1
|
Li S, Zhu Z, Zhang Y, Liu Y, Zhang X, Hui KN. Innovative engineering strategies and mechanistic insights for enhanced carbon-based electrocatalysts in sustainable H 2O 2 production. MATERIALS HORIZONS 2025. [PMID: 40364583 DOI: 10.1039/d5mh00221d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Hydrogen peroxide (H2O2) plays a crucial role in various industrial sectors and everyday applications. Given the energy-intensive nature of the current anthraquinone process for its production, the quest for cost-effective, efficient, and stable catalysts for H2O2 synthesis is paramount. A promising sustainable approach lies in small-scale, decentralized electrochemical methods. Carbon nanomaterials have emerged as standout candidates, offering low costs, high surface areas, excellent conductivity, and adjustable electronic properties. This review presents a thorough examination of recent strides in engineering strategies of carbon-based nanomaterials for enhanced electrochemical H2O2 generation. It delves into tailored microstructures (e.g., 1D, 2D, porous architectures), defect/surface engineering (e.g., edge sites, heteroatom doping, surface modification), and heterostructure assembly (e.g., semiconductor-carbon composites, single-atom, dual-single-atom catalysts). Moreover, the review explores structure-performance interplays in these carbon electrocatalysts, drawing from advanced experimental analyses and theoretical models to unveil the mechanisms governing selective electrocatalytic H2O2 synthesis. Lastly, this review identifies challenges and charts future research avenues to propel carbon electrocatalysts towards greener and more effective H2O2 production methods.
Collapse
Affiliation(s)
- Shun Li
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Zhanpeng Zhu
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Yuqiao Zhang
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Yong Liu
- Foshan (Southern China) Institute for New Materials, Foshan, 528200, China.
| | - Xinyue Zhang
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
- Foshan (Southern China) Institute for New Materials, Foshan, 528200, China.
| | - Kwun Nam Hui
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China.
| |
Collapse
|
2
|
Wang Q, Zhao H, Du Y, Yue X, Gao J, Yu M, Zou C, Yang H. Joule-heating synthesis of highly dispersed Pt single atoms anchored on carbon nanotubes for efficient hydrogen evolution. Chem Commun (Camb) 2025; 61:7321-7324. [PMID: 40270194 DOI: 10.1039/d5cc01455g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
In this study, the Joule thermal strategy was used to achieve the catalyst anchoring of highly dispersed platinum single atoms on carbon nanotubes (Pt SAs-CNTs). This catalyst exhibits excellent hydrogen evolution performance, and this strategy provides a new paradigm for the preparation of single-atom catalysts.
Collapse
Affiliation(s)
- Qian Wang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Haokai Zhao
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yaxin Du
- State Key Laboratory of Advanced Inorganic Fibers and Composites, Beijing 100096, China
| | - Xianyang Yue
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianfei Gao
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Meina Yu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Cheng Zou
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Huai Yang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- School of Materials Science and Engineering, Peking University, Beijing 100083, China.
| |
Collapse
|
3
|
Zhu G, Zhao S, Yu Y, Fan X, Liu K, Quan X, Liu Y. Tuning Local Proton Concentration and *OOH Intermediate Generation for Efficient Acidic H 2O 2 Electrosynthesis at Ampere-Level Current Density. Angew Chem Int Ed Engl 2025:e202503626. [PMID: 40338624 DOI: 10.1002/anie.202503626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/25/2025] [Accepted: 05/07/2025] [Indexed: 05/09/2025]
Abstract
Electrocatalytic oxygen reduction is a sustainable method for on-site H2O2 synthesis. The H2O2 in acidic media has wide downstream applications, but acidic H2O2 electrosynthesis suffers from poor efficiency due to high proton concentration and unfavourable *OOH (key intermediate) generation. Herein, acidic H2O2 electrosynthesis was enhanced by regulating local proton availability and *OOH generation via fluorine-doped on inner and outer walls of carbon nanotubes (F-CNTs). It was efficient and stable for H2O2 electrosynthesis with Faradaic efficiency of 95.6% and H2O2 yield of 606.6 mg cm-2 h-1 at 1.0 A cm-2 and 0.05 M H2SO4, outperforming the state-of-the-art electrocatalysts. The F-doping regulated the electronic structure of CNTs with elevated p-band center, and F-doping on its inner and outer walls also enhanced nanoconfinement effect and superhydrophobicity, respectively. As a result, a local alkaline microenvironment was created on F-CNTs surface during acidic H2O2 electrosynthesis. The energy barrier for *OOH generation was significantly reduced and oxygen mass transfer was boosted. Their synergistic effects promoted acidic H2O2 electrosynthesis. This work provides new insights into the mechanism for regulating H2O2 electrosynthesis.
Collapse
Affiliation(s)
- Genwang Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Shuaijie Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yueling Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xinfei Fan
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116024, China
| | - Kaiyuan Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yanming Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
4
|
Liang Z, Lei H, Zheng H, Wang HY, Zhang W, Cao R. Selective two-electron and four-electron oxygen reduction reactions using Co-based electrocatalysts. Chem Soc Rev 2025. [PMID: 40259844 DOI: 10.1039/d4cs01199f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
The oxygen reduction reaction (ORR) can take place via both four-electron (4e-) and two-electron (2e-) pathways. The 4e- ORR, which produces water (H2O) as the only product, is the key reaction at the cathode of fuel cells and metal-air batteries. On the other hand, the 2e- ORR can be used to electrocatalytically synthesize hydrogen peroxide (H2O2). For the practical applications of the ORR, it is very important to precisely control the selectivity. Understanding structural effects on the ORR provides the basis to control the selectivity. Co-based electrocatalysts have been extensively studied for the ORR due to their high activity, low cost, and relative ease of synthesis. More importantly, by appropriately designing their structures, Co-based electrocatalysts can become highly selective for either the 2e- or the 4e- ORR. Therefore, Co-based electrocatalysts are ideal models for studying fundamental structure-selectivity relationships of the ORR. This review starts by introducing the reaction mechanism and selectivity evaluation of the ORR. Next, Co-based electrocatalysts, especially Co porphyrins, used for the ORR with both 2e- and 4e- selectivity are summarized and discussed, which leads to the conclusion of several key structural factors for ORR selectivity regulation. On the basis of this understanding, future works on the use of Co-based electrocatalysts for the ORR are suggested. This review is valuable for the rational design of molecular catalysts and material catalysts with high selectivity for 4e- and 2e- ORRs. The structural regulation of Co-based electrocatalysts also provides insights into the design and development of ORR electrocatalysts based on other metal elements.
Collapse
Affiliation(s)
- Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Hong-Yan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
5
|
Yu A, Yang Y. Atomically Dispersed Metal Catalysts for Oxygen Reduction Reaction: Two-Electron vs. Four-Electron Pathways. Angew Chem Int Ed Engl 2025; 64:e202424161. [PMID: 39891655 DOI: 10.1002/anie.202424161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/09/2025] [Accepted: 01/31/2025] [Indexed: 02/03/2025]
Abstract
Developing eco-friendly electrochemical devices for electrosynthesis, fuel cells (FCs), and metal-air batteries (MABs) requires precisely designing the electronic pathway in the oxygen reduction reaction (ORR) process. Understanding the principle of developing low-cost, highly active, and stable catalysts helps to reduce the usage of noble metals in ORR. Atomically dispersed metal catalysts (ADMCs) emerge as promising alternatives to replace commercial noble metals due to their high utilization of active metal atoms, high intrinsic activity, and controllable coordination environments. In this review, the research tendency and reaction mechanisms in ORR are first summarized. The basic principles concerning the geometric size and chemical coordination of two-electron ORR (2e- ORR) catalysts were then discussed, aiming to outline the evolution of material design from 2e- ORR to four-electron ORR (4e- ORR). Subsequently, recent advances in ADMCs primarily investigated for the 4e- ORR are well-documented. These advances encompass studies on M-N-C coordination, light heteroatom doping, dual-metal atoms-based coordination, and interaction between nanoparticle (NPs)/nanoclusters (NCs) and atomically dispersed metals (ADMs). Finally, the setups for 2/4e- ORR applications, key challenges, and opportunities in the future design of ADMCs for the ORR are highlighted.
Collapse
Affiliation(s)
- Ao Yu
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Yang Yang
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA
- Renewable Energy and Chemical Transformation Cluster, University of Central Florida, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA
- The Stephen W. Hawking Center for Microgravity Research and Education, University of Central Florida, Orlando, FL 32826, USA
| |
Collapse
|
6
|
Lee Y, Seong J, Choi J, Kwon YG, Cheong D, Lee J, Lee S, Lee H, Kwon Y, Lee JH, Lah MS, Song HK. Intramolecular Double Activation by Biligands Sharing a Single Metal Atom for Preferred Two-Electron Oxygen Reduction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21156-21167. [PMID: 40150931 DOI: 10.1021/acsami.4c21525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
It is challenging to selectively promote the two-electron oxygen reduction reaction (2e-ORR) since highly ORR-active electrocatalysts are not satisfied with 2e-ORR and are most likely to go all the way to 4e-ORR, completely reducing dioxygen to water. Recently, however, the possibility of a 2e-ORR preference over 4e-ORR was raised by extensively considering multiple ORR mechanisms and employing a potential-dependent activity measure for constructing volcano plots. Here, we realized the preferred 2e-ORR via an intramolecular double activation of the peroxide intermediate (*OOH) by allowing the intermediate to be easily desorbed before proceeding to 4e-ORR. Dioxygen was transformed to *OOH on a carbon atom of the imidazole ligand of zeolitic imidazolate framework-8 (ZIF-8). When an amine group was introduced via ligand exchange, the selectivity of 2e-ORR was enhanced by 11%. The added amine attracted the oxygen atom of *OOH via a hydrogen bond to weaken the binding strength of *OOH to the carbon active site (double activation). The amine-decorated ZIF-8 exhibited H2O2 faradaic efficiency at 98.5% at ultrahigh-rate production at 625 mg cm-2 h-1 by 1 A cm-2 in a flow cell.
Collapse
Affiliation(s)
- Yeongdae Lee
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, South Korea
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Junmo Seong
- Department of Chemistry, UNIST, Ulsan 44919, South Korea
| | - Jihoon Choi
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, South Korea
| | - Yeong Gwang Kwon
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, South Korea
| | - Dosol Cheong
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, South Korea
| | - Jisu Lee
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, South Korea
| | - Seonghwan Lee
- Department of Chemistry, UNIST, Ulsan 44919, South Korea
| | - Hojeong Lee
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, South Korea
| | - Youngkook Kwon
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, South Korea
| | - Jun Hee Lee
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, South Korea
| | - Myoung Soo Lah
- Department of Chemistry, UNIST, Ulsan 44919, South Korea
| | - Hyun-Kon Song
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, South Korea
| |
Collapse
|
7
|
Sun R, Zhu M, Chen J, Yan L, Bai L, Ning J, Zhong Y, Hu Y. Tuning the Formation Kinetics of *OOH Intermediate with Hollow Bowl-Like Carbon by Pulsed Electroreduction for Enhanced H 2O 2 Production. ACS NANO 2025; 19:13414-13426. [PMID: 40151875 DOI: 10.1021/acsnano.5c01453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The electrochemical synthesis of hydrogen peroxide (H2O2) via the two-electron oxygen reduction reaction (2e- ORR) is a promising alternative to the conventional anthraquinone method. However, due to local alkalinization near the catalyst surface, the restricted oxygen replenishment and insufficient activated water molecule supply limit the formation of the key *OOH intermediate. Herein, a pulsed electrocatalysis approach based on a structurally optimized S/N/O tridoped hollow carbon bowl catalyst has been proposed to overcome this challenge. In an H-type electrolytic cell, the pulsed method achieves a superior H2O2 yield rate of 55.6 mg h-1 mgcat.-1, approximately 1.6 times higher than the conventional potentiostatic method (34.2 mg h-1 mgcat.-1), while maintaining the Faradaic efficiency above 94.6%. In situ characterizations, finite element simulations, and density functional theory analyses unveil that the application of pulsed potentials mitigates the local OH- concentration, enhances the water activation and proton generation, and facilitates oxygen production within the hollow bowl-like carbon structure. These effects synergistically accelerate the formation kinetics of the *OOH intermediate by the efficient generation of *O2 and *H2O intermediates, leading to superior H2O2 yields. This work develops a strategy to tune catalytic environments for diverse catalytic applications.
Collapse
Affiliation(s)
- Ruoxuan Sun
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Minghui Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Jie Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Lei Yan
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Liyi Bai
- Suzhou Laboratory, Suzhou 215100, China
| | - Jiqiang Ning
- Department of Optical Science and Engineering, Fudan University, Shanghai 200438, China
| | - Yijun Zhong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Yong Hu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
8
|
Liu Y, Liu S, Jiang J, Wei X, Zhao K, Shen R, Wang X, Wei M, Wang Y, Pang H, Li B. Monomolecule Coupled to Oxygen-Doped Carbon for Efficient Electrocatalytic Hydrogen Peroxide Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2502197. [PMID: 39995369 DOI: 10.1002/adma.202502197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/17/2025] [Indexed: 02/26/2025]
Abstract
The electrocatalytic production of hydrogen peroxide (H2O2) is an ideal alternative for the industrial anthraquinone process because of environmental friendliness and energy efficiency, depending on the activity and selectivity of catalysts. Carbon-based materials possess prospects as candidate catalysts for the production of H2O2. Herein, cedar-derived monolithic carbon catalysts modified with coupling oxygen doping and phthalocyanine molecules are synthesized. Cobalt phthalocyanine (CoPc) molecules are introduced onto the carbon surface to construct monomolecular active sites via π-π stacking. The electronic structure of CoPc is modulated by oxygen doping on carbon substrates, mediated by monomolecular π-π stacking. A synergistic effect optimally modulated the interaction between CoPc and key intermediate to H2O2. The energy barrier for oxygen reduction is reduced to optimize the selectivity to H2O2. CoPc@OCW provided up to 99% selectivity to H2O2 at 0.7 V versus RHE. In a three-phase flow cell, CoPc@OCW achieved an H2O2 yield up to 10.4 mol·g-1·h-1 at 0.2 V versus RHE with stable running for 24 h. The advantages of carbon-based catalysts including the adjustable chemical structure depending on π-π stacking and electronic structure of carbon atoms through oxygen doping improved the catalytic performances in the production of H2O2. This proof-to-concept research demonstrates the potential application of carbon-based molecular catalysts for electrochemical synthesis.
Collapse
Affiliation(s)
- Yanyan Liu
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Institute of Chemistry Industry of Forest Productsversity, CAF, National Engineering Lab for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| | - Shuling Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jianchun Jiang
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
- Institute of Chemistry Industry of Forest Productsversity, CAF, National Engineering Lab for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| | - Xinao Wei
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Keke Zhao
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Ruofan Shen
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xiaopeng Wang
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Min Wei
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Yongfeng Wang
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing, 100871, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Baojun Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
9
|
Zhang Y, Chen M, He X, Zhao E, Liang H, Shang J, Liu K, Chen J, Zuo S, Zhou M. Intrinsic strain of defect sites steering chlorination reaction for water purification. Nat Commun 2025; 16:2652. [PMID: 40102410 PMCID: PMC11920279 DOI: 10.1038/s41467-025-57841-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
Carbon nanotube (CNT)-based heterogeneous advanced oxidation processes (AOPs) used for water purification have been exploited for several decades. Many strategies for modifying CNTs have been utilized to improve their catalytic performance in remediation processes. However, the strain fields of the intrinsic defect sites on CNT steering AOPs (such as chlorination) have not yet been reported. Here, we explored the strained defect sites for steering the chlorination process for water purification. The strained defect sites with the elongated sp2 hybridized C-C bonds boost electronic reactivity with the chlorine molecules via the initial Yeager-type adsorption. As a result, the reactive species in chlorination can be regulated on demand, such as the ratio of high-selectivity ClO• ranging from 38.8% in conventional defect-based systems to 87.5% in our strain-dominated process, which results in the generation of harmless intermediates and even deep mineralization during 2,4-DCP abatement. This work highlights the role that strain fields have on controlling the extent of chlorination reactions.
Collapse
Affiliation(s)
- Yinqiao Zhang
- School of Engineering, State of Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Mohan Chen
- School of Engineering, State of Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Xuanyu He
- School of Engineering, State of Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Erzhuo Zhao
- School of Environment, Tsinghua University, Beijing, PR China
| | - Hao Liang
- School of Engineering, State of Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Jingge Shang
- School of Engineering, State of Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Kai Liu
- School of Engineering, Westlake University, Hangzhou, Zhejiang, PR China
| | - Jianqiu Chen
- School of Engineering, State of Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China.
| | - Sijin Zuo
- School of Engineering, State of Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China.
| | - Minghua Zhou
- College of Environmental Science and Engineering, Nankai University, Tianjin, PR China
| |
Collapse
|
10
|
Yuan K, Li H, Gu X, Zheng Y, Wu X, Zhao Y, Zhou J, Cui S. Electrocatalysts for the Formation of Hydrogen Peroxide by Oxygen Reduction Reaction. CHEMSUSCHEM 2025; 18:e202401952. [PMID: 39503346 DOI: 10.1002/cssc.202401952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
Hydrogen peroxide (H2O2) is a widely used strong oxidant, and its traditional preparation methods, anthraquinone method, and direct synthesis method, have many drawbacks. The method of producing H2O2 by two-electron oxygen reduction reaction (2e- ORR) is considered an alternative strategy for the traditional anthraquinone method due to its high efficiency, energy saving, and environmental friendliness, but it remains a big challenge. In this review, we have described the mechanism of ORR and the principle of electrocatalytic performance testing, and have summarized the standard performance evaluation techniques for electrocatalysts to produce H2O2. Secondly, according to the theoretical calculation and experimental results, several kinds of efficient electrocatalysts are introduced. It is concluded that noble metal-based materials, carbon-based materials, non-noble metal composites, and single-atom catalysts are the preferred catalyst materials for the preparation of H2O2 by 2e- ORR. Finally, the advantages and novelty of 2e- ORR compared with traditional methods for H2O2 production, as well as the advantages and disadvantages of the above-mentioned high-efficiency catalysts, are summarized. The application prospect and development direction of high-efficiency catalysts for H2O2 production by 2e- ORR has been prospected, which is of great significance for promoting the electrochemical yield of H2O2 and developing green chemical production.
Collapse
Affiliation(s)
- Ke Yuan
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Hong Li
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Xindi Gu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Yalei Zheng
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaodong Wu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Yihe Zhao
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Jiejie Zhou
- Aerospace Research Institute of Materials & Processing Technology, Beijing, 100076, China
| | - Sheng Cui
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
11
|
Chen X, Feng P, Zheng Y, Li H, Zhang Y, Shen Y, Yan Y, Liu M, Ye L. Emerging Nitrogen and Sulfur Co-doped Carbon Materials for Electrochemical Energy Storage and Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412191. [PMID: 39955747 DOI: 10.1002/smll.202412191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/24/2025] [Indexed: 02/17/2025]
Abstract
The growing global energy demands, coupled with the imperative for sustainable environmental challenges, have sparked significant interest in electrochemical energy storage and conversion (EESC) technologies. Metal-free heteroatom-doped carbon materials, especially those codoped with nitrogen (N) and sulfur (S), have gained prominence due to their exceptional conductivity, large specific surface area, remarkable chemical stability, and enhanced electrochemical performance. The strategic incorporation of N and S atoms into the carbon framework plays a pivotal role in modulating electron distribution and creating catalytically active sites, thereby significantly enhancing the EESC performance. This review examines the key synthetic strategies for fabricating N, S codoped carbon materials (NSDCMs) and provides a comprehensive overview of recent advancements in NSDCMs for EESC applications. These encompass various electrochemical energy storage systems such as supercapacitors, alkali-ion batteries, and lithium-sulfur batteries. Energy conversion processes, including hydrogen evolution, oxygen reduction/evolution, and carbon dioxide reduction are also covered. Finally, future research directions for NSDCMs are discussed in the EESC field, aiming to highlight their promising potential and multifunctional capabilities in driving further advancements in electrochemical energy systems.
Collapse
Affiliation(s)
- Xia Chen
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China
| | - Ping Feng
- Institute for Technical and Environmental Chemistry, Friedrich-Schiller-Universität Jena, 07743, Jena, Germany
| | - Yong Zheng
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Hui Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China
| | - Youfang Zhang
- Hubei Key Laboratory of Polymer Materials, Ministry of Education Key Laboratory for Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Yi Shen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Yan Yan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| | - Mingkai Liu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| | - Liqun Ye
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
12
|
Liu X, Zhao L, Shen Y, Peng W, Mao B, Hou J, Wang D, Chen X, Dai Y, Zhang C, Hu C. Hierarchical Carbon-Based Electrocatalyst with Functional Separation Properties for Efficient pH Universal Nitrate Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417623. [PMID: 39916579 DOI: 10.1002/adma.202417623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/14/2025] [Indexed: 03/21/2025]
Abstract
The electrocatalytic reduction of nitrate (eNO3 -RR) to ammonia (NH3) across varying pH is of great significance for the treatment of practical wastewater containing nitrate. However, developing highly active and stable catalysts that function effectively in a wide pH range remains a formidable challenge. Herein, a hierarchical carbon-based metal-free electrocatalyst (C-MFEC) of winged carbon coaxial nanocables (W-CCNs, in situ generated graphene nanosheets and outside carbon layer with abundant topological defects from pristine carbon nanotubes, CNTs), is prepared through moderate oxidation of CNTs and the subsequent introduction of topological defects. The W-CCNs feature functional separation properties, with an inner core of pristine CNTs that facilitates efficient charge transfer, while the outer shell is composed of in situ generated graphene nanosheets and carbon layers enriched with topological defects characterized by distinct carbon atom configurations, which play a crucial role in promoting the adsorption of NO3 -, the dissociation of water, and the N─H bond formation. This innovative design enables the C-MFEC to exhibit outstanding performance for eNO3 -RR, operating efficiently with the NH3 yield rates of 49.5, 75.3, and 88.1 g h-1 gcat. -1 in acidic, neutral, and alkaline media, respectively. Such performance metrics not only outshine C-MFECs but also rival or surpass those of certain metal-based catalysts.
Collapse
Affiliation(s)
- Xiaowen Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Linjie Zhao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuanqing Shen
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Weihua Peng
- Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institutes, School of Resources and Civil Engineering, Suzhou University, Suzhou, 234000, China
| | - Baoguang Mao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jianhua Hou
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, China
| | - Dan Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaochun Chen
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yao Dai
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Canjie Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chuangang Hu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
13
|
Wang X, Shen W, Zhang C, Huang Y, Zhang J, Lv J, Lu X. A Chlorine-Resistant Self-Doped Nanocarbon Catalyst for Boosting Hydrogen Peroxide Synthesis in Seawater. Angew Chem Int Ed Engl 2025; 64:e202419049. [PMID: 39584455 DOI: 10.1002/anie.202419049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 11/26/2024]
Abstract
Developing seawater-compatible hydrogen peroxide (H2O2) electroproduction technologies is crucial for advancing marine resource utilization in coastal regions. However, designing efficient and highly stable non-noble metal catalysts for two-electron oxygen reduction reaction (2e- ORR) in seawater environment remains a challenging task due to the corrosive and toxic nature of chloride ions (Cl-). Herein, we present, for the first time, a novel nitrogen and oxygen self-doped defect-rich nanocarbon (NO-DC700) catalyst, derived from silk fiber, which addresses these challenges with low toxicity, cost-effectiveness, and high adaptability. The obtained NO-DC700 catalyst demonstrates an impressive H2O2 production rate of up to 4997 mg L-1 h-1, a high Faradaic efficiency of 96.5 %, and produces 4.3 wt % H2O2 after 20 hours of stable operation, placing it among the highest-performing catalysts reported in neutral electrolytes. Theoretical calculations reveal that NO-DC700's superior 2e- ORR performance is due to the synergistic effect of graphitic nitrogen and C-OH, which inhibits Cl- adsorption and promotes *OOH adsorption. Additionally, integrating 2e- ORR with Fenton-like technology enables rapid degradation of organic pollutants and effective inactivation of seawater algae, offering significant potential for mitigating coastal eutrophication and red tide pollution. This work provides valuable insights into H2O2 electrosynthesis in seawater solution and promises advancements in ocean-energy applications.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Wangqiang Shen
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Chang Zhang
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan, 570228, China
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yuzhong Huang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Jian Zhang
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan, 570228, China
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jun Lv
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Xing Lu
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan, 570228, China
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
14
|
Zhu HL, Huang JR, Zhang F, Liao PQ, Chen XM. Observation of O 2 Molecules Inserting into Fe-H Bonds in a Ferrous Metal-Organic Framework. J Am Chem Soc 2025; 147:4595-4601. [PMID: 39838623 DOI: 10.1021/jacs.4c16736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Exploring the interactions between oxygen molecules and metal sites has been a significant topic. Most previous studies concentrated on enzyme-mimicking metal sites interacting with O2 to form M-OO species, leaving the development of new types of O2-activating metal sites and novel adsorption mechanisms largely overlooked. In this study, we reported an Fe(II)-doped metal-organic framework (MOF) [Fe3Zn2H4(bibtz)3] (MAF-203, H2bibtz = 1H,1'H-5,5'-bibenzo[d][1,2,3]triazole), featuring an unprecedented tetrahedral Fe(II)HN3 site. This MOF exhibits selective adsorption behavior for O2 from air, achieving an O2/N2 separation selectivity of up to 67.1. Breakthrough experiments confirmed that MAF-203 can effectively capture O2 from the air even under a high relative humidity of 60%. X-ray absorption spectroscopy, in situ diffuse reflectance infrared Fourier transform spectra, and ab initio molecular dynamics simulations were utilized to monitor the O2 loading process on the Fe(II)HN3 site. Interestingly, O2 molecules could insert into the Fe-H bonds of the tetrahedral FeIIHN3 sites, forming FeIII-OOH species (instead of the commonly observed Fe-OO species) with an ultrahigh adsorption enthalpy of -99.2 kJ mol-1. Consequently, the O2 capture behavior of MAF-203 enables efficient electrochemical 2e- oxygen reduction for the production of H2O2 with air as the feedstock. Specifically, in a solid-state electrolyte electrolyzer without any liquid electrolyte, MAF-203 achieved selective O2 capture and continuous production of medical-grade H2O2 (3.2 wt %) solution without salts for 70 h, with performance comparable to that under pure O2 conditions. The O2 adsorption and activation mechanisms inaugurate a fresh chapter in grasping the interaction between O2 molecules and metal sites.
Collapse
Affiliation(s)
- Hao-Lin Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jia-Run Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Feifei Zhang
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan 030024, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515021, China
| |
Collapse
|
15
|
Li Q, Nie Z, Wu W, Guan H, Xia B, Huang Q, Duan J, Chen S. Water Spillover to Expedite Two-Electron Oxygen Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412039. [PMID: 39757429 DOI: 10.1002/adma.202412039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/26/2024] [Indexed: 01/07/2025]
Abstract
Limited by the activity-selectivity trade-off relationship, the electrochemical activation of small molecules (like O2, N2, and CO2) rapidly diminishes Faradaic efficiencies with elevated current densities (particularly at ampere levels). Nevertheless, some catalysts can circumvent this restriction in a two-electron oxygen reduction reaction (2e- ORR), a sustainable pathway for activating O2 to hydrogen peroxide (H2O2). Here we report 2e- ORR expedited in a fluorine-bridged copper metal-organic framework catalyst, arising from the water spillover effect. Through operando spectroscopies, kinetic and theoretical characterizations, it demonstrates that under neutral conditions, water spillover plays a dual role in accelerating water dissociation and stabilizing the key *OOH intermediate. Benefiting from water spillover, the catalyst can expedite 2e- ORR in the current density range of 0.1-2.0 A cm-2 with both high Faradaic efficiencies (99-84.9%) and H2O2 yield rates (63.17-1082.26 mg h-1 cm-2). Further, the feasibility of the present system has been demonstrated by scaling up to a unit module cell of 25 cm2, in combination with techno-economics simulations showing H2O2 production cost strongly dependent on current densities, giving the lowest H2O2 price of $0.50 kg-1 at 2.0 A cm-2. This work is expected to provide an additional dimension to leverage systems independent oftraditional rules.
Collapse
Affiliation(s)
- Qianyi Li
- Key Laboratory for Soft Chemistry and Functional Materials (Ministry of Education), School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhihao Nie
- Key Laboratory for Soft Chemistry and Functional Materials (Ministry of Education), School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenqiang Wu
- Key Laboratory for Soft Chemistry and Functional Materials (Ministry of Education), School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Hongxin Guan
- Key Laboratory for Soft Chemistry and Functional Materials (Ministry of Education), School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Baokai Xia
- Key Laboratory for Soft Chemistry and Functional Materials (Ministry of Education), School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qi Huang
- Key Laboratory for Soft Chemistry and Functional Materials (Ministry of Education), School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jingjing Duan
- Key Laboratory for Soft Chemistry and Functional Materials (Ministry of Education), School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Sheng Chen
- Key Laboratory for Soft Chemistry and Functional Materials (Ministry of Education), School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
16
|
Tian Q, Jing L, Wang W, Ye X, Chai X, Zhang X, Hu Q, Yang H, He C. Hydrogen Peroxide Electrosynthesis via Selective Oxygen Reduction Reactions Through Interfacial Reaction Microenvironment Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414490. [PMID: 39610213 DOI: 10.1002/adma.202414490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/01/2024] [Indexed: 11/30/2024]
Abstract
The electrochemical two-electron oxygen reduction reaction (2e- ORR) offers a compelling alternative for decentralized and on-site H2O2 production compared to the conventional anthraquinone process. To advance this electrosynthesis system, there is growing interest in optimizing the interfacial reaction microenvironment to boost electrocatalytic performance. This review consolidates recent advancements in reaction microenvironment engineering for the selective electrocatalytic conversion of O2 to H2O2. Starting with fundamental insights into interfacial electrocatalytic mechanisms, an overview of various strategies for constructing the favorable local reaction environment, including adjusting electrode wettability, enhancing mesoscale mass transfer, elevating local pH, incorporating electrolyte additives, and employing pulsed electrocatalysis techniques is provided. Alongside these regulation strategies, the corresponding analyses and technical remarks are also presented. Finally, a summary and outlook on critical challenges, suggesting future research directions to inspire microenvironment engineering and accelerate the practical application of H2O2 electrosynthesis is delivered.
Collapse
Affiliation(s)
- Qiang Tian
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Lingyan Jing
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Wenyi Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xieshu Ye
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xiaoyan Chai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xue Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Qi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Hengpan Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
17
|
Cao X, Liu Y, Xia H, Li Y, Yang L, Wang H, Zhang H, Ye B, He W, Wei T, Xin Z, Lu C, Zhou M, Sun Z. Pushing Theoretical Potassium Storage Limits of MXenes through Introducing New Carbon Active Sites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408723. [PMID: 39258357 DOI: 10.1002/adma.202408723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/17/2024] [Indexed: 09/12/2024]
Abstract
Surface-driven capacitive storage enhances rate performance and cyclability, thereby improving the efficacy of high-power electrode materials and fast-charging batteries. Conventional defect engineering, widely-employed capacitive storage optimization strategy, primarily focuses on the influence of defects themselves on capacitive behaviors. However, the role of local environment surrounding defects, which significantly affects surface properties, remains largely unexplored for lack of suitable material platform and has long been neglected. As proof-of-concept, typical Ti3C2Tx MXenes are chosen as model materials owing to metallic conductivity and tunable surface properties, satisfying the requirements for capacitive-type electrodes. Using density functional theory (DFT) calculations, the potential of MXenes with modulated local atomic environment is anticipated and introducing new carbon sites found near pores can activate electrochemically inert surface, attaining record theoretical potassium storage capacities of MXenes (291 mAh g-1). This supposition is realized through atomic tailoring via chemical scissor within sublayers, exposing new sp3-hybridized carbon active sites. The resulting MXenes demonstrate unprecedented rate performance and cycling stability. Notably, MXenes with higher carbon exposure exhibit a record-breaking capacity over 200 mAh g-1 and sustain a capacity retention higher than 80% after 20 months. These findings underscore the effectiveness of regulating defects' neighboring environment and illuminate future high-performance electrode design.
Collapse
Affiliation(s)
- Xin Cao
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Yuchun Liu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Huan Xia
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Yuhuan Li
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Li Yang
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Hang Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hongjun Zhang
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Bangjiao Ye
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Wei He
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Tianchen Wei
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhaorui Xin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chengjie Lu
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Min Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - ZhengMing Sun
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| |
Collapse
|
18
|
Yang Z, Zuo L, Luo B, Yang C, Wang SQ, Chew L, Zhu J, Zhang X. Designing Heterocyclic Covalent Organic Frameworks with Tunable Electronic Structures for Efficient Electrosynthesis of Hydrogen Peroxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403859. [PMID: 39030860 DOI: 10.1002/smll.202403859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/30/2024] [Indexed: 07/22/2024]
Abstract
The electrocatalytic production of hydrogen peroxide (H2O2) through the two-electron oxygen reduction reaction (2e- ORR) has garnered significant research attention in recent years due to its numerous appealing advantages, such as being eco-friendly and exhibiting high energy conversion efficiency. Metal-free carbon materials with specific catalytic sites have been recognized as potential electrocatalysts for 2e- ORR; however, the design of highly efficient catalysts with well-defined structures and long-term stability for large-scale H2O2 production remains unsatisfactory. In this study, three covalent organic frameworks (COFs) - imine-linked LZU-1, oxazole-linked LZU-190, and thiazole-linked LZU-190(S), are successfully synthesized to explore their catalytic activity in electrocatalytic H2O2 production. Among these, the carbon sites LZU-190(S) are predominantly activated by the introduced adjacent heteroatoms via electronic effects, resulting in much higher H2O2 selectivity compared to the oxazole and imine linkages. This work provides new insights into developing COFs-based electrocatalysts for efficient H2O2 generation.
Collapse
Affiliation(s)
- Zhongjie Yang
- School of Chemistry and Materials, Guizhou Normal University, Guiyang, 550025, China
| | - Lulu Zuo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Bifu Luo
- School of Chemistry and Materials, Guizhou Normal University, Guiyang, 550025, China
| | - Caoyu Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shi-Qiang Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Litian Chew
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Jun Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Xiaofei Zhang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| |
Collapse
|
19
|
Yang L, Cheng H, Li H, Sun G, Liu S, Ma T, Zhang L. Atomic Confinement Empowered CoZn Dual-Single-Atom Nanotubes for H 2O 2 Production in Sequential Dual-Cathode Electro-Fenton Process. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406957. [PMID: 38923059 DOI: 10.1002/adma.202406957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Single-atom catalysts (SACs) are flourishing in various fields because of their 100% atomic utilization. However, their uncontrollable selectivity, poor stability and vulnerable inactivation remain critical challenges. According to theoretical predictions and experiments, a heteronuclear CoZn dual-single-atom confined in N/O-doped hollow carbon nanotube reactors (CoZnSA@CNTs) is synthesized via spatial confinement growth. CoZnSA@CNTs exhibit superior performance for H2O2 electrosynthesis over the entire pH range due to dual-confinement of atomic sites and O2 molecule. CoZnSA@CNTs is favorable for H2O2 production mainly because the synergy of adjacent atomic sites, defect-rich feature and nanotube reactor promoted O2 enrichment and enhanced H2O2 reactivity/selectivity. The H2O2 selectivity reaches ∼100% in a range of 0.2-0.65 V versus RHE and the yield achieves 7.50 M gcat -1 with CoZnSA@CNTs/carbon fiber felt, exceeding most of the reported SACs in H-type cells. The obtained H2O2 is converted directly to sodium percarbonate and sodium perborate in a safe way for H2O2 storage/transportation. The sequential dual-cathode electron-Fenton process promotes the formation of reactive oxygen species (•OH, 1O2 and •O2 -) by activating the generated H2O2, enabling accelerated degradation of various pollutants and Cr(VI) detoxification in actual wastewater. This work proposes a promising confinement strategy for catalyst design and selectivity regulation of complex reactions.
Collapse
Affiliation(s)
- Lijun Yang
- College of Chemistry, Liaoning University, Shenyang, 110036, China
- Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, Institute of Clean Energy Chemistry, Liaoning University, Shenyang, 110036, China
| | - Huimin Cheng
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Hui Li
- School of Science, Stem College, Rmit University, Melbourne, VIC 3000, Australia
| | - Ga Sun
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Sitong Liu
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Tianyi Ma
- School of Science, Stem College, Rmit University, Melbourne, VIC 3000, Australia
| | - Lei Zhang
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| |
Collapse
|
20
|
Jiang Y, Li W, Li X, Liao Y, Liu X, Yu J, Xia S, Li W, Zhao B, Zhang J. Iodine-doped carbon nanotubes boosting the adsorption effect and conversion kinetics of lithium-sulfur batteries. J Colloid Interface Sci 2024; 672:287-298. [PMID: 38843681 DOI: 10.1016/j.jcis.2024.05.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 07/07/2024]
Abstract
Compared with lithium-ion batteries (LIBs), lithium-sulfur batteries (LSBs), based on electrochemical reactions involving multi-step 16-electron transformations provide higher specific capacity (1672 mAh g-1) and specific energy (2600 Wh kg-1), exhibiting great potential in the field of energy storage. However, the inherent insulation of sulfur, slow electrochemical reaction kinetics and detrimental shuttle-effect of lithium polysulfides (LiPSs) restrict the development of LSBs in practical applications. Herein, the iodine-doped carbon nanotubes (I-CNTs) is firstly reported as sulfur host material to the enhance the adsorption-conversion kinetics of LSBs. Iodine doping can significantly improve the polarity of I-CNTs. Iodine atoms with lone pair electrons (Lewis base) in iodine-doped CNTs can interact with lithium cations (Lewis acidic) in LiPSs, thereby anchoring polysulfides and suppressing subsequent shuttling behavior. Moreover, the charge transfer between iodine species (electron acceptor) and CNTs (electron donor) decreases the gap band and subsequently improves the conductivity of I-CNTs. The enhanced adsorption effect and conductivity are beneficial for accelerating reaction kinetics and enhancing electrocatalytic activity. The in-situ Raman spectroscopy, quasi in-situ electrochemical impedance spectroscopy (EIS) and Li2S potentiostatic deposition current-time (i-t) curves were conducted to verify mechanism of complex sulfur reduction reaction (SRR). Owing to above advantages, the I-CNTs@S composite cathode exhibits an ultrahigh initial capacity of 1326 mAh g-1 as well as outstanding cyclicability and rate performance. Our research results provide inspirations for the design of multifunctional host material for sulfur/carbon composite cathodes in LSBs.
Collapse
Affiliation(s)
- Yong Jiang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wenzhuo Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xue Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yalan Liao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoyu Liu
- College of Sciences/Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China.
| | - Jiaqi Yu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shuixin Xia
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Wenrong Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; College of Sciences/Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China
| | - Bing Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Jiujun Zhang
- College of Sciences/Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China
| |
Collapse
|
21
|
Han J, Shi L, Xie H, Song R, Wang D, Liu D. Self-Powered Electrochemical CO 2 Conversion Enabled by a Multifunctional Carbon-Based Electrocatalyst and a Rechargeable Zn-Air Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401766. [PMID: 38837621 DOI: 10.1002/smll.202401766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/18/2024] [Indexed: 06/07/2024]
Abstract
Multifunctional electrocatalysts are required for diverse clean energy-related technologies (e.g., electrochemical CO2 reduction reaction (CO2RR) and metal-air batteries). Herein, a nitrogen and fluorine co-doped carbon nanotube (NFCNT) is reported to simultaneously achieve multifunctional catalytic activities for CO2RR, oxygen reduction reaction (ORR), and oxygen evolution reaction (OER). Theoretical calculations reveal that the superior multifunctional catalytic activities of NFCNT are attributed to the synergistic effect of nitrogen and fluorine co-doping to induce charge redistribution and decrease the energy barrier of rate-determining step for different electrocatalytic reactions. Furthermore, the rechargeable Zn-air battery (ZAB) with NFCNT electrode delivers a high peak power density of 230 mW cm-2 and superior durability over 100 cycles, outperforming the ZAB with Pt/C+RuO2 based electrodes. More importantly, a self-driven CO2 electrolysis unit powered by the as-assembled ZABs is developed, which achieves 80% CO Faraday efficiency and 60% total energy efficiency. This work provides a new insight into the exploration of highly efficient multifunctional carbon-based electrocatalysts for novel energy-related applications.
Collapse
Affiliation(s)
- Jingrui Han
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lei Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Huamei Xie
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ruilin Song
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dan Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dong Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
22
|
Zhao L, Yan R, Mao B, Paul R, Duan W, Dai L, Hu C. Advanced Nanocarbons Toward two-Electron Oxygen Electrode Reactions for H 2O 2 Production and Integrated Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403029. [PMID: 38966884 DOI: 10.1002/smll.202403029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/20/2024] [Indexed: 07/06/2024]
Abstract
Hydrogen peroxide (H2O2) plays a pivotal role in advancing sustainable technologies due to its eco-friendly oxidizing capability. The electrochemical two-electron (2e-) oxygen reduction reaction and water oxidation reaction present an environmentally green method for H2O2 production. Over the past three years, significant progress is made in the field of carbon-based metal-free electrochemical catalysts (C-MFECs) for low-cost and efficient production of H2O2 (H2O2EP). This article offers a focused and comprehensive review of designing C-MFECs for H2O2EP, exploring the construction of dual-doping configurations, heteroatom-defect coupling sites, and strategic dopant positioning to enhance H2O2EP efficiency; innovative structural tuning that improves interfacial reactant concentration and promote the timely release of H2O2; modulation of electrolyte and electrode interfaces to support the 2e- pathways; and the application of C-MFECs in reactors and integrated energy systems. Finally, the current challenges and future directions in this burgeoning field are discussed.
Collapse
Affiliation(s)
- Linjie Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Riqing Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Baoguang Mao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Rajib Paul
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA
| | - Wenjie Duan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Liming Dai
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chuangang Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
23
|
Zhai Q, Huang H, Lawson T, Xia Z, Giusto P, Antonietti M, Jaroniec M, Chhowalla M, Baek JB, Liu Y, Qiao S, Dai L. Recent Advances on Carbon-Based Metal-Free Electrocatalysts for Energy and Chemical Conversions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405664. [PMID: 39049808 DOI: 10.1002/adma.202405664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/04/2024] [Indexed: 07/27/2024]
Abstract
Over the last decade, carbon-based metal-free electrocatalysts (C-MFECs) have become important in electrocatalysis. This field is started thanks to the initial discovery that nitrogen atom doped carbon can function as a metal-free electrode in alkaline fuel cells. A wide variety of metal-free carbon nanomaterials, including 0D carbon dots, 1D carbon nanotubes, 2D graphene, and 3D porous carbons, has demonstrated high electrocatalytic performance across a variety of applications. These include clean energy generation and storage, green chemistry, and environmental remediation. The wide applicability of C-MFECs is facilitated by effective synthetic approaches, e.g., heteroatom doping, and physical/chemical modification. These methods enable the creation of catalysts with electrocatalytic properties useful for sustainable energy transformation and storage (e.g., fuel cells, Zn-air batteries, Li-O2 batteries, dye-sensitized solar cells), green chemical production (e.g., H2O2, NH3, and urea), and environmental remediation (e.g., wastewater treatment, and CO2 conversion). Furthermore, significant advances in the theoretical study of C-MFECs via advanced computational modeling and machine learning techniques have been achieved, revealing the charge transfer mechanism for rational design and development of highly efficient catalysts. This review offers a timely overview of recent progress in the development of C-MFECs, addressing material syntheses, theoretical advances, potential applications, challenges and future directions.
Collapse
Affiliation(s)
- Qingfeng Zhai
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Hetaishan Huang
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Tom Lawson
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Zhenhai Xia
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Paolo Giusto
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry, Kent State University, Kent, 44240, OH, USA
| | - Manish Chhowalla
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Jong-Beom Baek
- Ulsan National Institute of Science & Technology (UNIST), Ulsan, 44919, South Korea
| | - Yun Liu
- Research School of Chemistry, The Australian National University, Canberra, 2601, Australia
| | - Shizhang Qiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, 5005, SA, Australia
| | - Liming Dai
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, 2052, New South Wales, Australia
| |
Collapse
|
24
|
Qian Z, Liu D, Liu D, Luo Y, Ji W, Wang Y, Chen Y, Hu R, Pan H, Wu P, Duan Y. Scalable Cathodic H 2O 2 Electrosynthesis using Cobalt-Coordinated Nanocellulose Electrocatalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403947. [PMID: 38948958 DOI: 10.1002/smll.202403947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/20/2024] [Indexed: 07/02/2024]
Abstract
Converting hierarchical biomass structure into cutting-edge architecture of electrocatalysts can effectively relieve the extreme dependency of nonrenewable fossil-fuel-resources typically suffering from low cost-effectiveness, scarce supplies, and adverse environmental impacts. A cost-effective cobalt-coordinated nanocellulose (CNF) strategy is reported for realizing a high-performance 2e-ORR electrocatalysts through molecular engineering of hybrid ZIFs-CNF architecture. By a coordination and pyrolysis process, it generates substantial oxygen-capturing active sites within the typically oxygen-insulating cellulose, promoting O2 mass and electron transfer efficiency along the nanostructured Co3O4 anchored with CNF-based biochar. The Co-CNF electrocatalyst exhibits an exceptional H2O2 electrosynthesis efficiency of ≈510.58 mg L-1 cm-2 h-1 with an exceptional superiority over the existing biochar-, or fossil-fuel-derived electrocatalysts. The combination of the electrocatalysts with stainless steel mesh serving as a dual cathode can strongly decompose regular organic pollutants (up to 99.43% removal efficiency by 30 min), showing to be a desirable approach for clean environmental remediation with sustainability, ecological safety, and high-performance.
Collapse
Affiliation(s)
- Zhiyun Qian
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Di Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Detao Liu
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Yao Luo
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Wenhao Ji
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Yan Wang
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Yonghao Chen
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Rui Hu
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Peilin Wu
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Yulong Duan
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| |
Collapse
|
25
|
Chen Y, Zhen C, Chen Y, Zhao H, Wang Y, Yue Z, Wang Q, Li J, Gu MD, Cheng Q, Yang H. Oxygen Functional Groups Regulate Cobalt-Porphyrin Molecular Electrocatalyst for Acidic H 2O 2 Electrosynthesis at Industrial-Level Current. Angew Chem Int Ed Engl 2024; 63:e202407163. [PMID: 38864252 DOI: 10.1002/anie.202407163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Electrosynthesis of hydrogen peroxide (H2O2) based on proton exchange membrane (PEM) reactor represents a promising approach to industrial-level H2O2 production, while it is hampered by the lack of high-efficiency electrocatalysts in acidic medium. Herein, we present a strategy for the specific oxygen functional group (OFG) regulation to promote the H2O2 selectivity up to 92 % in acid on cobalt-porphyrin molecular assembled with reduced graphene oxide. In situ X-ray adsorption spectroscopy, in situ Raman spectroscopy and Kelvin probe force microscopy combined with theoretical calculation unravel that different OFGs exert distinctive regulation effects on the electronic structure of Co center through either remote (carboxyl and epoxy) or vicinal (hydroxyl) interaction manners, thus leading to the opposite influences on the promotion in 2e- ORR selectivity. As a consequence, the PEM electrolyzer integrated with the optimized catalyst can continuously and stably produce the high-concentration of ca. 7 wt % pure H2O2 aqueous solution at 400 mA cm-2 over 200 h with a cell voltage as low as ca. 2.1 V, suggesting the application potential in industrial-scale H2O2 electrosynthesis.
Collapse
Affiliation(s)
- Yihe Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Cheng Zhen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, P. R., China
| | - Yubin Chen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Hao Zhao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Yuda Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Zhouying Yue
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Qiansen Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Jun Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - M Danny Gu
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, P. R., China
| | - Qingqing Cheng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Hui Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| |
Collapse
|
26
|
Yang H, An N, Kang Z, Menezes PW, Chen Z. Understanding Advanced Transition Metal-Based Two Electron Oxygen Reduction Electrocatalysts from the Perspective of Phase Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400140. [PMID: 38456244 DOI: 10.1002/adma.202400140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Non-noble transition metal (TM)-based compounds have recently become a focal point of extensive research interest as electrocatalysts for the two electron oxygen reduction (2e- ORR) process. To efficiently drive this reaction, these TM-based electrocatalysts must bear unique physiochemical properties, which are strongly dependent on their phase structures. Consequently, adopting engineering strategies toward the phase structure has emerged as a cutting-edge scientific pursuit, crucial for achieving high activity, selectivity, and stability in the electrocatalytic process. This comprehensive review addresses the intricate field of phase engineering applied to non-noble TM-based compounds for 2e- ORR. First, the connotation of phase engineering and fundamental concepts related to oxygen reduction kinetics and thermodynamics are succinctly elucidated. Subsequently, the focus shifts to a detailed discussion of various phase engineering approaches, including elemental doping, defect creation, heterostructure construction, coordination tuning, crystalline design, and polymorphic transformation to boost or revive the 2e- ORR performance (selectivity, activity, and stability) of TM-based catalysts, accompanied by an insightful exploration of the phase-performance correlation. Finally, the review proposes fresh perspectives on the current challenges and opportunities in this burgeoning field, together with several critical research directions for the future development of non-noble TM-based electrocatalysts.
Collapse
Affiliation(s)
- Hongyuan Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Na An
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Prashanth W Menezes
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Ziliang Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
27
|
Su J, Jiang L, Xiao B, Liu Z, Wang H, Zhu Y, Wang J, Zhu X. Dipole-Dipole Tuned Electronic Reconfiguration of Defective Carbon Sites for Efficient Oxygen Reduction into H 2O 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310317. [PMID: 38155499 DOI: 10.1002/smll.202310317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Metal-free carbon-based materials are one of the most promising electrocatalysts toward 2-electron oxygen reduction reaction (2e-ORR) for on-site production of hydrogen peroxide (H2O2), which however suffer from uncontrollable carbonizations and inferior 2e-ORR selectivity. To this end, a polydopamine (PDA)-modified carbon catalyst with a dipole-dipole enhancement is developed via a calcination-free method. The H2O2 yield rate outstandingly reaches 1.8 mol gcat -1 h-1 with high faradaic efficiency of above 95% under a wide potential range of 0.4-0.7 VRHE, overwhelming most of carbon electrocatalysts. Meanwhile, within a lab-made flow cell, the synthesized ORR electrode features an exceptional stability for over 250 h, achieved a pure H2O2 production efficacy of 306 g kWh-1. By virtue of its industrial-level capabilities, the established flow cell manages to perform a rapid pulp bleaching within 30 min. The superior performance and enhanced selectivity of 2e-ORR is experimentally revealed and attributed to the electronic reconfiguration on defective carbon sites induced by non-covalent dipole-dipole influence between PDA and carbon, thereby prohibiting the cleavage of O-O in OOH intermediates. This proposed strategy of dipole-dipole effects is universally applicable over 1D carbon nanotubes and 2D graphene, providing a practical route to design 2e-ORR catalysts.
Collapse
Affiliation(s)
- Jiaxin Su
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, 610299, P. R. China
| | - Lei Jiang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, 610299, P. R. China
| | - Bingbing Xiao
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, 610299, P. R. China
| | - Zixian Liu
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, 610299, P. R. China
| | - Heng Wang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, 610299, P. R. China
| | - Yongfa Zhu
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Jun Wang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, 610299, P. R. China
| | - Xiaofeng Zhu
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, 610299, P. R. China
| |
Collapse
|
28
|
Yu A, Liu S, Yang Y. Recent advances in electrosynthesis of H 2O 2via two-electron oxygen reduction reaction. Chem Commun (Camb) 2024; 60:5232-5244. [PMID: 38683172 DOI: 10.1039/d4cc01476f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The electrosynthesis of hydrogen peroxide (H2O2) via a selective two-electron oxygen reduction reaction (2e- ORR) presents a green and low-energy-consumption alternative to the traditional, energy-intensive anthraquinone process. This review encapsulates the principles of designing relational electrocatalysts for 2e- ORR and explores remaining setups for large-scale H2O2 production. Initially, the review delineates the fundamental reaction mechanisms of H2O2 production via 2e- ORR and assesses performance. Subsequently, it methodically explores the pivotal influence of microstructures, heteroatom doping, and metal hybridization along with setup configurations in achieving a high-performance catalyst and efficient reactor for H2O2 production. Thereafter, the review introduces a forward-looking methodology that leverages the synergistic integration of catalysts and reactors, aiming to harmonize the complementary characteristics of both components. Finally, it outlines the extant challenges and the promising avenues for the efficient electrochemical production of H2O2, setting the stage for future research endeavors.
Collapse
Affiliation(s)
- Ao Yu
- NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA.
| | - Shengwen Liu
- NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA.
| | - Yang Yang
- NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA.
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA
- Renewable Energy and Chemical Transformation Cluster, University of Central Florida, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA
- The Stephen W. Hawking Center for Microgravity Research and Education, University of Central Florida, Orlando, FL 32826, USA
| |
Collapse
|
29
|
Wang M, Liu B, Zhang H, Lu Z, Xie J, Cao Y. High quality bifunctional cathode for rechargeable zinc-air batteries using N-doped carbon nanotubes constrained CoFe alloy. J Colloid Interface Sci 2024; 661:681-689. [PMID: 38320404 DOI: 10.1016/j.jcis.2024.01.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/25/2024] [Indexed: 02/08/2024]
Abstract
Building efficient and stable bifunctional electrocatalysts toward oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is crucial for the advancement of rechargeable zinc-air batteries (ZABs). Here, a convenient in situ strategy is reported to controllably encapsulate CoFe alloy nanoparticles within N-doped carbon nanotubes (CoFe@NCNT). The abundant Co(Fe)-Nx active sites and the synergistic interaction between CoFe alloys and carbon nanotubes facilitate mass transfer and interfacial charge transfer, resulting in excellent dual functional electrocatalytic activity of OER/ORR with minor potential difference (ΔE = 0.73 V). Thus, the corresponding rechargeable ZAB displays high power density (194 mW cm-2), excellent specific capacity (795 mAh gZn-1), and favorable stability (900 cycles@5 mA cm-2). This work provides an approach for establishing low-cost bultifunctional electrocatalysts with excellent performance of non-noble metal nanoalloys.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Baolin Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Hongyu Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Zhenjiang Lu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Jing Xie
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Yali Cao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| |
Collapse
|