1
|
Chen K, Gao M, Liu X, Xing H, Sun H, Wang H, Lou A, Song X, Liu W, Guo H. Self-Powered Linear Pressure Sensor Based on MXene/CNT Nanofluid Membrane. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411706. [PMID: 39937174 DOI: 10.1002/smll.202411706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/23/2025] [Indexed: 02/13/2025]
Abstract
Ion channels, which own efficient, accurate, and selective ion transport ability, play a key role in maintaining cell homeostasis, participating in signal transduction, and other physiological processes in organisms. However, the inherent complexity and uncontrollability of ion channels in nature restrict their direct use in technical applications. In order to address the application requirements of specific fields, nanochannels have been designed to simulate and optimize the functional characteristics of biological ion channels. Herein, two-dimensional (2D) nanochannels based on MXene/carbon nanotube (CNT) composite membrane are constructed, with their ion transport mechanisms analyzed using molecular dynamics simulations. In addition, the ion transport characteristics in nanochannels under the influence of external environment of pressure are further explored and the current density can reach up to 315 nA cm-2. Based on the ion selectivity of nanochannels in MXene/CNT composite membrane, a self-powered linear pressure sensor is designed, which shows an ultrafast response (51.3 ms) and recovery time (60.2 ms), respectively. Thus, the sensor is capable of monitoring a range of human activities ranging from subtle deformations to vigorous body movements. Furthermore, the sensor can readily differentiate a range of sounds through air vibration and exhibit enormous potential in sound visualization technology.
Collapse
Affiliation(s)
- Kun Chen
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001, China
| | - Mengyao Gao
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoqing Liu
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001, China
| | - Haonan Xing
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001, China
| | - Huili Sun
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001, China
| | - Huatang Wang
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001, China
| | - Aosen Lou
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaohui Song
- Henan Academy of Sciences, Zhengzhou, 450046, China
| | - Weijie Liu
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001, China
| | - Haizhong Guo
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou, 450046, China
| |
Collapse
|
2
|
Huang Y, Wu C, Cao Y, Zheng J, Zeng B, Li X, Li M, Tang J. Scalable integration of photoresponsive highly aligned nanochannels for self-powered ionic devices. SCIENCE ADVANCES 2024; 10:eads5591. [PMID: 39705341 DOI: 10.1126/sciadv.ads5591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/18/2024] [Indexed: 12/22/2024]
Abstract
Artificial ionic nanochannels with light perception capabilities hold promise for creating ionic devices. Nevertheless, most research primarily focuses on regulating single nanochannels, leaving the cumulative effect of numerous nanochannels and their integration underexplored. We herein develop a biomimetic photoreceptor based on photoresponsive highly aligned nanochannels (pHANCs), which exhibit uniform channel heights, phototunable surface properties, and excellent compatibility with microfabrication techniques, enabling the scalable fabrication and integration into functional ionic devices. These pHANCs demonstrate exceptional ion selectivity and permeability due to the high surface charges and well-ordered conduits, resulting in outstanding energy harvesting from concentration gradients. Large-scale fabrication of pHANCs has been successfully realized, wherein hundreds of biomimetic photoreceptors produce an ultrahigh voltage over 76 volts, which has not been achieved previously. In addition, we demonstrate that the biomimetic photoreceptor can be further upscaled to be a self-powered ionic image sensor, capable of sensing and decoding incident light information.
Collapse
Affiliation(s)
- Yaxin Huang
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Changjin Wu
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Yingnan Cao
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Jing Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Binglin Zeng
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Xiaofeng Li
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Mingliang Li
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong 999077, China
- HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, Hong Kong 999077, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), The University of Hong Kong, Hong Kong, 999077 China
| |
Collapse
|
3
|
Awati A, Yang R, Shi T, Zhou S, Zhang X, Zeng H, Lv Y, Liang K, Xie L, Zhu D, Liu M, Kong B. Interfacial Super-Assembly of Vacancy Engineered Ultrathin-Nanosheets Toward Nanochannels for Smart Ion Transport and Salinity Gradient Power Conversion. Angew Chem Int Ed Engl 2024; 63:e202407491. [PMID: 38735853 DOI: 10.1002/anie.202407491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Ion-selective nanochannel membranes assembled from two-dimensional (2D) nanosheets hold immense promise for power conversion using salinity gradient. However, they face challenges stemming from insufficient surface charge density, which impairs both permselectivity and durability. Herein, we present a novel vacancy-engineered, oxygen-deficient NiCo layered double hydroxide (NiCoLDH)/cellulose nanofibers-wrapped carbon nanotubes (VOLDH/CNF-CNT) composite membrane. This membrane, featuring abundant angstrom-scale, cation-selective nanochannels, is designed and fabricated through a synergistic combination of vacancy engineering and interfacial super-assembly. The composite membrane shows interlayer free-spacing of ~3.62 Å, which validates the membrane size exclusion selectivity. This strategy, validated by DFT calculations and experimental data, improves hydrophilicity and surface charge density, leading to the strong interaction with K+ ions to benefit the low ion transport resistance and exceptional charge selectivity. When employed in an artificial river water|seawater salinity gradient power generator, it delivers a high-power density of 5.35 W/m2 with long-term durability (20,000s), which is almost 400 % higher than that of the pristine NiCoLDH membrane. Furthermore, it displays both pH- and temperature-sensitive ion transport behavior, offering additional opportunities for optimization. This work establishes a basis for high-performance salinity gradient power conversion and underscores the potential of vacancy engineering and super-assembly in customizing 2D nanomaterials for diverse advanced nanofluidic energy devices.
Collapse
Affiliation(s)
- Abuduheiremu Awati
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Ran Yang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Ting Shi
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Shan Zhou
- College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xin Zhang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Hui Zeng
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Yaokang Lv
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Kang Liang
- School of Chemical Engineering, Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Lei Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Dazhang Zhu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
- Yiwu Research Institute, Fudan University, Yiwu, Zhejiang, 322000, P. R. China
- Shandong Research Institute, Fudan University, Jinan, Shandong, 250103, P. R. China
| |
Collapse
|
4
|
Wang P, Tao W, Zhou T, Wang J, Zhao C, Zhou G, Yamauchi Y. Nanoarchitectonics in Advanced Membranes for Enhanced Osmotic Energy Harvesting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404418. [PMID: 38973652 DOI: 10.1002/adma.202404418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Indexed: 07/09/2024]
Abstract
Osmotic energy, often referred to as "blue energy", is the energy generated from the mixing of solutions with different salt concentrations, offering a vast, renewable, and environmentally friendly energy resource. The efficacy of osmotic power production considerably relies on the performance of the transmembrane process, which depends on ionic conductivity and the capability to differentiate between positive and negative ions. Recent advancements have led to the development of membrane materials featuring precisely tailored ion transport nanochannels, enabling high-efficiency osmotic energy harvesting. In this review, ion diffusion in confined nanochannels and the rational design and optimization of membrane architecture are explored. Furthermore, structural optimization of the membrane to mitigate transport resistance and the concentration polarization effect for enhancing osmotic energy harvesting is highlighted. Finally, an outlook on the challenges that lie ahead is provided, and the potential applications of osmotic energy conversion are outlined. This review offers a comprehensive viewpoint on the evolving prospects of osmotic energy conversion.
Collapse
Affiliation(s)
- Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Weixiang Tao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Tianhong Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jie Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chenrui Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Gang Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, 464-8603, Japan
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, South Korea
| |
Collapse
|
5
|
Feng Y, Xu S, Zheng J, Huang L, Ye T, Wang G, Jiang Y, Liu N. Crown-Ether Crystal Channel Membranes with Subnanometer Pores for Selective Na + Transport. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26817-26823. [PMID: 38727564 DOI: 10.1021/acsami.4c05613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Emulating biological sodium ion channels to achieve high selectivity and rapid Na+ transport is important for water desalination, energy conversion, and separation processes. However, the development of artificial ion channels, especially multichannels, to achieve high ion selectivity, remains a challenge. In this work, we demonstrate the fabrication of ion channel membranes utilizing crown-ether crystals (DA18C6-nitrate crystals), which feature extremely consistent subnanometer pores. The polyethylene terephthalate (PET) membranes were initially subjected to amination, followed by the in situ growth of DA18C6-nitrate crystals to establish ordered multichannels aimed at facilitating selective Na+ conductance. These channels allow rapid Na+ transport while inhibiting the migration of other ions (K+ and Ca2+). The Na+ transport rate was 2.15 mol m-2 h-1, resulting in the Na+/K+ and Na+/Ca2+ selectivity ratios of 6.53 and 12.56, respectively. Due to the immobilization of the crown-ether ring, when the size of the transmembrane ion exceeded that of the crown-ether ring's cavity, the ions had to undergo a dehydration process to pass through the channel. This resulted in the ions encountering a higher energy barrier upon entering the channel, making it more difficult for them to permeate. However, the size of Na+ was compatible with the cavity of the crown-ether ring and was able to displace the hydrated layer effectively, facilitating selective Na+ translocation. In summary, this research offers a promising approach for the future development of functionalized ion channels and efficient membrane materials tailored for high-performance Na+ separation.
Collapse
Affiliation(s)
- Yueyue Feng
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P.R. China
| | - Shiwei Xu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P.R. China
| | - Juanjuan Zheng
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P.R. China
| | - Liying Huang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P.R. China
| | - Tingyan Ye
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P.R. China
| | - Guofeng Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P.R. China
| | - Yisha Jiang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P.R. China
| | - Nannan Liu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P.R. China
- Institute of New Materials and Industry Technology, Wenzhou University, Wenzhou 325000, P.R China
| |
Collapse
|
6
|
Guo Y, Sun X, Ding S, Lu J, Wang H, Zhu Y, Jiang L. Charge-Gradient Sulfonated Poly(ether ether ketone) Membrane with Enhanced Ion Selectivity for Osmotic Energy Conversion. ACS NANO 2024; 18:7161-7169. [PMID: 38380884 DOI: 10.1021/acsnano.3c11944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Engineered asymmetric heterogeneous ion-selective membranes have become a focal point for their improved efficiency in harnessing osmotic energy from ionic solutions with varying salinity. However, achieving both energy conversion efficiency and excellent chemical stability necessitates effectively mitigating the formation of detrimental interface cracks between two different layers. We develop a charge-gradient sulfonated poly(ether ether ketone) (SPEEK) membrane (CG-SPEEK) on a large-scale using a straightforward coating method. As an osmotic energy generator, CG-SPEEK membrane achieves an impressive output power density of 9.2 W m-2 and exhibits ultrahigh cation selectivity (0.99), with an energy conversion efficiency of 48% at a 50-fold NaCl concentration gradient. The results highlight the ion diode effects of CG-SPEEK, driven by a charge density gradient that accelerates cation transport while suppressing ion concentration polarization. Density functional theory simulations provide further insights, revealing that the energy barrier for Na+ ion transport through CG-SPEEK membrane is lower than that through a homogeneous SPEEK membrane. This work not only enhances our understanding of ion transport dynamics but also establishes the CG-SPEEK membrane as a promising candidate for efficient osmotic energy conversion applications.
Collapse
Affiliation(s)
- Yumeng Guo
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Xiang Sun
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Shaosong Ding
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Jun Lu
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Ying Zhu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
7
|
Liu C, Ye C, Zhang T, Tang J, Mao K, Chen L, Xue L, Sun J, Zhang W, Wang X, Xiong P, Wang G, Zhu J. Bio-inspired Double Angstrom-Scale Confinement in Ti-deficient Ti 0.87 O 2 Nanosheet Membranes for Ultrahigh-performance Osmotic Power Generation. Angew Chem Int Ed Engl 2024; 63:e202315947. [PMID: 38059770 DOI: 10.1002/anie.202315947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Osmotic power, a clean energy source, can be harvested from the salinity difference between seawater and river water. However, the output power densities are hampered by the trade-off between ion selectivity and ion permeability. Here we propose an effective strategy of double angstrom-scale confinement (DAC) to design ion-permselective channels with enhanced ion selectivity and permeability simultaneously. The fabricated DAC-Ti0.87 O2 membranes possess both Ti atomic vacancies and an interlayer free spacing of ≈2.2 Å, which not only generates a profitable confinement effect for Na+ ions to enable high ion selectivity but also induces a strong interaction with Na+ ions to benefit high ion permeability. Consequently, when applied to osmotic power generation, the DAC-Ti0.87 O2 membranes achieved an ultrahigh power density of 17.8 W m-2 by mixing 0.5/0.01 M NaCl solution and up to 114.2 W m-2 with a 500-fold salinity gradient, far exceeding all the reported macroscopic-scale membranes. This work highlights the potential of the construction of DAC ion-permselective channels for two-dimensional materials in high-performance nanofluidic energy systems.
Collapse
Affiliation(s)
- Chao Liu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Caichao Ye
- Academy for Advanced Interdisciplinary Studies & Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tianning Zhang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jiheng Tang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Kunpeng Mao
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Long Chen
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Liang Xue
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jingwen Sun
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenqing Zhang
- Academy for Advanced Interdisciplinary Studies & Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin Wang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Pan Xiong
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Junwu Zhu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
8
|
Yu H, Guan J, Chen Y, Sun Y, Zhou S, Zheng J, Zhang Q, Li S, Zhang S. Large-Area Soluble Covalent Organic Framework Oligomer Coating for Organic Solution Nanofiltration Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305613. [PMID: 37712119 DOI: 10.1002/smll.202305613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 09/16/2023]
Abstract
Covalent organic frameworks (COFs) are a family of engaging membrane materials for molecular separation, which remain challenging to fabricate in the form of thin-film composite membranes due to slow crystal growth and insoluble powder. Here, an additive approach is presented to construct COF-based thin-film composite membranes in 10 min via COF oligomer coating onto poly(ether ether ketone) (PEEK)ultrafiltration membranes. By the virtue of ultra-thin liquid phase and liquid-solid interface-confined assembly, the COF oligomers are fast stacked up and grow along the interface with the solvent evaporation. Benefiting from the low out-plane resistance of COFs, COF@PEEK composite membranes exhibit high solvent permeances in a negative correlation with solvent viscosity. The well-defined pore structures enable high molecular sieving ability (Mw = 300 g mol-1 ). Besides, the COF@PEEK composite membranes possess excellent mechanical integrities and steadily operate for over 150 h in the condition of high-pressure cross flow. This work not only exemplifies the high-efficiency and scale-up preparation of COF-based thin-film composite membranes but also provides a new strategy for COF membrane processing.
Collapse
Affiliation(s)
- Huiting Yu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jiayu Guan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yaohan Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yuxuan Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shengyang Zhou
- Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jifu Zheng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Qifeng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shenghai Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Suobo Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
9
|
Awati A, Zhou S, Shi T, Zeng J, Yang R, He Y, Zhang X, Zeng H, Zhu D, Cao T, Xie L, Liu M, Kong B. Interfacial Super-Assembly of Intertwined Nanofibers toward Hybrid Nanochannels for Synergistic Salinity Gradient Power Conversion. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37235387 DOI: 10.1021/acsami.3c03464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Capturing the abundant salinity gradient power into electric power by nanofluidic systems has attracted increasing attention and has shown huge potential to alleviate the energy crisis and environmental pollution problems. However, not only the imbalance between permeability and selectivity but also the poor stability and high cost of traditional membranes limit their scale-up realistic applications. Here, intertwined "soft-hard" nanofibers/tubes are densely super-assembled on the surface of anodic aluminum oxide (AAO) to construct a heterogeneous nanochannel membrane, which exhibits smart ion transport and improved salinity gradient power conversion. In this process, one-dimensional (1D) "soft" TEMPO-oxidized cellulose nanofibers (CNFs) are wrapped around "hard" carbon nanotubes (CNTs) to form three-dimensional (3D) dense nanochannel networks, subsequently forming a CNF-CNT/AAO hybrid membrane. The 3D nanochannel networks constructed by this intertwined "soft-hard" nanofiber/tube method can significantly enhance the membrane stability while maintaining the ion selectivity and permeability. Furthermore, benefiting from the asymmetric structure and charge polarity, the hybrid nanofluidic membrane displays a low membrane inner resistance, directional ionic rectification characteristics, outstanding cation selectivity, and excellent salinity gradient power conversion performance with an output power density of 3.3 W/m2. Besides, a pH sensitive property of the hybrid membrane is exhibited, and a higher power density of 4.2 W/m2 can be achieved at a pH of 11, which is approximately 2 times more compared to that of pure 1D nanomaterial based homogeneous membranes. These results indicate that this interfacial super-assembly strategy can provide a way for large-scale production of nanofluidic devices for various fields including salinity gradient energy harvesting.
Collapse
Affiliation(s)
- Abuduheiremu Awati
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Shan Zhou
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Ting Shi
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Jie Zeng
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Ran Yang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Yanjun He
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Xin Zhang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Hui Zeng
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Dazhang Zhu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Tongcheng Cao
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Lei Xie
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Biao Kong
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, P. R. China
- Shandong Research Institute, Fudan University, Shandong 250103, P. R. China
| |
Collapse
|