1
|
Xu Y, Liao Y, Wang W, Wang Y, Wang J, Suo Z, Li F, Wang R, Ni W, Kan B, Meng L, Wan X, Chen Y, Hou J, Li M, Geng Y. An n-Doped Organic Cross-Linked Electron Transport Layer with High Electrical Conductivity for High-Efficiency Tandem Organic Photovoltaics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2501653. [PMID: 40123323 DOI: 10.1002/adma.202501653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/28/2025] [Indexed: 03/25/2025]
Abstract
With merits of good solution processability, intrinsic flexibility, etc, organic/organic interconnecting layers (ICLs) are highly desirable for tandem organic photovoltaics (OPVs). Herein, an n-doped cross-linked organic electron transport layer (ETL), named c-NDI-Br:PEI is developed, via a simple in situ quaternization reaction between bromopentyl-substituted naphthalene diimide derivative (NDI-Br) and polyethylenimine (PEI). Due to strong self-doping, c-NDI-Br:PEI films exhibit a high electrical conductivity (0.06 S cm-1), which is important for efficient hole and electron reombination in ICL of tandem OPVs. In addition, the cross-linked ETLs show strong work function modulation ability, and good solvent-resistance. The above features enable c-NDI-Br:PEI to function as an efficient ETL not only for single-junction OPVs, but also for tandem devices without any metal layer in ICL. Under solar radiation, the single-junction device with c-NDI-Br:PEI as ETL achieves a power conversion efficiency (PCE) of 18.18%, surpassing the ZnO-based device (17.09%). The homo- and hetero-tandem devices with m-PEDOT:PSS:c-NDI-Br:PEI as ICL exhibit remarkable PCEs of 19.06% and 20.06%, respectively. Under 808 nm laser radiation with a photon flux of 57 mW cm-2, the homo-tandem device presents a superior PCE of 38.5%. This study provides a new ETL for constructing all-solution-processed organic/organic ICL, which can be integrated in flexible and wearable devices.
Collapse
Affiliation(s)
- Yan Xu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Yifan Liao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Wenxuan Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yupu Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Jia Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Zhaochen Suo
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Feng Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Ruochen Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Wang Ni
- Science and Technology on Power Sources Laboratory, Tianjin Institute of Power Sources, Tianjin, 300384, China
| | - Bin Kan
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Lingxian Meng
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiangjian Wan
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Yongsheng Chen
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Miaomiao Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Yanhou Geng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
2
|
You Z, Gao A, Liu Y. Interfacial modification in organic solar cells. Chem Commun (Camb) 2025; 61:5253-5263. [PMID: 40100207 DOI: 10.1039/d4cc06507g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Organic solar cells (OSCs), consisting of several layers of organic semiconductors stacked between electrodes, have flourished in recent years. However, the energy barrier at the organic semiconductor/electrode interface remains a great challenge, limiting further advancements in device performances. In general, polar and even charged electronically active materials are recognized for their ability to modify the contact between the electrodes and organic semiconductors. Although numerous interlayer materials have been developed, there are still open questions about the mechanisms of interfacial modifications and molecular design strategies. This review focuses on the organic semiconductor/electrode interface in devices, starting with the working mechanism of the interlayers and followed by analyzing various interfacial electronic characteristics, such as the energy level arrangement, based on the basic principles of organic semiconductors. Then, we take the representative interlayer materials as examples and examine their specific working modes and functions in promoting device performance. The combination of mechanistic analysis and case studies provided in this review offer new insights into the development of more efficient organic solar cells for various applications.
Collapse
Affiliation(s)
- Zuhao You
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Aijun Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yao Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
3
|
Cheng B, Xia X, Cheng S, Han C, Sun F, Fu Z, Hou W, Hua F, Wang H, Sun W, Huo Y, Ji S, Guo X, Yin H, Du X, Hao X, Li Y, Zhang M. Precise Control Over Crystallization Kinetics by Combining Nucleating Agents and Plasticizers for 20.1% Efficiency Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500357. [PMID: 40066517 DOI: 10.1002/adma.202500357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/09/2025] [Indexed: 04/24/2025]
Abstract
Obtaining controllable active layer morphology plays a significant role in boosting the device performance of organic solar cells (OSCs). Herein, a quaternary strategy, which incorporates polymer donor D18-Cl and small molecule acceptor AITC into the host D18:N3, is employed to precisely modulate crystallization kinetics for favorable morphology evolution within the active layer. In situ spectroscopic measurements during film-formation demonstrate that while D18-Cl works as a nucleator to promote aggregation of D18 and foster donor/acceptor intermixing, AITC has exactly the opposite impact on aggregation of N3 and intermixing kinetics of donor and acceptor, working as a plasticizer. The mutually compensational effect of the dual-guests, as a result, enables synergistic control over fibrillar networks, multi-length scale morphology, and vertical phase distribution, leading to optimized 3D morphology for greatly enhanced exciton dissociation and charge transfer, suppressed charge recombination, and reduced energy loss. Consequently, the quaternary OSCs based on D18:D18-Cl:N3:AITC achieved an excellent power conversion efficiency of 20.1%, which represents one of the highest efficiencies for single-junction OSCs. This work presents an effective strategy to precisely regulate crystallization kinetics toward advanced morphology control for high-performance OSCs.
Collapse
Affiliation(s)
- Bo Cheng
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials (Shandong University), Ministry of Education, School of Chemistry & Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Xinxin Xia
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials (Shandong University), Ministry of Education, School of Chemistry & Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Sixuan Cheng
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials (Shandong University), Ministry of Education, School of Chemistry & Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Chenyu Han
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials (Shandong University), Ministry of Education, School of Chemistry & Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Fengbo Sun
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials (Shandong University), Ministry of Education, School of Chemistry & Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Zhen Fu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
| | - Wenwen Hou
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials (Shandong University), Ministry of Education, School of Chemistry & Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Feng Hua
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials (Shandong University), Ministry of Education, School of Chemistry & Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Hao Wang
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials (Shandong University), Ministry of Education, School of Chemistry & Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Wei Sun
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials (Shandong University), Ministry of Education, School of Chemistry & Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Yumiao Huo
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials (Shandong University), Ministry of Education, School of Chemistry & Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Shengqi Ji
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials (Shandong University), Ministry of Education, School of Chemistry & Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Xia Guo
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials (Shandong University), Ministry of Education, School of Chemistry & Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Hang Yin
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
| | - Xiaoyan Du
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
| | - Yongfang Li
- Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Maojie Zhang
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials (Shandong University), Ministry of Education, School of Chemistry & Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
- Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
4
|
Zhang W, Zhang K, Hao X. Multilength-Scale Morphological Engineering for Stable Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412230. [PMID: 40091362 DOI: 10.1002/smll.202412230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/09/2025] [Indexed: 03/19/2025]
Abstract
Organic solar cells (OSCs) have garnered significant attention owing to the light weight, flexibility, and low cost. Continuous improvement in molecular design, morphology control, and device fabrication has propelled the power conversion efficiency of OSCs beyond 20%. While obtaining long-term device stability is still a critical obstacle for the commercialization of OSCs. The nano- and microstructural characteristics of the active layer morphology-including molecular stacking, phase separation, and domain sizes-play a pivotal role in determining device performance. Consequently, a comprehensive understanding of how film structure impacting device stability and the methods to control film morphology are vital for improving device lifetime. This review seeks to elucidate the structure-performance relationship between active layer morphology from the nanoscale to microscale and device stability. It can provide rational guidance to enhance device stability from morphology control, accelerating the commercialization of OSCs.
Collapse
Affiliation(s)
- Wenqing Zhang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Kangning Zhang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
- School of Chemistry, ARC Centre of Excellence in Exciton Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
5
|
Li C, Song J, Lai H, Zhang H, Zhou R, Xu J, Huang H, Liu L, Gao J, Li Y, Jee MH, Zheng Z, Liu S, Yan J, Chen XK, Tang Z, Zhang C, Woo HY, He F, Gao F, Yan H, Sun Y. Non-fullerene acceptors with high crystallinity and photoluminescence quantum yield enable >20% efficiency organic solar cells. NATURE MATERIALS 2025; 24:433-443. [PMID: 39880932 DOI: 10.1038/s41563-024-02087-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 11/20/2024] [Indexed: 01/31/2025]
Abstract
The rational design of non-fullerene acceptors (NFAs) with both high crystallinity and photoluminescence quantum yield (PLQY) is of crucial importance for achieving high-efficiency and low-energy-loss organic solar cells (OSCs). However, increasing the crystallinity of an NFA tends to decrease its PLQY, which results in a high non-radiative energy loss in OSCs. Here we demonstrate that the crystallinity and PLQY of NFAs can be fine-tuned by asymmetrically adapting the branching position of alkyl chains on the thiophene unit of the L8-BO acceptor. It was found that L8-BO-C4, with 2-butyloctyl on one side and 4-butyldecyl on the other side, can simultaneously achieve high crystallinity and PLQY. A high efficiency of 20.42% (certified as 20.1%) with an open-circuit voltage of 0.894 V and a fill factor of 81.6% is achieved for the single-junction OSC. This work reveals how important the strategy of shifting the alkyl chain branching position is in developing high-performance NFAs for efficient OSCs.
Collapse
Affiliation(s)
- Chao Li
- School of Chemistry, Beihang University, Beijing, China
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstructions, Hong Kong University of Science and Technology, Hong Kong, China
| | - Jiali Song
- School of Chemistry, Beihang University, Beijing, China.
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, China.
| | - Hanjian Lai
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, China
| | - Huotian Zhang
- Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden
| | - Rongkun Zhou
- Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jinqiu Xu
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center for Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Haodong Huang
- Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, Dongguan, China
| | - Liming Liu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
| | - Jiaxin Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Yuxuan Li
- Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden
| | - Min Hun Jee
- Department of Chemistry, College of Science, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Zilong Zheng
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China
| | - Sha Liu
- Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, Dongguan, China
| | - Jun Yan
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
| | - Xian-Kai Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Zheng Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Chen Zhang
- Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Han Young Woo
- Department of Chemistry, College of Science, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Feng He
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, China
| | - Feng Gao
- Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden
| | - He Yan
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstructions, Hong Kong University of Science and Technology, Hong Kong, China.
| | - Yanming Sun
- School of Chemistry, Beihang University, Beijing, China.
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, China.
| |
Collapse
|
6
|
Bi P, Wang J, Chen Z, Li Z, Tan C, Qiao J, Dai J, Zhang T, Gao J, Goh WP, Lyu C, Jiang C, Hao X, Hou J, Yang L. Weak Near-Infrared Light Visualization Enabled by Smart Multifunctional Optoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416785. [PMID: 39924800 DOI: 10.1002/adma.202416785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/25/2025] [Indexed: 02/11/2025]
Abstract
Visualizing weak NIR light is critical for sensing, imaging, and communication, but remains challenging due to inefficient detection and upconversion (UC) mechanisms. A smart NIR-to-visible photon-UC organic optoelectronic device is reported that integrates photodetection, light-emitting diode (LED), and photovoltaic capabilities to enable clear visualization of weak NIR light. The programmable device has continuous photodetection monitoring of the incident NIR intensity. When the incident intensity falls below a preset threshold, the LED function is automatically triggered to compensate for the UC emission, amplifying the visualization. The smart multifunctional device uses a carefully designed ternary bulk heterojunction sensitizer doped with rubrene:DBP as the emitter. It demonstrates high UC efficiency (>1.5%) for upconversion from 808 to 608 nm, allowing NIR visualization without external power under strong illumination. It also shows excellent NIR photodetection with photoresponsivity of 0.35 A W-1 at 800 nm and specific detectivity reaching 10¹2-10¹3 Jones, enabling sensitive detection under low-light conditions. It also exhibits a low turn-on voltage (0.9 V) and luminance exceeding 1200 cd m- 2 at 5 V, ensuring energy-efficient light compensation. Furthermore, it achieves >10% power conversion efficiency, enabling sustainable self-powered operation. This multifunctional, high-performance system offers great potential in sensing, energy harvesting, and display technologies.
Collapse
Affiliation(s)
- Pengqing Bi
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Jianqiu Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhihao Chen
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zelong Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Cheng Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Jiawei Qiao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Jiangbo Dai
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Tao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiajia Gao
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Wei Peng Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Chengkun Lyu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Changyun Jiang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Le Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| |
Collapse
|
7
|
Chau HD, Park SH, Kwak H, Park CY, Kang H, Chae WS, Kim T, Yoon HJ, Yang H, Cho MJ, Choi DH. Exploring the Origin of High Thermal Stability of the Performance of Pseudo-Quaternary All-Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39996290 DOI: 10.1021/acsami.5c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
As all-polymer solar cells (all-PSCs) have achieved impressive power conversion efficiencies (PCEs), extending their lifetime under long-term operation is also increasingly important. To address this issue, in this study, a new pseudo-quaternary blend composed of conjugated block copolymer donors and acceptors, PM6-b-TT:b-PYT, is introduced as the active layer for all-PSCs. Compared to the all-PSC based on the traditional binary blend, PM6:BTTP-T, those based on pseudo-quaternary active layer exhibited significantly improved thermal stability after thermal annealing under harsh conditions of 150 °C in an ambient atmosphere. More importantly, to elucidate the morphological stability of the pseudo-quaternary active layer, visible evidence of the thin film's surface and internal structure is carefully investigated by multiple advanced techniques. After extended thermal stress at 150 °C, the binary bulk heterojunction (BHJ) films exhibit excessive polymer chain aggregation, phase separation of the polymers, and increased surface roughness, forming bulk charge traps and increasing the exciton recombination. Meanwhile, the pseudo-quaternary BHJ films maintain the crystallinity and nanostructure of the active layer, improving the stability of the all-PSCs. Overall, this study provides a detailed understanding of the long-term stability of high-efficiency all-PSCs, offering key insights into the polymer section and proposing promising polymer structures for the long-term stability of all-PSCs.
Collapse
Affiliation(s)
- Hong Diem Chau
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Su Hong Park
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Haeun Kwak
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Chae Yeong Park
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Hungu Kang
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Weon-Sik Chae
- Daegu Center, Korea Basic Science Institute, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Taekyung Kim
- Metropolitan Seoul Center, Korea Basic Science Institute, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyo Jae Yoon
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Hoichang Yang
- Department of Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Min Ju Cho
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Dong Hoon Choi
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
8
|
Wang B, Kong Y, Ye XK, Ye S, Chen T, Wang S, Li S, Shi M, Xu JT, Chen H. Thiophene Copolymer Donors Containing Ester-Substituted Thiazole for Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7707-7715. [PMID: 39843894 DOI: 10.1021/acsami.4c18536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Organic solar cells have seen significant progress in the past 2 decades with power conversion efficiencies (PCEs) exceeding 20% but mostly based on high-cost photovoltaic materials. Polythiophenes (PTs) without a fused-ring structure are good candidates as low-cost donor materials, deserving more attention for studying. In this work, ester-substituted thiazole (E-Tz) was explored as the electron-withdrawing unit to design PTs, and further optimization on the fluorinated/nonfluorinated donor segment contents via copolymerization strategy was simultaneously performed, yielding polymer donors of PTETz-100F, PTETz-80F, and PTETz-0F. Suitable temperature-dependent aggregation for reasonable phase separation and compact molecular packing for improved charge transport were achieved in the PTETz-80F-based system, resulting in higher exciton dissociation probability and charge collection probability. Thereby, devices based on PTETz-80F:L8-BO exhibited the best photovoltaic performance with a PCE of 12.69%. In addition, the synthetic complexity of PTETz-XF polymers is 46.05%, which is significantly lower than those of other representative high-performance polymer donors. This work demonstrates the feasibility of designing PTs with an E-Tz unit and the effectiveness of the copolymerization strategy on material property and device performance optimization.
Collapse
Affiliation(s)
- Binnan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yibo Kong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xiu-Kun Ye
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Shounuan Ye
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Tianyi Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Shanlu Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Shuixing Li
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, P. R. China
| | - Minmin Shi
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jun-Ting Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Hongzheng Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, P. R. China
| |
Collapse
|
9
|
McAnally S, Brooks E, Lindsay O, Burn PL, Gentle IR, Shaw PE. High-Efficiency Y6 Homojunction Organic Solar Cells Enabled by a Secondary Hole Transport Layer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409485. [PMID: 39888211 PMCID: PMC11855233 DOI: 10.1002/smll.202409485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Y6 homojunction solar cells are prepared using the exciton/electron-blocking material poly[9,9-di-n-octylfluorene-alt-N-(4-sec-butylphenyl)diphenylamine] (TFB) as a secondary hole transport layer material in conjunction with PEDOT:PSS. Using this device architecture, a maximum power conversion efficiency (PCE) of 2.57% is achieved, which is the highest reported thus far for a solution-processed small molecule homojunction organic photovoltaic (OPV) device. The devices display an unexpectedly low thickness dependence, with the average PCE only decreasing by ≈17% when the Y6 active layer thickness is increased from 80 to 300 nm. Time-resolved photoluminescence measurements show that the TFB does not contribute to charge generation through photoinduced hole or electron transfer. However, transient absorption spectroscopy on thin films of neat Y6 and a 1:1 blend of Y6:TFB shows that the TFB enhances the formation of the long-lived Y6 intermolecular charge-transfer state in the blend film. It is found that careful selection of the electron transport layer (ETL) is required to avoid unintended charge generation at the interface with Y6 so as to ensure that the device is a true homojunction. The improved efficiency of this architecture is attributed to the electron-blocking and hole-extraction effects of the TFB layer.
Collapse
Affiliation(s)
- Shaun McAnally
- Centre for Organic Photonics & ElectronicsSchool of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQLD4072Australia
| | - Eucalyptus Brooks
- Centre for Organic Photonics & ElectronicsSchool of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQLD4072Australia
| | - Oliver Lindsay
- Centre for Organic Photonics & ElectronicsSchool of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQLD4072Australia
| | - Paul L. Burn
- Centre for Organic Photonics & ElectronicsSchool of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQLD4072Australia
| | - Ian R. Gentle
- Centre for Organic Photonics & ElectronicsSchool of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQLD4072Australia
| | - Paul E. Shaw
- Centre for Organic Photonics & ElectronicsSchool of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQLD4072Australia
| |
Collapse
|
10
|
Cao X, Wang P, Jia X, Zhao W, Chen H, Xiao Z, Li J, Bi X, Yao Z, Guo Y, Long G, Li C, Wan X, Chen Y. Rebuilding Peripheral F, Cl, Br Footprints on Acceptors Enables Binary Organic Photovoltaic Efficiency Exceeding 19.7 . Angew Chem Int Ed Engl 2025; 64:e202417244. [PMID: 39513473 DOI: 10.1002/anie.202417244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024]
Abstract
Given homomorphic fluorine (F), chlorine (Cl) and bromine (Br) atoms are featured with gradually enlarged polarizability/atomic radius but decreased electronegativity, the rational screen of halogen species and locations on small molecular acceptors (SMAs) is quite essential for acquiring desirable molecular packing to boost efficiency of organic solar cells (OSCs). Herein, three isomeric SMAs (CH-F, CH-C and CH-B) are constructed by delicately rebuilding peripheral F, Cl, Br footprints on both central and end units. Such a re-permutation of peripheral halogens could not only maintain the structural symmetry of SMAs to the maximum, but also acquire extra asymmetric benefits of enhanced dipole moment and intramolecular charge transfer, etc. Moreover, central brominating enhances molecular crystallinity of CH-B without introducing undesirable steric hindrance on end groups, thus rendering a better balance between high crystallization and domain size control in PM6:CH-B blend. Further benefitting from the large dielectric constant, small exciton binding energy, optimized molecular packing and great electron transfer integral, CH-B affords the first class binary OSC efficiency of 19.78 %, moreover, the highest efficiency of 18.35 % thus far when increasing active layer thickness to ~300 nm. Our successful screening in rebuilding peripheral halogen footprints provides the valuable insight into further rational design of SMAs for record-breaking OSCs.
Collapse
Affiliation(s)
- Xiangjian Cao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China E-mails
| | - Peiran Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China E-mails
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300350, China
| | - Xinyuan Jia
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China E-mails
| | - Wenkai Zhao
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300350, China
| | - Hongbin Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China E-mails
| | - Zheng Xiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China E-mails
| | - Jiaqi Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China E-mails
| | - Xingqi Bi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China E-mails
| | - Zhaoyang Yao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China E-mails
| | - Yaxiao Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Guankui Long
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300350, China
| | - Chenxi Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China E-mails
| | - Xiangjian Wan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China E-mails
| | - Yongsheng Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China E-mails
| |
Collapse
|
11
|
He H, Li X, Zhang J, Chen Z, Gong Y, Zhuo H, Wu X, Li Y, Wang S, Bi Z, Song B, Zhou K, Liang T, Ma W, Lu G, Ye L, Meng L, Zhang B, Li Y, Li Y. Dynamic hydrogen-bonding enables high-performance and mechanically robust organic solar cells processed with non-halogenated solvent. Nat Commun 2025; 16:787. [PMID: 39824822 PMCID: PMC11748654 DOI: 10.1038/s41467-024-55375-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/09/2024] [Indexed: 01/20/2025] Open
Abstract
Developing active-layer systems with both high performance and mechanical robustness is a crucial step towards achieving future commercialization of flexible and stretchable organic solar cells (OSCs). Herein, we design and synthesize a series of acceptors BTA-C6, BTA-E3, BTA-E6, and BTA-E9, featuring the side chains of hexyl, and 3, 6, and 9 carbon-chain with ethyl ester end groups respectively. Benefiting from suitable phase separation and vertical phase distribution, the PM6:BTA-E3-based OSCs processed by o-xylene exhibit lower energy loss and improved charge transport characteristic and achieve a power conversion efficiency of 19.92% (certified 19.57%), which stands as the highest recorded value in binary OSCs processed by green solvents. Moreover, due to the additional hydrogen-bonding provided by ethyl ester side chain, the PM6:BTA-E3-based active-layer systems achieve enhanced stretchability and thermal stability. Our work reveals the significance of dynamic hydrogen-bonding in improving the photovoltaic performance, mechanical robustness, and morphological stability of OSCs.
Collapse
Affiliation(s)
- Haozhe He
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojun Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China.
| | - Jingyuan Zhang
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Zekun Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yufei Gong
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hongmei Zhuo
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiangxi Wu
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yuechen Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, China
| | - Shijie Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China
| | - Zhaozhao Bi
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China
| | - Bohao Song
- Frontier Institute of Science and Technology, and State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, China
| | - Kangkang Zhou
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, China
| | - Tongling Liang
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China
- Center for Physicochemical Analysis and Measurement, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China
| | - Guanghao Lu
- Frontier Institute of Science and Technology, and State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, China
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, China
| | - Lei Meng
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ben Zhang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Yaowen Li
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Yongfang Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China.
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China.
| |
Collapse
|
12
|
Wang C, Xin Y, Gu H, Ye L, Liu Y, Zhou Y, Deng Y, Geng Y. An n-Doping Cross-Linkable Quinoidal Compound as an Electron Transport Material for Fully Stretchable Inverted Organic Solar Cells. Angew Chem Int Ed Engl 2025; 64:e202415440. [PMID: 39257370 DOI: 10.1002/anie.202415440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/12/2024]
Abstract
The photocatalytic activity and inherent brittleness of ZnO, which is commonly used as an electron transport layer (ETL) in inverted organic solar cells (OSCs), have impeded advancements in device stability and the development of fully stretchable OSCs. In this study, an intrinsically stretchable ETL for inverted OSCs through a side-chain cross-linking strategy has been developed. Specifically, cross-linking between bromine atoms on the side chains of a quinoidal compound and the amino groups in polyethylenimine resulted in a film, designated QBr-PEI-50, with high electrical conductivity (0.049 S/m) and excellent stretchability (crack-onset strain>45 %). When used as the ETL in inverted OSCs, QBr-PEI-50 was markedly superior to ZnO in terms of device performance and stability, yielding a power conversion efficiency (PCE) of 18.27 % and a T80 lifetime exceeding 10000 h. Moreover, incorporation of QBr-PEI-50 in fully stretchable inverted OSCs yielded a PCE of 14.01 %, and 80 % of the initial PCE was maintained after 21 % strain, showcasing its potential for wearable electronics.
Collapse
Affiliation(s)
- Cheng Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Yufei Xin
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P.R. China
| | - Haoran Gu
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Long Ye
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Yongsheng Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P.R. China
| | - Yinhua Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
13
|
Li D, Xu Y, Li G, Zhao W, Da L, Zhou P, Tang B. Fluorinated-Quinoxaline Based Non-Fused Electron Acceptors Enables Efficient As-Cast Organic Solar Cells. Chemistry 2025:e202403972. [PMID: 39788901 DOI: 10.1002/chem.202403972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/12/2025]
Abstract
Non-fused electron acceptors have obtained increasing curiosity in organic solar cells (OSCs) thanks to simple synthetic route and versatile chemical modification capabilities. However, non-fused acceptors with varying quinoxaline core and as-cast device have rarely been explored, and the molecular structure-photovoltaic performance relationship of such acceptors remains unclear. Herein, two non-fused acceptors L19 and L21 with thienyl substituted non-fluorinated/fluorinated quinoxaline core were developed via five-step synthesis. Compared with L19, L21 with F-containing quinoxaline exhibited higher molar extinction coefficient, boosted charge mobility, improved exciton dissociation, more ordered molecular stacking and optimized film morphology. Thereafter, a notable power conversion efficiency (PCE) of 11.45 % could be obtained for the as-cast PBDB-T : L21 -based device, which is significantly better than the device based on PBDB-T : L19 (8.68 %). Furthermore, PM6 : Y6 : L21-based ternary devices were fabricated and exhibited the highest PCE of 17.81 %. This work discloses that the introduction of electron-withdrawing fluorinated quinoxaline core and appropriate side-chain engineering can play an important role in improving the performance of as-cast solar cell devices.
Collapse
Affiliation(s)
- Dandan Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Materials and Clean Energy, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
| | - Yan Xu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Materials and Clean Energy, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
| | - Gang Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Materials and Clean Energy, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
| | - Wenrong Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Materials and Clean Energy, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
| | - Lin Da
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Ping Zhou
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Materials and Clean Energy, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
- Laoshan Laboratory, Qingdao, 266200, P. R. China
| |
Collapse
|
14
|
Cho Y, Sun Z, Li G, Zhang D, Yang S, Marks TJ, Yang C, Facchetti A. CF 3-Functionalized Side Chains in Nonfullerene Acceptors Promote Electrostatic Interactions for Highly Efficient Organic Solar Cells. J Am Chem Soc 2025; 147:758-769. [PMID: 39692398 DOI: 10.1021/jacs.4c13471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The advent of next-generation nonfullerene acceptors (NFAs) has propelled major advances in organic solar cells (OSCs). Here we report an NFA design incorporating CF3-terminated side chains having varying N-(CH2)n-CF3 linker lengths (n = 1, 2, and 3) which introduce new intermolecular interactions, hence strong modulation of the photovoltaic response. We report a systematic comparison and contrast characterization of this NFA series with a comprehensive set of chemical/physical techniques versus the heavily studied third-generation NFA, Y6, revealing distinctive and beneficial properties of this new NFA series. Single-crystal diffraction analyses reveal unusual two-dimensional mesh-like crystal structures, featuring strong interactions between the side chain CF3-terminal and NFA core F substituents. These atomistic and morphological features contribute to enhanced charge mobility and significantly enhanced photovoltaic performance. We show that varying the CF3-terminated side chain linker length strongly modulates light harvesting efficiency as well as charge recombination and the photovoltaic bandgap. The CF3-(CH2)2-based OSC demonstrates the most balanced performance metrics, achieving a remarkable 19.08% power conversion efficiency and an exceptional 80.09% fill-factor. These results imply that introducing CF3-terminated side chains into other OSC conjugated constituents may accelerate next-generation solar cell development.
Collapse
Affiliation(s)
- Yongjoon Cho
- Department of Chemistry, the Materials Research Center, Trienens Institute for Sustainability and Energy Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhe Sun
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| | - Guoping Li
- Department of Chemistry, the Materials Research Center, Trienens Institute for Sustainability and Energy Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Dayong Zhang
- Department of Chemistry, the Materials Research Center, Trienens Institute for Sustainability and Energy Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Sangjin Yang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| | - Tobin J Marks
- Department of Chemistry, the Materials Research Center, Trienens Institute for Sustainability and Energy Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Changduk Yang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| | - Antonio Facchetti
- Department of Chemistry, the Materials Research Center, Trienens Institute for Sustainability and Energy Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta, Atlanta, Georgia 30332, United States
| |
Collapse
|
15
|
Ge Z, Qiao J, Li Y, Song J, Duan X, Fu Z, Hu H, Yang R, Yin H, Hao X, Sun Y. Regulating Electron-Phonon Coupling by Solid Additive for Efficient Organic Solar Cells. Angew Chem Int Ed Engl 2025; 64:e202413309. [PMID: 39209802 DOI: 10.1002/anie.202413309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Strong electron-phonon coupling can hinder exciton transport and induce undesirable non-radiative recombination, resulting in a shortened exciton diffusion distance and constrained exciton dissociation in organic solar cells (OSCs). Therefore, suppressing electron-phonon coupling is crucially important for achieveing high-performance OSCs. Here, we employ the solid additive to regulating electron-phonon coupling in OSCs. The planar configuration of SA1 confers a significant advantage in suppressing lattice vibrations in the active layers, reducing the scattering of excitons by phonons. Consequently, a slow but sustained hole transfer process is identified in the SA1-assisted film, indicating an enhancement in hole transfer efficiency. Prolonged exciton diffusion length and exciton lifetime are achieved in the blend film processed with SA1, attributed to a low non-radiative recombination rate and low energetic disorder for charge carrier transport. As a result, a high efficiency of 20 % was achieved for ternary device with a remarkable short-circuit current. This work highlights the important role of suppressing electron-phonon coupling in improving the photovoltaic performance of OSCs.
Collapse
Affiliation(s)
- Zhongwei Ge
- School of Chemistry, Beihang University, 100191, Beijing, P. R. China
| | - Jiawei Qiao
- School of Physics State Key Laboratory of Crystal Materials, Shandong University, 250100, Jinan, P. R. China
| | - Yun Li
- School of Chemistry, Beihang University, 100191, Beijing, P. R. China
| | - Jiali Song
- School of Chemistry, Beihang University, 100191, Beijing, P. R. China
| | - Xiaopeng Duan
- School of Chemistry, Beihang University, 100191, Beijing, P. R. China
| | - Zhen Fu
- School of Physics State Key Laboratory of Crystal Materials, Shandong University, 250100, Jinan, P. R. China
| | - Haixia Hu
- School of Physics State Key Laboratory of Crystal Materials, Shandong University, 250100, Jinan, P. R. China
| | - Renqiang Yang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, 430056, Wuhan, P. R. China
| | - Hang Yin
- School of Physics State Key Laboratory of Crystal Materials, Shandong University, 250100, Jinan, P. R. China
| | - Xiaotao Hao
- School of Physics State Key Laboratory of Crystal Materials, Shandong University, 250100, Jinan, P. R. China
| | - Yanming Sun
- School of Chemistry, Beihang University, 100191, Beijing, P. R. China
| |
Collapse
|
16
|
Zhang S, Li S, Song S, Zhao Y, Gao L, Chen H, Li H, Lin J. Deep Learning-Assisted Design of Novel Donor-Acceptor Combinations for Organic Photovoltaic Materials with Enhanced Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2407613. [PMID: 39648547 DOI: 10.1002/adma.202407613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/24/2024] [Indexed: 12/10/2024]
Abstract
Designing donor (D) and acceptor (A) structures and discovering promising D-A combinations can effectively improve organic photovoltaic (OPV) device performance. However, to obtain excellent power conversion efficiency (PCE), the trial-and-error structural design in the infinite chemical space is time-consuming and costly. Herein, a deep learning (DL)-assisted design framework for OPV materials is proposed. To effectively digitally represent the D and A structures, a structure representation method, polymer fingerprints, is developed, and a database of OPV materials is constructed. By applying an end-to-end graph neural network modeling method, high-precision DL models for predicting OPV performance are established. After combining the existing structures, ≈0.6 million virtual D-A combinations are generated. Then, the OPV performance of these candidate combinations is predicted by the well-trained models, and numbers of novel D-A combinations with high efficiency are identified. Experimental validations confirm that the prediction accuracy is greater than 93% and one of the screened combinations (i.e., D18:BTP-S11) exhibits an efficiency above 19.3% in single-junction organic solar cells. Finally, based on the structural gene analysis, the design rules to guide experimental explorations are suggested. The developed DL-assisted approach can accelerate the design of D-A combinations with ultrahigh efficiency and bring property breakthroughs for OPV devices.
Collapse
Affiliation(s)
- Shizhao Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuixing Li
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Siqin Song
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yang Zhao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hongzheng Chen
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hanying Li
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
17
|
Xia Y, Wang C, Guo E, Lu Z, Fan H, Wang B, Liu X, Xiao C, Wu Y, Li W. Fluorination Strategy for Benzimidazole Core Based Electron Acceptors Achieving over 19% Efficiency for Ternary Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69660-69669. [PMID: 39641227 DOI: 10.1021/acsami.4c16494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The expansion of two-dimensional conjugated systems in nonfullerene electron acceptors (NFAs) has significantly advanced the molecular design and efficiency potential of organic solar cells (OSCs). This study introduces a novel class of NFAs featuring a benzimidazole core with varying degrees of peripheral fluorination, designated as YIS-4F, YIS-6F, and YIS-8F, respectively. Through systematic modulation of fluorine content, we observed that OSCs incorporating YIS-6F achieved the highest power conversion efficiency (PCE) of 17.28%, surpassing those with YIS-4F and YIS-8F. Notably, the incorporation of YIS-6F in a ternary blend with D18/N3 yielded a remarkable PCE of 19.43%. The enhanced performance of YIS-6F-based devices is attributed to the optimized energy level alignment and optimized crystallinity, which collectively facilitate efficient exciton dissociation, accelerated charge transport, and minimized charge recombination, culminating in an exceptional fill factor and PCE. Our findings underscore the pivotal role of fluorination of NFAs at the central benzimidazole core in optimizing molecular packing, and consequently enhancing the performance of OSCs.
Collapse
Affiliation(s)
- Yukun Xia
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Chao Wang
- College of Chemistry and Chemistry and Chemical Engineering, Hebei Minzu Normal University, Chengde 067000, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Erqin Guo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ziheng Lu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Haiyun Fan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Bo Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xucong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yonggang Wu
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
18
|
Chen Y, Tian G, Huang P, Hu D, Xiao Z. Fluorination or Not in Small Molecule Solar Cells: Achieving a Higher Efficiency with Halogen-Free End Group. Chemistry 2024; 30:e202403341. [PMID: 39363700 DOI: 10.1002/chem.202403341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
Fluorination is an efficient strategy for improving organic solar cells (OSCs) efficiency, particularly by fluorinating the end group of emerging nonfullerene acceptors. Here, the fluorination effect was investigated by using small molecule donors with fluorine-free (SBz) and fluorinated (SBz-F) end groups, paired with the emerging nonfullerene acceptor Y6. Interestingly and unexpectedly, fluorination of the end group negatively affects OSCs efficiency, with fluorine-free SBz:Y6 OSCs achieving a higher power conversion efficiency (PCE) of 11.05 % compared to the fluorine-containing SBz-F:Y6 blends (PCE=9.61 %). Analysis of space-charge limited currents reveals lower and unbalanced hole/electron mobility in SBz-F:Y6 compared to the SBz:Y6 blends. These findings are further supported by charge recombination dynamics and donor-acceptor miscibility analyses.
Collapse
Affiliation(s)
- Yao Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, P. R. China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Gengsui Tian
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, P. R. China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Peihao Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, P. R. China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Dingqin Hu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, P. R. China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Zeyun Xiao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, P. R. China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| |
Collapse
|
19
|
Zhang L, Wang Y, Wen J, Huang Y, Gao J, Duan Y, Park S, Shin W, Ma Z, Liu M, Cho SW, Park Y, Jung YM, Lee H, Liu W, Liu Y. Configurational Isomerization-Induced Orientation Switching: Non-Fused Ring Dipodal Phosphonic Acids as Hole-Extraction Layers for Efficient Organic Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202408960. [PMID: 39212257 DOI: 10.1002/anie.202408960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Phosphonic acid (PA) self-assembled molecules have recently emerged as efficient hole-extraction layers (HELs) for organic solar cells (OSCs). However, the structural effects of PAs on their self-assembly behaviors on indium tin oxide (ITO) and thus photovoltaic performance remain obscure. Herein, we present a novel class of PAs, namely "non-fused ring dipodal phosphonic acids" (NFR-DPAs), featuring simple and malleable non-fused ring backbones and dipodal phosphonic acid anchoring groups. The efficacy of configurational isomerism in modulating the photoelectronic properties and switching molecular orientation of PAs atop electrodes results in distinct substrate surface energy and electronic characteristics. The NFR-DPA with linear (C2h symmetry) and brominated backbone exhibits favorable face-on orientation and enhanced work function modification capability compared to its angular (C2v symmetry) and non-brominated counterparts. This makes it versatile HELs in mitigating interfacial resistance for energy barrier-free hole collection, and affording optimal active layer morphology, which results in an impressive efficiency of 19.11 % with a low voltage loss of 0.52 V for binary OSC devices and an excellent efficiency of 19.66 % for ternary OSC devices. This study presents a new dimension to design PA-based HELs for high-performance OSCs.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuxing Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junjie Wen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yifan Huang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaxin Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuxin Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Soohyung Park
- Advanced Analysis Center, Korea Institute of Science and Technology, and Division of Nanoscience & Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Woojin Shin
- Department of Physics, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Zaifei Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Miao Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sang Wan Cho
- Department of Physics, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 26493, Republic of Korea
| | - Yeonju Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Hyunbok Lee
- Department of Physics, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Wenxu Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yao Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
20
|
Pananusorn P, Sotome H, Uratani H, Ishiwari F, Phomphrai K, Saeki A. Molecular models of PM6 for non-fullerene acceptor organic solar cells: How DAD and ADA structures impact charge separation and charge recombination. J Chem Phys 2024; 161:184710. [PMID: 39530371 DOI: 10.1063/5.0227785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The quadrupole moment of a non-fullerene acceptor (NFA) generated by the constituent electron donor (D) and acceptor (A) units is a significant factor that affects the charge separation (CS) and charge recombination (CR) processes in organic photovoltaics (OPVs). However, its impact on p-type polymer domains remains unclear. In this study, we synthesized p-type molecules, namely acceptor-donor-acceptor (ADA) and donor-acceptor-donor (DAD), which are components of the benchmark PM6 polymer (D: benzodithiophene and A: dioxobenzodithiophene). Planar heterojunction films, a model of bulk heterojunction, were prepared using ADA, DAD, and PM6 as the bottom p-type layers and Y6 NFA as the top n-type layer. Flash-photolysis time-resolved microwave conductivity, femtosecond transient absorption spectroscopy, and quantum mechanical calculations were employed to probe the charge carrier dynamics. Our findings reveal that while the subtle difference in quadrupole moment and energy gradient of the p-type materials has a minimal influence on CS, the molecular type (ADA or DAD) significantly affects the bulk CR. This study expands the understanding of how the p-type component and its conformation at the p/n interface impact the CS and CR in OPVs, highlighting the critical role of molecular donors in optimizing device performance.
Collapse
Affiliation(s)
- Puttipong Pananusorn
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hikaru Sotome
- Division of Frontier Materials Science and Centre for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Hiroki Uratani
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Fumitaka Ishiwari
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Khamphee Phomphrai
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
21
|
Feng F, Hu Z, Wang J, Wang P, Sun C, Wang X, Bi F, Li Y, Bao X. Non-Fused π-Extension of Endcaps of Small Molecular Acceptors Enabling High-Performance Organic Solar Cells. CHEMSUSCHEM 2024; 17:e202400601. [PMID: 38782717 DOI: 10.1002/cssc.202400601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
The modular structure of small molecular acceptors (SMAs) allows for versatile modifications of the materials and boosts the photovoltaic efficiencies of organic solar cells (OSCs) in recent years. As a critical component, the endcaps of SMAs have been intensively investigated and modified to control the molecular aggregation and photo-electronic conversion. However, most of the studies focus on halogenation or π-fusion extension of the endcap moieties, but overlook the non-fused π-extension approach, which could be a promising strategy to balance the self-aggregation and compatibility behaviors. Herein, we reported two new acceptors namely BTP-Th and BTP-FTh based on non-fused π-extension of the endcap by chlorinated-thiophene, of which the latter molecule has better co-planarity and crystallinity because of the intramolecular noncovalent interactions. Paired with donor PBDB-T, the optimal device of BTP-FTh reveals a greater efficiency of 14.81 % that that of BTP-Th (13.91 %). Nevertheless, the BTP-Th based device realizes a lower energy loss, enabling BTP-Th as a good candidate to serve as guest acceptor. As a result, the ternary solar cells of PM6 : BTP-eC9 : BTP-Th output a champion efficiency up to 18.71 % with enhanced open-circuit voltage. This study highlights the significance of rational decoration of endcaps for the design of high-performance SMAs and photovoltaic cells.
Collapse
Affiliation(s)
- Fan Feng
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zunyuan Hu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
- College of Materials Science and Engineering, Shandong University of Science and Technology, 266590, Qingdao, China
| | - Jianxiao Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
| | - Pengchao Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
- School of Polymer Science and Engineering, Qingdao University of Science & Technology, 266042, Qingdao, China
| | - Cheng Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
| | - Xiaoning Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fuzhen Bi
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
- Laboratory of Solar Energy, Shandong Energy Institute, 266101, Qingdao, China
- Qingdao New Energy Shandong Laboratory, 266101, Qingdao, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yonghai Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
- Laboratory of Solar Energy, Shandong Energy Institute, 266101, Qingdao, China
- Qingdao New Energy Shandong Laboratory, 266101, Qingdao, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xichang Bao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
- Laboratory of Solar Energy, Shandong Energy Institute, 266101, Qingdao, China
- Qingdao New Energy Shandong Laboratory, 266101, Qingdao, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
22
|
Wang K, Gao J, Wang H, Guo Q, Zhang J, Guo X, Zhang M. Enhanced Fill Factor and Efficiency of Ternary Organic Solar Cells by a New Asymmetric Non-Fullerene Small Molecule Acceptor. CHEMSUSCHEM 2024; 17:e202400691. [PMID: 38805339 DOI: 10.1002/cssc.202400691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024]
Abstract
Asymmetric non-fullerene small molecules acceptor (as-NF-SMAs) exhibit greater vitality in photovoltaic materials compared to their symmetric counterparts due to their larger dipole moments and stronger intermolecular interactions, which facilitate exciton dissociation and charge transmission in organic solar cells (OSCs). Here, we introduced a new as-NF-SMAs, named IDT-TNIC, as the third component in ternary organic solar cells (TOSCs). The asymmetric IDT-TNIC used indacenodithiophene (IDT) as the central core, alkylthio-thiophene as a unilateral π-bridge and extended end groups as electron-withdrawing. Due to the non-covalent conformational lock (NCL) established between O⋅⋅⋅S and S⋅⋅⋅S, the IDT-TNIC molecule preserves its coplanar structure effectively. Furthermore, IDT-TNIC exhibits complementary absorption and excellent compatibility with donor and acceptor materials, as well as optimized ladder energy level arrangement, resulting in a higher and more balanced μh/μe value, more homogeneous and suitable phase separation morphology in TOSCs. Thus, the PCE of the TOSCs reached 17 % when the weight ratio of PM6 : Y6 : IDT-TNIC was 1 : 1.1 : 0.1, and it is noteworthy that when the device area was increased to 1 cm2, the PCE could still be maintained at over 14 %. Detailed studies and analysis indicate that IDT-TNIC has great potential as a third component in OSCs and for large-scale printing in the future.
Collapse
Affiliation(s)
- Kun Wang
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, 451191, China
| | - Jingshun Gao
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, 451191, China
| | - Huiyan Wang
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, 451191, China
| | - Qing Guo
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xia Guo
- National Engineering Research Center for Colloidal Materials, School of Chemistry & Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Maojie Zhang
- National Engineering Research Center for Colloidal Materials, School of Chemistry & Chemical Engineering, Shandong University, Jinan, 250100, China
| |
Collapse
|
23
|
Shen Q, He C, Li S, Qiao J, Li S, Zhang Y, Shi M, Zuo L, Hao X, Chen H. Loosely Bounded Exciton with Enhanced Delocalization Capability Boosting Efficiency of Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403570. [PMID: 38966891 DOI: 10.1002/smll.202403570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/20/2024] [Indexed: 07/06/2024]
Abstract
In organic solar cells (OSCs), electron acceptors have undergone multiple updates, from the initial fullerene derivatives, to the later acceptor-donor-acceptor type non-fullerene acceptors (NFAs), and now to Y-series NFAs, based on which efficiencies have reached over 19%. However, the key property responsible for further improved efficiency from molecular structure design is remained unclear. Herein, the material properties are comprehensively scanned by selecting PC71BM, IT-4F, and L8-BO as the representatives for different development stages of acceptors. For comparison, asymmetric acceptor of BTP-H5 with desired loosely bounded excitons is designed and synthesized. It's identified that the reduction of intrinsically exciton binding energy (Eb) and the enhancement of exciton delocalization capability act as the key roles in boosting the performance. Notably, 100 meV reduction in Eb has been observed from PC71BM to BTP-H5, correspondingly, electron-hole pair distance of BTP-H5 is almost two times over PC71BM. As a result, efficiency is improved from 40% of S-Q limit for PC71BM-based OSC to 60% for BTP-H5-based one, which achieves an efficiency of 19.07%, among the highest values for binary OSCs. This work reveals the confirmed function of exciton delocalization capability quantitatively in pushing the efficiency of OSCs, thus providing an enlightenment for future molecular design.
Collapse
Affiliation(s)
- Qing Shen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Chengliang He
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shuixing Li
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Jiawei Qiao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Shilin Li
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Yuan Zhang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Minmin Shi
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Lijian Zuo
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Hongzheng Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| |
Collapse
|
24
|
Song X, Mei L, Zhou X, Li H, Xu H, Liu X, Gao S, Xu S, Yang Y, Zhu W, Wang J, Zhang XH, Chen XK. Frenkel and Charge-Transfer Excitonic Couplings Strengthened by Thiophene-Type Solvent Enables Binary Organic Solar Cells with 19.8 % Efficiency. Angew Chem Int Ed Engl 2024; 63:e202411512. [PMID: 38988004 DOI: 10.1002/anie.202411512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
Overcoming the trade-off between short-circuited current (Jsc) and open-circuited voltage (Voc) is important to achieving high-efficiency organic solar cells (OSCs). Previous works modulated the energy gap between Frenkel local exciton (LE) and charge-transfer (CT) exciton, which served as the driving force of exciton splitting. Differently, our current work focuses on the modulation of LE-CT excitonic coupling (tLE-CT) via a simple but effective strategy that the 2-chlorothiophene (2Cl-Th) solvent utilizes in the treatment of OSC active-layer films. The results of our experimental measurements and theoretical simulations demonstrated that 2Cl-Th solvent initiates tighter intermolecular interactions with non-fullerene acceptor in comparison with that of traditional chlorobenzene solvent, thus suppressing the acceptor's over-aggregation and retarding the acceptor crystallization with reduced trap. Critically, the resulting shorter distances between donor and acceptor molecules in the 2Cl-Th treated blend efficiently strengthen tLE-CT, which not only promotes exciton splitting but also reduces non-radiative recombination. The champion efficiencies of 19.8 % (small-area) with superior operational reliability (T80: 586 hours) and 17.0 % (large-area) were yielded in 2Cl-Th treated cells. This work provided a new insight into modulating the exciton dynamics to overcome the trade-off between Jsc and Voc, which can productively promote the development of the OSC field.
Collapse
Affiliation(s)
- Xin Song
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Le Mei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
- Department of Chemistry, City University of Hong Kong Kowloon, Hong Kong, 999077, P.R. China
| | - Xinjie Zhou
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Hongxiang Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P.R. China
| | - Hao Xu
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Xingting Liu
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Shenzheng Gao
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Shanlei Xu
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Yahui Yang
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Weiguo Zhu
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Jianpu Wang
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P.R. China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
| | - Xian-Kai Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
| |
Collapse
|
25
|
Xue YJ, Wang YC, Lu HC, Tsai CL, Lu CF, Yeh LL, Cheng YJ. Nitrogen-Bridged Fused-Ring Nonacyclic and Heptacyclic A-D-A Acceptors for Organic Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57481-57490. [PMID: 39401936 PMCID: PMC11503517 DOI: 10.1021/acsami.4c11466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
In this work, we designed two nitrogen-bridged fluorene-based heptacyclic FNT and nonacyclic FNTT ladder-type structures, which were constructed by one-pot palladium-catalyzed Buchwald-Hartwig amination. FNT and FNTT were further end-capped by FIC acceptors to form two FNT-FIC and FNTT-FIC non-fullerene acceptors (NFAs), respectively. The two NFAs exhibit more red-shifted absorption and higher crystallinity compared to those of the corresponding carbon-bridged FCT-FIC and FCTT-FIC counterparts. Grazing incidence wide-angle X-ray scattering (GIWAXS) measurements reveal that the 2-butyloctyl groups on the nitrogen in the convex region of FNT-FIC interdigitate with the dioctyl groups on the fluorene in the concave region of another FNT-FIC, resulting in a lamellar packing structure with a d spacing of 13.27 Å. As a consequence, the PM6:FNT-FIC (1:1 wt %) device achieved a power conversion efficiency (PCE) of only 6.60%, primarily due to the highly crystalline nature of FNT-FIC, which induced significant phase separation between PM6 and FNT-FIC in the blended film. However, FNTT-FIC, featuring 2-butyloctyl groups positioned on the nitrogen within the concave region of its curved skeleton, exhibits improved donor-acceptor miscibility, thereby promoting a more favorable morphology. As a result, the PM6:FNTT-FIC (1:1.2 wt %) device exhibited a higher PCE of 12.15% with an exceptional Voc of 0.96 V. This research demonstrates that placing alkylamino moieties within the concave region of curved A-D-A NFAs leads to a better molecular design.
Collapse
Affiliation(s)
- Yung-Jing Xue
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 University Road, Hsinchu, Taiwan 30010
| | - Yu-Chieh Wang
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 University Road, Hsinchu, Taiwan 30010
| | - Han-Cheng Lu
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 University Road, Hsinchu, Taiwan 30010
| | - Chia-Lin Tsai
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 University Road, Hsinchu, Taiwan 30010
| | - Chia-Fang Lu
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 University Road, Hsinchu, Taiwan 30010
| | - Li-Lun Yeh
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 University Road, Hsinchu, Taiwan 30010
| | - Yen-Ju Cheng
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 University Road, Hsinchu, Taiwan 30010
- Center
for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu, Taiwan 30010
| |
Collapse
|
26
|
Du M, Yu J, Jiang H, Song Z, Geng Y, Zhou E. Polymer Based on Asymmetrically Halogenated Benzotriazole Enables High Performance Organic Solar Cells Prepared in Nonhalogenated Solvent. ACS Macro Lett 2024; 13:1240-1244. [PMID: 39259180 DOI: 10.1021/acsmacrolett.4c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Halogenation on the A unit of the D-π-A-type polymer donor has been proven as an effective strategy to improve the performance of organic solar cells (OSCs). Compared with fluorination, chlorination usually increases the open-circuit voltage because of the downward shift of energy levels, but decreases the charge transport ability due to the large steric hindrance of the chlorine atom. We reported herein a method to balance the energy loss and charge transport through asymmetric halogenation on the benzotriazole (BTA) unit of the polymer. The designed PE3-FCl based on the BTA unit containing fluorine and chlorine atoms rendered the highest power conversion efficiency (PCE) of 17.83% when eC9-2Cl-γ and o-xylene were used as the electron acceptor and solvent, respectively. The performance is obviously higher than that of the polymer PE3 containing a difluorinated BTA unit (16.65%) and polymer PE3-2Cl with dichlorinated BTA (14.65%) due to the manipulated morphology by preaggregation, improved and more balanced charge carrier transport, and reduced recombination loss. Notably, this PCE is a breakthrough for the BTA-based polymers processed by nonhalogenated solvent. This work gives deep insight into the asymmetric halogenation of polymer donors for high-performance green solvent-processed OSCs.
Collapse
Affiliation(s)
- Mengzhen Du
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
- National Center for Nanoscience and Technology, Beijing 100190, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jiagui Yu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Hai Jiang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Zhiqiang Song
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yanfang Geng
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Erjun Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
- National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
27
|
Wu X, Zheng X, Chen T, Zhang S, Zhou Y, Wang M, Chen T, Wang Y, Bi Z, Fu W, Du M, Ma W, Zuo L, Chen H. High-Performance Intrinsically Stretchable Organic Photovoltaics Enabled by Robust Silver Nanowires/S-PH1000 Hybrid Transparent Electrodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406879. [PMID: 39177117 DOI: 10.1002/adma.202406879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/20/2024] [Indexed: 08/24/2024]
Abstract
Intrinsically stretchable organic photovoltaics (is-OPVs) hold significant promise for integration into self-powered wearable electronics. However, their potential is hindered by the lack of sufficient consistency between optoelectronic and mechanical properties. This is primarily due to the limited availability of stretchable transparent electrodes (STEs) that possess both high conductivity and stretchability. Here, a hybrid STE with exceptional conductivity, stretchability, and thermal stability is presented. Specifically, STEs are composed of the modified PH1000 (referred to as S-PH1000) and silver nanowires (AgNWs). The S-PH1000 endows the STE with good stretchability and smoothens the surface, while the AgNWs enhance the charge transport. The resulting hybrid STEs enable is-OPVs to a remarkable power conversion efficiency (PCE) of 16.32%, positioning them among the top-performing is-OPVs. With 10% elastomer, the devices retain 82% of the initial PCE after 500 cycles at 20% strain. Additionally, OPVs equipped with these STEs exhibit superior thermal stability compared to those using indium tin oxide electrodes, maintaining 75% of the initial PCE after annealing at 85 °C for 390 h. The findings underscore the suitability of the designed hybrid electrodes for efficient and stable is-OPVs, offering a promising avenue for the future application of OPVs.
Collapse
Affiliation(s)
- Xiaoling Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xiangjun Zheng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Tianyi Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Sen Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Ying Zhou
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Mengting Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Tingjun Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yiming Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - ZhaoZhao Bi
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Weifei Fu
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Miao Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lijian Zuo
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Hongzheng Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| |
Collapse
|
28
|
Taouali W, Alimi K. Optimizing non-fullerene acceptor molecules constituting fluorene core for enhanced performance in organic solar cells: a theoretical methodology. J Mol Model 2024; 30:342. [PMID: 39297915 DOI: 10.1007/s00894-024-06120-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024]
Abstract
CONTEXT Looking for novel outstanding performance materials suitable for organic solar cells, we constructed a range of non-fullerene acceptors (NFAs) evolved from the recently synthesized acceptor molecule identified as DICTIF, structured around fluorene core where 2-(2,3-dihydro-3-oxo-1H-inden-1-ylidene) propanedinitrile presented the terminals end-groups. Employing density functional theory (DFT) and time dependent-DFT (TD-DFT) simulations, we have simulated the impact of altering the end groups of DICTIF molecule by five assorted acceptors molecules, for the purpose of exploring their opto-electronic properties and their performance in organic solar cell (OSC) applications. We proved that the designed non-fullerene acceptors provide enhanced efficiency compared to the synthesized molecule, such as planar geometries and narrower energy gap ranging from 1.51 to 1.95 eV. A red shift in absorption was observed for all tailored molecules (λmax = 583.5-711.4 nm) as compared to the reference molecule (λmax = 578 nm).Various decisive factors such as frontier molecular orbitals (FMOs), exciton binding energy (EB), absorption maximum (λmax), open circuit voltage (VOC), reorganization energies (RE), transition density matrix (TDM), reduced density gradient (RDG), and electron-hole overlap have also been computed for analyzing the performance of NFAs. Low reorganizational energy values facilitate charge mobility which improves the conductivity of all the designed molecules. This study showed that our novel tailored molecules might be suitable candidates for the fabrication of highly efficient photovoltaic materials. METHODS After testing various hybrid functionals, optimized geometries were assigned using DFT HSEH1PBE/6-31G(d) level of theory. Electronic excitations and absorption spectra were investigated using the TD-DFT MPW1PW91/6-31G(d) level of theory. We ascertained that HSEH1PBE/6-31G(d) level of theory yield the closest calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of the DICTIF to the corresponding experimental ones and that TD-MPW1PW91//6-31G(d) was the most suitable level of theory for exploring electronic excitations and finding the maximum of absorption (λmax).
Collapse
Affiliation(s)
- Walid Taouali
- Laboratoire de Recherche: Synthèse asymétrique et ingénierie moléculaires des matériaux nouveaux pour l'électroniques Organiques (LR18ES19), Faculté des Sciences de Monastir, Université de Monastir-Tunisie, Monastir, Tunisia.
| | - Kamel Alimi
- Laboratoire de Recherche: Synthèse asymétrique et ingénierie moléculaires des matériaux nouveaux pour l'électroniques Organiques (LR18ES19), Faculté des Sciences de Monastir, Université de Monastir-Tunisie, Monastir, Tunisia
| |
Collapse
|
29
|
Han MT, Wu L, Wang JP, Sui MY, Sun GY. A unified evaluation descriptor for π-bridges applied to metalloporphyrin derivatives. Phys Chem Chem Phys 2024; 26:23962-23970. [PMID: 39235451 DOI: 10.1039/d4cp02787f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Establishing the structure of porphyrins with a A-π-D-π-A configuration is one of the effective strategies to maintain their dominance and compensate shortcomings through flexible changes in fragments. In this regard, π-bridges have attracted wide attention as a parameter affecting molecular backbones, electron transfer, energy levels, absorption, and other properties. However, the essence and influence of π-bridges have not yet been confirmed. In order to satisfy the requirements of intelligent application in molecular design, this study aimed to investigate the control effect of differences in π-bridge composition (thiophene and selenophene) and connection type (single bonds, ethylenic bonds and fused) on photoelectric performance. Y6 and PC61BM were used as acceptors to build donor/acceptor (D/A) interfaces and characterize the film morphology in three dimensions. Results showed that the essence of π-bridges involves a strong bridging effect (adjusting ability) between A and D fragments rather than highlighting its own nature. The large value could obtain high open circuit voltages (VOC), large separation and small recombination rates as well as stable and tight morphology. Therefore, adjusting ability is a unified descriptor for evaluating π-bridges, and it is an effective strategy to adjust material properties and morphology. This insight and discovery may provide a new evaluation descriptor for the screening and design of π-bridges.
Collapse
Affiliation(s)
- Meng-Tian Han
- Department of Chemistry, Faculty of Science, Yanbian University, Yanji, Jilin, 133002, China.
| | - Liu Wu
- Department of Chemistry, Faculty of Science, Yanbian University, Yanji, Jilin, 133002, China.
| | - Jian-Ping Wang
- Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, Xijing University, Xi'an, Shaanxi 710123, China
| | - Ming-Yue Sui
- Department of Chemistry, Faculty of Science, Yanbian University, Yanji, Jilin, 133002, China.
| | - Guang-Yan Sun
- Department of Chemistry, Faculty of Science, Yanbian University, Yanji, Jilin, 133002, China.
- School of Applied Chemistry and Materials, Zhuhai College of Science and Technology, Zhuhai, Guangdong, 519041, China
| |
Collapse
|
30
|
Duan T, Wang J, Shi W, Li Y, Tu K, Bi X, Zhong C, Lv J, Yang K, Xiao Z, Kan B, Zhao Y. Fully Fused Indacenodithiophene-Centered Small-Molecule n-Type Semiconductors for High-Performance Organic Electronics. Angew Chem Int Ed Engl 2024; 63:e202407890. [PMID: 38958602 DOI: 10.1002/anie.202407890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/04/2024]
Abstract
Developing novel n-type organic semiconductors is an on-going research endeavour, given their pivotal roles in organic electronics and their relative scarcity compared to p-type counterparts. In this study, a new strategy was employed to synthesize n-type organic semiconductors featuring a fully fused conjugated backbone. By attaching two sets of adjacent amino and formyl groups to the indacenodithiophene-based central cores and triggering a tandem reaction sequence of a Knoevenagel condensation-intramolecular cyclization, DFA1 and DFA2 were realized. The solution-processed organic field effect transistors based on DFA1 exhibited unipolar n-type transport character with a decent electron mobility of ca. 0.10 cm2 V-1 s-1 (ca. 0.038 cm2 V-1 s-1 for DFA2 based devices). When employing DFA1 as a third component in organic solar cells, a high power conversion efficiency of 19.2 % can be achieved in ternary devices fabricated with PM6 : L8-BO : DFA1. This work provides a new pathway in the molecular engineering of n-type organic semiconductors, propelling relevant research forward.
Collapse
Affiliation(s)
- Tainan Duan
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, China
| | - Jia Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Wenrui Shi
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Yulu Li
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, China
| | - Kaihuai Tu
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, China
| | - Xingqi Bi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Cheng Zhong
- Hubei Key Laboratory on Organic and Polymeric Opto-electronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Jie Lv
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, China
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, 518055, China
| | - Ke Yang
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, China
| | - Zeyun Xiao
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, China
| | - Bin Kan
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Yan Zhao
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
31
|
Yang L, Wu Y, Murugan P, Liu P, Peng Y, Qiu Z, Li Z, Yu C, Liu S. Impact of Different π-Bridges on the Photovoltaic Performance of A-D-D'-D-A Small Molecule-Based Donors. Molecules 2024; 29:4231. [PMID: 39275079 PMCID: PMC11396980 DOI: 10.3390/molecules29174231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
Three small donor molecule materials (S1, S2, S3) based on dithiophene [2,3-d:2',3'-d']dithiophene [1,2-b:4,5-b']dithiophene (DTBDT) utilized in this study were synthesized using the Vilsmeier-Haack reaction, traditional Stille coupling, and Knoevenagel condensation. Then, a variety of characterization methods were applied to study the differences in optical properties and photovoltaic devices among the three. By synthesizing S2 using a thiophene π-bridge based on S1, the blue shift in ultraviolet absorption can be enhanced, the band gap and energy level can be reduced, the open circuit voltage (VOC) can be increased to 0.75 V using the S2:Y6 device, and a power conversion efficiency (PCE) of 3% can be achieved. Also, after developing the device using Y6, S3 introduced the alkyl chain of thiophene π-bridge to S2, which improved the solubility of tiny donor molecules, achieved the maximum short-circuit current (JSC = 10.59 mA/cm2), filling factor (FF = 49.72%), and PCE (4.25%). Thus, a viable option for future design and synthesis of small donor molecule materials is to incorporate thiophene π-bridges into these materials, along with alkyl chains, in order to enhance the device's morphology and charge transfer behavior.
Collapse
Affiliation(s)
- Lingjun Yang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Yu Wu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
- China-Australia Institute for Advanced Materials and Manufacturing (IAMM), Jiaxing University, Jiaxing 314001, China
| | - Pachaiyappan Murugan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Peng Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Yulong Peng
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Zhiyong Qiu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Zaifang Li
- China-Australia Institute for Advanced Materials and Manufacturing (IAMM), Jiaxing University, Jiaxing 314001, China
| | - Changlin Yu
- Guangdong Provincial Key Laboratory of Advanced Green Lubricating Materials, Maoming 525000, China
| | - Shiyong Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| |
Collapse
|
32
|
Chen C, Wang L, Xia W, Qiu K, Guo C, Gan Z, Zhou J, Sun Y, Liu D, Li W, Wang T. Molecular interaction induced dual fibrils towards organic solar cells with certified efficiency over 20. Nat Commun 2024; 15:6865. [PMID: 39127750 PMCID: PMC11316771 DOI: 10.1038/s41467-024-51359-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The nanoscale fibrillar morphology, featuring long-range structural order, provides abundant interfaces for efficient exciton dissociation and high-quality pathways for effective charge transport, is a promising morphology for high performance organic solar cells. Here, we synthesize a thiophene terminated non-fullerene acceptor, L8-ThCl, to induce the fibrillization of both polymer donor and host acceptor, that surpasses the 20% efficiency milestone of organic solar cells. After adding L8-ThCl, the original weak and less continuous nanofibrils of polymer donors, i.e. PM6 or D18, are well enlarged and refined, whilst the host acceptor L8-BO also assembles into nanofibrils with enhanced structural order. By adapting the layer-by-layer deposition method, the enhanced structural order can be retained to significantly boost the power conversion efficiency, with specific values of 19.4% and 20.1% for the PM6:L8-ThCl/L8-BO:L8-ThCl and D18:L8-ThCl/L8-BO:L8-ThCl devices, with the latter being certified 20.0%, which is the highest certified efficiency reported so far for single-junction organic solar cells.
Collapse
Affiliation(s)
- Chen Chen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Liang Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Weiyi Xia
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Ke Qiu
- School of Materials and Microelectronics, Wuhan University of Technology, Wuhan, 430070, China
| | - Chuanhang Guo
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Zirui Gan
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jing Zhou
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yuandong Sun
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Dan Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Wei Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Tao Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.
- School of Materials and Microelectronics, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
33
|
Bi X, Cao X, He T, Liang H, Yao Z, Yang J, Guo Y, Long G, Kan B, Li C, Wan X, Chen Y. What is the Limit Size of 2D Conjugated Extension on Central Units of Small Molecular Acceptors in Organic Solar Cells? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401054. [PMID: 38488748 DOI: 10.1002/smll.202401054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/06/2024] [Indexed: 08/09/2024]
Abstract
2D conjugated extension on central units of small molecular acceptors (SMAs) has gained great successes in reaching the state-of-the-art organic photovoltaics. Whereas the limit size of 2D central planes and their dominant role in constructing 3D intermolecular packing networks are still elusive. Thus, by exploring a series of SMAs with gradually enlarged central planes, it is demonstrated that, at both single molecular and aggerated levels, there is an unexpected blue-shift for their film absorption but preferable reorganization energies, exciton lifetimes and binding energies with central planes enlarging, especially when comparing to their Y6 counterpart. More importantly, the significance of well-balanced molecular packing modes involving both central and end units is first disclosed through a systematic single crystal analysis, indicating that when the ratio of central planes area/end terminals area is no more than 3 likely provides a preferred 3D intermolecular packing network of SMAs. By exploring the limit size of 2D central planes, This work indicates that the structural profiles of ideal SMAs may require suitable central unit size together with proper heteroatom replacement instead of directly overextending 2D central planes to the maximum. These results will likely provide some guidelines for future better molecular design.
Collapse
Affiliation(s)
- Xingqi Bi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiangjian Cao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tengfei He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Huazhe Liang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhaoyang Yao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jinyi Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yaxiao Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Guankui Long
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300350, China
| | - Bin Kan
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300350, China
| | - Chenxi Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiangjian Wan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yongsheng Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
34
|
Chen Z, Ge J, Song W, Tong X, Liu H, Yu X, Li J, Shi J, Xie L, Han C, Liu Q, Ge Z. 20.2% Efficiency Organic Photovoltaics Employing a π-Extension Quinoxaline-Based Acceptor with Ordered Arrangement. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406690. [PMID: 38899582 DOI: 10.1002/adma.202406690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/08/2024] [Indexed: 06/21/2024]
Abstract
Organic solar cells, as a cutting-edge sustainable renewable energy technology, possess a myriad of potential applications, while the bottleneck problem of less than 20% efficiency limits the further development. Simultaneously achieving an ordered molecular arrangement, appropriate crystalline domain size, and reduced nonradiative recombination poses a significant challenge and is pivotal for overcoming efficiency limitations. This study employs a dual strategy involving the development of a novel acceptor and ternary blending to address this challenge. A novel non-fullerene acceptor, SMA, characterized by a highly ordered arrangement and high lowest unoccupied molecular orbital energy level, is synthesized. By incorporating SMA as a guest acceptor in the PM6:BTP-eC9 system, it is observed that SMA staggered the liquid-solid transition of donor and acceptor, facilitating acceptor crystallization and ordering while maintaining a suitable domain size. Furthermore, SMA optimized the vertical morphology and reduced bimolecular recombination. As a result, the ternary device achieved a champion efficiency of 20.22%, accompanied by increased voltage, short-circuit current density, and fill factor. Notably, a stabilized efficiency of 18.42% is attained for flexible devices. This study underscores the significant potential of a synergistic approach integrating acceptor material innovation and ternary blending techniques for optimizing bulk heterojunction morphology and photovoltaic performance.
Collapse
Affiliation(s)
- Zhenyu Chen
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinfeng Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Wei Song
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xinyu Tong
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui Liu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xueliang Yu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Jing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jingyu Shi
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lin Xie
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Chengcheng Han
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Quan Liu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
35
|
Li Y, Ren J, Liu S, Zhao B, Liang Z, Jee MH, Qin H, Su W, Woo HY, Gao C. Tailoring the Molecular Planarity of Perylene Diimide-Based Third Component toward Efficient Ternary Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401176. [PMID: 38529741 DOI: 10.1002/smll.202401176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/16/2024] [Indexed: 03/27/2024]
Abstract
Incorporating a third component into binary organic solar cells (b-OSCs) has provided a potential platform to boost power conversion efficiency (PCEs). However, gaining control over the non-equilibrium blend morphology via the molecular design of the perylene diimide (PDI)-based third component toward efficient ternary organic solar cells (t-OSCs) still remains challenging. Herein, two novel PDI derivatives are developed with tailored molecular planarity, namely ufBTz-2PDI and fBTz-2PDI, as the third component for t-OSCs. Notably, after performing a cyclization reaction, the twisted ufBTz-2PDI with an amorphous character transferred to the highly planar fBTz-2PDI followed by a semi-crystalline character. When incorporating the semi-crystalline fBTz-2PDI into the D18:L8-BO system, the resultant t-OSC achieved an impressive PCE of 18.56%, surpassing the 17.88% attained in b-OSCs. In comparison, the addition of amorphous ufBTz-2PDI into the binary system facilitates additional charge trap sites and results in a deteriorative PCE of 14.37%. Additionally, The third component fBTz-2PDI possesses a good generality in optimizing the PCEs of several b-OSCs systems are demonstrated. The results not only provided a novel A-DA'D-A motif for further designing efficient third component but also demonstrated the crucial role of modulated crystallinity of the PDI-based third component in optimizing PCEs of t-OSCs.
Collapse
Affiliation(s)
- Yuxiang Li
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Jiaqi Ren
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Shujuan Liu
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, P. R. China
| | - Baofeng Zhao
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, P. R. China
| | - Zezhou Liang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi, Key Lab of Photonic Technique for Information School of Electronics Science & Engineering Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Min Hun Jee
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Hongmei Qin
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Wenyan Su
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Chao Gao
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, P. R. China
| |
Collapse
|
36
|
Hu D, Tang H, Chen C, Huang P, Shen Z, Li H, Liu H, Petoukhoff CE, Jurado JP, Luo Y, Xia H, Fong PWK, Fu J, Zhao L, Yan C, Chen Y, Cheng P, Lu X, Li G, Laquai F, Xiao Z. Insights Into Preaggregation Control of Y-Series Nonfullerene Acceptors in Liquid State for Highly Efficient Binary Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402833. [PMID: 38837820 DOI: 10.1002/adma.202402833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/10/2024] [Indexed: 06/07/2024]
Abstract
Leveraging breakthroughs in Y-series nonfullerene acceptors (NFAs), organic solar cells (OSCs) have achieved impressive power conversion efficiencies (PCEs) exceeding 19%. However, progress in advancing OSCs has decelerated due to constraints in realizing the full potential of the Y-series NFAs. Herein, a simple yet effective solid additive-induced preaggregation control method employing 2-chloro-5-iodopyridine (PDCI) is reported to unlock the full potential of the Y-series NFAs. Specifically, PDCI interacts predominantly with Y-series NFAs enabling enhanced and ordered phase-aggregation in solution. This method leads to a notable improvement and a redshifted absorption of the acceptor phase during film formation, along with improved crystallinity. Moreover, the PDCI-induced preaggregation of NFAs in the solution enables ordered molecule packing during the film-formation process through delicate intermediate states transition. Consequently, the PDCI-induced preaggregated significantly improves the PCE of PM6:Y6 OSCs from 16.12% to 18.12%, among the best values reported for PM6:Y6 OSCs. Importantly, this approach is universally applicable to other Y-series NFA-based OSCs, achieving a champion PCE of 19.02% for the PM6:BTP-eC9 system. Thus, the preaggregation control strategy further unlocks the potential of Y-series NFAs, offering a promising avenue for enhancing the photovoltaic performance of Y-series NFA-based OSCs.
Collapse
Affiliation(s)
- Dingqin Hu
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Hua Tang
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Chen Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Peihao Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Zhibang Shen
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongxiang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Heng Liu
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, P. R. China
| | - Christopher E Petoukhoff
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - José Piers Jurado
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ying Luo
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Hao Xia
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hum, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Patrick W K Fong
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hum, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Jiehao Fu
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hum, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Lingyu Zhao
- KAUST Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Cenqi Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yao Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Pei Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, P. R. China
| | - Gang Li
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hum, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Frédéric Laquai
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Zeyun Xiao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| |
Collapse
|
37
|
Chen H, Sun W, Zhang R, Huang Y, Zhang B, Zeng G, Ding J, Chen W, Gao F, Li Y, Li Y. Heterogeneous Nucleating Agent for High-Boiling-Point Nonhalogenated Solvent-Processed Organic Solar Cells and Modules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402350. [PMID: 38554138 DOI: 10.1002/adma.202402350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/13/2024] [Indexed: 04/01/2024]
Abstract
High-boiling-point nonhalogenated solvents are superior solvents to produce large-area organic solar cells (OSCs) in industry because of their wide processing window and low toxicity; while, these solvents with slow evaporation kinetics will lead excessive aggregation of state-of-the-art small molecule acceptors (e.g. L8-BO), delivering serious efficiency losses. Here, a heterogeneous nucleating agent strategy is developed by grafting oligo (ethylene glycol) side-chains on L8-BO (BTO-BO). The formation energy of the obtained BTO-BO; while, changing from liquid in a solvent to a crystalline phase, is lower than that of L8-BO irrespective of the solvent type. When BTO-BO is added as the third component into the active layer (e.g. PM6:L8-BO), it easily assembles to form numerous seed crystals, which serve as nucleation sites to trigger heterogeneous nucleation and increase nucleation density of L8-BO through strong hydrogen bonding interactions even in high-boiling-point nonhalogenated solvents. Therefore, it can effectively suppress excessive aggregation during growth, achieving ideal phase-separation active layer with small domain sizes and high crystallinity. The resultant toluene-processed OSCs exhibit a record power conversion efficiency (PCE) of 19.42% (certificated 19.12%) with excellent operational stability. The strategy also has superior advantages in large-scale devices, showing a 15.03-cm2 module with a record PCE of 16.35% (certificated 15.97%).
Collapse
Affiliation(s)
- Haiyang Chen
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
| | - Weiwei Sun
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
| | - Rui Zhang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Yuting Huang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
| | - Ben Zhang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
| | - Guang Zeng
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
| | - Junyuan Ding
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
| | - Weijie Chen
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
| | - Feng Gao
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Yaowen Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
38
|
Xie M, Wei Z, Lu K. Quinoxaline-based Y-type acceptors for organic solar cells. Chem Sci 2024; 15:8265-8279. [PMID: 38846384 PMCID: PMC11151842 DOI: 10.1039/d4sc01481b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Minimizing energy loss plays a critical role in the quest for high-performance organic solar cells (OSCs). However, the origin of large energy loss in OCSs is complicated, involving the strong exciton binding energy of organic semiconductors, nonradiative charge-transfer state decay, defective molecular stacking network, and so on. The recently developed quinoxaline (Qx)-based acceptors have attracted extensive interest due to their low reorganization energy, high structural modification possibilities, and distinctive molecular packing modes, which contribute to reduced energy loss and superior charge generation/transport, thus improving the photovoltaic performance of OSCs. This perspective summarizes the design strategies of Qx-based acceptors (including small-molecule, giant dimeric and polymeric acceptors) and the resulting optoelectronic properties and device performance. In addition, the ternary strategy of introducing Qx-based acceptors as the third component to reduce energy loss is briefly discussed. Finally, some perspectives for the further exploration of Qx-based acceptors toward efficient, stable, and industry-compatible OSCs are proposed.
Collapse
Affiliation(s)
- Meiling Xie
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Kun Lu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
39
|
McAnally S, Jin H, Chu R, Mallo N, Wang X, Burn PL, Gentle IR, Shaw PE. Dilute Donor Organic Solar Cells Based on Non-fullerene Acceptors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28958-28968. [PMID: 38787283 DOI: 10.1021/acsami.4c02864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The advent of small molecule non-fullerene acceptor (NFA) materials for organic photovoltaic (OPV) devices has led to a series of breakthroughs in performance and device lifetime. The most efficient OPV devices have a combination of electron donor and acceptor materials that constitute the light absorbing layer in a bulk heterojunction (BHJ) structure. For many BHJ-based devices reported to date, the weight ratio of donor to acceptor is near equal. However, the morphology of such films can be difficult to reproduce and manufacture at scale. There would be an advantage in developing a light harvesting layer for efficient OPV devices that contains only a small amount of either the donor or acceptor. In this work we explore low donor content OPV devices composed of the polymeric donor PM6 blended with high performance NFA materials, Y6 or ITIC-4F. We found that even when the donor:acceptor weight ratio was only 1:10, the OPV devices still have good photoconversion efficiencies of around 6% and 5% for Y6 and ITIC-4F, respectively. It was found that neither charge mobility nor recombination rates had a strong effect on the efficiency of the devices. Rather, the overall efficiency was strongly related to the film absorption coefficient and maintaining adequate interfacial surface area between donor and acceptor molecules/phases for efficient exciton dissociation.
Collapse
Affiliation(s)
- Shaun McAnally
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hui Jin
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ronan Chu
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Neil Mallo
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xiao Wang
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Paul L Burn
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ian R Gentle
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Paul E Shaw
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
40
|
Zhang H, Liu Y, Ran G, Li H, Zhang W, Cheng P, Bo Z. Sequentially Processed Bulk-Heterojunction-Buried Structure for Efficient Organic Solar Cells with 500 nm Thickness. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400521. [PMID: 38477468 DOI: 10.1002/adma.202400521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/03/2024] [Indexed: 03/14/2024]
Abstract
Large-area printing fabrication is a distinctive feature of organic solar cells (OSCs). However, the advance of upscalable fabrication is challenged by the thickness of organic active layers considering the importance of both exciton dissociation and charge collection. In this work, a bulk-heterojunction-buried (buried-BHJ) structure is introduced by sequential deposition to realize efficient exciton dissociation and charge collection, thereby contributing to efficient OSCs with 500 nm thick active layers. The buried-BHJ distributes donor and acceptor phases in the vertical direction as charge transport channels, while numerous BHJ interfaces are buried in each phase to facilitate exciton dissociation simultaneously. It is found that buried-BHJ configurations possess efficient exciton dissociation and rapid charge transport, resulting in reduced recombination losses. In comparison with traditional structures, the buried-BHJ structure displays a decent tolerance to film thickness. In particular, a power conversion efficiency of 16.0% is achieved with active layers at a thickness of 500 nm. To the best of the authors' knowledge, this represents the champion efficiency of thick film OSCs.
Collapse
Affiliation(s)
- Huarui Zhang
- College of Textiles and Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, China
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuqiang Liu
- College of Textiles and Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, China
| | - Guangliu Ran
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, China
| | - Hongxiang Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, China
| | - Pei Cheng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhishan Bo
- College of Textiles and Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, China
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
41
|
Guan S, Li Y, Xu C, Yin N, Xu C, Wang C, Wang M, Xu Y, Chen Q, Wang D, Zuo L, Chen H. Self-Assembled Interlayer Enables High-Performance Organic Photovoltaics with Power Conversion Efficiency Exceeding 20. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400342. [PMID: 38511521 DOI: 10.1002/adma.202400342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Indexed: 03/22/2024]
Abstract
Interfacial layers (ILs) are prerequisites to form the selective charge transport for high-performance organic photovoltaics (OPVs) but mostly result in considerable parasitic absorption loss. Trimming the ILs down to a mono-molecular level via the self-assembled monolayer is an effective strategy to mitigate parasitic absorption loss. However, such a strategy suffers from inferior electrical contact with low surface coverage on rough surfaces and poor producibility. To address these issues, here, the self-assembled interlayer (SAI) strategy is developed, which involves a thin layer of 2-6 nm to form a full coverage on the substrate via both covalent and van der Waals bonds by using a self-assembled molecule of 2-(9H-carbazol-9-yl) (2PACz). Via the facile spin coating without further rinsing and annealing process, it not only optimizes the electrical and optical properties of OPVs, which enables a world-record efficiency of 20.17% (19.79% certified) but also simplifies the tedious processing procedure. Moreover, the SAI strategy is especially useful in improving the absorbing selectivity for semi-transparent OPVs, which enables a record light utilization efficiency of 5.34%. This work provides an effective strategy of SAI to optimize the optical and electrical properties of OPVs for high-performance and solar window applications.
Collapse
Affiliation(s)
- Shitao Guan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yaokai Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Institute of Advanced Semiconductor Research, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310022, P. R. China
| | - Chang Xu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ni Yin
- CAS Center for Excellence in NanoscienceSuzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou, 215123, P. R. China
| | - Chenran Xu
- Interdisciplinary Center for Quantum Information and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Congxu Wang
- School of Engineering, Westlake University, Hangzhou, 310024, P. R. China
| | - Mengting Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou, 310024, P. R. China
| | - Qi Chen
- CAS Center for Excellence in NanoscienceSuzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou, 215123, P. R. China
| | - Dawei Wang
- Interdisciplinary Center for Quantum Information and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Lijian Zuo
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Institute of Advanced Semiconductor Research, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310022, P. R. China
| | - Hongzheng Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Institute of Advanced Semiconductor Research, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310022, P. R. China
| |
Collapse
|
42
|
Yang S, Chen Z, Zhu J, Yang D, Wang H, Ding P, Wu J, Yan P, Xie L, Chen F, Wang Y, Zhang J, Ge Z. Guest Acceptors with Lower Electrostatic Potential in Ternary Organic Solar Cells for Minimizing Voltage Losses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401789. [PMID: 38577904 DOI: 10.1002/adma.202401789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/12/2024] [Indexed: 04/06/2024]
Abstract
The ternary strategy, in which one guest component is introduced into one host binary system, is considered to be one of the most effective ways to realize high-efficiency organic solar cells (OSCs). To date, there is no efficient method to predict the effectiveness of guest components in ternary OSCs. Herein, three guest compositions (i.e., ANF-1, ANF-2 and ANF-3) with different electrostatic potential (ESP) are designed and synthesized by modulating the electron-withdrawing ability of the terminal groups through density functional theory simulations. The effects of the introduction of guest component into the host system (D18:N3) on the photovoltaic properties are investigated. The theoretical and experimental studies provide a key rule for guest acceptor in ternary OSCs to improve the open-circuit voltage, that is, the larger ESP difference between the guest and host acceptor, the stronger the intermolecular interactions and the higher the miscibility, which improves the luminescent efficiency of the blend film and the electroluminescence quantum yield (EQEEL) of the device by reducing the aggregation-caused-quenching, thereby effectively decreasing the non-radiative voltage loss of ternary OSCs. This work will greatly contribute to the development of highly efficient guest components, thereby promoting the rapid breakthrough of the 20% efficiency bottleneck for single-junction OSCs.
Collapse
Affiliation(s)
- Shuncheng Yang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Zhenyu Chen
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jintao Zhu
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Daobin Yang
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongqian Wang
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengfei Ding
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Wu
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Pengyu Yan
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Lin Xie
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Chen
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Yuming Wang
- Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 1, Diepenbeek, 3590, Belgium
| | - Jianqi Zhang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Ziyi Ge
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
43
|
Song J, Zhang C, Li C, Qiao J, Yu J, Gao J, Wang X, Hao X, Tang Z, Lu G, Yang R, Yan H, Sun Y. Non-halogenated Solvent-Processed Organic Solar Cells with Approaching 20 % Efficiency and Improved Photostability. Angew Chem Int Ed Engl 2024; 63:e202404297. [PMID: 38526996 DOI: 10.1002/anie.202404297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
The development of high-efficiency organic solar cells (OSCs) processed from non-halogenated solvents is crucially important for their scale-up industry production. However, owing to the difficulty of regulating molecular aggregation, there is a huge efficiency gap between non-halogenated and halogenated solvent processed OSCs. Herein, we fabricate o-xylene processed OSCs with approaching 20 % efficiency by incorporating a trimeric guest acceptor named Tri-V into the PM6:L8-BO-X host blend. The incorporation of Tri-V effectively restricts the excessive aggregation of L8-BO-X, regulates the molecular packing and optimizes the phase-separation morphology, which leads to mitigated trap density states, reduced energy loss and suppressed charge recombination. Consequently, the PM6:L8-BO-X:Tri-V-based device achieves an efficiency of 19.82 %, representing the highest efficiency for non-halogenated solvent-processed OSCs reported to date. Noticeably, with the addition of Tri-V, the ternary device shows an improved photostability than binary PM6:L8-BO-X-based device, and maintains 80 % of the initial efficiency after continuous illumination for 1380 h. This work provides a feasible approach for fabricating high-efficiency, stable, eco-friendly OSCs, and sheds new light on the large-scale industrial production of OSCs.
Collapse
Affiliation(s)
- Jiali Song
- International Innovation Institute, Beihang University, Hangzhou, 311115, P. R. China
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Chen Zhang
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Chao Li
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Jiawei Qiao
- School of Physics State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Jifa Yu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, P. R. China
| | - Jiaxin Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xunchang Wang
- X. Wang, R. Yang, Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, P. R. China
| | - Xiaotao Hao
- School of Physics State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Zheng Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Guanghao Lu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, P. R. China
| | - Renqiang Yang
- X. Wang, R. Yang, Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, P. R. China
| | - He Yan
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Yanming Sun
- International Innovation Institute, Beihang University, Hangzhou, 311115, P. R. China
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
44
|
Yang N, Cui Y, Xiao Y, Chen Z, Zhang T, Yu Y, Ren J, Wang W, Ma L, Hou J. Completely Non-Fused Low-Cost Acceptor Enables Organic Photovoltaic Cells with 17 % Efficiency. Angew Chem Int Ed Engl 2024; 63:e202403753. [PMID: 38523070 DOI: 10.1002/anie.202403753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
To meet the industrial requirements of organic photovoltaic (OPV) cells, it is imperative to accelerate the development of cost-effective materials. Thiophene-benzene-thiophene central unit-based acceptors possess the advantage of low synthetic cost, while their power conversion efficiency (PCE) is relatively low. Here, by incorporating a para-substituted benzene unit and 1st-position branched alkoxy chains with large steric hindrance, a completely non-fused non-fullerene acceptor, TBT-26, was designed and synthesized. The narrow band gap of 1.38 eV ensures the effective utilization of sunlight. The favorable phase separation morphology of TBT-26-based blend film facilitates the efficient exciton dissociation and charge transport in corresponding OPV cell. Therefore, the TBT-26-based small-area cell achieves an impressive PCE of 17.0 %, which is the highest value of completely non-fused OPV cells. Additionally, we successfully demonstrated the scalability of this design by fabricating a 28.8 cm2 module with a high PCE of 14.3 %. Overall, our work provides a practical molecular design strategy for developing high-performance and low-cost acceptors, paving the way for industrial applications of OPV technology.
Collapse
Affiliation(s)
- Ni Yang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Cui
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yang Xiao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihao Chen
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Yu
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junzhen Ren
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenxuan Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lijiao Ma
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
45
|
Liu H, Xin Y, Suo Z, Yang L, Zou Y, Cao X, Hu Z, Kan B, Wan X, Liu Y, Chen Y. Dipole Moments Regulation of Biphosphonic Acid Molecules for Self-assembled Monolayers Boosts the Efficiency of Organic Solar Cells Exceeding 19.7. J Am Chem Soc 2024; 146:14287-14296. [PMID: 38718348 DOI: 10.1021/jacs.4c03917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
PEDOT PSS has been widely used as a hole extraction layer (HEL) in organic solar cells (OSCs). However, their acidic nature can potentially corrode the indium tin oxide (ITO) electrode over time, leading to adverse effects on the longevity of the OSCs. Herein, we have developed a class of biphosphonic acid molecules with tunable dipole moments for self-assembled monolayers (SAMs), namely, 3-BPIC(i), 3-BPIC, and 3-BPIC-F, which exhibit an increasing dipole moment in sequence. Compared to centrosymmetric 3-BPIC(i), the axisymmetric 3-BPIC and 3-BPIC-F exhibit higher adsorption energies (Eads) with ITO, shorter interface spacing, more uniform coverage on ITO surface, and better interfacial compatibility with the active layer. Thanks to the incorporation of fluorine atoms, 3-BPIC-F exhibits a deeper highest occupied molecular orbital (HOMO) energy level and a larger dipole moment compared to 3-BPIC, resulting in an enlarged work function (WF) for the ITO/3-BPIC-F substrate. These advantages of 3-BPIC-F could not only improve hole extraction within the device but also lower the interfacial impedance and reduce nonradiative recombination at the interface. As a result, the OSCs using SAM based on 3-BPIC-F obtained a record high efficiency of 19.71%, which is higher than that achieved from the cells based on 3-BPIC(i) (13.54%) and 3-BPIC (19.34%). Importantly, 3-BPIC-F-based OSCs exhibit significantly enhanced stability compared to that utilizing PEDOT:PSS as HEL. Our work offers guidance for the future design of functional molecules for SAMs to realize even higher performance in organic solar cells.
Collapse
Affiliation(s)
- Hang Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yufei Xin
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhaochen Suo
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Liu Yang
- Department of Microelectronic Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Yu Zou
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiangjian Cao
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ziyang Hu
- Department of Microelectronic Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Bin Kan
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Xiangjian Wan
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| | - Yongsheng Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| | - Yongsheng Chen
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| |
Collapse
|
46
|
Chen X, Li Y, Jing W, Zhou T, Xu X, Duan Y, Yu L, Li R, Peng Q. Layer-by-Layer Organic Solar Cells Enabled by 1,3,4-Selenadiazole-Containing Crystalline Small Molecule with Double-Fibril Network Morphology. Angew Chem Int Ed Engl 2024; 63:e202402831. [PMID: 38532290 DOI: 10.1002/anie.202402831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 03/28/2024]
Abstract
A double-fibril network of the photoactive layer morphology is recognized as an ideal structure facilitating exciton diffusion and charge carrier transport for high-performance organic solar cells (OSCs). However, in the layer-by-layer processed OSCs (LbL-OSCs), polymer donors and small molecule acceptors (SMAs) are separately deposited, and it is challenging to realize a fibril network of pure SMAs with the absence of tight interchain entanglement as polymers. In this work, crystalline small molecule donors (SMDs), named TDZ-3TR and SeDZ-3TR, were designed and introduced into the L8-BO acceptor solution, forcing the phase separation and molecular fibrilization. SeDZ-3TR showed higher crystallinity and lower miscibility with L8-BO acceptor than TDZ-3TR, enabling more driving force to favor the phase separation and better molecular fibrilization of L8-BO. On the other hand, two donor polymers of PM6 and D18 with different fibril widths and lengths were put together to optimize the fibril network of the donor layer. The simultaneously optimization of the acceptor and donor layers resulted in a more ideal double-fibril network of the photoactive layer and an impressive power conversion efficiency (PCE) of 19.38 % in LbL-OSCs.
Collapse
Affiliation(s)
- Xuyang Chen
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yinfeng Li
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wenwen Jing
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Tao Zhou
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiaopeng Xu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yuwei Duan
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Liyang Yu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Ruipeng Li
- National Synchrotron Light Source II Brookhaven National Lab, Suffolk, Upton, NY-11973, USA
| | - Qiang Peng
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| |
Collapse
|
47
|
Zhang T, Yuk Lin Lai J, Shi M, Li Q, Zhang C, Yan H. Data Cleansing and Sub-Unit-Based Molecular Description Enable Accurate Prediction of The Energy Levels of Non-Fullerene Acceptors Used in Organic Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308652. [PMID: 38386329 PMCID: PMC11077656 DOI: 10.1002/advs.202308652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 02/23/2024]
Abstract
Non-fullerene acceptors (NFAs) have recently emerged as pivotal materials for enhancing the efficiency of organic solar cells (OSCs). To further advance OSC efficiency, precise control over the energy levels of NFAs is imperative, necessitating the development of a robust computational method for accurate energy level predictions. Unfortunately, conventional computational techniques often yield relatively large errors, typically ranging from 0.2 to 0.5 electronvolts (eV), when predicting energy levels. In this study, the authors present a novel method that not only expedites energy level predictions but also significantly improves accuracy , reducing the error margin to 0.06 eV. The method comprises two essential components. The first component involves data cleansing, which systematically eliminates problematic experimental data and thereby minimizes input data errors. The second component introduces a molecular description method based on the electronic properties of the sub-units comprising NFAs. The approach simplifies the intricacies of molecular computation and demonstrates markedly enhanced prediction performance compared to the conventional density functional theory (DFT) method. Our methodology will expedite research in the field of NFAs, serving as a catalyst for the development of similar computational approaches to address challenges in other areas of material science and molecular research.
Collapse
Affiliation(s)
- Ting Zhang
- Department of ComputingThe Hong Kong Polytechnic University11 Yuk Choi Road, Hung Hom, KLNHong Kong999077China
| | - Joshua Yuk Lin Lai
- Department of ChemistryHong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong999077China
| | - Mingzhe Shi
- Department of ComputingThe Hong Kong Polytechnic University11 Yuk Choi Road, Hung Hom, KLNHong Kong999077China
| | - Qing Li
- Department of ComputingThe Hong Kong Polytechnic University11 Yuk Choi Road, Hung Hom, KLNHong Kong999077China
| | - Chen Zhang
- Department of ComputingThe Hong Kong Polytechnic University11 Yuk Choi Road, Hung Hom, KLNHong Kong999077China
| | - He Yan
- Department of ChemistryHong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong999077China
| |
Collapse
|
48
|
Li Y, Zhou D, Han L, Quan J, Wang F, Yang X, Hu L, Wang J, Xu H, Chen L. N-Type Small Molecule Electron Transport Layers with Excellent Surface Energy and Moisture Resistance Siloxane for Non-Fullerene Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308961. [PMID: 38059861 DOI: 10.1002/smll.202308961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/11/2023] [Indexed: 12/08/2023]
Abstract
Electron transport layers (ETLs) generally contain polar groups for enhancing performance and reducing the work function. Nevertheless, the polar group with high surface energy may cause inferior interfacial compatibility, which challenges the ETLs to balance stability and performance. Here, two conjugated small molecules of ETLs with low surface energy siloxane, namely PDI-Si and PDIN-Si, are synthesized. The siloxane with low surface energy not only enhances the interfacial compatibility between ETLs and active layers but also improves the moisture-proof stability of the device. Impressively, the amine-functionalized PDIN-Si can simultaneously exhibit conspicuous n-type self-doping properties and outstanding moisture-proof stability. The optimization of interfacial contact and morphology enables the PM6:Y6-based OSC with PDIN-Si to achieve a power conversion efficiency (PCE) of 15.87%, which is slightly superior to that of classical ETL PDINO devices (15.27%), and when the PDIN-Si film thickness reaches 28 nm, the PCE remains at 13.19% (≈83%), which indicates that PDIN-Si has satisfactory thickness insensitivity to facilitate roll-to-roll processing. Excitingly, after 120 h of storage in an environment with humidity above 45%, the unencapsulated device with PDIN-Si as ETL remains at 75% of the initial PCE value, while the device with PDINO as ETL is only 50%.
Collapse
Affiliation(s)
- Yubing Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Dan Zhou
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Liangjing Han
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Jianwei Quan
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Fang Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Xufang Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Lin Hu
- China-Australia Institute for Advanced Materials and Manufacturing (IAMM), Jiaxing University, Jiaxing, 314001, China
| | - Jianru Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Haitao Xu
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Lie Chen
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| |
Collapse
|
49
|
Xu T, Deng B, Zheng K, Li H, Wang Z, Zhong Y, Zhang C, Lévêque G, Grandidier B, Bachelot R, Treguer-Delapierre M, Qi Y, Wang S. Boosting the Performances of Semitransparent Organic Photovoltaics via Synergetic Near-Infrared Light Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311305. [PMID: 38270280 DOI: 10.1002/adma.202311305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/18/2023] [Indexed: 01/26/2024]
Abstract
Semitransparent organic photovoltaics (ST-OPVs) offer promising prospects for application in building-integrated photovoltaic systems and greenhouses, but further improvement of their performance faces a delicate trade-off between the two competing indexes of power conversion efficiency (PCE) and average visible transmittance (AVT). Herein, the authors take advantage of coupling plasmonics with the optical design of ST-OPVs to enhance near-infrared absorption and hence simultaneously improve efficiency and visible transparency to the maximum extent. By integrating core-bishell PdCu@Au@SiO2 nanotripods that act as optically isotropic Lambertian sources with near-infrared-customized localized surface plasmon resonance in an optimal ternary PM6:BTP-eC9:L8-BO-based ST-OPV, it is shown that their interplay with a multilayer optical coupling layer, consisting of ZnS(130 nm)/Na3AlF6(60 nm)/WO3(100 nm)/LaF3(50 nm) identified from high-throughput optical screening, leads to a record-high PCE of 16.14% (certified as 15.90%) along with an excellent AVT of 33.02%. The strong enhancement of the light utilization efficiency by ≈50% as compared to the counterpart device without optical engineering provides an encouraging and universal pathway for promoting breakthroughs in ST-OPVs from meticulous optical design.
Collapse
Affiliation(s)
- Tao Xu
- School of Microelectronics and Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Baozhong Deng
- School of Microelectronics and Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Kaiwen Zheng
- School of Microelectronics and Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Hongyu Li
- School of Microelectronics and Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Zihan Wang
- School of Microelectronics and Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Yunbo Zhong
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Chengxi Zhang
- School of Science, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Gaëtan Lévêque
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520 - IEMN, Lille, 59000, France
| | - Bruno Grandidier
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520 - IEMN, Lille, 59000, France
| | - Renaud Bachelot
- Light, nanomaterials, nanotechnologies (L2n), CNRS ERL 7004, University of Technology of Troyes, Troyes, F-10004, France
- EEE School, Nanyang Technological University, CNRS IRL, CINTRA, 3288, Singapore
| | | | - Yabing Qi
- Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Shenghao Wang
- School of Microelectronics and Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
50
|
Liu S, Wang J, Wen S, Bi F, Zhu Q, Yang C, Yang C, Chu J, Bao X. Efficient Dual Mechanisms Boost the Efficiency of Ternary Solar Cells with Two Compatible Polymer Donors to Exceed 19. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312959. [PMID: 38332502 DOI: 10.1002/adma.202312959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Ternary strategyopens a simple avenue to improve the power conversion efficiency (PCE) of organic solar cells (OSCs). The introduction of wide bandgap polymer donors (PDs) as third component canbetter utilize sunlight and improve the mechanical and thermal stability of active layer. However, efficient ternary OSCs (TOSCs) with two PDs are rarely reported due to inferior compatibility and shortage of efficient PDs match with acceptors. Herein, two PDs-(PBB-F and PBB-Cl) are adopted in the dual-PDs ternary systems to explore the underlying mechanisms and improve their photovoltaic performance. The findings demonstrate that the third components exhibit excellent miscibility with PM6 and are embedded in the host donor to form alloy-like phase. A more profound mechanism for enhancing efficiency through dual mechanisms, that are the guest energy transfer to PM6 and charge transport at the donor/acceptor interface, has been proposed. Consequently, the PM6:PBB-Cl:BTP-eC9 TOSCs achieve PCE of over 19%. Furthermore, the TOSCs exhibit better thermal stability than that of binary OSCs due to the reduction in spatial site resistance resulting from a more tightly entangled long-chain structure. This work not only provides an effective approach to fabricate high-performance TOSCs, but also demonstrates the importance of developing dual compatible PD materials.
Collapse
Affiliation(s)
- Shizhao Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Junjie Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Laboratory of Solar Energy, Shandong Energy Institute, Qingdao, 266101, China
- Laboratory of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Shuguang Wen
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Laboratory of Solar Energy, Shandong Energy Institute, Qingdao, 266101, China
- Laboratory of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Fuzhen Bi
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Laboratory of Solar Energy, Shandong Energy Institute, Qingdao, 266101, China
- Laboratory of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Qianqian Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Chunpeng Yang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Chunming Yang
- Shanghai Synchrotron Radiation Facility Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Junhao Chu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Laboratory of Solar Energy, Shandong Energy Institute, Qingdao, 266101, China
- Laboratory of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Xichang Bao
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Laboratory of Solar Energy, Shandong Energy Institute, Qingdao, 266101, China
- Laboratory of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| |
Collapse
|