1
|
He Z, Zhou Q, Zi X, Zhang Y, Li Q, Li D, Liu M, Yu F, Zhou H. Unlocking Ampere-Level Nitrate Electroreduction to Ammonia Via the Built-In Electric Field in Monometallic Catalysts. NANO LETTERS 2025. [PMID: 40424355 DOI: 10.1021/acs.nanolett.5c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Bimetallic/multimetallic catalysts for nitrate reduction reaction (NO3-RR) have been extensively investigated benefiting from their synergistic effects in optimizing various intermediate adsorptions; however, the interphasic synergistic effects in monometallic catalysts are often overlooked. Here we report an interphasic synergy between electron-rich Co(OH)2 and electron-deficient CoO, in which the asymmetric charge distribution in monometallic cobalt-based heterojunction derived from the built-in electric field (BEF) significantly accelerates electron transfer and lowers the energy barriers for NO3-RR. Theoretical calculations reveal that the chemical affinities of Co atoms toward NO3- and NO2- are significantly enhanced and even NO3- adsorption switches to a spontaneous process. Simultaneously, the BEF in monometallic Co-based heterostructures greatly reduces the energy barrier of the rate-determining step (*NO→*NOH) in the NO3-RR. Therefore, the resultant catalyst exhibits ampere-level NO3-RR performance, achieving a record NH3 yield up to 73.9 mg h-1 cm-2 at a low potential of -0.2 V with a Faradaic efficiency (FE) of 95.6%.
Collapse
Affiliation(s)
- Zhihong He
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Institute of Interdisciplinary Studies, Key Laboratory for Multifunctional Ionic Electronic Materials and Devices of Hunan Normal University, Changsha 410081, China
| | - Qian Zhou
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Institute of Interdisciplinary Studies, Key Laboratory for Multifunctional Ionic Electronic Materials and Devices of Hunan Normal University, Changsha 410081, China
| | - Xin Zi
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Yong Zhang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Institute of Interdisciplinary Studies, Key Laboratory for Multifunctional Ionic Electronic Materials and Devices of Hunan Normal University, Changsha 410081, China
| | - Qing Li
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Institute of Interdisciplinary Studies, Key Laboratory for Multifunctional Ionic Electronic Materials and Devices of Hunan Normal University, Changsha 410081, China
| | - Dongyang Li
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Institute of Interdisciplinary Studies, Key Laboratory for Multifunctional Ionic Electronic Materials and Devices of Hunan Normal University, Changsha 410081, China
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Fang Yu
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Institute of Interdisciplinary Studies, Key Laboratory for Multifunctional Ionic Electronic Materials and Devices of Hunan Normal University, Changsha 410081, China
| | - Haiqing Zhou
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Institute of Interdisciplinary Studies, Key Laboratory for Multifunctional Ionic Electronic Materials and Devices of Hunan Normal University, Changsha 410081, China
- Hunan Research Center of the Basic Discipline for Quantum Effects and Quantum Technologies, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
2
|
Cui Z, Zhao P, Wang H, Li C, Peng W, Liu J. Multi-Dimensional Ni@TiN/CNT Heterostructure with Tandem Catalysis for Efficient Electrochemical Nitrite Reduction to Ammonia. Angew Chem Int Ed Engl 2025; 64:e202501578. [PMID: 40131239 DOI: 10.1002/anie.202501578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 03/26/2025]
Abstract
Electrochemical nitrite reduction reaction (NO2RR) is considered a sustainable ammonia (NH3) synthesis strategy. However, there are still significant challenges in designing efficient NO2RR catalysts. Here, carbon nanotube (CNT)-encapsulated Ni nanoparticles (NPs) loaded on MXene-derived TiN (Ni@TiN/CNT) heterostructure is constructed by combining molten salt etching strategy and chemical vapor deposition. Ni@TiN/CNT exhibits an excellent NH3 yield rate (15.6 mg h-1 mgcat. -1), Faradaic efficiency (95.6%), and record cycle stability (NO2RR performance is virtually unattenuated after 60 cycles) at -0.7 V versus reversible hydrogen electrode (versus RHE). In addition, the Zn-nitrite battery with Ni@TiN/CNT as the cathode shows high power density (9.6 mW cm-2) and NH3 synthesis performance. Combining validation experiments and density functional theory calculations reveals that Ni@TiN/CNT follows the tandem catalytic mechanism. The TiN site preferentially adsorbs and activates NO2 -, while the Ni site provides abundant active hydrogen for the subsequent reduction process. Meanwhile, the chainmail structure of CNT prevents the oxidation and leaching of active sites, thereby significantly enhancing the stability of Ni@TiN/CNT. This work provides a new inspiration for the preparation of durable and efficient NO2RR electrocatalysts with tandem catalytic sites.
Collapse
Affiliation(s)
- Zhijie Cui
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin, 300130, P.R. China
| | - Pengwei Zhao
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P.R. China
| | - Honghai Wang
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin, 300130, P.R. China
| | - Chunli Li
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin, 300130, P.R. China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P.R. China
| | - Jiapeng Liu
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin, 300130, P.R. China
| |
Collapse
|
3
|
Liu X, Wang M, Yang W, Wei Z, Yang J. A Cu 0.76Co 2.24O 4/γ-Cu 2(OH) 3Cl composite catalyst for efficient neutral nitrate reduction. NANOSCALE 2025; 17:12491-12502. [PMID: 40308154 DOI: 10.1039/d5nr00538h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
The electrocatalytic nitrate reduction reaction (eNO3-RR) is an environmentally friendly process that converts nitrate wastewater into high-value ammonia (NH3). However, the multi-step electron and proton transfer in this reaction leads to slow kinetics and competitive reactions, making it challenging to achieve energy-efficient performance. Herein, a Cu0.76Co2.24O4/γ-Cu2(OH)3Cl (CCOC) composite has been prepared as an electrocatalyst for the eNO3-RR. The CCOC catalyst demonstrated an outstanding NH3 yield rate of 10.71 mg h-1 cm-2 and a remarkable faradaic efficiency (FE) of 95.9% in a 0.5 M Na2SO4 neutral solution containing 0.1 M NO3-, surpassing most reported catalysts under neutral conditions. In situ investigations demonstrated that Cu0.76Co2.24O4 with high-valent Cuδ+ and Coδ+ significantly enhances H2O dissociation and proton production while also promoting the adsorption of NO3- and *NH intermediates. These properties contribute to the high NH3 selectivity and activity observed under neutral conditions. This work demonstrates Cu0.76Co2.24O4/γ-Cu2(OH)3Cl as a promising candidate for the sustainable and efficient production of NH3 through the eNO3-RR, offering new insights into efficient nitrate reduction in neutral environments.
Collapse
Affiliation(s)
- Xian Liu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China.
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 211816, China
| | - Min Wang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai, 200050, P. R. China
| | - Wenhao Yang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai, 200050, P. R. China
| | - Zixuan Wei
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai, 200050, P. R. China
| | - Jian Yang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China.
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 211816, China
| |
Collapse
|
4
|
Zhang Z, Ge B, Liu M, Yang T, Wang S, Liu Y, Yang Y, Gao S. Synergistic Cu 2O@Ni(OH) 2 Core-Shell Electrocatalyst for High-Efficiency Nitrate Reduction to Ammonia. ACS APPLIED MATERIALS & INTERFACES 2025; 17:26501-26510. [PMID: 40268669 DOI: 10.1021/acsami.4c22282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
The electrocatalytic reduction reaction of nitrate (NO3RR) is anticipated to convert nitrogen-containing pollutants into valuable ammonia products. Copper-based catalysts have received great attention because of their good performance in the NO3RR due to the strong binding energy with *NO3 intermediates. However, the poor H2O dissociation ability of Cu is unable to provide H• in time for the hydrogenation reaction of NOx, thus hindering the electroreduction of the NO3-. Herein, we designed a shell-core nanocube electrocatalyst Cu2O@Ni(OH)2-x (x represents the molar ratio of Ni/Cu) using the liquid phase reduction combined with the etching and precipitation method for electrocatalytic NO3RR. Due to the synergistic effect between the strong nitrate activation ability of Cu and the excellent H2O dissociation ability of Ni(OH)2, Cu2O@Ni(OH)2-3.3% shows an impressive ammonia yield rate (557.9 μmol h-1 cm-2) and Faradaic efficiency (97.4%) at -0.35 V vs. RHE. Operando Raman and Auger electron spectroscopy observe the reduction of Cu2O to Cu during the NO3RR process. Density functional theory calculations combined with electron paramagnetic resonance analysis reveals that Ni(OH)2 can lower the activation energy barrier of H2O dissociation, thereby promoting the generation of H• and accelerating the hydrogenation of *NO during the NO3RR. This research provides an efficient Cu-based catalyst for reducing NO3- and may motivate the development of effective ammonia electrocatalysts for further experimentation.
Collapse
Affiliation(s)
- Zunjie Zhang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Bingcheng Ge
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Mengran Liu
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Tianfang Yang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Shuaitong Wang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yang Liu
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yingjie Yang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Shuyan Gao
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
5
|
Park J, Theerthagiri J, Yodsin N, Limphirat W, Junmon P, Choi MY. CO 2 Laser-Stabilized Ni-Co Dual Single-Atomic Sites for Energy Generation and Ammonia Harvesting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2506137. [PMID: 40318074 DOI: 10.1002/adma.202506137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/18/2025] [Indexed: 05/07/2025]
Abstract
Dual single-atom catalysts (DSACs) hold immense potential in electrochemical nitrate (NO3 -) reduction (EcNR) as a sustainable replacement to the Haber-Bosch process for the production of ammonia (NH3). However, challenges such as synthesis complexity, low purity, scalability, and stability have hindered their practical application. Herein, a rapid and scalable method is introduced to stabilize low-cost 3d transition metals (Ni and Co) as DSACs on Ti3C2Tx MXene in 10 min using continuous-wave CO2-laser irradiation. Ni2+ and Co2+ ions are chelated and stabilized as single atoms onto an L-tryptophan-modified Ti3C2Tx surface via metal─O and metal─N bonds, forming Ni-single atom catalyst (SAC)/MXene, Co-SAC/MXene, and NiCo-DSAC/MXene. This approach enhances MXene properties, enabling the synthesis of efficient atomic-level electrocatalysts. Potential-resolved in situ Raman spectroelectrochemistry and density functional theory reveal that EcNR proceeds through NO3 - reduction to *NO2, *NO, *NH, and *NH2 intermediates, ultimately forming NH3 via final protonation step. This process exhibits a low limiting potential of -0.37 V, with *NO2 protonation identified as the critical step. NiCo-DSAC/MXene exhibited superior EcNR performance for NH3 production in 1.0 M potassium hydroxide with sustained multiple cyclic stability. Furthermore, this catalyst is integrated into a Zn-NO3 - a battery that simultaneously removes NO3 -, generates energy, and synthesizes NH3.
Collapse
Affiliation(s)
- Juhyeon Park
- Department of Chemistry (BK21 FOUR), Research Institute of Advanced Chemistry, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jayaraman Theerthagiri
- Department of Chemistry (BK21 FOUR), Research Institute of Advanced Chemistry, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Nuttapon Yodsin
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Wanwisa Limphirat
- Beamline Division, Synchrotron Light Research Institute (SLRI), Nakhon Ratchasima, 30000, Thailand
| | - Piyapa Junmon
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Myong Yong Choi
- Department of Chemistry (BK21 FOUR), Research Institute of Advanced Chemistry, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, Republic of Korea
| |
Collapse
|
6
|
Yang W, Chang Z, Yu X, Wu P, Shen R, Wang L, Cui X, Shi J. Cu-Co Dual Sites Tandem Synergistic Effect Boosting Neutral Low Concentration Nitrate Electroreduction to Ammonia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416386. [PMID: 39962744 PMCID: PMC11984843 DOI: 10.1002/advs.202416386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/20/2025] [Indexed: 04/12/2025]
Abstract
Electrochemical nitrate reduction reaction (NO3 -RR) has emerged as an alternative strategy for wastewater treatment and ammonia production in neutral low-concentration nitrate. However, the electrocatalyst faces the challenge of limited NO3 - distribution and deficient active hydrogen (Hads) on the catalyst surface resulting from the low concentration of NO3 - and the difficulty of water splitting under neutral conditions. Here, a Cu-Co dual sites tandem synergistic catalysis mechanism has been proposed by doping Cu into CoP to facilitate the adsorption and conversion of NO3 - on Cu and to accelerate the water splitting on CoP leading to the significantly high NO3 -RR performance. The designed Cu-CoP catalyst exhibits an ammonia yield of 7.65 mg h-1 cm-2 and a Faraday efficiency of 85.1% at -1.0 V under neutral low-concentration nitrate (10 m M), which is the highest ammonia yield in the reported data. In situ characterization and theoretical calculations confirm the tandem synergistic effect, in which the Cu site favors the adsorption and activation of NO3 - to form NO2 -, and concurrently modulates the electronic structure of the Co site with optimized Hads adsorption resulting in the significantly enhanced NO3 -RR at neutral low concentration nitrate.
Collapse
Affiliation(s)
- Wenhao Yang
- State Key Laboratory of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Ziwei Chang
- School of Physical Science and TechnologyShanghai Tech UniversityShanghai201210P. R. China
| | - Xu Yu
- State Key Laboratory of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Ping Wu
- State Key Laboratory of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Ruxiang Shen
- State Key Laboratory of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Lianzhou Wang
- Nanomaterials CentreSchool of Chemical Engineering and Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaBrisbaneQLD4072Australia
| | - Xiangzhi Cui
- State Key Laboratory of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- School of Chemistry and Materials ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024P. R. China
| | - Jianlin Shi
- State Key Laboratory of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
7
|
Wang J(J, Bui HTD, Hu H, Kong S, Wang X, Zhu H, Ma J, Xu J, Liu Y, Liu L, Chen W, Bi H, Yang M, Huang F, Brinck T, Wang J. Industrial-current Ammonia Synthesis by Polarized Cuprous Cyanamide Coupled to Valorization of Glycerol at 4,000 mA cm -2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418451. [PMID: 39981855 PMCID: PMC11983258 DOI: 10.1002/adma.202418451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/07/2025] [Indexed: 02/22/2025]
Abstract
The electrocatalytic nitrate reduction (NO3RR) holds significance in both NH3 synthesis and nitrate contamination remediation. However, achieving industrial-scale current and high stability in membrane electrode assembly (MEA) electrolyzer remains challenging due to inherent high full-cell voltage for sluggish NO3RR and water oxidation. Here, Cu2NCN with positive surface electrostatic potential VS(r) is applied as highly efficient NO3RR electrocatalysts to achieve industrial-current and low-voltage stable NH3 production in MEA electrolyzer with coupled anodic glycerol oxidation. This paired electro-refinery (PER) system reaches 4000 mA cm-2 at 2.52 V and remains stable at industrial-level 1000 mA cm-2 for 100 h with the NH3 production rate of 97000 µgNH3 h-1 cm-2 and a Faradaic efficiency of 83%. Theoretical calculations elucidate that the asymmetric and electron-withdrawing [N-C≡N] units enhance polarization and VS(r), promoting robust and asymmetric adsorption of NO3 * on Cu2NCN to facilitate O-N bond dissociation. A comprehensive techno-economic analysis demonstrates the profitability and commercial viability of this coupled system. Our work opens a new avenue and marks a significant advancement in MEA systems for industrial NH3 synthesis.
Collapse
Affiliation(s)
- Jiacheng (Jayden) Wang
- The State Key Laboratory of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Huong T. D. Bui
- Department of ChemistryCBHKTH Royal Institute of TechnologyStockholmSE‐100 44Sweden
| | - Huashuai Hu
- School of Environmental Science and TechnologyDalian University of TechnologyDalian116024China
| | - Shuyi Kong
- State Key Laboratory of Metal Matrix CompositesSchool of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Xunlu Wang
- School of Environmental Science and TechnologyDalian University of TechnologyDalian116024China
| | - Hongbo Zhu
- The State Key Laboratory of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Junqing Ma
- The State Key Laboratory of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jintao Xu
- The State Key Laboratory of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yihong Liu
- Department of ChemistryWestern University1151 Richmond StreetLondonONN6A5B7Canada
| | - Lijia Liu
- Department of ChemistryWestern University1151 Richmond StreetLondonONN6A5B7Canada
| | - Wei Chen
- Department of Materials Design and InnovationUniversity at BuffaloThe State University of New YorkBuffaloNY14260USA
| | - Hui Bi
- The State Key Laboratory of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
| | - Minghui Yang
- School of Environmental Science and TechnologyDalian University of TechnologyDalian116024China
| | - Fuqiang Huang
- The State Key Laboratory of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- State Key Laboratory of Metal Matrix CompositesSchool of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Tore Brinck
- Department of ChemistryCBHKTH Royal Institute of TechnologyStockholmSE‐100 44Sweden
| | - Jiacheng Wang
- The State Key Laboratory of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Zhejiang Key Laboratory for Island Green Energy and New MaterialsInstitute of ElectrochemistrySchool of Materials Science and EngineeringTaizhou UniversityTaizhou318000China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Nankai UniversityTianjin300071China
| |
Collapse
|
8
|
Wang J, Bui HTD, Wang X, Lv Z, Hu H, Kong S, Wang Z, Liu L, Chen W, Bi H, Yang M, Brinck T, Wang J, Huang F. A Copper-Zinc Cyanamide Solid-Solution Catalyst with Tailored Surface Electrostatic Potentials Promotes Asymmetric N-Intermediate Adsorption in Nitrite Electroreduction. J Am Chem Soc 2025; 147:8012-8023. [PMID: 39964092 PMCID: PMC11887442 DOI: 10.1021/jacs.5c00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025]
Abstract
The electrocatalytic nitrite reduction (NO2RR) converts nitrogen-containing pollutants to high-value ammonia (NH3) under ambient conditions. However, its multiple intermediates and multielectron coupled proton transfer process lead to low activity and NH3 selectivity for the existing electrocatalysts. Herein, we synthesize a solid-solution copper-zinc cyanamide (Cu0.8Zn0.2NCN) with localized structure distortion and tailored surface electrostatic potential, allowing for the asymmetric binding of NO2-. It exhibits outstanding NO2RR performance with a Faradaic efficiency of ∼100% and an NH3 yield of 22 mg h-1 cm-2, among the best for such a process. Theoretical calculations and in situ spectroscopic measurements demonstrate that Cu-Zn sites coordinated with linear polarized [NCN]2- could transform symmetric [Cu-O-N-O-Cu] in CuNCN-NO2- to a [Cu-N-O-Zn] asymmetric configuration in Cu0.8Zn0.2NCN-NO2-, thus enhancing adsorption and bond cleavage. A paired electro-refinery with the Cu0.8Zn0.2NCN cathode reaches 2000 mA cm-2 at 2.36 V and remains fully operational at industrial-level 400 mA cm-2 for >140 h with a NH3 production rate of ∼30 mgNH3 h-1 cm-2. Our work opens a new avenue of tailoring surface electrostatic potentials using a solid-solution strategy for advanced electrocatalysis.
Collapse
Affiliation(s)
- Jiacheng
Jayden Wang
- The
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of
Sciences, Shanghai 200050, China
- Center
of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huong T. D. Bui
- Department
of Chemistry, CBH, KTH Royal Institute of
Technology, SE-100 44 Stockholm, Sweden
| | - Xunlu Wang
- School
of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhuoran Lv
- State
Key Laboratory of Metal Matrix Composites, School of Materials Science
and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huashuai Hu
- School
of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shuyi Kong
- State
Key Laboratory of Metal Matrix Composites, School of Materials Science
and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiqiang Wang
- Department
of Chemistry, Western University, 1151 Richmond Street, London, ON N6A5B7, Canada
| | - Lijia Liu
- Department
of Chemistry, Western University, 1151 Richmond Street, London, ON N6A5B7, Canada
| | - Wei Chen
- Department
of Materials Design and Innovation, University
at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Hui Bi
- The
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of
Sciences, Shanghai 200050, China
| | - Minghui Yang
- School
of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Tore Brinck
- Department
of Chemistry, CBH, KTH Royal Institute of
Technology, SE-100 44 Stockholm, Sweden
| | - Jiacheng Wang
- The
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of
Sciences, Shanghai 200050, China
- Zhejiang
Key Laboratory for Island Green Energy and New Materials, Institute
of Electrochemistry, School of Materials Science and Engineering, Taizhou University, Taizhou 318000, China
- Key
Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Fuqiang Huang
- The
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of
Sciences, Shanghai 200050, China
- State
Key Laboratory of Metal Matrix Composites, School of Materials Science
and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Zhou G, Cheng H, Wu Y, Tong Y, Dai R, Zhu J, Zheng X, Lin C, Chen P, Wu C. Industrial-Level Paired Electrosynthesis of Valuable Chemicals over a High-Performance Heterostructural Electrode. Angew Chem Int Ed Engl 2025; 64:e202420353. [PMID: 39894770 DOI: 10.1002/anie.202420353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/05/2025] [Accepted: 01/31/2025] [Indexed: 02/04/2025]
Abstract
Paired electrosynthetic technology is of significance to realize the co-production of high-added value chemicals. However, exploiting efficient bifunctional electrocatalyst of the concurrent electrocatalysis to achieve the industrial-level performance is still challenging. Herein, an amorphous Co2P@MoOx heterostructure is rationally designed by in situ electrodeposition strategy, which is acted as excellent bifunctional catalysts for the electrocatalytic nitrite reduction reaction (NO2RR) and glycerol oxidation reaction (GOR). The membrane-electrode assembly (MEA) electrolyzer realizes a low voltage of 1.30 V, robust stability over 200 h at 100 mA cm-2, high Faraday efficiencies and yield of NH3 (above 95 %, 49.7 mg h-1 cm-2) and formate (above 95 %, 304.4 mg h-1 cm-2) at industrial-level current density of 500 mA cm-2. In situ spectroscopy studies have shown that high-valence CoOOH is the main active material of GOR, and the main catalytic conversion pathway of NO2RR involves key *NH2OH reaction intermediates. In addition, theoretical calculations confirm that the Co2P@MoOx heterostructure has strong interfacial electronic interaction and optimized reaction energy barriers, which endows its intrinsically high electrocatalytic activity for the co-electrosynthesis of NH3 and formate.
Collapse
Affiliation(s)
- Guorong Zhou
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Han Cheng
- Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, CAS Key Labora-to-ry of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Mate-rials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yilin Wu
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Yun Tong
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Ruihao Dai
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Jiaye Zhu
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Xiaonan Zheng
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, P. R. China
| | - Cong Lin
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Pengzuo Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Changzheng Wu
- Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, CAS Key Labora-to-ry of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Mate-rials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
10
|
Yang Y, Sun Y, Wang Y, Zhang X, Zhang W, Huang ZF, Yin L, Han A, Liu G. Self-Triggering a Locally Alkaline Microenvironment of Co 4Fe 6 for Highly Efficient Neutral Ammonia Electrosynthesis. J Am Chem Soc 2025. [PMID: 40019172 DOI: 10.1021/jacs.5c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Electrochemical nitrate reduction reaction (eNO3-RR) to ammonia (NH3) holds great promise for the green treatment of NO3- and ambient NH3 synthesis. Although Fe-based electrocatalysts have emerged as promising alternatives, their excellent eNO3-RR-to-NH3 activity is usually limited to harsh alkaline electrolytes or alloying noble metals with Fe in sustainable neutral electrolytes. Herein, we demonstrate an unusual self-triggering localized alkalinity of the Co4Fe6 electrocatalyst for efficient eNO3-RR-to-NH3 activity in neutral media, which breaks down the conventional pH-dependent kinetics restrictions and shows a 98.6% NH3 Faradaic efficiency (FE) and 99.9% NH3 selectivity at -0.69 V vs RHE. The synergetic Co-Fe dual sites were demonstrated to enable the optimal free energies of eNO3-RR-to-NH3 species and balance water dissociation and protonation of adsorbed NO2-. Notably, the Co4Fe6 electrocatalysts can attain a high current density of 100 mA cm-2 with a high NH3 FE surpassing 96% and long-term stability for over 500 h eNO3-RR-to-NH3 in a membrane electrode assembly (MEA) electrolyzer. This work provides insight into tailoring the self-reinforced local-alkalinity on the Fe-based alloy electrocatalysts for eNO3-RR-to-NH3 and thus avoids alkaline electrolytes and noble metals for practical sustainable nitrate upcycling technology.
Collapse
Affiliation(s)
- Yang Yang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Yuting Sun
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- School of Materials Science and Engineering, Engineering Research Center of High Entropy Alloy Materials (Liaoning Province), Dalian University of Technology, Dalian 116024, China
| | - Yuning Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China
| | - Xiaoxue Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenyu Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Zhen-Feng Huang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lichang Yin
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Ali Han
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Gang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| |
Collapse
|
11
|
Du Y, Lu H, Wu J, Zou Y, Huang ZF, Zou JJ, Mu T, Gao J, Zhu XD, Zhang YC. Selenium-Deficient FeSe 2/Fe 3O 4 Electrocatalyst for Nitrate Reduction to Ammonia. Angew Chem Int Ed Engl 2025; 64:e202420903. [PMID: 39718508 DOI: 10.1002/anie.202420903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/14/2024] [Accepted: 12/22/2024] [Indexed: 12/25/2024]
Abstract
Electrocatalytic reduction of NO3 - is a green and sustainable method that not only helps to treat industrial pollutants in wastewater, but also produces valuable chemicals. However, the slow dynamics of the proton-coupled electron transfer process results in a high barrier and low conversion efficiency. In this work, the Se-deficient FeSe2/Fe3O4 heterojunction was synthesized, which showed excellent electrochemical performance in 0.1 M nitrate reduction reaction, superior to most currently reported catalysts. The high activity of Se-deficient FeSe2/Fe3O4 is due to the synergistic effect between FeSe2 and Fe3O4 to achieve relay catalytic NO3 - reduction. Among them, the Se-deficient FeSe2 contributes to NO3 - deoxygenation and subsequent hydrogenation, and Fe3O4 promotes H2O decomposition to provide H proton, jointly promote NO3RR. Finally, the online differential electrochemical mass spectra (DEMS), in situ Raman and DFT calculation confirmed the optimal pathway for NO3RR to NH3 on Se-deficient FeSe2/Fe3O4(100). This strategy of relay catalysis provides a potential way to treat wastewater with high concentration nitrate.
Collapse
Affiliation(s)
- Yue Du
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Haijiao Lu
- Nanomaterials Centre, School of Chemical Engineering, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Jinting Wu
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yalong Zou
- Nanomaterials Centre, School of Chemical Engineering, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Zhen-Feng Huang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tiansheng Mu
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Jian Gao
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Xiao-Dong Zhu
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Yong-Chao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| |
Collapse
|
12
|
Guan J, Ge L, Yu Q, Ouyang B, Deng Y, Li H. Unraveling the Structural Evolution of Cobalt Sulfides in Electrocatalytic NO 3RR: the Inescapable Influence of Cl . Inorg Chem 2025; 64:2787-2794. [PMID: 39915902 DOI: 10.1021/acs.inorgchem.4c04780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Electrochemical nitrate reduction (NO3RR) to ammonia is an attractive approach for mitigating NO3- pollution and producing valuable NH3. Cobalt-sulfur compounds are widely considered to be potential electrocatalysts for NO3RR. However, there is still a lack of research on the probable structural evolution, long-term stability, and reactive sites of cobalt-based sulfides during catalysis. Herein, we have employed three cobalt sulfides (CoSx, where x = 8/9, 2, 1.097) with different sulfur contents as catalysts for electrocatalytic NO3RR under alkaline conditions. At -0.8 V vs RHE, all these CoSx show promising performances that Faradaic efficiencies of >80% and a high yield of >1780 mmol h-1 gcat-1 for NH3 production are achieved. Through a combination of X-ray diffraction (XRD), transmission electron microscopy (TEM), and other characterizations, it is revealed that all these cobalt sulfides are easily converted into cobalt hydroxide during the NO3RR. This phenomenon is seemingly contradictory to the thermodynamic prediction that, according to the Pourbaix diagram, these CoSx compounds should be stable even under the catalytic condition. We suggest that this is due to the presence of Cl- ions in the electrolyte that promote the transformation of CoSx toward Co(OH)2. Chloride ions are commonly found in both industrial settings and natural water bodies and are challenging to remove. The evolved Co(OH)2 species is proposed to be responsible for catalyzing NO3RR, especially during a long-term catalytic process. This study highlights the inevitable structural evolution of CoSx catalysts under current alkaline electrocatalytic NO3RR conditions, offering theoretical guidance for the judicious selection and design of future catalysts.
Collapse
Affiliation(s)
- Jiexin Guan
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Lihong Ge
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Qing Yu
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Bo Ouyang
- Department of Applied Physics and Institution of Energy and Microstructure, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yilin Deng
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Huaming Li
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
13
|
Yang W, Chang Z, Yu X, Shen R, Wang L, Cui X, Shi J. Triple Regulations via Fe Redox Boosting Nitrate Reduction to Ammonia at Industrial Current Densities. Angew Chem Int Ed Engl 2025; 64:e202415300. [PMID: 39285259 DOI: 10.1002/anie.202415300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Indexed: 11/01/2024]
Abstract
Electrochemical nitrate reduction reaction (NO3 -RR) has promising prospects for green synthesis of ammonia and environmental remediation. However, the performance of catalysts at high current density usually suffers from the high energy barrier for the nitrate (NO3 -) to nitrite (NO2 -) and the competitive hydrogen evolution. Herein, we proposed a two-step relay mechanism through spontaneous redox reaction followed electrochemical reaction by introducing low-valence Fe species into Ni2P nanosheets to significantly enhance the NO3 -RR performance at industrial current density. The existence of low-valence Fe species bypasses the NO3 - to NO2 - step through the spontaneous redox with NO3 - to produce NO2 - and Fe2O3, regulates the electronic structure of Ni2P to reduce the barrier of NO2 - to NH3, thirdly prohibits the hydrogen evolution by consuming the excess active hydrogen through reduction of Fe2O3 to recover low-valence Fe species. The triple regulations via Fe redox during the two-step relay reactions guarantee the Fe-Ni2P@NF high ammonia yield of 120.1 mg h-1 cm-2 with Faraday efficiency of more than 90% over a wide potential window and a long-term stability of more than 130 h at ~1000 mA cm-2. This work provides a new strategy to realize the design and synthesis of nitrate reduction electrocatalysts at high current densities.
Collapse
Affiliation(s)
- Wenhao Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Ziwei Chang
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, P.R. China
| | - Xu Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Ruxiang Shen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P.R. China
| | - Lianzhou Wang
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD-4072, Australia
| | - Xiangzhi Cui
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P.R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
14
|
Sun ML, Wang HY, Feng Y, Ren JT, Wang L, Yuan ZY. Electrodegradation of nitrogenous pollutants in sewage: from reaction fundamentals to energy valorization applications. Chem Soc Rev 2024; 53:11908-11966. [PMID: 39498737 DOI: 10.1039/d4cs00517a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The excessive accumulation of nitrogen pollutants (mainly nitrate, nitrite, ammonia nitrogen, hydrazine, and urea) in water bodies seriously disrupts the natural nitrogen cycle and poses a significant threat to human life and health. Electrolysis is considered a promising method to degrade these nitrogenous pollutants in sewage, with the advantages of high efficiency, wide generality, easy operability, retrievability, and environmental friendliness. For particular energy devices, including metal-nitrate batteries, direct fuel cells, and hybrid water electrolyzers, the realization of energy valorization from sewage purification processes (e.g., valuable chemical generation, electricity output, and hydrogen production) becomes feasible. Despite the progress in the research on pollutant electrodegradation, the development of electrocatalysts with high activity, stability, and selectivity for pollutant removal, coupled with corresponding energy devices, remains a challenge. This review comprehensively provides advanced insights into the electrodegradation processes of nitrogenous pollutants and relevant energy valorization strategies, focusing on the reaction mechanisms, activity descriptors, electrocatalyst design, and actuated electrodes and operation parameters of tailored energy conversion devices. A feasibility analysis of electrodegradation on real wastewater samples from the perspective of pollutant concentration, pollutant accumulation, and electrolyte effects is provided. Challenges and prospects for the future development of electrodegradation systems are also discussed in detail to bridge the gap between experimental trials and commercial applications.
Collapse
Affiliation(s)
- Ming-Lei Sun
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Hao-Yu Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Yi Feng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Jin-Tao Ren
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Lei Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Zhong-Yong Yuan
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| |
Collapse
|
15
|
Zhang H, Ma C, Wang YC, Zhu X, Qu K, Ma X, He C, Han S, Liu AH, Wang Q, Cao W, Lin W, Xia J, Zhu L, Gu L, Yun Q, Wang AL, Lu Q. Transition Metal-Gallium Intermetallic Compounds with Tailored Active Site Configurations for Electrochemical Ammonia Synthesis. Angew Chem Int Ed Engl 2024; 63:e202409515. [PMID: 39228207 DOI: 10.1002/anie.202409515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
Gallium (Ga) with a low melting point can serve as a unique metallic solvent in the synthesis of intermetallic compounds (IMCs). The negative formation enthalpy of transition metal-Ga IMCs endows them with high catalytic stability. Meanwhile, their tunable crystal structures offer the possibility to tailor the configurations of active sites to meet the requirements for specific catalytic applications. Herein, we present a general method for preparing a range of transition metal-Ga IMCs, including Co-Ga, Ni-Ga, Pt-Ga, Pd-Ga, and Rh-Ga IMCs. The structurally ordered CoGa IMCs with body-centered cubic (bcc) structure are uniformly dispersed on the nitrogen-doped reduced graphene oxide substrate (O-CoGa/NG) and deliver outstanding nitrate reduction reaction (NO3RR) performance, making them excellent catalysts to construct highly efficient rechargeable Zn-NO3 - battery. Operando studies and theoretical simulations demonstrate that the electron-rich environments around the Co atoms enhance the adsorption strength of *NO3 intermediate and simultaneously suppress the formation of hydrogen, thus improving the NO3RR activity and selectivity.
Collapse
Affiliation(s)
- Huaifang Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Chaoqun Ma
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Yi-Chi Wang
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiaojuan Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Kaiyu Qu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xiao Ma
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Caihong He
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Sumei Han
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Ai-Hua Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Qi Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenbin Cao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei Lin
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jing Xia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lijie Zhu
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192, China
| | - Lin Gu
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Qinbai Yun
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
- Guangzhou HKUST Fok Ying Tung Research Institute, Nansha, Guangzhou, 511458, China
| | - An-Liang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
- State Key Laboratory of Nuclear Power Safety Technology and Equipment, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
16
|
Yan Q, Zhao R, Yu L, Zhao Z, Liu L, Xi J. Enhancing Compatibility of Two-Step Tandem Catalytic Nitrate Reduction to Ammonia Over P-Cu/Co(OH) 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408680. [PMID: 39258370 DOI: 10.1002/adma.202408680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Electrochemical nitrate reduction reaction (NO3RR) is a promising approach to realize ammonia generation and wastewater treatment. However, the transformation from NO3 - to NH3 involves multiple proton-coupled electron transfer processes and by-products (NO2 -, H2, etc.), making high ammonia selectivity a challenge. Herein, a two-phase nanoflower P-Cu/Co(OH)2 electrocatalyst consisting of P-Cu clusters and P-Co(OH)2 nanosheets is designed to match the two-step tandem process (NO3 - to NO2 - and NO2 - to NH3) more compatible, avoiding excessive NO2 - accumulation and optimizing the whole tandem reaction. Focusing on the initial 2e- process, the inhibited *NO2 desorption on Cu sites in P-Cu gives rise to the more appropriate NO2 - released in electrolyte. Subsequently, P-Co(OH)2 exhibits a superior capacity for trapping and transforming the desorbed NO2 - during the latter 6e- process due to the thermodynamic advantage and contributions of active hydrogen. In 1 m KOH + 0.1 m NO3 -, P-Cu/Co(OH)2 leads to superior NH3 yield rate of 42.63 mg h- 1 cm- 2 and NH3 Faradaic efficiency of 97.04% at -0.4 V versus the reversible hydrogen electrode. Such a well-matched two-step process achieves remarkable NH3 synthesis performance from the perspective of optimizing the tandem catalytic reaction, offering a novel guideline for the design of NO3RR electrocatalysts.
Collapse
Affiliation(s)
- Qiuyu Yan
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Rundong Zhao
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Lihong Yu
- School of Materials and Environmental Engineering, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Zongyan Zhao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Le Liu
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jingyu Xi
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
17
|
Li Y, Tan Y, Zhang M, Hu J, Chen Z, Su L, Li J. Improved Nitrate-to-Ammonia Electrocatalysis through Hydrogen Poisoning Effects. Angew Chem Int Ed Engl 2024; 63:e202411068. [PMID: 39137126 DOI: 10.1002/anie.202411068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Electrochemical conversion from nitrate to ammonia is a key step in sustainable ammonia production. However, it suffers from low productive efficiency or high energy consumption due to a lack of desired electrocatalysts. Here we report nickel cobalt phosphide (NiCoP) catalysts for nitrate-to-ammonia electrocatalysis that display a record-high catalytic current density of -702±7 mA cm-2, ammonia production rate of 5415±26 mmol gcat -1 h-1 and Faraday efficiency of 99.7±0.2 % at -0.3 V vs. RHE, affording the estimated energy consumption as low as 22.7 kWh kgammonia -1. Theoretical and experimental results reveal that these catalysts benefit from hydrogen poisoning effects, which leave behind catalytically inert adsorbed hydrogen species (HI*) at Co-hollow sites and thereupon enable ideally reactive HII* at secondary Co-P sites. The dimerization between HI* and HII* for H2 evolution is blocked due to the catalytic inertia of HI* thereby the HII* drives nitrate hydrogenation timely. With these catalysts, the continuous ammonia production is further shown in an electrolyser with a real energy consumption of 18.9 kWh kgammonia -1.
Collapse
Affiliation(s)
- Yuefei Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Youyi Road No. 127, Xi'an, 710072, China
| | - Yuan Tan
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas, 75080, United States
| | - Mingkai Zhang
- School of Science, Xi'an University of Technology, Xi'an, 710048, China
| | - Jun Hu
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Laisuo Su
- Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas, 75080, United States
| | - Jiayuan Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Youyi Road No. 127, Xi'an, 710072, China
| |
Collapse
|
18
|
Zou Y, Yan Y, Xue Q, Zhang C, Bao T, Zhang X, Yuan L, Qiao S, Song L, Zou J, Yu C, Liu C. MOF-on-MOF Heterostructured Electrocatalysts for Efficient Nitrate Reduction to Ammonia. Angew Chem Int Ed Engl 2024; 63:e202409799. [PMID: 39039911 DOI: 10.1002/anie.202409799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Electrocatalytic nitrate reduction reaction (NO3 -RR) is an important route for sustainable NH3 synthesis and environmental remediation. Metal-organic frameworks (MOFs) are one family of promising NO3 -RR electrocatalysts, however, there is plenty of room to improve in their performance, calling for new design principles. Herein, a MOF-on-MOF heterostructured electrocatalyst with interfacial dual active sites and build-in electric field is fabricated for efficient NO3 -RR to NH3 production. By growing Co-HHTP (HHTP=2,3,6,7,10,11-hexahydroxytriphenylene) nanorods on Ni-BDC (BDC=1,4-benzenedicarboxylate) nanosheets, experimental and theoretical investigations demonstrate the formation of Ni-O-Co bonds at the interface of MOF-on-MOF heterostructure, leading to dual active sites tailed for NO3 -RR. The Ni sites facilitate the adsorption and activation of NO3 -, while the Co sites boost the H2O decomposition to supply active hydrogen (Hads) for N-containing intermediates hydrogenation on adjacent Ni sites, cooperatively reducing the energy barriers of NO3 -RR process. Together with the accelerated electron transfer enabled by built-in electric field, remarkable NO3 -RR performance is achieved with an NH3 yield rate of 11.46 mg h-1 cm-2 and a Faradaic efficiency of 98.4 %, outperforming most reported MOF-based electrocatalysts. This work provides new insights into the design of high-performance NO3 -RR electrocatalysts.
Collapse
Affiliation(s)
- Yingying Zou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yuechen Yan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Qingsong Xue
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Chaoqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Tong Bao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Xinchan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Ling Yuan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Sicong Qiao
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Li Song
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Jin Zou
- Materials Engineering and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Chengzhong Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai, 200062, P. R. China
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
19
|
Zhang W, Zhou Y, Zhu Y, Guo Y, Zhang B, Zhang LH, Li F, Yu F. Boosting Electrochemical Nitrate Reduction at Low Concentrations Through Simultaneous Electronic States Regulation and Proton Provision. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404792. [PMID: 38923291 DOI: 10.1002/smll.202404792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Electrochemically converting nitrate (NO3 -) into ammonia (NH3) has emerged as an alternative strategy for NH3 production and effluent treatment. Nevertheless, the electroreduction of dilute NO3 - is still challenging due to the competitive adsorption between various aqueous species and NO3 -, and unfavorable water dissociation providing *H. Herein, a new tandem strategy is proposed to boost the electrochemical nitrate reduction reaction (NO3RR) performance of Cu nanoparticles supported on single Fe atoms dispersed N-doped carbon (Cu@Fe1-NC) at dilute NO3 - concentrations (≤100 ppm NO3 --N). The optimized Cu@Fe1-NC presents a FENH3 of 97.7% at -0.4 V versus RHE, and a significant NH3 yield of 1953.9 mmol h-1 gCu -1 at 100 ppm NO3 --N, a record-high activity for dilute NO3RR. The metal/carbon heterojunctions in Cu@Fe1-NC enable a spontaneous electron transfer from Cu to carbon substrate, resulting in electron-deficient Cu. As a result, the electron-deficient Cu facilitates the adsorption of NO3 - compared with the pristine Cu. The adjacent atomic Fe sites efficiently promote water dissociation, providing abundant *H for the hydrogenation of *NOx e at Cu sites. The synergistic effects between Cu and single Fe atom sites simultaneously decrease the energy barrier for NO3 - adsorption and hydrogenation, thereby enhancing the overall activity of NO3 - reduction.
Collapse
Affiliation(s)
- Wenlin Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Yuzhuo Zhou
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Yong Zhu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yabo Guo
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Bo Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Lu-Hua Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Fei Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Fengshou Yu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| |
Collapse
|
20
|
Jiang M, Zhu M, Ding J, Wang H, Yu Q, Chen X, He Y, Wang M, Luo X, Wu C, Zhang L, Yao X, Wang H, Li X, Liao X, Jiang Z, Jin Z. Nanocluster-agminated amorphous cobalt nanofilms for highly selective electroreduction of nitrate to ammonia. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134909. [PMID: 38905979 DOI: 10.1016/j.jhazmat.2024.134909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/16/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
Developing highly-efficient electrocatalysts for the nitrate reduction reaction (NITRR) is a persistent challenge. Here, we present the successful synthesis of 14 amorphous/low crystallinity metal nanofilms on three-dimensional carbon fibers (M-NFs/CP), including Al, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, In, Sn, Pb, Au, or Bi, using rapid thermal evaporation. Among these samples, our study identifies the amorphous Co nanofilm with fine agglomerated Co clusters as the optimal electrocatalyst for NITRR in a neutral medium. The resulting Co-NFs/CP exhibits a remarkable Faradaic efficiency (FENH3) of 91.15 % at - 0.9 V vs RHE, surpassing commercial Co foil (39 %) and Co powder (20 %), despite sharing the same metal composition. Furthermore, during the electrochemical NITRR, the key intermediates on the surface of the Co-NFs/CP catalyst were detected by in situ Fourier-transform infrared (FTIR) spectroscopy, and the possible reaction ways were probed by Density functional theory (DFT) calculations. Theoretical calculations illustrate that the abundant low-coordinate Co atoms of Co-NFs/CP could enhances the adsorption of *NO3 intermediates compared to crystalline Co. Additionally, the amorphous Co structure lowers the energy barrier for the rate-determining step (*NH2→*NH3). This work opens a new avenue for the controllable synthesis of amorphous/low crystallinity metal nano-catalysts for various electrocatalysis reaction applications.
Collapse
Affiliation(s)
- Minghang Jiang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China; State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Research Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Mengfei Zhu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Research Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Junjie Ding
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
| | - Huaizhu Wang
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Research Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Qianchuan Yu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Research Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xi Chen
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Yi He
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Mengjun Wang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Xiaojun Luo
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Caijun Wu
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Liyun Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Xinghui Yao
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Huizhen Wang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Xiao Li
- College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi 537000, China.
| | - Xuemei Liao
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China; School of Food and Biological Engineering, Xihua University, Chengdu, Sichuan 610039, China.
| | - Zhenju Jiang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China; School of Food and Biological Engineering, Xihua University, Chengdu, Sichuan 610039, China.
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Research Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
21
|
Zhang K, Zhang Z, Yang T, Wang S, Liu S, Zhao Z, Hu S, Ma Z, Huang J, Yang Y, Chen Y, Ge B. Optimizing Nitrate Reduction to Ammonia via Modulating Adsorption-Desorption Dynamics with High-Entropy CuNiCoZnMn Alloy Catalysts. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43526-43534. [PMID: 39113310 DOI: 10.1021/acsami.4c07339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
NO3RR synthesis of ammonia is a complex eight-electron reaction involving multiple steps and intermediates, in which NO3- adsorption and NH3 desorption are crucial. The Cu-based high entropy quinary alloy catalyst has good surface adsorption and desorption ability for the reduction of nitric acid to ammonia. Here, the catalytic sites were coordinated by constructing CuNiCoZnMn alloys to adjust the electronic structure of the catalytic sites to facilitate the reaction of the substrate and thus optimize the whole reaction path. Based on the ternary alloy CuNiCo, the introduction of the Zn element continues to reduce the desorption energy barrier, and the introduction of the Mn element continues to enhance the initial adsorption energy so that the target product can be quickly held and released to accelerate the production of ammonia. The NH3 yield and Faraday efficiency obtained for the quinary CuNiCoZnMn alloy catalyst reached 723.7 μmol h-1 cm-2 and 96.6%, respectively, at -0.35 V vs RHE potential. The density functional theory calculations showed that the quinary CuNiCoZnMn alloy (NO3- to *NO3-) initial adsorption-free energy change and (*NH3 to NH3) NH3 desorption-free energy change are -2.50, 0.072 eV, respectively, which are significantly better than those of the ternary CuNiC and quaternary CuNiCoZn of -2.02, 0.544 eV and -1.97, 0.217 eV.
Collapse
Affiliation(s)
- Kun Zhang
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Zunjie Zhang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Tianfang Yang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Shuaitong Wang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Shizhe Liu
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Ziwei Zhao
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Shixiang Hu
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Zhichao Ma
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Jinrui Huang
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yingjie Yang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Ye Chen
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Bingcheng Ge
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
22
|
Zhou C, Zhang Y, Xie C, Bai J, Li J, Zhang H, Zhu H, Long M, Zhou B, Zheng G. Efficient Electroreduction of Low Nitrate Concentration via Nitrate Self-Enrichment and Active Hydrogen Inducement on the Ce(IV)-Co 3O 4 Cathode. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14940-14948. [PMID: 39105779 DOI: 10.1021/acs.est.4c06263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Low concentrations of nitrate (NO3-) widely exist in wastewater, post-treated wastewater, and natural environments; its further disposal is a challenge but meaningful for its discharge goals. Electroreduction of NO3- is a promising method that allows to eliminate NO3- and even generate higher-value NH3. However, the massive side reaction of hydrogen evolution has raised great obstacles in the electroreduction of low concentrations of NO3-. Herein, we present an efficient electroreduction method for low or even ultralow concentrations of NO3- via NO3- self-enrichment and active hydrogen (H*) inducement on the Ce(IV)-Co3O4 cathode. The key mechanism is that the strong oxytropism of Ce(IV) in Co3O4 resulted in two changes in structures, including loose nanoporous structures with copious dual adsorption sites of Ce-Co showing strong self-enrichment of NO3- and abundant oxygen vacancies (Ovs) inducing substantial H*. Ultimately, the bifunctional role synergistically promoted the selective conversion of NH3 rather than H2. As a result, Ce(IV)-Co3O4 demonstrated a NO3- self-enrichment with a 4.3-fold up-adsorption, a 7.5-fold enhancement of NH3 Faradic efficiency, and a 93.1% diminution of energy consumption when compared to Co3O4, substantially exceeding other reported electroreduction cathodes for NO3- concentrations lower than 100 mg·L-1. This work provides an effective treatment method for low or even ultralow concentrations of NO3-.
Collapse
Affiliation(s)
- Changhui Zhou
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Zhang
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chaoyue Xie
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Bai
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinhua Li
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haichuan Zhang
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, 96 Jinzhai Rd, Hefei, Anhui 230026, China
| | - Hong Zhu
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingce Long
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Baoxue Zhou
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
23
|
Wen W, Fang S, Zhou Y, Zhao Y, Li P, Yu XY. Modulating the Electrolyte Microenvironment in Electrical Double Layer for Boosting Electrocatalytic Nitrate Reduction to Ammonia. Angew Chem Int Ed Engl 2024; 63:e202408382. [PMID: 38806407 DOI: 10.1002/anie.202408382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024]
Abstract
Electrochemical nitrate reduction reaction (NO3RR) is a promising approach to achieve remediation of nitrate-polluted wastewater and sustainable production of ammonia. However, it is still restricted by the low activity, selectivity and Faraday efficiency for ammonia synthesis. Herein, we propose an effective strategy to modulate the electrolyte microenvironment in electrical double layer (EDL) by mediating alkali metal cations in the electrolyte to enhance the NO3RR performance. Taking bulk Cu as a model catalyst, the experimental study reveals that the NO3 --to-NH3 performance in different electrolytes follows the trend Li+
Collapse
Affiliation(s)
- Weidong Wen
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Shidong Fang
- Institute of Energy, Hefei Comprehensive National Science Centre (Anhui Energy Laboratory), Hefei, 230051, P. R. China
- Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, 230031, P. R. China
| | - Yitong Zhou
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Ying Zhao
- School of Pharmacy, Anhui Xinhua University, Hefei, 230088, P. R. China
| | - Peng Li
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Xin-Yao Yu
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
24
|
Zhang S, Dou M, Liu M, Yi J, Chen M, Wu L. Electrosynthesis of Ammonia from Nitrate Using a Self-Activated Carbon Fiber Paper. Inorg Chem 2024; 63:14736-14745. [PMID: 39028929 DOI: 10.1021/acs.inorgchem.4c02353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
While electrochemically upcycling nitrate wastes to valuable ammonia is considered a very promising pathway for tackling the environmental and energy challenges underlying the nitrogen cycle, the effective catalysts involved are mainly limited to metal-based materials. Here, we report that commercial carbon fiber paper, which is a classical current collector and is typically assumed to be electrochemically inert, can be significantly activated during the reaction. As a result, it shows a high NH3 Faradaic efficiency of 87.39% at an industrial-level current density of 300 mA cm-2 for over 90 h of continuous operation, with a NH3 production rate of as high as 1.22 mmol cm-2 h-1. Through experimental and theoretical analysis, the in situ-formed oxygen functional groups are demonstrated to be responsible for the NO3RR performance. Among them, the C-O-C group is finally identified as the active center, which lowers the thermodynamic energy barrier and simultaneously improves the hydrogenation kinetics. Moreover, high-purity NH4Cl and NH3·H2O were obtained by coupling the NO3RR with an air-stripping approach, providing an effective way for converting nitrate waste into high-value-added NH3 products.
Collapse
Affiliation(s)
- Sai Zhang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Mengheng Dou
- Key Laboratory of Computational Physical Sciences, Institute of Computational Physical Sciences, State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, P.R. China
| | - Mengdi Liu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Jianjian Yi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, P.R. China
| | - Min Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Limin Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
25
|
Zhou B, Yu L, Zhang W, Liu X, Zhang H, Cheng J, Chen Z, Zhang H, Li M, Shi Y, Jia F, Huang Y, Zhang L, Ai Z. Cu 1-Fe Dual Sites for Superior Neutral Ammonia Electrosynthesis from Nitrate. Angew Chem Int Ed Engl 2024; 63:e202406046. [PMID: 38771293 DOI: 10.1002/anie.202406046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/05/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
The electrochemical nitrate reduction reaction (NO3RR) is able to convert nitrate (NO3 -) into reusable ammonia (NH3), offering a green treatment and resource utilization strategy of nitrate wastewater and ammonia synthesis. The conversion of NO3 - to NH3 undergoes water dissociation to generate active hydrogen atoms and nitrogen-containing intermediates hydrogenation tandemly. The two relay processes compete for the same active sites, especially under pH-neutral condition, resulting in the suboptimal efficiency and selectivity in the electrosynthesis of NH3 from NO3 -. Herein, we constructed a Cu1-Fe dual-site catalyst by anchoring Cu single atoms on amorphous iron oxide shell of nanoscale zero-valent iron (nZVI) for the electrochemical NO3RR, achieving an impressive NO3 - removal efficiency of 94.8 % and NH3 selectivity of 99.2 % under neutral pH and nitrate concentration of 50 mg L-1 NO3 --N conditions, greatly surpassing the performance of nZVI counterpart. This superior performance can be attributed to the synergistic effect of enhanced NO3 - adsorption on Fe sites and strengthened water activation on single-atom Cu sites, decreasing the energy barrier for the rate-determining step of *NO-to-*NOH. This work develops a novel strategy of fabricating dual-site catalysts to enhance the electrosynthesis of NH3 from NO3 -, and presents an environmentally sustainable approach for neutral nitrate wastewater treatment.
Collapse
Affiliation(s)
- Biao Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Linghao Yu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Weixing Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Xupeng Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Hao Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Jundi Cheng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ziyue Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Hao Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Meiqi Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yanbiao Shi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Falong Jia
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yi Huang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhihui Ai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
26
|
Tian H, Wang X, Luo W, Ma R, Yu X, Li S, Kong F, Cui X, Shi J. Construction of an electron-transfer channel via Cu-O-Ni to inhibit the overoxidation of Ni for durable methanol oxidation at industrial current density. Chem Sci 2024; 15:11013-11020. [PMID: 39027296 PMCID: PMC11253194 DOI: 10.1039/d4sc00842a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024] Open
Abstract
The electrocatalytic methanol oxidation reaction (MOR) is a viable approach for realizing high value-added formate transformation from biomass byproducts. However, usually it is restricted by the excess adsorption of intermediates (COad) and overoxidation of catalysts, which results in low product selectivity and inactivation of the active sites. Herein, a novel Cu-O-Ni electron-transfer channel was constructed by loading NiCuO x on nickel foam (NF) to inhibit the overoxidation of Ni and enhance the formate selectivity of the MOR. The optimized NiCuO x -2/NF demonstrated excellent MOR catalytic performance at industrial current density (E 500 = 1.42 V) and high faradaic efficiency of ∼100%, as well as durable formate generation up to 600 h at ∼500 mA cm-2. The directional electron transfer from Cu to Ni and enhanced lattice stability could alleviate the overoxidation of Ni(iii) active sites to guarantee reversible Ni(ii)/Ni(iii) cycles and endow NiCuO x -2/NF with high stability under increased current density, respectively. An established electrolytic cell created by coupling the MOR with the hydrogen evolution reaction could produce H2 with low electric consumption (230 mV lower voltage at 400 mA cm-2) and concurrently generated the high value-added product of formate at the anode.
Collapse
Affiliation(s)
- Han Tian
- Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
| | - Xiaohan Wang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Wenshu Luo
- Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Rundong Ma
- Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
| | - Xu Yu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Shujing Li
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 P. R. China
| | - Fantao Kong
- Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
| | - Xiangzhi Cui
- Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 P.R. China
| |
Collapse
|
27
|
Shi X, Xie M, Yang K, Niu Y, Ma H, Zhu Y, Li J, Pan T, Zhou X, Cui Y, Li Z, Yu Y, Yu X, Ma J, Cheng H. Synergistic Effect of Ni/Ni(OH) 2 Core-Shell Catalyst Boosts Tandem Nitrate Reduction for Ampere-Level Ammonia Production. Angew Chem Int Ed Engl 2024; 63:e202406750. [PMID: 38651747 DOI: 10.1002/anie.202406750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
Electrocatalytic reduction of nitrate to ammonia provides a green alternate to the Haber-Bosch method, yet it suffers from sluggish kinetics and a low yield rate. The nitrate reduction follows a tandem reaction of nitrate reduction to nitrite and subsequent nitrite hydrogenation to generate ammonia, and the ammonia Faraday efficiency (FE) is limited by the competitive hydrogen evolution reaction. Herein, we design a heterostructure catalyst to remedy the above issues, which consists of Ni nanosphere core and Ni(OH)2 nanosheet shell (Ni/Ni(OH)2). In situ Raman spectroscopy reveals Ni and Ni(OH)2 are interconvertible according to the applied potential, facilitating the cascade nitrate reduction synergistically. Consequently, it attains superior electrocatalytic nitrate reduction performance with an ammonia FE of 98.50 % and a current density of 0.934 A cm-2 at -0.476 V versus reversible hydrogen electrode, and exhibits an average ammonia yield rate of 84.74 mg h-1 cm-2 during the 102-hour stability test, which is highly superior to the reported catalysts tested under similar conditions. Density functional theory calculations corroborate the synergistic effect of Ni and Ni(OH)2 in the tandem reaction of nitrate reduction. Moreover, the Ni/Ni(OH)2 catalyst also possesses good capability for methanol oxidation and thus is used to establish a system coupling with nitrate reduction.
Collapse
Affiliation(s)
- Xinyue Shi
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Minghui Xie
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Kaiwen Yang
- Institute of Molecular Plus, School of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Yutao Niu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Haibin Ma
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Yiming Zhu
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Jiayi Li
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Tingting Pan
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Xiaoyan Zhou
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Yujie Cui
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Zhao Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Yifu Yu
- Institute of Molecular Plus, School of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaohua Yu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jiwei Ma
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Hongfei Cheng
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| |
Collapse
|
28
|
Qi S, Lei Z, Huo Q, Zhao J, Huang T, Meng N, Liao J, Yi J, Shang C, Zhang X, Yang H, Hu Q, He C. Ultrathin High-Entropy Fe-Based Spinel Oxide Nanosheets with Metalloid Band Structures for Efficient Nitrate Reduction toward Ammonia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403958. [PMID: 38641326 DOI: 10.1002/adma.202403958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Spinel oxides with tunable chemical compositions have emerged as versatile electrocatalysts, however their performance is greatly limited by small surface area and low electron conductivity. Here, ultrathin high-entropy Fe-based spinel oxides nanosheets are rationally designed (i.e., (Co0.2Ni0.2Zn0.2Mg0.2Cu0.2)Fe2O4; denotes A5Fe2O4) in thickness of ≈4.3 nm with large surface area and highly exposed active sites via a modified sol-gel method. Theoretic and experimental results confirm that the bandgap of A5Fe2O4 nanosheets is significantly smaller than that of ordinary Fe-based spinel oxides, realizing the transformation of binary spinel oxide from semiconductors to metalloids. As a result, such A5Fe2O4 nanosheets manifest excellent performance for the nitrate reduction reaction (NO3 -RR) to ammonia (NH3), with a NH3 yield rate of ≈2.1 mmol h-1 cm-2 at -0.5 V versus Reversible hydrogen electrode, outperforming other spinel-based electrocatalysts. Systematic mechanism investigations reveal that the NO3 -RR is mainly occurred on Fe sites, and introducing high-entropy compositions in tetrahedral sites regulates the adsorption strength of N and O-related intermediates on Fe for boosting the NO3 -RR. The above findings offer a high-entropy platform to regulate the bandgap and enhance the electrocatalytic performance of spinel oxides.
Collapse
Affiliation(s)
- Shuai Qi
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Zhihao Lei
- Global Innovative Center of Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Qihua Huo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Jinwen Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Tianchi Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Na Meng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Jinlian Liao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Jiabao Yi
- Global Innovative Center of Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Chunyan Shang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Xue Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Hengpan Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Qi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| |
Collapse
|
29
|
Wang Y, Xiong Y, Sun M, Zhou J, Hao F, Zhang Q, Ye C, Wang X, Xu Z, Wa Q, Liu F, Meng X, Wang J, Lu P, Ma Y, Yin J, Zhu Y, Chu S, Huang B, Gu L, Fan Z. Controlled Synthesis of Unconventional Phase Alloy Nanobranches for Highly Selective Electrocatalytic Nitrite Reduction to Ammonia. Angew Chem Int Ed Engl 2024; 63:e202402841. [PMID: 38647519 DOI: 10.1002/anie.202402841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/18/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
The controlled synthesis of metal nanomaterials with unconventional phases is of significant importance to develop high-performance catalysts for various applications. However, it remains challenging to modulate the atomic arrangements of metal nanomaterials, especially the alloy nanostructures that involve different metals with distinct redox potentials. Here we report the general one-pot synthesis of IrNi, IrRhNi and IrFeNi alloy nanobranches with unconventional hexagonal close-packed (hcp) phase. Notably, the as-synthesized hcp IrNi nanobranches demonstrate excellent catalytic performance towards electrochemical nitrite reduction reaction (NO2RR), with superior NH3 Faradaic efficiency and yield rate of 98.2 % and 34.6 mg h-1 mgcat -1 (75.5 mg h-1 mgIr -1) at 0 and -0.1 V (vs reversible hydrogen electrode), respectively. Ex/in situ characterizations and theoretical calculations reveal that the Ir-Ni interactions within hcp IrNi alloy improve electron transfer to benefit both nitrite activation and active hydrogen generation, leading to a stronger reaction trend of NO2RR by greatly reducing energy barriers of rate-determining step.
Collapse
Affiliation(s)
- Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Qinghua Zhang
- Institute of Physics, Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chenliang Ye
- Department of Power Engineering, North China Electric Power University, Baoding, 071003, China
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Zhihang Xu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Xiang Meng
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Juan Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Pengyi Lu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Jinwen Yin
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Ye Zhu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Shengqi Chu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Lin Gu
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
30
|
Fan X, Liu C, He X, Li Z, Yue L, Zhao W, Li J, Wang Y, Li T, Luo Y, Zheng D, Sun S, Liu Q, Li L, Chu W, Gong F, Tang B, Yao Y, Sun X. Efficient Electrochemical Co-Reduction of Carbon Dioxide and Nitrate to Urea with High Faradaic Efficiency on Cobalt-Based Dual-Sites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401221. [PMID: 38563723 DOI: 10.1002/adma.202401221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Renewable electricity-powered nitrate/carbon dioxide co-reduction reaction toward urea production paves an attractive alternative to industrial urea processes and offers a clean on-site approach to closing the global nitrogen cycle. However, its large-scale implantation is severely impeded by challenging C-N coupling and requires electrocatalysts with high activity/selectivity. Here, cobalt-nanoparticles anchored on carbon nanosheet (Co NPs@C) are proposed as a catalyst electrode to boost yield and Faradaic efficiency (FE) toward urea electrosynthesis with enhanced C-N coupling. Such Co NPs@C renders superb urea-producing activity with a high FE reaching 54.3% and a urea yield of 2217.5 µg h-1 mgcat. -1, much superior to the Co NPs and C nanosheet counterparts, and meanwhile shows strong stability. The Co NPs@C affords rich catalytically active sites, fast reactant diffusion, and sufficient catalytic surfaces-electrolyte contacts with favored charge and ion transfer efficiencies. The theoretical calculations reveal that the high-rate formation of *CO and *NH2 intermediates is crucial for facilitating urea synthesis.
Collapse
Affiliation(s)
- Xiaoya Fan
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Chaozhen Liu
- MOE Key Laboratory of Energy Thermal Conversion and Control, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Xun He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Zixiao Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Luchao Yue
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Wenxi Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Jun Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yan Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Tingshuai Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yongsong Luo
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Luming Li
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Wei Chu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Feng Gong
- MOE Key Laboratory of Energy Thermal Conversion and Control, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
- Laoshan Laboratory, Qingdao, Shandong, 266237, China
| | - Yongchao Yao
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xuping Sun
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
31
|
Zhang C, Zhang Y, Deng R, Yuan L, Zou Y, Bao T, Zhang X, Wei G, Yu C, Liu C. Enabling Logistics Automation in Nanofactory: Cobalt Phosphide Embedded Metal-Organic Frameworks for Efficient Electrocatalytic Nitrate Reduction to Ammonia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313844. [PMID: 38615269 DOI: 10.1002/adma.202313844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/11/2024] [Indexed: 04/15/2024]
Abstract
Electrocatalytic nitrate reduction reaction (NitRR) in neutral condition offers a promising strategy for green ammonia synthesis and wastewater treatment, the rational design of electrocatalysts is the cornerstone. Inspired by modern factory design where both machines and logistics matter for manufacturing, it is reported that cobalt phosphide (CoP) nanoparticles embedded in zinc-based zeolite imidazole frameworks (Zn-ZIF) function as a nanofactory with high performance. By selective phosphorization of ZnCo bimetallic zeolite imidazole framework (ZnCo-ZIF), the generated CoP nanoparticles act as "machines" (active sites) for molecular manufacturing (NO3 - to NH4 + conversion). The purposely retained framework (Zn-ZIFs) with positive charge promotes logistics automation, i.e., the automatic delivery of NO3 - reactants and timely discharge of NH4 + products in-and-out the nanofactory due to electrostatic interaction. Moreover, the interaction between Zn-ZIF and CoP modulates the Co sites into electron insufficient state with upshifted d-band center, facilitating the reduction/hydrogenation of NO3 - to ammonia and restricting the competitive hydrogen evolution. Consequently, the assembled CoP/Zn-ZIF nanofactory exhibits superior NitRR performances with a high Faraday efficiency of ≈97% and a high ammonia yield of 0.89 mmol cm-1 h-1 in neutral condition, among the best of reported electrocatalysts. The work provides new insights into the design principles of efficient NitRR electrocatalysts.
Collapse
Affiliation(s)
- Chaoqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yue Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Rong Deng
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Ling Yuan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yingying Zou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Tong Bao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Xinchan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - GuangFeng Wei
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Chengzhong Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai, 200062, P. R. China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
32
|
Wang H, Du G, Jia J, Huang J, Tu M, Zhang J, Peng Y, Li H, Xu C. Ru-Doped NiFe-MIL-53 with Facilitated Reconstruction and Active Hydrogen Supplement for Enhanced Nitrate Reduction. Inorg Chem 2024; 63:9212-9220. [PMID: 38718298 DOI: 10.1021/acs.inorgchem.4c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The Electrochemical reduction of nitrate to ammonia (NH3) is a process of great significance to energy utilization and environmental protection. However, it suffers from sluggish multielectron/proton-involved steps involving coupling reactions between different reaction intermediates and active hydrogen species (Hads) produced by water decomposition. In this study, a Ru-doped NiFe-MIL-53 (NiFeRu-MIL-53) supported on Ni foam (NF) has been designed for the nitrate reduction reaction (NO3RR). The NiFeRu-MIL-53 exhibits excellent NO3RR activity with a maximum Faradaic efficiency (FE) of 100% at -0.4 V vs. RHE for NH3 and a maximum NH3 yield of 62.39 mg h-1 cm-2 at -0.7 V vs. RHE in alkaline media. This excellent performance for the NO3RR is attributed to a strong synergistic effect between Ru and reconstructed NiFe(OH)2. Additionally, the doped Ru facilitates water dissociation, leading to an appropriate supply of Hads required for N species hydrogenation during NO3RR, thereby further enhancing its performance. Furthermore, in situ Raman analysis reveals that incorporating Ru facilitates the reconstruction of MOFs and promotes the formation of hydroxide active species during the NO3RR process. This work provides a valuable strategy for designing electrocatalysts to improve the efficiency of the reduction of electrochemical nitrate to ammonia.
Collapse
Affiliation(s)
- Huijiao Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Gening Du
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jinzhi Jia
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Junfeng Huang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Mudong Tu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jinhua Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yong Peng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Hua Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Cailing Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
33
|
Yang K, Han SH, Cheng C, Guo C, Li T, Yu Y. Unveiling the Reaction Mechanism of Nitrate Reduction to Ammonia Over Cobalt-Based Electrocatalysts. J Am Chem Soc 2024; 146:12976-12983. [PMID: 38567925 DOI: 10.1021/jacs.3c13517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Electrocatalytic reduction of nitrate to ammonia (NRA) has emerged as an alternative strategy for sewage treatment and ammonia generation. Despite excellent performances having been achieved over cobalt-based electrocatalysts, the reaction mechanism as well as veritable active species across a wide potential range are still full of controversy. Here, we adopt CoP, Co, and Co3O4 as model materials to solve these issues. CoP evolves into a core@shell structured CoP@Co before NRA. For CoP@Co and Co catalysts, a three-step relay mechanism is carried out over superficial dynamical Coδ+ active species under low overpotential, while a continuous hydrogenation mechanism from nitrate to ammonia is unveiled over superficial Co species under high overpotential. In comparison, Co3O4 species are stable and steadily catalyze nitrate hydrogenation to ammonia across a wide potential range. As a result, CoP@Co and Co exhibit much higher NRA activity than Co3O4 especially under a low overpotential. Moreover, the NRA performance of CoP@Co is higher than Co although they experience the same reaction mechanism. A series of characterizations clarify the reason for performance enhancement highlighting that CoP core donates abundant electrons to superficial active species, leading to the generation of more active hydrogen for the reduction of nitrogen-containing intermediates.
Collapse
Affiliation(s)
- Kaiwen Yang
- Institute of Molecular Plus, School of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Shu-He Han
- Institute of Molecular Plus, School of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Chuanqi Cheng
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Chengying Guo
- Institute of Molecular Plus, School of Chemical Engineering, Tianjin University, Tianjin 300072, China
- Asia Silicon Joint Research Center of Ammonia-Hydrogen New Energy, Tianjin University, Xining 810000, China
| | - Tieliang Li
- Institute of Molecular Plus, School of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Yifu Yu
- Institute of Molecular Plus, School of Chemical Engineering, Tianjin University, Tianjin 300072, China
- Asia Silicon Joint Research Center of Ammonia-Hydrogen New Energy, Tianjin University, Xining 810000, China
| |
Collapse
|
34
|
Bao T, Xi Y, Zhang C, Du P, Xiang Y, Li J, Yuan L, Yu C, Liu C. Highly efficient nitrogen fixation over S-scheme heterojunction photocatalysts with enhanced active hydrogen supply. Natl Sci Rev 2024; 11:nwae093. [PMID: 38577667 PMCID: PMC10989659 DOI: 10.1093/nsr/nwae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
Photocatalytic N2 fixation is a promising strategy for ammonia (NH3) synthesis; however, it suffers from relatively low ammonia yield due to the difficulty in the design of photocatalysts with both high charge transfer efficiency and desirable N2 adsorption/activation capability. Herein, an S-scheme CoSx/ZnS heterojunction with dual active sites is designed as an efficient N2 fixation photocatalyst. The CoSx/ZnS heterojunction exhibits a unique pocket-like nanostructure with small ZnS nanocrystals adhered on a single-hole CoSx hollow dodecahedron. Within the heterojunction, the electronic interaction between ZnS and CoSx creates electron-deficient Zn sites with enhanced N2 chemisorption and electron-sufficient Co sites with active hydrogen supply for N2 hydrogenation, cooperatively reducing the energy barrier for N2 activation. In combination with the promoted photogenerated electron-hole separation of the S-scheme heterojunction and facilitated mass transfer by the pocket-like nanostructure, an excellent N2 fixation performance with a high NH3 yield of 1175.37 μmol g-1 h-1 is achieved. This study provides new insights into the design of heterojunction photocatalysts for N2 fixation.
Collapse
Affiliation(s)
- Tong Bao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yamin Xi
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Chaoqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Peiyang Du
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yitong Xiang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Jiaxin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Ling Yuan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Chengzhong Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
35
|
Yang Q, Bu Y, Pu S, Chu L, Huang W, Zhu X, Liu C, Fang G, Cui P, Zhou D, Wang Y. Matched Kinetics Process Over Fe 2O 3-Co/NiO Heterostructure Enables Highly Efficient Nitrate Electroreduction to Ammonia. Angew Chem Int Ed Engl 2024; 63:e202400428. [PMID: 38291811 DOI: 10.1002/anie.202400428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Tandem nitrate electroreduction reaction (NO3 -RR) is a promising method for green ammonia (NH3) synthesis. However, the mismatched kinetics processes between NO3 --to-NO2 - and NO2 --to-NH3 results in poor selectivity for NH3 and excess NO2 - evolution in electrolyte solution. Herein, a Ni2+ substitution strategy for developing oxide heterostructure in Co/Fe layered double oxides (LDOs) was designed and employed as tandem electrocataltysts for NO3 -RR. (Co0.83Ni0.16)2Fe exhibited a high NH3 yield rate of 50.4 mg ⋅ cm-2 ⋅ h-1 with a Faradaic efficiency of 97.8 % at -0.42 V vs. reversible hydrogen electrode (RHE) in a pulsed electrolysis test. By combining with in situ/operando characterization technologies and theoretical calculations, we observed the strong selectivity of NH3 evolution over (Co0.83Ni0.16)2Fe, with Ni playing a dual role in NO3 -RR by i) modifying the electronic behavior of Co, and ii) serving as complementary site for active hydrogen (*H) supply. Therefore, the adsorption capacity of *NO2 and its subsequent hydrogenation on the Co sites became more thermodynamically feasible. This study shows that Ni substitution promotes the kinetics of the NO3 -RR and provides insights into the design of tandem electrocatalysts for NH3 evolution.
Collapse
Affiliation(s)
- Qiang Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongguang Bu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 210023, Nanjing, China
| | - Shuailei Pu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Longgang Chu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 210023, Nanjing, China
| | - Weifeng Huang
- College of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, 558000, Duyun, China
| | - Xiangdong Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cun Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guodong Fang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peixin Cui
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 210023, Nanjing, China
| | - Yujun Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
36
|
Jia S, Wu L, Liu H, Wang R, Sun X, Han B. Nitrogenous Intermediates in NO x-involved Electrocatalytic Reactions. Angew Chem Int Ed Engl 2024; 63:e202400033. [PMID: 38225207 DOI: 10.1002/anie.202400033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Chemical manufacturing utilizing renewable sources and energy emerges as a promising path towards sustainability and carbon neutrality. The electrocatalytic reactions involving nitrogen oxides (NOx) offered a potential strategy for synthesizing various nitrogenous chemicals. However, it is currently hindered by low selectivity/efficiency and limited reaction pathways, mainly due to the difficulties in controllable generation and utilization of nitrogenous intermediates. In this minireview, focusing on nitrogenous intermediates in NOx-involved electrocatalytic reactions, we discuss newly developed methodologies for studying and controlling the generation, conversion, and utilizing of nitrogenous intermediates, which enable recent developments in NOx-involved electrocatalytic reactions that yield various products, including ammonia (NH3), organonitrogen molecules, and nitrogenous compounds exhibiting unconventional oxidation states. Furthermore, we also make an outlook to highlight future directions in the emerging field of NOx-involved electrocatalytic reactions.
Collapse
Affiliation(s)
- Shunhan Jia
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Limin Wu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanle Liu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ruhan Wang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
37
|
An S, Zhao ZH, Bu J, He J, Ma W, Lin J, Bai R, Shang L, Zhang J. Multi-Functional Formaldehyde-Nitrate Batteries for Wastewater Refining, Electricity Generation, and Production of Ammonia and Formate. Angew Chem Int Ed Engl 2024; 63:e202318989. [PMID: 38221223 DOI: 10.1002/anie.202318989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/16/2024]
Abstract
As bulky pollutants in industrial and agricultural wastewater, nitrate and formaldehyde pose serious threats to the human health and ecosystem. Current purification technologies including chemical and bio-/photo-/electro-chemical methods, are generally high-cost, time-consuming, or energy-intensive. Here, we report a novel formaldehyde-nitrate battery by pairing anodic formaldehyde oxidation with cathodic nitrate reduction, which simultaneously enables wastewater purification, electricity generation, and the production of high-value-added ammonia and formate. As a result, the formaldehyde-nitrate battery remarkably exhibits an open-circuit voltage of 0.75 V, a peak power density of 3.38 mW cm-2 and the yield rates of 32.7 mg h-1 cm-2 for ammonia and 889.4 mg h-1 cm-2 for formate. In a large-scale formaldehyde-nitrate battery (25 cm2 ), 99.9 % of nitrate and 99.8 % of formaldehyde are removed from simulated industrial wastewater and the electricity of 2.03 W⋅h per day is generated. Moreover, the design of such a multi-functional battery is universally applicable to the coupling of NO3 - or NO2 - reduction with various aldehyde oxidization, paving a new avenue for wastewater purification and chemical manufacturing.
Collapse
Affiliation(s)
- Siying An
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710000, P. R. China
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Department of Advanced Chemical Engineering, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710000, P. R. China
| | - Zhi-Hao Zhao
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710000, P. R. China
| | - Jun Bu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Department of Advanced Chemical Engineering, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710000, P. R. China
| | - Jiaxin He
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710000, P. R. China
| | - Wenxiu Ma
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Department of Advanced Chemical Engineering, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710000, P. R. China
| | - Jin Lin
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710000, P. R. China
| | - Rui Bai
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710000, P. R. China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710000, P. R. China
| | - Jian Zhang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710000, P. R. China
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Department of Advanced Chemical Engineering, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710000, P. R. China
| |
Collapse
|
38
|
Liu Y, Jiang X, Zhang Y, Li H, Huang W, Yang Y, Ye M, Liu Y. The interface-mediated electron structure tuning of RuO x-Co 3O 4 nano-particles for efficient electrocatalytic nitrate reduction. Dalton Trans 2023; 53:162-170. [PMID: 38018516 DOI: 10.1039/d3dt03318j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The energy-intensive processes for the industrial production of ammonia necessitates the development of new methods to be proposed that will aid in reducing the global energy consumption. Specifically, the electrocatalytic nitrate reduction reaction (NO3RR) to produce ammonia is more thermodynamically feasible than the electrocatalytic nitrogen reduction reaction (NRR). However, it is hindered by a low catalytic activity due to its complex reaction pathways. Herein, we synthesized a novel electrocatalyst, RuOx-Co3O4 nanoparticles, with abundant interfaces, which exhibited an enhanced catalytic activity for efficient ammonia synthesis. This catalyst delivered a partial current density of 65.8 mA cm-2 for NH3 production, a faradaic efficiency (FE) of 89.7%, and a superior ammonia yield rate of up to 210.5 μmol h-1 cm-2 at -0.6 V vs. RHE. X-ray photoelectron and Raman spectroscopy revealed that the formed interfacial Ru-O-Co bond can decorate the electronic structures of the active sites and accelerate the absorption of NO3-, thus promoting the production of ammonia.
Collapse
Affiliation(s)
- Yang Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Xiaoli Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hangqi Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Weidong Huang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yuanteng Yang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Minghao Ye
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yanxia Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
39
|
Zhang R, Li C, Cui H, Wang Y, Zhang S, Li P, Hou Y, Guo Y, Liang G, Huang Z, Peng C, Zhi C. Electrochemical nitrate reduction in acid enables high-efficiency ammonia synthesis and high-voltage pollutes-based fuel cells. Nat Commun 2023; 14:8036. [PMID: 38052852 DOI: 10.1038/s41467-023-43897-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/23/2023] [Indexed: 12/07/2023] Open
Abstract
Most current research is devoted to electrochemical nitrate reduction reaction for ammonia synthesis under alkaline/neutral media while the investigation of nitrate reduction under acidic conditions is rarely reported. In this work, we demonstrate the potential of TiO2 nanosheet with intrinsically poor hydrogen-evolution activity for selective and rapid nitrate reduction to ammonia under acidic conditions. Hybridized with iron phthalocyanine, the resulting catalyst displays remarkably improved efficiency toward ammonia formation owing to the enhanced nitrate adsorption, suppressed hydrogen evolution and lowered energy barrier for the rate-determining step. Then, an alkaline-acid hybrid Zn-nitrate battery was developed with high open-circuit voltage of 1.99 V and power density of 91.4 mW cm-2. Further, the environmental sulfur recovery can be powered by above hybrid battery and the hydrazine-nitrate fuel cell can be developed for simultaneously hydrazine/nitrate conversion and electricity generation. This work demonstrates the attractive potential of acidic nitrate reduction for ammonia electrosynthesis and broadens the field of energy conversion.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, 999077, Hong Kong, China
| | - Chuan Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, 999077, Hong Kong, China
| | - Huilin Cui
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, 999077, Hong Kong, China
| | - Yanbo Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, 999077, Hong Kong, China
| | - Shaoce Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, 999077, Hong Kong, China
| | - Pei Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, 999077, Hong Kong, China
| | - Yue Hou
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, 999077, Hong Kong, China
| | - Ying Guo
- College of Materials Science and Engineering, Shenzhen University, 518061, Shenzhen, China.
| | - Guojin Liang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, 999077, Hong Kong, China
| | - Zhaodong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, 999077, Hong Kong, China
| | - Chao Peng
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, 999077, Hong Kong, China.
- Centre for Functional Photonics, City University of Hong Kong, 999077, Kowloon, Hong Kong, China.
- Songshan Lake Materials Laboratory, 523808, Dongguan, Guangdong, China.
| |
Collapse
|
40
|
Chen S, Qi G, Yin R, Liu Q, Feng L, Feng X, Hu G, Luo J, Liu X, Liu W. Electrocatalytic nitrate-to-ammonia conversion on CoO/CuO nanoarrays using Zn-nitrate batteries. NANOSCALE 2023. [PMID: 38014771 DOI: 10.1039/d3nr05254k] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Zn-NO3- batteries can generate electricity while producing NH3 in an environmentally friendly manner, making them a very promising device. However, the conversion of NO3- to NH3 involves a proton-assisted 8-electron (8e-) transfer process with a high kinetic barrier, requiring high-performance catalysts to realize the potential applications of this technology. Herein, we propose a heterostructured CoO/CuO nanoarray electrocatalyst prepared on a copper foam (CoO/CuO-NA/CF) that can electrocatalytically and efficiently convert NO3- to NH3 at low potential and achieves a maximum NH3 yield of 296.9 μmol h-1 cm-2 and the Faraday efficiency (FE) of 92.9% at the -0.2 V vs. reversible hydrogen electrode (RHE). Impressively, Zn-NO3- battery based on the monolithic CoO/CuO-NA/CF electrode delivers a high NH3 yield of 60.3 μmol h-1 cm-2, FENH3 of 82.0%, and a power density of 4.3 mW cm-2. This study provides a paradigm for heterostructured catalyst preparation for the energy-efficient production of NH3 and simultaneously generating electrical energy.
Collapse
Affiliation(s)
- Shanshan Chen
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Gaocan Qi
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Ruilian Yin
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Xincai Feng
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen 518110, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science Yunnan University, Kunming 650091, China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen 518110, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Wenxian Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
41
|
Lv S, Gou F, Gou Q, Mao Y, Wang H, Jiang Y, Shen W, He R, Li M. Strong electron coupling of FeP 4/Ni 2P to boost highly-efficient electrochemical nitrate reduction to ammonia. J Colloid Interface Sci 2023; 656:137-145. [PMID: 37988781 DOI: 10.1016/j.jcis.2023.11.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Electrochemical reduction of contaminated nitrate to ammonia (NRA) opens a new window for mass production of ammonia and the alleviation of energy crises and environmental pollution. However, fabricating effective catalysts for the NRA still faces significant challenges. Herein, a highly-efficient NRA catalyst, FeP4/Ni2P, was successfully constructed. The strong electron coupling at heterointerfaces of FeP4/Ni2P promoted the generation of abundant active hydrogen *H, inhibited the competition of the HER, accelerated the hydrogenation of the NRA. Benefiting from these, the catalyst displays good NRA catalytic activity in the neutral electrolyte, with the NH3 FE of 97.83 ± 0.091 %, NH3 selectivity of 98.67 ± 0.50 %, NH3 yield rate of 0.262 ± 0.01 mmol·h-1·cm-2, and NO3- conversion rate of 93.02 ± 0.14 %. The DFT theoretical calculations demonstrated that the FeP4/Ni2P heterointerfaces played a critical role in shearing the H-OH bonds of water, resulting in generating more active hydrogen as a key NRA hydrogenation source, and hindering the *H dimerization to form H2, enhancing the NH3 selectivity. This work has a certain reference value for designing excellent catalysts for the NRA.
Collapse
Affiliation(s)
- Shengmei Lv
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Fenglin Gou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Qiao Gou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yini Mao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Hua Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yimin Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Wei Shen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Rongxing He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Ming Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|