendous opportunities to design soft wearable bioelectronics, which may bridge the gap, enabling the ultimate dream of connected healthcare for anyone, anytime, and anywhere. We begin with a review of the historical development of healthcare, indicating the significant trend of connected healthcare. This is followed by the focal point of discussion about new materials and materials design, particularly low-dimensional nanomaterials. We summarize material types and their attributes for designing soft bioelectronic sensors; we also cover their synthesis and fabrication methods, including top-down, bottom-up, and their combined approaches. Next, we discuss the wearable energy challenges and progress made to date. In addition to front-end wearable devices, we also describe back-end machine learning algorithms, artificial intelligence, telecommunication, and software. Afterward, we describe the integration of soft wearable bioelectronic systems which have been applied in various testbeds in real-world settings, including laboratories that are preclinical and clinical environments. Finally, we narrate the remaining challenges and opportunities in conjunction with our perspectives.
Collapse
Affiliation(s)
- Shu Gong
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Yan Lu
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jialiang Yin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Arie Levin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Wenlong Cheng
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
23
|
Katiyar AK, Hoang AT, Xu D, Hong J, Kim BJ, Ji S, Ahn JH. 2D Materials in Flexible Electronics: Recent Advances and Future Prospectives. Chem Rev 2024; 124:318-419. [PMID: 38055207 DOI: 10.1021/acs.chemrev.3c00302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Flexible electronics have recently gained considerable attention due to their potential to provide new and innovative solutions to a wide range of challenges in various electronic fields. These electronics require specific material properties and performance because they need to be integrated into a variety of surfaces or folded and rolled for newly formatted electronics. Two-dimensional (2D) materials have emerged as promising candidates for flexible electronics due to their unique mechanical, electrical, and optical properties, as well as their compatibility with other materials, enabling the creation of various flexible electronic devices. This article provides a comprehensive review of the progress made in developing flexible electronic devices using 2D materials. In addition, it highlights the key aspects of materials, scalable material production, and device fabrication processes for flexible applications, along with important examples of demonstrations that achieved breakthroughs in various flexible and wearable electronic applications. Finally, we discuss the opportunities, current challenges, potential solutions, and future investigative directions about this field.
Collapse
Affiliation(s)
- Ajit Kumar Katiyar
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Anh Tuan Hoang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Duo Xu
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Juyeong Hong
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Beom Jin Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seunghyeon Ji
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
24
|
Sayyad PW, Park SJ, Ha TJ. Bioinspired nanoplatforms for human-machine interfaces: Recent progress in materials and device applications. Biotechnol Adv 2024; 70:108297. [PMID: 38061687 DOI: 10.1016/j.biotechadv.2023.108297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
The panoramic characteristics of human-machine interfaces (HMIs) have prompted the needs to update the biotechnology community with the recent trends, developments, and future research direction toward next-generation bioelectronics. Bioinspired materials are promising for integrating various bioelectronic devices to realize HMIs. With the advancement of scientific biotechnology, state-of-the-art bioelectronic applications have been extensively investigated to improve the quality of life by developing and integrating bioinspired nanoplatforms in HMIs. This review highlights recent trends and developments in the field of biotechnology based on bioinspired nanoplatforms by demonstrating recently explored materials and cutting-edge device applications. Section 1 introduces the recent trends and developments of bioinspired nanomaterials for HMIs. Section 2 reviews various flexible, wearable, biocompatible, and biodegradable nanoplatforms for bioinspired applications. Section 3 furnishes recently explored substrates as carriers for advanced nanomaterials in developing HMIs. Section 4 addresses recently invented biomimetic neuroelectronic, nanointerfaces, biointerfaces, and nano/microfluidic wearable bioelectronic devices for various HMI applications, such as healthcare, biopotential monitoring, and body fluid monitoring. Section 5 outlines designing and engineering of bioinspired sensors for HMIs. Finally, the challenges and opportunities for next-generation bioinspired nanoplatforms in extending the potential on HMIs are discussed for a near-future scenario. We believe this review can stimulate the integration of bioinspired nanoplatforms into the HMIs in addition to wearable electronic skin and health-monitoring devices while addressing prevailing and future healthcare and material-related problems in biotechnologies.
Collapse
Affiliation(s)
- Pasha W Sayyad
- Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Sang-Joon Park
- Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Tae-Jun Ha
- Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, South Korea.
| |
Collapse
|
25
|
Li S, Ouyang D, Zhang N, Zhang Y, Murthy A, Li Y, Liu S, Zhai T. Substrate Engineering for Chemical Vapor Deposition Growth of Large-Scale 2D Transition Metal Dichalcogenides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211855. [PMID: 37095721 DOI: 10.1002/adma.202211855] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/17/2023] [Indexed: 05/03/2023]
Abstract
The large-scale production of 2D transition metal dichalcogenides (TMDs) is essential to realize their industrial applications. Chemical vapor deposition (CVD) has been considered as a promising method for the controlled growth of high-quality and large-scale 2D TMDs. During a CVD process, the substrate plays a crucial role in anchoring the source materials, promoting the nucleation and stimulating the epitaxial growth. It thus significantly affects the thickness, microstructure, and crystal quality of the products, which are particularly important for obtaining 2D TMDs with expected morphology and size. Here, an insightful review is provided by focusing on the recent development associated with the substrate engineering strategies for CVD preparation of large-scale 2D TMDs. First, the interaction between 2D TMDs and substrates, a key factor for the growth of high-quality materials, is systematically discussed by combining the latest theoretical calculations. Based on this, the effect of various substrate engineering approaches on the growth of large-area 2D TMDs is summarized in detail. Finally, the opportunities and challenges of substrate engineering for the future development of 2D TMDs are discussed. This review might provide deep insight into the controllable growth of high-quality 2D TMDs toward their industrial-scale practical applications.
Collapse
Affiliation(s)
- Shaohua Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Decai Ouyang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Na Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yi Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Akshay Murthy
- Superconducting Quantum Materials and Systems Division, Fermi National Accelerator Laboratory (FNAL), Batavia, IL, 60510, USA
| | - Yuan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518057, P. R. China
| | - Shiyuan Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
26
|
Wu S, Yang C, Hu J, Pan M, Meng W, Liu Y, Li P, Peng J, Zhang Q, Chen P, Wang H. Normal-Direction Graded Hemispheres for Ionic Flexible Sensors with a Record-High Linearity in a Wide Working Range. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47733-47744. [PMID: 37782111 DOI: 10.1021/acsami.3c09580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Flexible pressure sensors developed rapidly with increased sensitivity, a fast response time, high stability, and excellent deformability. These progresses have expanded the application of wearable electronics under high-pressure backgrounds while also bringing new challenges. In particular, the nonlinearity and narrow working range lead to a gradually insensitive response, principally because the microstructure deforms inconsistently on the device interfaces in the whole working range. Herein, we report an ionic flexible sensor with a record-high linearity (R2 = 0.99994) in a wide working range (up to 600 kPa). The linearity response comes from the normal-direction graded hemisphere (GH) microstructure. It is prepared from poly(dimethylsiloxane) (PDMS)/carbon nanotubes (CNTs)/Au into flexible and deformable electrodes, and its geometry is precisely designed from the linear elastic theory and optimized through finite element simulation. The sensor can achieve a high sensitivity of S = 165.5 kPa-1, a response-relaxation time of <30 ms, and superb consistency, allowing the device to detect vibration signals. Our sensor has been assembled with circuits and capsulation in order to monitor the function state of players in underwater sports in the frequency domain. This work deepens the theory of linearized design of microstructures and provides a strategy to make flexible pressure sensors that have combined the performances of ultrahigh linearity, high sensitivity, and a wide working range.
Collapse
Affiliation(s)
- Shaowei Wu
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Chengxiu Yang
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Jiafei Hu
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Mengchun Pan
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Weize Meng
- State Key Laboratory of CEMEE, College of Electronic Science and Technology, National University of Defense Technology, Deya Road 109, Changsha 410073, China
| | - Yan Liu
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Peisen Li
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Junping Peng
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Qi Zhang
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Pengteng Chen
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Haomiao Wang
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| |
Collapse
|
27
|
Aftab S, Hussain S, Al-Kahtani AA. Latest Innovations in 2D Flexible Nanoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301280. [PMID: 37104492 DOI: 10.1002/adma.202301280] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/30/2023] [Indexed: 06/19/2023]
Abstract
2D materials with dangling-bond-free surfaces and atomically thin layers have been shown to be capable of being incorporated into flexible electronic devices. The electronic and optical properties of 2D materials can be tuned or controlled in other ways by using the intriguing strain engineering method. The latest and encouraging techniques in regard to creating flexible 2D nanoelectronics are condensed in this review. These techniques have the potential to be used in a wider range of applications in the near and long term. It is possible to use ultrathin 2D materials (graphene, BP, WTe2 , VSe2 etc.) and 2D transition metal dichalcogenides (2D TMDs) in order to enable the electrical behavior of the devices to be studied. A category of materials is produced on smaller scales by exfoliating bulk materials, whereas chemical vapor deposition (CVD) and epitaxial growth are employed on larger scales. This overview highlights two distinct requirements, which include from a single semiconductor or with van der Waals heterostructures of various nanomaterials. They include where strain must be avoided and where it is required, such as solutions to produce strain-insensitive devices, and such as pressure-sensitive outcomes, respectively. Finally, points-of-view about the current difficulties and possibilities in regard to using 2D materials in flexible electronics are provided.
Collapse
Affiliation(s)
- Sikandar Aftab
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul, 05006, South Korea
| | - Sajjad Hussain
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, South Korea
| | - Abdullah A Al-Kahtani
- Chemistry Department, Collage of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
28
|
Zhao R, Wu H, Dong X, Xu M, Wang Z, Wang X. Enhancing the Toughness of Free-Standing Polyimide Films for Advanced Electronics Applications: A Study on the Impact of Film-Forming Processes. Polymers (Basel) 2023; 15:2073. [PMID: 37177218 PMCID: PMC10180538 DOI: 10.3390/polym15092073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
High-quality and free-standing polyimide (PI) film with desirable mechanical properties and uniformity is in high demand due to its widespread applications in highly precise flexible and chip-integrated sensors. In this study, a free-standing PI film with high toughness was successfully prepared using a diamine monomer with ether linkages. The prepared PI films exhibited significantly superior mechanical properties compared to PI films of the same molecular structure, which can be attributed to the systematic exploration of the film-forming process. The exploration of the film-forming process includes the curing procedures, film-forming substrates, and annealing treatments. Additionally, the thickness uniformity and surface homogeneity of free-standing films were crucial for toughness. Increasing the crystallinity of the PI films by eliminating residual stress also contributed to their high strength. The results demonstrate that by adjusting the above-mentioned factors, the prepared PI films possess excellent mechanical properties, with tensile strength and elongation at break of 194.71 MPa and 130.13%, respectively.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuewen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
29
|
Wang H, Xu M, Ji H, He T, Li W, Zheng L, Wang X. Laser-assisted synthesis of two-dimensional transition metal dichalcogenides: a mini review. Front Chem 2023; 11:1195640. [PMID: 37179783 PMCID: PMC10167011 DOI: 10.3389/fchem.2023.1195640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023] Open
Abstract
The atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDCs) have attracted the researcher's interest in the field of flexible electronics due to their high mobility, tunable bandgaps, and mechanical flexibility. As an emerging technique, laser-assisted direct writing has been used for the synthesis of TMDCs due to its extremely high preparation accuracy, rich light-matter interaction mechanism, dynamic properties, fast preparation speed, and minimal thermal effects. Currently, this technology has been focused on the synthesis of 2D graphene, while there are few literatures that summarize the progress in direct laser writing technology in the synthesis of 2D TMDCs. Therefore, in this mini-review, the synthetic strategies of applying laser to the fabrication of 2D TMDCs have been briefly summarized and discussed, which are divided into top-down and bottom-up methods. The detailed fabrication steps, main characteristics, and mechanism of both methods are discussed. Finally, prospects and further opportunities in the booming field of laser-assisted synthesis of 2D TMDCs are addressed.
Collapse
Affiliation(s)
- Hanxin Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi’an, China
| | - Manzhang Xu
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi’an, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi’an, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi’an, China
| | - Hongjia Ji
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi’an, China
| | - Tong He
- Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, China
| | - Weiwei Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi’an, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi’an, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi’an, China
| | - Lu Zheng
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi’an, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi’an, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi’an, China
| | - Xuewen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi’an, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi’an, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi’an, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo, China
| |
Collapse
|
30
|
Chen X, Wang X, Pang Y, Bao G, Jiang J, Yang P, Chen Y, Rao T, Liao W. Printed Electronics Based on 2D Material Inks: Preparation, Properties, and Applications toward Memristors. SMALL METHODS 2023; 7:e2201156. [PMID: 36610015 DOI: 10.1002/smtd.202201156] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Printed electronics, which fabricate electrical components and circuits on various substrates by leveraging functional inks and advanced printing technologies, have recently attracted tremendous attention due to their capability of large-scale, high-speed, and cost-effective manufacturing and also their great potential in flexible and wearable devices. To further achieve multifunctional, practical, and commercial applications, various printing technologies toward smarter pattern-design, higher resolution, greater production flexibility, and novel ink formulations toward multi-functionalities and high quality have been insensitively investigated. 2D materials, possessing atomically thin thickness, unique properties and excellent solution-processable ability, hold great potential for high-quality inks. Besides, the great variety of 2D materials ranging from metals, semiconductors to insulators offers great freedom to formulate versatile inks to construct various printed electronics. Here, a detailed review of the progress on 2D material inks formulation and its printed applications has been provided, specifically with an emphasis on emerging printed memristors. Finally, the challenges facing the field and prospects of 2D material inks and printed electronics are discussed.
Collapse
Affiliation(s)
- Xiaopei Chen
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiongfeng Wang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yudong Pang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guocheng Bao
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jie Jiang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Peng Yang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
- College of Integrated Circuits and Optoelectronic Chips, Shenzhen Technology University, Shenzhen, 518118, China
| | - Yuankang Chen
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tingke Rao
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wugang Liao
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|