1
|
Wu HY, Wang L, Yao BQ, Hou SX, Zheng XB. Tangeretin alleviates myocardial ischemia-reperfusion injury by inhibiting ferroptosis via targeting nicotinamide phosphoribosyltransferase (NAMPT). Eur J Pharmacol 2025; 996:177568. [PMID: 40185323 DOI: 10.1016/j.ejphar.2025.177568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Myocardial ischemia-reperfusion (I/R) injury is caused by the restoration of blood flow in the ischemic myocardia after myocardial infarction (MI). Ferroptosis, a form of cell death, is associated with myocardial I/R injury. Tangeretin exhibits various pharmacological effects, however, whether it plays a cardioprotective role in myocardial I/R injury remains to be explored. In this study, a mouse model of myocardial I/R and hypoxia/reoxidation (H/R)-induced HL-1 cardiomyocytes were utilized to investigate the effect of tangeretin on myocardial I/R injury-related ferroptosis. Tangeretin ameliorated myocardial I/R injury, as evidenced by reducing infarct size, relieving myocardial cell swelling, as well as preventing H/R-triggered loss of cell viability. Tangeretin also mitigated ferroptosis, which was manifested as reduction of ferrous iron overload, inhibition of reactive oxygen species (ROS) and lipid peroxidation (LPO) accumulation, and upregulation of ferroptosis inhibitors. Subsequently, network pharmacology analysis indicated that nicotinamide phosphoribosyltransferase (NAMPT) was a potential target of tangeretin. Mechanistic studies confirmed that tangeretin inhibited the ubiquitination degradation of NAMPT, thus stabilizing its expression. Rescue assays further proved that NAMPT knockdown abolished the inhibitory effect of tangeretin on ferroptosis in H/R-induced cardiomyocytes. In conclusion, tangeretin protects against myocardial I/R injury by reducing ferroptosis through targeting NAMPT.
Collapse
Affiliation(s)
- Hai-Yan Wu
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, PR China
| | - Lei Wang
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, PR China
| | - Bing-Qi Yao
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, PR China
| | - Shu-Xian Hou
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, PR China
| | - Xiao-Bin Zheng
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, PR China.
| |
Collapse
|
2
|
Gao M, Song Y, Liang J, Chen T, Luo J, Du P, Wang H, Leng H, Wang Z, Ma X, Wang K, Zhao Y. Sensitizing ferroptotic and apoptotic cancer therapy via tailored micelles-mediated coenzyme and ATP depletion under hypoxia. J Control Release 2025; 381:113572. [PMID: 40024339 DOI: 10.1016/j.jconrel.2025.02.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/20/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Concurrent induction of apoptosis and ferroptosis is promising in handling heterogenous cancers. We report a tailored polymeric micellar nanoplatform for the combinational anti-tumor therapy. Two stimuli-responsive amphiphlic block copolymers were synthesized, bearing three functional moieties, i.e. azobenzene, nitroimidazole and 3-fluorophenylboronic acid. Azobenzene could enhance the cellular uptake of micelles. Nitroimidazole and 3-fluorophenylboronic acid could deplete the reduced nicotinamide adenine dinucleotide phosphate (NADPH), glucose and adenosine triphosphate (ATP) under hypoxia, sensitizing ferroptotic and apoptotic cell death. The proof-of-concept was demonstrated in a triple-negative breast cancer cell line (MDA-MB-231). Irrespective of the free or encapsulated form, doxorubicin and auranofin showed a synergistic action, evidenced by a low combination index (< 1). The co-delivery micelles showed improved potency than the single drug-loaded micelles in terms of the biomarkers of apoptosis (e.g. caspase 3/9, cytochrome c and ATP) and ferroptosis (e.g. thioredoxin reductase, thioredoxin, glutathione, NADPH, malondialdehyde and lipid peroxides). The apoptosis and ferroptosis induction ability of cargo-free micelles was proved. The in vivo efficacy was verified in the MDA-MB 231 tumor-bearing nude mice model. The current work offers a promising strategy of combinational anti-tumor drug delivery for potent induction of ferroptosis and apoptosis via the sensitization effect of vehicle in the hypoxic tumor.
Collapse
Affiliation(s)
- Min Gao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yue Song
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Jing Liang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Tiantian Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Jiajia Luo
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Panyu Du
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Han Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Hongyu Leng
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Zheng Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| | - Xinlong Ma
- Orthopedic Research Institute, Tianjin Hospital, Tianjin University, Tianjin 300211, China.
| | - Kai Wang
- International Medical Center, Tianjin Hospital, Tianjin University, Tianjin 300211, China.
| | - Yanjun Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
3
|
Li X, Huang L, Baryshnikov G, Ali A, Dai P, Yang Z, Sun Y, Dai C, Guo Z, Zhao Q, Zhang F, Zhu L. Thermally Activated Delayed Fluorescence-Guided Photodynamic Therapy Through Skeleton-Homologous Nanoparticles: a Rational Material Design for High-Efficient and High-Contrast Theranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500236. [PMID: 40317524 DOI: 10.1002/adma.202500236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Although photoluminescence imaging-guided photodynamic therapy (PDT) is promising for theranostics, it easily suffers from tissue autofluorescence and PDT photoproducts. To develop time-resolved imaging (TRI)-guided PDT with long-lived emission pathways, like thermally activated delayed fluorescence (TADF), is urgent but challenging, because of the triplet competition between radiative transition and reactive oxygen species (ROS) production. Herein, skeleton-homologous nanoparticles are designed and constructed to address this dilemma, thereby achieving in vivo TRI-guided PDT for the first time. This system is formed with a lipophilic TADF core (as a TRI probe) encapsulated by an amphiphilic photosensitizer shell (as the corona exposed to oxygen for PDT), both of which are derived from the same donor-acceptor skeleton to minimize phase separation in the single entity, and enable the same long-wavelength photoexcitation for TRI and PDT. The chloropropylamine group is helpful for endoplasmic reticulum targeting to enhance PDT upon minimizing the ROS transmission path. Synchronously, the TADF core exhibits a delayed fluorescence of 40 µs for a clear TRI. The NPs are eventually applied in vivo with a high signal-to-background ratio (45.25) and outstanding PDT effects in a mouse model of deep-seated kidney cancer. Such a material design is beneficial for developing high-efficient and high-contrast theranostic approaches.
Collapse
Affiliation(s)
- Xuping Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010070, P. R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200033, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200033, P. R. China
| | - Liwen Huang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200033, P. R. China
| | - Gleb Baryshnikov
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
| | - Amjad Ali
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
| | - Peiling Dai
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Zhongxue Yang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010070, P. R. China
| | - Yuyu Sun
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010070, P. R. China
| | - Chunling Dai
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010070, P. R. China
| | - Zhixiu Guo
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200033, P. R. China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Fan Zhang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010070, P. R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200033, P. R. China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200033, P. R. China
| |
Collapse
|
4
|
Du X, Huang S, Lin Z, Chen G, Jiang Y, Zhang H. Organelle-targeted small molecular photosensitizers for enhanced photodynamic therapy: a minireview for recent advances and potential applications. Chem Commun (Camb) 2025. [PMID: 40289926 DOI: 10.1039/d5cc01642h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Photodynamic therapy (PDT) is a promising approach for cancer treatment that involves the use of photosensitizers to generate reactive oxygen species upon light irradiation, resulting in selective cytotoxicity. To enhance the efficiency of PDT, researchers have developed organelle-targeting photosensitizers that specifically accumulate in critical cellular organelles. This review provides a comprehensive overview of recent advancements in the development of organelle-targeting photosensitizers for PDT. Different organelles, including mitochondria, plasma membrane, lysosome, endoplasmic reticulum, lipid droplets, nucleus, and Golgi, have been targeted to improve the selectivity and effectiveness of PDT. Various strategies have been employed to design and synthesize these photosensitizers, optimizing their organelle-specific accumulation and photodynamic efficiency. This review discusses the principles and mechanisms underlying the design of organelle-targeting photosensitizers, along with their exceptional results achieved in preclinical studies. Furthermore, potential applications and challenges in the development of multi-organelles-targeting photosensitizers and the synergistic use of multiple photosensitizers targeting different organelles are highlighted. Overall, organelle-targeting photosensitizers offer a promising avenue for advancing the field of PDT and improving its clinical applicability.
Collapse
Affiliation(s)
- Xiaomeng Du
- School of Biomedical and Pharmaceutical Sciences and School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Shumei Huang
- School of Biomedical and Pharmaceutical Sciences and School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Zhenxin Lin
- School of Biomedical and Pharmaceutical Sciences and School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Gang Chen
- School of Biomedical and Pharmaceutical Sciences and School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Yin Jiang
- School of Biomedical and Pharmaceutical Sciences and School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Huatang Zhang
- School of Biomedical and Pharmaceutical Sciences and School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
5
|
Ji D, Chen J, Ma Y, Jiang Y, Xu K, Yuan Z, Ling Y, Yang T, Zhang Y. Novel one-/two-photon excited β-carboline/quinolinium photosensitizers for hypoxia-resistant tumor photodynamic therapy through apoptosis and necrosis. Bioorg Chem 2025; 161:108538. [PMID: 40318510 DOI: 10.1016/j.bioorg.2025.108538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/17/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
Photodynamic therapy (PDT) represents an innovative modality that employs photosensitizer for the treatment of tumors, dermatological conditions, and vascular disorders. Herein, a series of novel photosensitizers 2a-e were designed and synthesized by incorporating quinolinium into the β-carboline. In particular, photosensitizer 2d generated a large amount of type-I/-II active oxygen species, including 1O2, •O2-, and •OH under one-/two-photon excitation. Furthermore, 2d effectively overcame the tumor hypoxic microenvironment and exhibited strong one-/two-photon photodynamic activities against HT29 cells (IC50s = 0.18-0.56 μM, PIs = 88-263). Additionally, 2d could significantly induce cancer cell apoptosis via reducing Bcl-2 and increasing Bax/Cleaved-caspase-3, and simultaneously promote programmed necrosis through boosting P-MLKL and P-RIPK1/3 expression. In vivo experiments substantiated that 2d powerfully suppressed colonic tumor growth under one-/two-photon irradiation (suppression rates 77-91 %). Therefore, this work may provide an effective approach for designing novel β-carboline/quinolinium photosensitizers and present a promising prospect in the field of one-/two-photon tumor photodynamic therapy.
Collapse
Affiliation(s)
- Dongliang Ji
- Department of Pharmacy, Affiliated Hospital of Nantong University. Nantong 226001, Jiangsu, PR China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu, PR China; School of Medical, Nantong University, Nantong 226001, Jiangsu, PR China
| | - Jian Chen
- Department of Pharmacy, Affiliated Hospital of Nantong University. Nantong 226001, Jiangsu, PR China
| | - Yifan Ma
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu, PR China
| | - Yangyang Jiang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu, PR China
| | - Ke Xu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu, PR China
| | - Zifei Yuan
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu, PR China
| | - Yong Ling
- Department of Pharmacy, Affiliated Hospital of Nantong University. Nantong 226001, Jiangsu, PR China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu, PR China; School of Medical, Nantong University, Nantong 226001, Jiangsu, PR China.
| | - Tao Yang
- Department of Pharmacy, Affiliated Hospital of Nantong University. Nantong 226001, Jiangsu, PR China.
| | - Yanan Zhang
- Department of Pharmacy, Affiliated Hospital of Nantong University. Nantong 226001, Jiangsu, PR China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu, PR China; School of Medical, Nantong University, Nantong 226001, Jiangsu, PR China.
| |
Collapse
|
6
|
Xiong T, Chen Y, Li M, Chen X, Peng X. Recent Progress of Molecular Design in Organic Type I Photosensitizers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501911. [PMID: 40285604 DOI: 10.1002/smll.202501911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/20/2025] [Indexed: 04/29/2025]
Abstract
Photodynamic therapy (PDT) represents a high-efficient and non-invasive therapeutic modality for current and future tumor treatments, drawing extensive attention in the fields of antitumor drug and clinical phototherapy. In recent years, the photosensitizer (PS) market and PDT clinical applications have expanded to address various cancers and skin diseases. However, hypoxic environment within tumors poses a substantial challenge to the therapeutic capability of reactive oxygen species-dependent PDT. Consequently, researches have increasingly focus from the type II to type I PDT mechanism, which relies on radical production with less or no oxygen dependence. Despite significant progress in the development of type I PSs, a holistic understanding regarding the design principles for these molecules remains elusive. Specifically, electron transfer-mediated type I PDT are extensively studied in recent years but is insufficiently addressed in existing reviews. This review systematically summarizes recent advancements in the molecular design rationales of organic type I PSs, categorizing them into three key fundamental strategies: modulating PS charge distribution, singlet oxygen forbidden via low triplet excited state, and accelerating PS radical formation via inducing electron transfer. This review aims to offer valuable insights for the future type I PS design and the advancement of anti-hypoxia PDT.
Collapse
Affiliation(s)
- Tao Xiong
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Yingchao Chen
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Mingle Li
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Xiaoqiang Chen
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
7
|
Zheng H, Sha H, Zhou R, Wu Y, Wang C, Hou S, Lu G. Rational development of Nile red derivatives with significantly improved specificity and photostability for advanced fluorescence imaging of lipid droplets. Biosens Bioelectron 2025; 282:117494. [PMID: 40267544 DOI: 10.1016/j.bios.2025.117494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
Since the first report of Nile Red as a fluorescent probe for lipid droplets (LDs) imaging was published in 1985, this fluorescent probe has been widely used for nearly 40 years, and so far, it is still one of the most commonly used probes for LDs imaging. Although Nile Red has achieved continuous success, it has gradually emerged two major limitations (poor LDs specificity and low photostability) which directly limit the study of LDs via advanced fluorescence imaging techniques. In this context, we have developed a new synthetic route to conveniently prepare a series of Nile Red derivatives (NR-1 to NR-15). With these 15 derivatives in hand, the relationships between molecular structures and their properties (LDs specificity, photostability) have been comprehensively investigated. Consequently, we have rationally designed a new Nile Red derivative, NR-11, which exhibits significantly improved LDs specificity and photostability. Utilizing this new LDs probe, we have successfully conducted various advanced fluorescence imaging, e.g. time-lapse three-dimensional (3D) confocal imaging of cells, time-lapse 3D dynamic tracking of a single LD, and two-photon 3D imaging of tissues. These advanced imaging results not only demonstrate the utility of this new fluorescent probe but also provide novel insights into the cell biology study of LDs.
Collapse
Affiliation(s)
- Huanlong Zheng
- State Key Laboratory of Integrated Optoelectronics (JLU Region), Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun, 130012, China
| | - Hao Sha
- School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, 518006, China; Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Ri Zhou
- State Key Laboratory of Integrated Optoelectronics (JLU Region), Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun, 130012, China
| | - Yu Wu
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Chenguang Wang
- State Key Laboratory of Integrated Optoelectronics (JLU Region), Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun, 130012, China.
| | - Shangguo Hou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics (JLU Region), Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun, 130012, China.
| |
Collapse
|
8
|
Lin Y, Kong X, Liu Z. Engineered Photoactivatable Nanomicelles for Ferroptosis-like Combinational Tumor Therapy In Vitro and In Vivo. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20184-20196. [PMID: 40111260 DOI: 10.1021/acsami.5c00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Nitric oxide (NO)-based gas therapy has attracted increasing attention as a promising approach for tumor treatment, but elevated levels of glutathione (GSH) in the tumor microenvironment significantly limit their therapeutic effectiveness. In this study, a type of engineered photoactivatable nanomicelles Ce6/NI@PEP@HA (CNPH) were developed for combinational photodynamic and NO gas therapy. CNPH was capable of targeted accumulation to tumors, where it depleted GSH and released NO to effectively produce reactive oxygen species (ROS) with oxidative damage under laser irradiation at 660 nm. The GSH consumption induced the deactivation of glutathione peroxidase activity, leading to enhanced accumulation of toxic lipid peroxide and enabled a ferroptosis-like therapeutic outcome. Additionally, the effective production of NO and ROS resulted in mitochondrial dysfunction, characterized by the disruption of mitochondrial membrane potential and decreased adenosine triphosphate concentration. The in vivo animal experiments indicated that the combinational photodynamic and NO gas therapy achieved a tumor inhibition of 89.1%, and it has proven to be a more effective tumor therapy strategy in contrast to any single modality. In consequence, ferroptosis-like combinational tumor therapy has opened up a new horizon to a cutting-edge and noninvasive paradigm for advanced tumor treatments.
Collapse
Affiliation(s)
- Yandai Lin
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China
| | - Xinru Kong
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China
| | - Zhe Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
9
|
Qi K, Lu Z, Gao X, Zhang C, Zhang Z, Liu D, Li T, Jing D, Wang L, Li X, Tan G, Dong G, Luo P. Regulation of the Endocytosis System Using Ultrathin g-C 3N 4 Nanosheets for Enhanced Photodynamic Therapy of Glioma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409845. [PMID: 40051171 DOI: 10.1002/smll.202409845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/27/2025] [Indexed: 04/25/2025]
Abstract
Glioma is the most aggressive form of brain cancer. Photodynamic therapy (PDT) has emerged as a promising treatment method for glioma; however, its efficacy is often hindered by the blood-brain barrier (BBB) and the need for precise tumor cell targeting. In the present study, a facile strategy is found to enhance the penetration of the BBB and the internalization efficiency by exfoliating the (100) crystal plane of g-C3N4 (CN) using liquid nitrogen, resulting in ultrathin graphitic carbon nitride (CN12) nanosheets with hydroxyl-rich surfaces. These CN12 nanosheets significantly enhanced the permeability of the BBB, increased the endocytosis efficiency by four times, and elevated reactive oxygen species (ROS) in vivo by 2.5 times. The as-formed CN12 nanosheets successfully targeted the mitochondrial function of tumor cells, promoted ROS generation, and induced apoptosis. Moreover, the combination of CN12 nanosheets with photoelectrode implantation completely eradicated tumors within 10 d without recurrence or severe side effects.
Collapse
Affiliation(s)
- Kai Qi
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, 710032, China
| | - Zihan Lu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xiangyu Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chenrui Zhang
- State Key Laboratory for Manufacturing System EngineeringSchool of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Zhuoyuan Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Dan Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Tianjing Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Da Jing
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, 710032, China
| | - Ling Wang
- State Key Laboratory for Manufacturing System EngineeringSchool of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xin Li
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Guoqiang Tan
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Guohui Dong
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
10
|
Han M, Zhou S, Liao Z, Zishan C, Yi X, Wu C, Zhang D, He Y, Leong KW, Zhong Y. Bimetallic peroxide-based nanotherapeutics for immunometabolic intervention and induction of immunogenic cell death to augment cancer immunotherapy. Biomaterials 2025; 315:122934. [PMID: 39509856 DOI: 10.1016/j.biomaterials.2024.122934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
Immunotherapy has transformed cancer treatment, but its efficacy is often limited by the immunosuppressive characteristics of the tumor microenvironment (TME), which are predominantly influenced by the metabolism of cancer cells. Among these metabolic pathways, the indoleamine 2,3-dioxygenase (IDO) pathway is particularly crucial, as it significantly contributes to TME suppression and influences immune cell activity. Additionally, inducing immunogenic cell death (ICD) in tumor cells can reverse the immunosuppressive TME, thereby enhancing the efficacy of immunotherapy. Herein, we develop CGDMRR, a novel bimetallic peroxide-based nanodrug based on copper-cerium peroxide nanoparticles. These nanotherapeutics are engineered to mitigate tumor hypoxia and deliver therapeutics such as 1-methyltryptophan (1MT), glucose oxidase (GOx), and doxorubicin (Dox) in a targeted manner. The design aims to alleviate tumor hypoxia, reduce the immunosuppressive effects of the IDO pathway, and promote ICD. CGDMRR effectively inhibits the growth of 4T1 tumors and elicits antitumor immune responses by leveraging immunometabolic interventions and therapies that induce ICD. Furthermore, when CGDMRR is combined with a clinically certified anti-PD-L1 antibody, its efficacy in inhibiting tumor growth is enhanced. This improved efficacy extends beyond unilateral tumor models, also affecting bilateral tumors and lung metastases, due to the activation of systemic antitumor immunity. This study underscores CGDMRR's potential to augment the efficacy of PD-L1 blockade in breast cancer immunotherapy.
Collapse
Affiliation(s)
- Min Han
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China
| | - Shiying Zhou
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China
| | - Zunde Liao
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China
| | - Chen Zishan
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China
| | - Xiangting Yi
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China
| | - Chuanbin Wu
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China.
| | - Dongmei Zhang
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China.
| | - Yao He
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, United States.
| | - Yiling Zhong
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China; Department of Biomedical Engineering, Columbia University, New York, NY, 10027, United States.
| |
Collapse
|
11
|
Cesca BA, Pellicer San Martin K, Caverzan MD, Oliveda PM, Ibarra LE. State-of-the-art photodynamic therapy for malignant gliomas: innovations in photosensitizers and combined therapeutic approaches. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002303. [PMID: 40177536 PMCID: PMC11964779 DOI: 10.37349/etat.2025.1002303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/11/2025] [Indexed: 04/05/2025] Open
Abstract
Glioblastoma (GBM), the most aggressive and lethal primary brain tumor, poses a significant therapeutic challenge due to its highly invasive nature and resistance to conventional therapies, including surgery, chemotherapy, and radiotherapy. Despite advances in standard treatments, patient survival remains limited, requiring the exploration of innovative strategies. Photodynamic therapy (PDT) has emerged as a promising approach, leveraging light-sensitive photosensitizers (PSs), molecular oxygen, and specific light wavelengths to generate reactive oxygen species (ROS) that selectively induce tumor cell death. Originally developed for skin cancer, PDT has evolved to target more complex malignancies, including GBM. The refinement of second- and third-generation PS, coupled with advancements in nanotechnology, has significantly improved PDT's selectivity, bioavailability, and therapeutic efficacy. Moreover, the combination of PDT with chemotherapy, targeted therapy, and immunotherapy, among other therapeutic modalities, has shown potential in enhancing therapeutic outcomes. This review provides a comprehensive analysis of the preclinical and clinical applications of PDT in GBM, detailing its mechanisms of action, the evolution of PS, and novel combinatory strategies that optimize treatment efficacy. However, several challenges remain, including overcoming GBM-associated hypoxia, enhancing PS delivery across the blood-brain barrier, and mitigating tumor resistance mechanisms. The integration of PDT with molecular and genetic insight, alongside cutting-edge nanotechnology-based delivery systems, may revolutionize GBM treatment, offering new prospects for improved patient survival and quality of life.
Collapse
Affiliation(s)
- Bruno A. Cesca
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Rio Cuarto X5800BIA, Argentina
| | - Kali Pellicer San Martin
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Rio Cuarto X5800BIA, Argentina
| | - Matías D. Caverzan
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto (UNRC), Rio Cuarto X5800BIA, Argentina
| | - Paula M. Oliveda
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Rio Cuarto X5800BIA, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rio Cuarto X5800BIA, Argentina
| | - Luis E. Ibarra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Rio Cuarto X5800BIA, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rio Cuarto X5800BIA, Argentina
| |
Collapse
|
12
|
Kang K, Wu Y, Zhang X, Wang S, Ni S, Shao J, Du Y, Yu Y, Shen Y, Chen Y, Chen W. An endoplasmic reticulum and lipid droplets dual-localized strategy to develop small molecular photosensitizers that induce ferroptosis during photodynamic therapy. Eur J Med Chem 2025; 286:117306. [PMID: 39854940 DOI: 10.1016/j.ejmech.2025.117306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/13/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Organelle-localized photosensitizers have been well-developed to enhance the photodynamic therapy (PDT) efficacy through triggering given cell death. The endoplasmic reticulum (ER) and lipid droplets (LDs) are two key organelles mutually regulating ferroptosis. Thus, in this study, small molecular photosensitizer CAR PSs were developed through fragment integration strategy and the heavy-atom modification. It was showed that the integration strategy did not affect the organelle localization and CAR PSs successfully achieved ER/LDs dual location. Besides, the heavy-atom modification help CAR PSs display good ROS generation efficiency. Importantly, ER/LDs dual-localized CAR PSs exhibited superior photo-toxicity and lower dark-toxicity against multiple breast cancer cell lines than the only ER-targeting Ce6, which further explained the superposition effect of dual organelle targeting. Preliminary studies revealed that CAR PSs induced enhanced ferroptosis via simultaneously triggering the ER stress and lipid peroxidation during PDT. Moreover, CAR-2 demonstrated significant in vivo PDT activity to suppress the tumor growth in 4T1 tumor bearing mice. These findings not only provide a promising photosensitizer CAR-2 exerting excellent in vitro and in vivo PDT effect through stimulating ferroptosis, but also propose a design strategy for the development of ER/LDs dual localized PSs.
Collapse
Affiliation(s)
- Ke Kang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - You Wu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xi Zhang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321299, China
| | - Shuqi Wang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Shaokai Ni
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Jiaan Shao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China
| | - Yushen Du
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Yongping Yu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321299, China
| | - Yong Shen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China.
| | - Yiding Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China.
| | - Wenteng Chen
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321299, China.
| |
Collapse
|
13
|
He X, Wang B, Zhao X, Ke F, Feng W, Wang L, Yang J, Wen G, Ji D. Multi-Color Tunable Afterglow Materials Leveraging Energy Transfer Between Host and Guest. Molecules 2025; 30:1203. [PMID: 40141979 PMCID: PMC11945158 DOI: 10.3390/molecules30061203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Host/guest doping is an effective approach to achieving room-temperature phosphorescence (RTP). However, the influence of the host matrix on doping systems is still unclear, and it is difficult to select the suitable host species for a certain guest emitter. This study prepared a series of host/guest RTP materials with dynamically adjustable time and color by doping a non-RTP guest material in various host materials that were easy to crystallize. The varying afterglow color originated from the difference in Förster energy transfer between the host and guest. Specifically, the change from yellow to green afterglow was realized by varying the host's molecular structure. This study further revealed the importance of proper host energy levels, the ability to generate long-aging triplet excitons, and the Förster energy transfer from host to guest. Additionally, multiple information encryption anti-counterfeiting materials were developed by leveraging the different afterglow colors and durations, reflecting the unique performance advantages of the prepared long-afterglow materials in various RTP applications.
Collapse
Affiliation(s)
- Xiao He
- Department of Thermal Engineering, Hebei Petroleum University of Technology, Chengde 067000, China; (X.H.); (F.K.); (W.F.); (L.W.); (J.Y.)
| | - Bo Wang
- Department of Thermal Engineering, Hebei Petroleum University of Technology, Chengde 067000, China; (X.H.); (F.K.); (W.F.); (L.W.); (J.Y.)
| | - Xiaoqiang Zhao
- Department of Thermal Engineering, Hebei Petroleum University of Technology, Chengde 067000, China; (X.H.); (F.K.); (W.F.); (L.W.); (J.Y.)
| | - Fengqin Ke
- Department of Thermal Engineering, Hebei Petroleum University of Technology, Chengde 067000, China; (X.H.); (F.K.); (W.F.); (L.W.); (J.Y.)
| | - Wenhui Feng
- Department of Thermal Engineering, Hebei Petroleum University of Technology, Chengde 067000, China; (X.H.); (F.K.); (W.F.); (L.W.); (J.Y.)
| | - Liwen Wang
- Department of Thermal Engineering, Hebei Petroleum University of Technology, Chengde 067000, China; (X.H.); (F.K.); (W.F.); (L.W.); (J.Y.)
| | - Jiameng Yang
- Department of Thermal Engineering, Hebei Petroleum University of Technology, Chengde 067000, China; (X.H.); (F.K.); (W.F.); (L.W.); (J.Y.)
| | - Guangyu Wen
- Hebei Advanced Thin Film Laboratory, College of Physics, Hebei Normal University, Shijiazhuang 050024, China;
| | - Denghui Ji
- Science College, Shijiazhuang University, Shijiazhuang 050035, China
| |
Collapse
|
14
|
Xiong T, Chen Y, Peng Q, Zhou X, Li M, Lu S, Chen X, Fan J, Wang L, Peng X. Heterodimeric Photosensitizer as Radical Generators to Promoting Type I Photodynamic Conversion for Hypoxic Tumor Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410992. [PMID: 39865773 DOI: 10.1002/adma.202410992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/21/2024] [Indexed: 01/28/2025]
Abstract
Photodynamic therapy (PDT) using traditional type II photosensitizers (PSs) has been limited in hypoxic tumors due to excessive oxygen consumption. The conversion from type II into a less oxygen-dependent type I PDT pathway has shown the potential to combat hypoxic tumors. Herein, the design of a heterodimeric PS, NBSSe, by conjugating a widely used type I PS NBS and a type II PS NBSe via molecular dimerization, achieving the aggregation-regulated efficient type I photodynamic conversion for the first time is reported. Electrochemistry characterizations and theoretical calculations elucidate that NBSSe tends to form a S+·/Se-· radical pair via intramolecular electron transfer in the co-excited NBSSe* aggregate, realizing 7.25-fold O2 -· generation compared to NBS and 80% suppression of 1O2 generation compared to NBSe. The enhanced O2 -· generation of NBSSe enables excellent anti-hypoxia PDT efficiency and inhibition of pulmonary metastasis. Additionally, the incorporation of electron-rich bovine serum albumin accelerates the recycling of cationic PS radical NBSSe+·, further boosting photostability and O2 -· generation. The resultant BSA@NBSSe nanoparticles demonstrate successful tumor-targeting PDT capability. This work provides an appealing avenue to convert ROS generation from the type II pathway to the type I pathway for efficient cancer phototherapy in hypoxia.
Collapse
Affiliation(s)
- Tao Xiong
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yingchao Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Qiang Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Xiao Zhou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Mingle Li
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Sheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaoqiang Chen
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Jiangli Fan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lei Wang
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
15
|
He P, Jia M, Yang L, Zhang H, Chen R, Yao W, Pan Y, Fan Q, Hu W, Huang W. Zwitterionic Photosensitizer-Assembled Nanocluster Produces Efficient Photogenerated Radicals via Autoionization for Superior Antibacterial Photodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418978. [PMID: 39924790 DOI: 10.1002/adma.202418978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/13/2025] [Indexed: 02/11/2025]
Abstract
Photodynamic therapy (PDT) holds significant promise for antibacterial treatment, with its potential markedly amplified when using Type I photosensitizers (PSs). However, developing Type I PSs remains a significant challenge due to a lack of reliable design strategy. Herein, a Type I PS nanocluster is developed via self-assembly of zwitterionic small molecule (C3TH) for superior antibacterial PDT in vivo. Mechanism studies demonstrate that unique cross-arranged C3TH within nanocluster not only shortens intermolecular distance but also inhibits intermolecular electronic-vibrational coupling, thus facilitating intermolecular photoinduced electron transfer to form PS radical cation and anion via autoionization reaction. Subsequently, these highly oxidizing or reducing PS radicals engage in cascade photoredox to generate efficient ·OH and O2‾·. As a result, C3TH nanoclusters achieve a 97.6% antibacterial efficacy against MRSA at an ultralow dose, surpassing the efficacy of the commercial antibiotic Vancomycin by more than 8.8-fold. These findings deepen the understanding of Type I PDT, providing a novel strategy for developing Type I PSs.
Collapse
Affiliation(s)
- Ping He
- State Key Laboratory of Flexible Electronics (LoFE), and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Mingxuan Jia
- State Key Laboratory of Flexible Electronics (LoFE), and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Linfang Yang
- State Key Laboratory of Flexible Electronics (LoFE), and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Haolin Zhang
- State Key Laboratory of Flexible Electronics (LoFE), and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ruizhe Chen
- State Key Laboratory of Flexible Electronics (LoFE), and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Weiyun Yao
- State Key Laboratory of Flexible Electronics (LoFE), and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yonghui Pan
- State Key Laboratory of Flexible Electronics (LoFE), and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Quli Fan
- State Key Laboratory of Flexible Electronics (LoFE), and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Wenbo Hu
- State Key Laboratory of Flexible Electronics (LoFE), and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Huang
- State Key Laboratory of Flexible Electronics (LoFE), and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
16
|
Li W, Li H, Jiang G, Yang L, Nie H, Lin C, Gao W, Huang R. Creating Single Atomic Coordination for Hypoxia-Resistant Pyroptosis Nano-Inducer to Boost Anti-Tumor Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414697. [PMID: 39828606 DOI: 10.1002/adma.202414697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/09/2024] [Indexed: 01/22/2025]
Abstract
General synthesis and mechanical understanding of type I nano-photosensitizers are of great importance for hypoxia-resistant pyroptosis inducers. Herein, a simple solvothermal treatment is developed to convert non-photosensitive small molecules (hemin) into uniform carbon nanodots (HNCDs) with strong type I photodynamic activity and red fluorescence emission. These HNCDs inherit the single atomic Fe-N4 center of hemin while creating sp2-hybridized carbon surroundings, which synergistically modulated the energy level and electron transfer for converting the type II photodynamic process to type I. After encapsulating HNCDs with bovine serum albumin (BSA) to facilitate in vivo applications, the resulting BSA nanoparticles (HB) can image tumors and significantly induce the pyroptosis of tumor cells even under an extremely hypoxic environment (2% O2). This evokes a strong antitumor immune response, effectively restraining tumor growth and lung metastasis in triple-negative breast cancer mice, with good biocompatibility. This work introduces an applicable pyroptosis nano-inducer to combat hypoxic tumors and highlights the regulation of Fe-N4 centers to develop hypoxia-resistant type I nano-photosensitizers for cancer treatment.
Collapse
Affiliation(s)
- Wenshuai Li
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Fudan University, Shanghai, 201203, China
| | - Hongyuan Li
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Fudan University, Shanghai, 201203, China
| | - Guangwei Jiang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Fudan University, Shanghai, 201203, China
| | - Lan Yang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Fudan University, Shanghai, 201203, China
| | - Huifang Nie
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Fudan University, Shanghai, 201203, China
| | - Chenteng Lin
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Fudan University, Shanghai, 201203, China
| | - Wenjia Gao
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Fudan University, Shanghai, 201203, China
| | - Rongqin Huang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Fudan University, Shanghai, 201203, China
| |
Collapse
|
17
|
Zhao H, Jin S, Liu Y, Wang Q, Tan BSN, Wang S, Han WK, Niu X, Zhao Y. A Second Near-Infrared Window-Responsive Metal-Organic-Framework-Based Photosensitizer for Tumor Immunotherapy via Synergistic Ferroptosis and STING Activation. J Am Chem Soc 2025; 147:4871-4885. [PMID: 39854684 DOI: 10.1021/jacs.4c13241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Photodynamic therapy (PDT) holds promise as a cancer treatment modality due to its potential for enhanced therapy precision and safety. To enhance deep tissue penetration and minimize tissue adsorption and phototoxicity, developing photosensitizers activated by second near-infrared window (NIR-II) light shows significant potential. However, the efficacy of PDT is often impeded by tumor microenvironment hypoxia, primarily caused by irregular tumor vasculature. Fortunately, the stimulator of interferon genes (STING) pathway, known for immune activation, has been linked to vasculature normalization. In this study, we developed a nanoplatform (Fe-THBQ/SR) by loading a STING agonist (SR-717) into an iron-tetrahydroxy-1,4-benzoquinone (Fe-THBQ) metal-organic framework. Fe-THBQ was proven to be an effective NIR-II photosensitizer, generating numerous reactive oxygen species (ROS) under 1064 nm laser irradiation. These ROS downregulated heat shock protein expression, consequently promoting mild-photothermal therapy (mild-PTT), and facilitated ferroptosis by depleting glutathione (GSH)/glutathione peroxidase 4. Moreover, Fe-THBQ/SR released SR-717 upon GSH stimulation, synergizing with the ROS-mediated double-stranded DNA leakage to enhance STING activation. This process contributed to tumor vasculature normalization and hypoxia alleviation, thereby enhancing the PDT efficacy. Overall, we presented a versatile single-laser-triggered nanoplatform (Fe-THBQ/SR) for NIR-II PDT and NIR-II mild-PTT and simultaneously coupled it with the effective activation of STING to form a reinforcing cycle. These synergistic enhancements increased the immunogenicity of tumor cells, remodeled the immunosuppressive tumor microenvironment, increased T lymphocyte infiltration, and improved therapeutic outcomes.
Collapse
Affiliation(s)
- Huan Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Shujuan Jin
- Senior Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Fuxin Road, No. 28, Haidian District, Beijing, 100853, China
| | - Yang Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Qian Wang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Central Hospital, Taiyuan, Shanxi 030009, China
| | - Brynne Shu Ni Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Shihuai Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming, Yunnan 650091, China
| | - Wang-Kang Han
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Xuping Niu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Central Hospital, Taiyuan, Shanxi 030009, China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| |
Collapse
|
18
|
Cui X, Fang F, Chen H, Cao C, Xiao Y, Tian S, Zhang J, Li S, Lee CS. Using a stable radical as an "electron donor" to develop a radical photosensitizer for efficient type-I photodynamic therapy. MATERIALS HORIZONS 2025; 12:1002-1007. [PMID: 39560293 DOI: 10.1039/d4mh00952e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Among type I photosensitizers, stable organic radicals are superior candidate molecules for hypoxia-overcoming photodynamic therapy. However, their wide applications are limited by complicated preparation processes and poor stabilities. Herein, a nitroxide radical was simply synthesized by introducing a commercially available "TEMPO" moiety. The radical exhibits efficient type-I ROS generation and appreciable photo-cytotoxicity under hypoxia, which open up a new avenue for the exploration of a novel and efficient type-I photosensitizer.
Collapse
Affiliation(s)
- Xiao Cui
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
| | - Fang Fang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Huan Chen
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
| | - Chen Cao
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
| | - Yafang Xiao
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
| | - Shuang Tian
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China.
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
| |
Collapse
|
19
|
Li Y, Han S, Zhao Y, Yan J, Luo K, Li F, He B, Sun Y, Li F, Liang Y. A Redox-Triggered Polymeric Nanoparticle for Disrupting Redox Homeostasis and Enhanced Ferroptosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2404299. [PMID: 39663694 DOI: 10.1002/smll.202404299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/17/2024] [Indexed: 12/13/2024]
Abstract
Cancer cells possess an efficient redox system, enabling them to withstand oxidative damage induced by treatments, especially in hypoxia areas and ferroptosis can disrupt redox homeostasis in cancer cell. Herein, GSH-sensitive nanoparticles are constructed that induce ferroptosis by long-lasting GSH depletion and enhanced PDT. Carbonic anhydrase IX inhibitor, protoporphyrin IX (Por) complexed with Fe and epirubicin (EPI) are grafted to hyaluronic acid (HA) via disulfide bonds to obtain HSPFE and loaded xCT inhibitor SAS for fabricating SAS@HSPFE which is actively targeted to deep hypoxic tumor cells, and explosively releasing EPI, Por-Fe complex and SAS due to at high GSH concentration. Specifically, SAS inhibited the GSH biosynthesis, and the generation of ROS by Por and the involvement of Fe2+ in the Fenton reaction jointly facilitates oxidative stress. Besides, Fe2+ reacted with excess H2O2 to produce O2, which continuously fuels PDT. GPX4 and SLC7A11 related to antioxidant defense are down-regulated, while ACSL4 and TFRC promoting lipid peroxidation and ROS accumulation are up-regulated, which enhanced ferroptosis by amplifying oxidative stress and suppressing antioxidant defense. SAS@HSPFE NPs revealed highly efficient antitumor effect in vivo study. This study provides a novel approach to cancer treatment by targeting redox imbalance.
Collapse
Affiliation(s)
- Yifei Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Shangcong Han
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Yi Zhao
- Department of Recuperation Medicine, Qingdao Special Service Sanatorium of PLA Navy, Qingdao, 266071, China
| | - Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fashun Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Fan Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| |
Collapse
|
20
|
Wang Y, Xu Y, Qu Y, Jin Y, Cao J, Zhan J, Li Z, Chai C, Huang C, Li M. Ferroptosis: A novel cell death modality as a synergistic therapeutic strategy with photodynamic therapy. Photodiagnosis Photodyn Ther 2025; 51:104463. [PMID: 39736368 DOI: 10.1016/j.pdpdt.2024.104463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
Although there has been significant progress in current comprehensive anticancer treatments centered on surgery, postoperative recurrence and tumor metastasis still significantly affect both prognosis and quality of life of the patient. Hence, the development of precisely targeted tumor therapies and exploration of immunotherapy represent additional strategies for tumor treatment. Photodynamic therapy (PDT) is a relatively safe treatment modality that not only induces multiple modes of tumor cell death but also mediates the secondary immunological responses against tumor resistance and metastasis. Ferroptosis, an iron-dependent type of programmed cell death characterized by accumulation of reactive oxygen species and lipid peroxidation products to lethal levels, has emerged as an attractive target trigger for tumor therapies. Recent research has revealed a close association between PDT and ferroptosis, suggesting that combining ferroptosis inducers with PDT could strengthen their synergistic anti-tumor efficiency. Here in this review, we discuss the rationale for combining PDT with ferroptosis inducers and highlight the progress of single-molecule photosensitizers to induce ferroptosis, as well as the applications of photosensitizers combined with other therapeutic drugs for collaborative therapy. Furthermore, given the current research dilemma, we propose potential therapeutic strategies to advance the combined usage of PDT and ferroptosis inducers, providing the basis and guidelines for prospective clinical translation and research directionality with regard to PDT.
Collapse
Affiliation(s)
- Yuqing Wang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yiting Xu
- Central Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Yong Qu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yifang Jin
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Juanmei Cao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Dermatology, First Affiliated Hospital, Shihezi University, Shihezi 832008, China
| | - Jinshan Zhan
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhuoxia Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chuxing Chai
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Changzheng Huang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Min Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
21
|
Xiong T, Ning F, Chen Y, Gu M, Li M, Chen X, Wang L, Fan J, Peng X. Charge Regulation-Enhanced Type I Photosensitizer-Loaded Hydrogel Dressing for Hypoxic Bacterial Inhibition and Biofilm Elimination. ACS NANO 2025; 19:2822-2833. [PMID: 39764613 DOI: 10.1021/acsnano.4c15730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Biofilm-induced chronic bacterial infections represent a significant challenge in modern medicine due to their resistance to conventional antibiotic treatments. Although photodynamic therapy (PDT) has emerged as a promising antibiotic-free antibacterial strategy, the hypoxic condition within biofilms and the lack of an effective local drug delivery system have limited the clinical effectiveness of photosensitizer (PS) agents. Herein, we propose a type of charge regulation-enhanced type I PS-loaded hydrogel dressing for treating biofilm infection. The charge regulation enables the multiple alkylation Nile blue (EB series) to exhibit substantially improved absorbance (∼2-fold), alkaline tolerance, and superoxide anion yield (2.2-4.2-fold) compared to the representative type I PS, sulfur-substituted Nile blue. Specifically, the enhanced electronic push-pull capabilities promote a more efficient electron recycling process, significantly boosting the efficiency of type I PDT. The superior PDT effect and enhanced bacterial uptake via charge regulation render the EB series more pronounced in hypoxic bacterial inhibition under red light or sunlight irradiation. Moreover, the hydrogel, constructed from oxidized dextran and quaternized chitosan, facilitates the localization and sustained retention of type I PSs, accelerating the healing of biofilm-infected wounds. This type I PS-based hydrogel could provide an efficient and user-friendly wound dressing for the clinical treatment and prevention of biofilm infections.
Collapse
Affiliation(s)
- Tao Xiong
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
| | - Fangrui Ning
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingchao Chen
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
| | - Mingrui Gu
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
| | - Mingle Li
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
| | - Xiaoqiang Chen
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
| | - Lei Wang
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
22
|
Fan Z, Teng KX, Xu YY, Niu LY, Yang QZ. The Photodynamic Agent Designed by Involvement of Hydrogen Atom Transfer for Enhancing Photodynamic Therapy. Angew Chem Int Ed Engl 2025; 64:e202413595. [PMID: 39448378 DOI: 10.1002/anie.202413595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/01/2024] [Accepted: 10/24/2024] [Indexed: 10/26/2024]
Abstract
Although Type-I photodynamic therapy has attracted increasingly growing interest due to its reduced dependence on oxygen, the design of effective Type-I photosensitizers remains a challenge. In this work, we report a design strategy for Type-I photosensitizers by the involvement of hydrogen atom transfer (HAT). As a proof of concept, a HAT-involved Type-I PS, which simultaneously generates superoxide and carbon-centered radicals under light-irradiation, was synthesized. This photosensitizer is comprised of a fluorene-substituted BODIPY unit as an electron acceptor covalently linked with a triphenylamine moiety as an electron donor. Under light-irradiation, photo-induced intramolecular electron transfer occurs to generate the BODIPY anion radical and triphenylamine cation radical. The former transfers electrons to oxygen to generate O2 -⋅, while the latter loses a proton to produce a benzyl carbon-centered radical which is well characterized. The resulting carbon-centered radicals efficiently oxidize NADH by HAT reaction. This photosensitizer demonstrates remarkable photocytotoxicity even under hypoxic conditions, along with outstanding in vivo antitumor efficacy in mouse models bearing HeLa tumors. This work offers a novel strategy for the design of Type-I photosensitizers by involvement of HAT.
Collapse
Affiliation(s)
- Zhuo Fan
- Institution Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Kun-Xu Teng
- Institution Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yuan-Yuan Xu
- Institution Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Li-Ya Niu
- Institution Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Qing-Zheng Yang
- Institution Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
23
|
Yang Y, Jiang S, Stanciu SG, Peng H, Wu A, Yang F. Photodynamic therapy with NIR-II probes: review on state-of-the-art tools and strategies. MATERIALS HORIZONS 2024; 11:5815-5842. [PMID: 39207201 DOI: 10.1039/d4mh00819g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In 2022 10% of the world's population was aged 65+, and by 2100 this segment is expected to hit 25%. These demographic changes place considerable pressure over healthcare systems worldwide, which results in an urgent need for accurate, inexpensive and non-invasive ways to treat cancers, a family of diseases correlated with age. Among the therapeutic tools that gained important attention in this context, photodynamic therapies (PDT), which use photosensitizers to produce cytotoxic substances for selectively destroying tumor cells and tissues under light irradiation, profile as important players for next-generation nanomedicine. However, the development of clinical applications is progressing at slow pace, due to still pending bottlenecks, such as the limited tissue penetration of the excitation light, and insufficient targeting performance of the therapeutic probes to fully avoid damage to normal cells and tissues. The penetration depth of long-wavelength near infrared (NIR) light is significantly higher than that of short-wavelength UV and visible light, and thus NIR light in the second window (NIR-II) is acknowledged as the preferred phototherapeutic means for eliminating deep-seated tumors, given the higher maximum permissible exposure, reduced phototoxicity and low autofluorescence, among others. Upon collective multidisciplinary efforts of experts in materials science, medicine and biology, multifunctional NIR-II inorganic or organic photosensitizers have been widely developed. This review overviews the current state-of-the art on NIR-II-activated photosensitizers and their applications for the treatment of deep tumors. We also place focus on recent efforts that combine NIR-II activated PDT with other complementary therapeutic routes such as photothermal therapy, chemotherapy, immunotherapy, starvation, and gas therapies. Finally, we discuss still pending challenges and problems of PDT and provide a series of perspectives that we find useful for further extending the state-of-the art on NIR-II-triggered PDT.
Collapse
Affiliation(s)
- Yiqian Yang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Stefan G Stanciu
- Center for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica Bucharest, Bucharest 060042, Romania
| | - Hao Peng
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Aiguo Wu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Fang Yang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| |
Collapse
|
24
|
Zhang Q, Zhao K, Tang X, Song A, Zhang Z, Yin D. Rational design of an AIEgen for imaging lipid droplets polarity change during ferroptosis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124701. [PMID: 38917752 DOI: 10.1016/j.saa.2024.124701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Ferroptosis can regulate cell death by accumulating lipid peroxides, affecting the structure and polarity of lipid droplets (LDs), but clear evidence is still lacking. Fluorescence imaging is the most powerful technique for studying LDs' function. However, developing AIE fluorescent probes with high selectivity and sensitivity for targeting LDs remains challenging. In this study, we rationally designed an AIEgen, as a novel fluorescent probe TPE-BD, by constructing a push-pull electron structure. The probe has benzo[b]thiophene-3(2H)-one 1,1-dioxide as the electron acceptor, tetraphenylethylene (AIE skeleton) as the electron donor, and thiophene as the bridging group. The optical performance of probe TPE-BD indicated that the UV-visible absorption spectrum of the probe was minimally affected by solvent polarity (except for glycerol and PBS solvents), but the fluorescence of probe is very sensitive to changes in polarity, achieving the goal of polarity detection in LDs. CCK-8 assay and cell imaging experiments demonstrated that probe TPE-BD exhibited good cell compatibility and effectively targeted LDs, enabling the monitoring of LDs' polarity and quantity during ferroptosis.
Collapse
Affiliation(s)
- Qianqian Zhang
- College of Environment Economic, Henan Finance University, Zhengzhou 450046, China.
| | - Kunyu Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohong Tang
- College of Environment Economic, Henan Finance University, Zhengzhou 450046, China
| | - Ajuan Song
- College of Environment Economic, Henan Finance University, Zhengzhou 450046, China
| | - Zezhi Zhang
- College of Environment Economic, Henan Finance University, Zhengzhou 450046, China
| | - Dan Yin
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
25
|
Yang X, Liu Y, Wang Z, Jin Y, Gu W. Ferroptosis as a new tool for tumor suppression through lipid peroxidation. Commun Biol 2024; 7:1475. [PMID: 39521912 PMCID: PMC11550846 DOI: 10.1038/s42003-024-07180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
As a newly defined type of programmed cell death, ferroptosis is considered a potent weapon against tumors due to its distinct mechanism from other types of programmed cell death. Ferroptosis is triggered by the uncontrolled accumulation of hydroperoxyl polyunsaturated fatty acid-containing phospholipids, also called lipid peroxidation. The lipid peroxidation, generated through enzymatic and non-enzymatic mechanisms, drives changes in cell morphology and the destruction of membrane integrity. Here, we dissect the mechanisms of ferroptosis induced enzymatically or non-enzymatically, summarize the major metabolism pathways in modulating lipid peroxidation, and provide insights into the relationship between ferroptosis and tumor suppression. In this review, we discuss the recent advances of ferroptosis in tumor microenvironments and the prospect of potential therapeutic application.
Collapse
Affiliation(s)
- Xin Yang
- Suzhou Ninth Hospital Affiliated to Soochow University, The Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| | - Yanqing Liu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zhe Wang
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Ying Jin
- Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou Ninth People's Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Wei Gu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
26
|
Zou Y, Chen J, Luo X, Qu Y, Zhou M, Xia R, Wang W, Zheng X. Porphyrin-engineered nanoscale metal-organic frameworks: enhancing photodynamic therapy and ferroptosis in oncology. Front Pharmacol 2024; 15:1481168. [PMID: 39512824 PMCID: PMC11541831 DOI: 10.3389/fphar.2024.1481168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Photodynamic therapy and ferroptosis induction have risen as vanguard oncological interventions, distinguished by their precision and ability to target vulnerabilities in cancer cells. Photodynamic therapy's non-invasive profile and selective cytotoxicity complement ferroptosis' unique mode of action, which exploits iron-dependent lipid peroxidation, offering a pathway to overcome chemoresistance with lower systemic impact. The synergism between photodynamic therapy and ferroptosis is underscored by the depletion of glutathione and glutathione peroxidase four inhibitions by photodynamic therapy-induced reactive oxygen species, amplifying lipid peroxidation and enhancing ferroptotic cell death. This synergy presents an opportunity to refine cancer treatment by modulating redox homeostasis. Porphyrin-based nanoscale metal-organic frameworks have unique hybrid structures and exceptional properties. These frameworks can serve as a platform for integrating photodynamic therapy and ferroptosis through carefully designed structures and functions. These nanostructures can be engineered to deliver multiple therapeutic modalities simultaneously, marking a pivotal advance in multimodal cancer therapy. This review synthesizes recent progress in porphyrin-modified nanoscale metal-organic frameworks for combined photodynamic therapy and ferroptosis, delineating the mechanisms that underlie their synergistic effects in a multimodal context. It underscores the potential of porphyrin-based nanoscale metal-organic frameworks as advanced nanocarriers in oncology, propelling the field toward more efficacious and tailored cancer treatments.
Collapse
Affiliation(s)
- Yutao Zou
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu, China
| | - Jiayi Chen
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Xuanxuan Luo
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Yijie Qu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Mengjiao Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Rui Xia
- School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
27
|
Wang Z, Ma W, Yang Z, Kiesewetter DO, Wu Y, Lang L, Zhang G, Nakuchima S, Chen J, Su Y, Han S, Wu LG, Jin AJ, Huang W. A Type I Photosensitizer-Polymersome Boosts Reactive Oxygen Species Generation by Forcing H-Aggregation for Amplifying STING Immunotherapy. J Am Chem Soc 2024; 146:28973-28984. [PMID: 39383053 PMCID: PMC11505375 DOI: 10.1021/jacs.4c09831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Activation of the innate immune Stimulator of Interferon Genes (STING) pathway potentiates antitumor immunity. However, delivering STING agonists systemically to tumors presents a formidable challenge, and resistance to STING monotherapy has emerged in clinical trials with diminishing natural killer (NK) cell proliferation. Here, we encapsulated the STING agonist diABZI within polymersomes containing a Type I photosensitizer (NBS), creating a nanoagonist (PNBS/diABZI) for highly responsive tumor immunotherapy. This structure promoted H-aggregation and intersystem crossing of NBS, resulting in a ∼ 3-fold amplification in superoxide anion and singlet oxygen generation. The photodynamic therapy directly damaged hypoxia tumor cells and stimulated the proliferation of NK cells and cytotoxic T lymphocytes, thereby sensitizing STING immunotherapy. A single systemic intravenous administration of PNBS/diABZI eradicated orthotopic mammary tumors in murine models, achieving long-term antitumor immune memory to inhibit tumor recurrence and metastasis and significantly improving long-term tumor-free survival. This work provides a design rule for boosting reactive oxygen species production by promoting the intersystem crossing process, highlighting the potential of Type I photosensitizer-polymer vehicles for augmenting STING immunotherapy.
Collapse
Affiliation(s)
- Zhixiong Wang
- Intramural Research Program, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Wen Ma
- Strait Laboratory of Flexible Electronics (SLoFE), Fujian Key Laboratory of Flexible Electronics, Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou 350117, China
| | - Zhen Yang
- Strait Laboratory of Flexible Electronics (SLoFE), Fujian Key Laboratory of Flexible Electronics, Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou 350117, China
| | - Dale O Kiesewetter
- Intramural Research Program, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yicong Wu
- Intramural Research Program, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Lixin Lang
- Intramural Research Program, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Guofeng Zhang
- Intramural Research Program, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sofia Nakuchima
- Intramural Research Program, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jiji Chen
- Advanced Imaging and Microscopy (AIM) Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yijun Su
- Advanced Imaging and Microscopy (AIM) Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sue Han
- Synaptic Transmission Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, United States
| | - Ling-Gang Wu
- Synaptic Transmission Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, United States
| | - Albert J Jin
- Intramural Research Program, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Wei Huang
- Strait Laboratory of Flexible Electronics (SLoFE), Fujian Key Laboratory of Flexible Electronics, Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou 350117, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
28
|
Jin L, Wang Z, Mo W, Deng H, Hong W, Chi Z. Hierarchical Dual-Mode Efficient Tunable Afterglow via J-Aggregates in Single-Phosphor-Doped Polymer. Angew Chem Int Ed Engl 2024; 63:e202410974. [PMID: 38940067 DOI: 10.1002/anie.202410974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
The development of polymer-based persistent luminescence materials with color-tunable organic afterglow and multiple responses is highly desirable for applications in anti-counterfeiting, flexible displays, and data-storage. However, achieving efficient persistent luminescence from a single-phosphor system with multiple responses remains a challenging task. Herein, by doping 9H-pyrido[3,4-b]indole (PI2) into an amorphous polyacrylamide matrix, a hierarchical dual-mode emission system is developed, which exhibits color-tunable afterglow due to excitation-, temperature-, and humidity-dependence. Notably, the coexistence of the isolated state and J-aggregate state of the guest molecule not only provides an excitation-dependent afterglow color, but also leads to a hierarchical temperature-dependent afterglow color resulting from different thermally activated delayed fluorescence (TADF) and ultralong organic phosphorescence (UOP) behaviors of the isolated and aggregated states. The complex responsiveness based on the hierarchical dual-mode emission can serve for security features through inkjet printing and ink-writing. These findings may provide further insight into the regulated persistent luminescence by isolated and aggregated phosphors in doped polymer systems and expand the scope of stimuli-responsive organic afterglow materials for broader applications.
Collapse
Affiliation(s)
- Longming Jin
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ziyi Wang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wanqi Mo
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Huangjun Deng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529020, China
| | - Wei Hong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhenguo Chi
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
29
|
Lei Y, Ji Z, Xiang W, Duan L. A dual-state emission luminogen for lipid droplet imaging and photodynamic therapy. Bioorg Chem 2024; 153:107856. [PMID: 39362082 DOI: 10.1016/j.bioorg.2024.107856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Organic luminogens with dual-state emission (DSE) have garnered widespread attention due to their versatility in the forms of both dilute solutions and solids. Despite the growing interest, most research on DSE focuses primarily on molecule design and photophysical investigation, with limited exploration of their practical applications. In this study, we introduce a novel fluorescent molecule, PCT, featuring a distinct D-π(A)-D' electronic structure. PCT exhibited efficient DSE properties, with high quantum yields in both dilute solutions (ΦTHF = 52.3 %) and solid-state (Φsolid = 74.6 %). Taking advantage of PCT's lipophilicity, we demonstrated its potential for targeted lipid droplet (LD) imaging in living cells and its utility in monitoring LD depletion during cellular starvation. To further enhance its applicability in photodynamic therapy (PDT), PCT was encapsulated within the amphiphilic triblock copolymer Pluronic F127, forming PCT@F127 nanoparticles with improved colloidal stability. These nanoparticles efficiently generated singlet oxygen (1O2) under white light irradiation, achieving a 1O2 quantum yield of 57.2 %. In vitro studies on MCF-7 cells revealed significant 1O2 generation and potent phototoxicity, leading to marked cell apoptosis and necrosis. These results underscore PCT's multifunctionality as a DSEgen, with promising applications in both bioimaging and PDT.
Collapse
Affiliation(s)
- Yu Lei
- Department of Emergency Medicine, Lequn Branch, The First Hospital of Jilin University, Changchun 130021, China
| | - Zhiyong Ji
- Department of Emergency Medicine, Lequn Branch, The First Hospital of Jilin University, Changchun 130021, China.
| | - Wei Xiang
- Department of Emergency Medicine, Lequn Branch, The First Hospital of Jilin University, Changchun 130021, China
| | - Liming Duan
- Department of Emergency Medicine, Lequn Branch, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
30
|
Qiao W, Ma T, Xie G, Xu J, Yang ZR, Zhong C, Jiang H, Xia J, Zhang L, Zhu J, Li Z. Supramolecular H-Aggregates of Squaraines with Enhanced Type I Photosensitization for Combined Photodynamic and Photothermal Therapy. ACS NANO 2024; 18:25671-25684. [PMID: 39223995 DOI: 10.1021/acsnano.4c07764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Combined photodynamic and photothermal therapy (PDT and PTT) can achieve more superior therapeutic effects than the sole mode by maximizing the photon utilization, but there remains a significant challenge in the development of related single-molecule photosensitizers (PSs), particularly those with type I photosensitization. In this study, self-assembly of squaraine dyes (SQs) is shown to be a promising strategy for designing PSs for combined type I PDT and PTT, and a supramolecular PS (TPE-SQ7) has been successfully developed through subtle molecular design of an indolenine SQ, which can self-assemble into highly ordered H-aggregates in aqueous solution as well as nanoparticles (NPs). In contrast to the typical quenching effect of H-aggregates on reactive oxygen species (ROS) generation, our results encouragingly manifest that H-aggregates can enhance type I ROS (•OH) generation by facilitating the intersystem crossing process while maintaining a high PTT performance. Consequently, TPE-SQ7 NPs with ordered H-aggregates not only exhibit superior combined therapeutic efficacy than the well-known PS (Ce6) under both normoxic and hypoxic conditions but also have excellent biosafety, making them have important application prospects in tumor phototherapy and antibacterial fields. This study not only proves that the supramolecular self-assembly of SQs is an effective strategy toward high-performance PSs for combined type I PDT and PTT but also provides a different understanding of the effect of H-aggregates on the PDT performance.
Collapse
Affiliation(s)
- Weiguo Qiao
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Teng Ma
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ge Xie
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jingwen Xu
- School of Chemistry, Chemical Engineering and Life Science, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zhuo-Ran Yang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Cheng Zhong
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Hao Jiang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianlong Xia
- School of Chemistry, Chemical Engineering and Life Science, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Lianbin Zhang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhong'an Li
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
31
|
Liu C, Liu C, Ji X, Zhao W, Dong X. Synthesis and Photodynamic Activities of Pyridine- or Pyridinium-Substituted Aza-BODIPY Photosensitizers. J Med Chem 2024; 67:15908-15924. [PMID: 39167079 DOI: 10.1021/acs.jmedchem.4c01641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
In this work, various novel pyridinyl- and pyridinium-modified Aza-BODIPY PSs were designed and constructed based on monoiodo Aza-BODIPY PSs (BDP-4 and BDP-15) in an attempt to construct "structure-inherent organelles-targeted" PSs to endow potential organelle-targeting ability. Pyridinyl PSs displayed potent photodynamic efficacy, and monorigidified PSs were very effective. The monorigidified PS 20 with meta-pyridinyl moiety displayed the most potent photoactivity and negligible dark toxicity with a favorable dark/phototoxicity ratio (>4800). To our surprise, monorigidified PS with meta-pyridinyl moiety (e.g., 20) was lipid droplet-targeted. 20 showed good cellular uptake and intracellular ROS generation compared with BDP-15. The preliminary cell death process exploration indicated that 20 resulted in lipid peroxidation and induced cell death through an iron-independent ferroptosis-like cell death pathway. In vivo antitumor efficacy experiments manifested that 20 significantly inhibited tumor growth and outperformed BDP-15 and Ce6 even under a single low-dose light irradiation (30 J/cm2).
Collapse
Affiliation(s)
- Chang Liu
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Chuan Liu
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Xin Ji
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Weili Zhao
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Xiaochun Dong
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| |
Collapse
|
32
|
Wang L, Tong L, Xiong Z, Chen Y, Zhang P, Gao Y, Liu J, Yang L, Huang C, Ye G, Du J, Liu H, Yang W, Wang Y. Ferroptosis-inducing nanomedicine and targeted short peptide for synergistic treatment of hepatocellular carcinoma. J Nanobiotechnology 2024; 22:533. [PMID: 39223666 PMCID: PMC11370132 DOI: 10.1186/s12951-024-02808-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
The poor prognosis of hepatocellular carcinoma (HCC) is still an urgent challenge to be solved worldwide. Hence, assembling drugs and targeted short peptides together to construct a novel medicine delivery strategy is crucial for targeted and synergy therapy of HCC. Herein, a high-efficiency nanomedicine delivery strategy has been constructed by combining graphdiyne oxide (GDYO) as a drug-loaded platform, specific peptide (SP94-PEG) as a spear to target HCC cells, sorafenib, doxorubicin-Fe2+ (DOX-Fe2+), and siRNA (SLC7A11-i) as weapons to exert a three-path synergistic attack against HCC cells. In this work, SP94-PEG and GDYO form nanosheets with HCC-targeting properties, the chemotherapeutic drug DOX linked to ferrous ions increases the free iron pool in HCC cells and synergizes with sorafenib to induce cell ferroptosis. As a key gene of ferroptosis, interference with the expression of SLC7A11 makes the ferroptosis effect in HCC cells easier, stronger, and more durable. Through gene interference, drug synergy, and short peptide targeting, the toxic side effects of chemotherapy drugs are reduced. The multifunctional nanomedicine GDYO@SP94/DOX-Fe2+/sorafenib/SLC7A11-i (MNMG) possesses the advantages of strong targeting, good stability, the ability to continuously induce tumor cell ferroptosis and has potential clinical application value, which is different from traditional drugs.
Collapse
Affiliation(s)
- Luyang Wang
- Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310006, P. R. China
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P. R. China
- Center for Drug Safety Evaluation, Qingdao Center for Pharmaceutical Collaborative Innovation, Qingdao, 266209, Shandong, P. R. China
- Department of Laboratory Medicine, Xinhua Hospital of Zhejiang Province, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China
| | - Le Tong
- Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310006, P. R. China
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310006, P. R. China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, P. R. China
| | - Zecheng Xiong
- CAS Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, CAS Research/ Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yi Chen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P. R. China
| | - Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P. R. China
| | - Yan Gao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P. R. China
| | - Jing Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P. R. China
| | - Lei Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P. R. China
| | - Chunqi Huang
- Department of Laboratory Medicine, Xinhua Hospital of Zhejiang Province, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China
| | - Gaoqi Ye
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P. R. China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P. R. China.
| | - Huibiao Liu
- CAS Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, CAS Research/ Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Wei Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P. R. China.
| | - Ying Wang
- Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310006, P. R. China.
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310006, P. R. China.
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P. R. China.
| |
Collapse
|
33
|
Xiong T, Chen Y, Peng Q, Li M, Lu S, Chen X, Fan J, Wang L, Peng X. Pyrazolone-Protein Interaction Enables Long-Term Retention Staining and Facile Artificial Biorecognition on Cell Membranes. J Am Chem Soc 2024; 146:24158-24166. [PMID: 39138141 DOI: 10.1021/jacs.4c08987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Cell membrane genetic engineering has been utilized to confer cell membranes with functionalities for diagnostic and therapeutic purposes but concerns over cost and variable modification results. Although nongenetic chemical modification and phospholipid insertion strategies are more convenient, they still face bottlenecks in either biosafety or stability of the modifications. Herein, we show that pyrazolone-bearing molecules can bind to proteins with high stability, which is mainly contributed to by the multiple interactions between pyrazolone and basic amino acids. This new binding model offers a simple and versatile noncovalent approach for cell membrane functionalization. By binding to cell membrane proteins, pyrazolone-bearing dyes enabled precise cell tracking in vitro (>96 h) and in vivo (>21 days) without interfering with the protein function or causing cell death. Furthermore, the convenient anchor of pyrazolone-bearing biotin on cell membranes rendered the biorecognition to avidin, showing the potential for artificially creating cell targetability.
Collapse
Affiliation(s)
- Tao Xiong
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518071, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yingchao Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Qiang Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Mingle Li
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518071, China
| | - Sheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoqiang Chen
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518071, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Lei Wang
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518071, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518071, China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
34
|
Chauhan N, Koli M, Ghosh R, Majumdar AG, Ghosh A, Ghanty TK, Mula S, Patro BS. A BODIPY-Naphtholimine-BF 2 Dyad for Precision Photodynamic Therapy, Targeting, and Dual Imaging of Endoplasmic Reticulum and Lipid Droplets in Cancer. JACS AU 2024; 4:2838-2852. [PMID: 39211629 PMCID: PMC11350743 DOI: 10.1021/jacsau.3c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/11/2024] [Accepted: 05/22/2024] [Indexed: 09/04/2024]
Abstract
Currently, effective therapeutic modalities for pancreatic ductal adenocarcinoma (PDAC) are quite limited, leading to gloomy prognosis and ∼6-months median patient survival. Recent advances showed the promise of photodynamic therapy (PDT) for PDAC patients. Next generation photosensitizers (PS) are based on "organelle-targeted-PDT" and provide new paradigm in the field of precision medicines to address the current challenge for treating PDAC. In this investigation, we have constructed a novel PS, named as N b B, for precise and simultaneous targeting of endoplasmic reticulum (ER) and lipid droplets (LDs) in PDAC, based on the fact that malignant PDAC cells are heavily relying on ER for hormone synthesis. Our live cell imaging and fluorescence recovery after photobleaching (FRAP) experiments revealed that N b B is quickly targeted to ER and subsequently to LDs and shows simultaneous dual fluorescence color due to polar and nonpolar milieu of ER and LDs. Interestingly, the same molecule generates triplet state and singlet oxygen efficiently and causes robust ER stress and cellular lipid peroxidation, leading to apoptosis in two different PDAC cells in the presence of light. Together, we present, for the first time, a potential next generation precision medicine for ER-LD organelle specific imaging and PDT of pancreatic cancer.
Collapse
Affiliation(s)
- Nitish Chauhan
- Bio-Organic
Division, Radiation
and Photochemistry Division, Laser and Plasma Technology
Division, Bio-Science
Group, Bhabha Atomic Research Centre, Mod. Lab, Trombay, Mumbai-400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai-400094, India
| | - Mrunesh Koli
- Bio-Organic
Division, Radiation
and Photochemistry Division, Laser and Plasma Technology
Division, Bio-Science
Group, Bhabha Atomic Research Centre, Mod. Lab, Trombay, Mumbai-400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai-400094, India
| | - Rajib Ghosh
- Bio-Organic
Division, Radiation
and Photochemistry Division, Laser and Plasma Technology
Division, Bio-Science
Group, Bhabha Atomic Research Centre, Mod. Lab, Trombay, Mumbai-400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai-400094, India
| | - Ananda Guha Majumdar
- Bio-Organic
Division, Radiation
and Photochemistry Division, Laser and Plasma Technology
Division, Bio-Science
Group, Bhabha Atomic Research Centre, Mod. Lab, Trombay, Mumbai-400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai-400094, India
| | - Ayan Ghosh
- Bio-Organic
Division, Radiation
and Photochemistry Division, Laser and Plasma Technology
Division, Bio-Science
Group, Bhabha Atomic Research Centre, Mod. Lab, Trombay, Mumbai-400085, India
| | - Tapan K. Ghanty
- Bio-Organic
Division, Radiation
and Photochemistry Division, Laser and Plasma Technology
Division, Bio-Science
Group, Bhabha Atomic Research Centre, Mod. Lab, Trombay, Mumbai-400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai-400094, India
| | - Soumyaditya Mula
- Bio-Organic
Division, Radiation
and Photochemistry Division, Laser and Plasma Technology
Division, Bio-Science
Group, Bhabha Atomic Research Centre, Mod. Lab, Trombay, Mumbai-400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai-400094, India
| | - Birija Sankar Patro
- Bio-Organic
Division, Radiation
and Photochemistry Division, Laser and Plasma Technology
Division, Bio-Science
Group, Bhabha Atomic Research Centre, Mod. Lab, Trombay, Mumbai-400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai-400094, India
| |
Collapse
|
35
|
Chen Y, Xiong T, Peng Q, Du J, Sun W, Fan J, Peng X. Self-reporting photodynamic nanobody conjugate for precise and sustainable large-volume tumor treatment. Nat Commun 2024; 15:6935. [PMID: 39138197 PMCID: PMC11322375 DOI: 10.1038/s41467-024-51253-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Nanobodies (Nbs), the smallest antigen-binding fragments with high stability and affinity derived from the variable domain of naturally occurring heavy-chain-only antibodies in camelids, have been shown as an efficient way to improve the specificity to tumors for photodynamic therapy (PDT). Nonetheless, the rapid clearance of Nbs in vivo restricts the accumulation and retention of the photosensitizer at the tumor site causing insufficient therapeutic outcome, especially in large-volume tumors. Herein, we develop photodynamic conjugates, MNB-Pyra Nbs, through site-specific conjugation between 7D12 Nbs and type I photosensitizer MNB-Pyra (morpholine-modified nile blue structure connected to pyrazolinone) in a 1:2 ratio. The photosensitizers with long-term retention can be released at the tumor site by reactive oxygen species cleavage after illumination, accompanied with fluorescence recovery for self-reporting the occurrence of PDT. Ultimately, a single dose of MNB-Pyra Nbs demonstrate highly effective tumor suppression with high biosafety in the large-volume tumor models after three rounds of PDT. This nanobody conjugate provides a paradigm for the design of precise long-time retention photosensitizers and is expected to promote the development of PDT.
Collapse
Affiliation(s)
- Yingchao Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
- Liaoning Binhai Laboratory, Dalian, 116023, China
| | - Tao Xiong
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
- Liaoning Binhai Laboratory, Dalian, 116023, China
| | - Qiang Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
- Liaoning Binhai Laboratory, Dalian, 116023, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
- Liaoning Binhai Laboratory, Dalian, 116023, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
- Liaoning Binhai Laboratory, Dalian, 116023, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China.
- Liaoning Binhai Laboratory, Dalian, 116023, China.
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
- Liaoning Binhai Laboratory, Dalian, 116023, China
| |
Collapse
|
36
|
Luo X, Jiao Q, Pei S, Zhou S, Zheng Y, Shao W, Xu K, Zhong W. A Photoactivated Self-Assembled Nanoreactor for Inducing Cascade-Amplified Oxidative Stress toward Type I Photodynamic Therapy in Hypoxic Tumors. Adv Healthc Mater 2024:e2401787. [PMID: 39101321 DOI: 10.1002/adhm.202401787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Type I photodynamic therapy (PDT) generates reactive oxygen species (ROS) through oxygen-independent photoreactions, making it a promising method for treating hypoxic tumors. However, the superoxide anion (O2∙-) generated usually exhibits a low oxidation capacity, restricting the antitumor efficacy of PDT in clinical practice. Herein, a photoactivated self-assembled nanoreactor (1-NBS@CeO2) is designed through integration of type I PDT and cerium oxide (CeO2) nanozymes for inducing cascade-amplified oxidative stress in hypoxic tumors. The nanoreactor is constructed though co-assembly of an amphiphilic peptide (1-NBS) and CeO2, giving well-dispersed spherical nanoparticles with enhanced superoxide dismutase (SOD)-like and peroxidase (POD)-like activities. Following light irradiation, 1-NBS@CeO2 undergoes type I photoreactions to generated O2∙-, which is further catalyzed by the nanoreactors, ultimately forming hypertoxic hydroxyl radical (∙OH) through cascade-amplified reactions. The PDT treatment using 1-NBS@CeO2 results in elevation of intracellular ROS and depletion of GSH content in A375 cells, thereby inducing mitochondrial dysfunction and triggering apoptosis and ferroptosis of tumor cells. Importantly, intravenous administration of 1-NBS@CeO2 alongside light irradiation showcases enhances antitumor efficacy and satisfactory biocompatibility in vivo. Together, the self-assembled nanoreactor facilitates cascade-amplified photoreactions for achieving efficacious type I PDT, which holds great promise in developing therapeutic modules towards hypoxic tumors.
Collapse
Affiliation(s)
- Xuan Luo
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Qishu Jiao
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Shicheng Pei
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Shuyao Zhou
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Yaxin Zheng
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Weiyang Shao
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Keming Xu
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenying Zhong
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
37
|
Wang Z, Zeng S, Hao Y, Cai W, Sun W, Du J, Long S, Fan J, Wang J, Chen X, Peng X. Gram-negative bacteria recognition and photodynamic elimination by Zn-DPA based sensitizers. Biomaterials 2024; 308:122571. [PMID: 38636132 DOI: 10.1016/j.biomaterials.2024.122571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
The abuse and overuse of antibiotics let drug-resistant bacteria emerges. Antibacterial photodynamic therapy (APDT) has shown outstanding merits to eliminate the drug-resistant bacteria via cytotoxic reactive oxygen species produced by irradiating photosensitizer. However, most of photosensitizers are not effective for Gram-negative bacteria elimination. Herein conjugates of NBS, a photosensitizer, linked with one (NBS-DPA-Zn) or two (NBS-2DPA-Zn) equivalents of zinc-dipicolylamine (Zn-DPA) have been designed to achieve the functional recognition of different bacteria. Due to the cationic character of NBS and metal transfer channel effect of Zn-DPA, NBS-DPA-Zn exhibited the first regent to distinguish P. aeruginosa from other Gram-negative bacteria. Whereas NBS-2DPA-Zn showed broad-spectrum antibacterial effect because the two arm of double Zn-DPA enhanced interactions with anionic membranes of bacteria, led the bacteria aggregation and thus provided the efficacy of APDT to bacteria and corresponding biofilm. In combination with a hydrogel of Pluronic, NBS-2DPA-Zn@gel shows promising clinical application in mixed bacterial diabetic mouse model infection. This might propose a new method that can realize functional identification and elimination of bacteria through intelligent regulation of Zn-DPA, and shows excellent potential for antibacterial application.
Collapse
Affiliation(s)
- Zuokai Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, PR China
| | - Shuang Zeng
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, PR China
| | - Yifu Hao
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, PR China
| | - Wenlin Cai
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, PR China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, PR China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, PR China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, PR China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, PR China
| | - Jingyun Wang
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, PR China
| | - Xiaoqiang Chen
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, PR China; State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| |
Collapse
|
38
|
Ding J, Lu Y, Zhao X, Long S, Du J, Sun W, Fan J, Peng X. Activating Iterative Revolutions of the Cancer-Immunity Cycle in Hypoxic Tumors with a Smart Nano-Regulator. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400196. [PMID: 38734875 DOI: 10.1002/adma.202400196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/03/2024] [Indexed: 05/13/2024]
Abstract
The activation of sequential events in the cancer-immunity cycle (CIC) is crucial for achieving effective antitumor immunity. However, formidable challenges, such as innate and adaptive immune resistance, along with the off-target adverse effects of nonselective immunomodulators, persist. In this study, a tumor-selective nano-regulator named PNBJQ has been presented, focusing on targeting two nonredundant immune nodes: inducing immunogenic cancer cell death and abrogating immune resistance to fully activate endogenous tumor immunity. PNBJQ is obtained by encapsulating the immunomodulating agent JQ1 within a self-assembling system formed by linking a Type-I photosensitizer to polyethylene glycol through a hypoxia-sensitive azo bond. Benefiting from the Type-I photosensitive mechanism, PNBJQ triggers the immunogenic cell death of hypoxic tumors under near-infrared (NIR) light irradiation. This process resolves innate immune resistance by stimulating sufficient cytotoxic T-lymphocytes. Simultaneously, PNBJQ smartly responds to the hypoxic tumor microenvironment for precise drug delivery, adeptly addressing adaptive immune resistance by using JQ1 to downregulate programmed death ligand 1 (PD-L1) and sustaining the response of cytotoxic T lymphocytes. The activatable synergic photoimmunotherapy promotes an immune-promoting tumor microenvironment by activating an iterative revolution of the CIC, which remarkably eradicates established hypoxic tumors and suppresses distal lesions under low light dose irradiation.
Collapse
Affiliation(s)
- Junying Ding
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Yang Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Xueze Zhao
- Department of Chemistry, The University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
39
|
Huang D, Zou Y, Huang H, Yin J, Long S, Sun W, Du J, Fan J, Chen X, Peng X. A PROTAC Augmenter for Photo-Driven Pyroptosis in Breast Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313460. [PMID: 38364230 DOI: 10.1002/adma.202313460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/15/2024] [Indexed: 02/18/2024]
Abstract
Proteolysis targeting chimera (PROTAC) has recently emerged as a promising strategy for inducing post-translational knockdown of target proteins in disease treatment. The degradation of bromodomain-containing protein 4 (BRD4), an essential nuclear protein for gene transcription, induced by PROTAC is proposed as an epigenetic approach to treat breast cancer. However, the poor membrane permeability and indiscriminate distribution of PROTAC in vivo results in low bioavailability, limiting its development and application. Herein, a nano "targeting chimera" (abbreviated as L@NBMZ) consisting of BRD4-PROTAC combined with a photosensitizer, to serve as the first augmenter for photo-driven pyroptosis in breast cancer, is developed. With excellent BRD4 degradation ability, high biosafety, and biocompatibility, L@NBMZ blocks gene transcription by degrading BRD4 through proteasomes in vivo, and surprisingly, induces the cleavage of caspase-3. This type of caspase-3 cleavage is synergistically amplified by light irradiation in the presence of photosensitizers, leading to efficient photo-driven pyroptosis. Both in vitro and in vivo outcomes demonstrate the remarkable anti-cancer efficacy of this augmenter, which significantly inhibits the lung metastasis of breast cancer in vivo. Thus, the photo-PROTAC "targeting chimera" augmenter construction strategy may pave a new way for expanding PROTAC applications within anti-cancer paradigms.
Collapse
Affiliation(s)
- Daipeng Huang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yang Zou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Haiqiao Huang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Jikai Yin
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Xiaoqiang Chen
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, P. R. China
| |
Collapse
|
40
|
Li Z, Xie Y, Liu H, Wang J, Wang G, Wang H, Su X, Lei M, Wan Q, Zhou Y, Teng M. Molecular engineering to design a bright near-infrared red photosensitizer: cellular bioimaging and phototherapy. RSC Adv 2024; 14:13801-13807. [PMID: 38681838 PMCID: PMC11046288 DOI: 10.1039/d4ra00928b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
Near-infrared red (NIR) fluorescence imaging guide phototherapeutic therapy (PDT) has the advantages of deep tissue penetration, real-time monitoring of drug treatment and disease, little damage to normal tissue, low cytotoxicity and almost no side effects, and thus, it is attracting increasing research attention and is expected to show promising potential for clinical tumor treatment. The photosensitizer (PS), light source and oxygen are the three basic and important factors to construct PDT technology, and highly efficient PSs are still being passionately pursued because they determine the PDT efficiency. Ideal PSs should have properties such as good biocompatibility, deep tissue penetration, and highly efficient reactive oxygen species (ROS) generation despite the hypoxic environment. Therefore, pure organic type I PSs with NIR fluorescence have been receiving increasing attention due to their deep penetration and hypoxia resistance. However, reported NIR-active type I PSs usually require complex synthetic procedures, which presents a challenge for mass production. In this research work, based on the molecular design ideas of introducing the heavy atom effect and intramolecular charge transfer, we prepared three NIR-active type I PSs (TNZ, TNZBr, and TNZCHO) using a very simple method with one or two synthetic steps. Clear characterizations of photophysical properties, ROS performance tests, and fluorescent imaging of human umbilical vein endothelial (HUVE) cells and PDT treatment of HepG2 cells were carried out. The results revealed that the heavy atom and intramolecular charge transfer (ICT) effects could obviously enhance the ROS efficiency, and both PSs produce only type I ROS without any type II ROS (1O2) generation. The good NIR fluorescence brightness and type I ROS efficiency ensure satisfactory bioimaging and PDT outcomes. This research provides the possibility of preparing NIR-active type I PSs via mass production.
Collapse
Affiliation(s)
- Zhiyong Li
- Vascular Surgery Department, The Second Hospital & Clinical Medical School, Lanzhou University Lanzhou 730000 China
| | - Yili Xie
- College of Ecology and Environment, Yuzhang Normal University Nanchang 330103 China
| | - Heng Liu
- The Second Hospital & Clinical Medical School, Lanzhou University Lanzhou 730000 China
| | - Jing Wang
- Healthy Examination & Management Center, The Second Hospital & Clinical Medical School, Lanzhou University Lanzhou 730000 China
| | - Gang Wang
- The Second Hospital & Clinical Medical School, Lanzhou University Lanzhou 730000 China
| | - Hengxin Wang
- The Second Hospital & Clinical Medical School, Lanzhou University Lanzhou 730000 China
| | - Xuejie Su
- The Second Hospital & Clinical Medical School, Lanzhou University Lanzhou 730000 China
| | - Meixu Lei
- The Second Hospital & Clinical Medical School, Lanzhou University Lanzhou 730000 China
| | - Qing Wan
- School of Materials Science and Engineering, Nanchang Hangkong University Nanchang 330063 China
| | - Yali Zhou
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University Lanzhou 730000 China
| | - Muzhou Teng
- The Second Hospital & Clinical Medical School, Lanzhou University Lanzhou 730000 China
| |
Collapse
|
41
|
Xiao N, Xiong S, Zhou Z, Zhong M, Bai H, Li Q, Tang Y, Xie J. Recent progress in biomaterials-driven ferroptosis for cancer therapy. Biomater Sci 2024; 12:288-307. [PMID: 38189655 DOI: 10.1039/d3bm01832f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Ferroptosis, first suggested in 2012, is a type of non-apoptotic programmed cell death caused by the buildup of lipid peroxidation and marked by an overabundance of oxidized poly unsaturated fatty acids. During the last decade, researchers have uncovered the formation of ferroptosis and created multiple drugs aimed at it, but due to poor selectivity and pharmacokinetics, clinical application has been hindered. In recent years, biomedical discoveries and developments in nanotechnology have spurred the investigation of ferroptosis nanomaterials, providing new opportunities for the ferroptosis driven tumours treatment. Additionally, hydrogels have been widely studied in ferroptosis because of their unique 3D structure and excellent controllability. By using these biomaterials, it is possible to achieve controlled release and targeted delivery of drugs, thus increasing the potency of the drugs and minimizing adverse effects. Therefore, summarizing the biomedical nanomaterials, including hydrogels, used in ferroptosis for cancer therapy is a must. This article provides an overview of ferroptosis, detailing its properties and underlying mechanisms. It also categorizes and reviews the use of various nanomaterials in ferroptosis, along with relevant explanations and illustrations. In addition, we discuss the opportunities and challenges facing the application of nanomaterials in ferroptosis. Finally, the development prospects of this field are prospected. This review is intended to provide a foundation for the development and application of biomedical nanomaterials in ferroptosis.
Collapse
Affiliation(s)
- Nianting Xiao
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Su Xiong
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Ziwei Zhou
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Min Zhong
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Huayang Bai
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Qiyu Li
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Yaqin Tang
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Jing Xie
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|