1
|
Armiento S, Bernacka-Wojcik I, Dar AM, Meder F, Stavrinidou E, Mazzolai B. Powering a molecular delivery system by harvesting energy from the leaf motion in wind. BIOINSPIRATION & BIOMIMETICS 2024; 20:016023. [PMID: 39612587 DOI: 10.1088/1748-3190/ad98d3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/29/2024] [Indexed: 12/01/2024]
Abstract
Smart agriculture tools as well as advanced studies on agrochemicals and plant biostimulants aim to improve crop productivity and more efficient use of resources without sacrificing sustainability. Recently, multiple advanced sensors for agricultural applications have been developed, however much less advancement is reported in the field of precise delivery of agriculture chemicals. The organic electronic ion pump (OEIP) enables electrophoretically-controlled delivery of ionic molecules in the plant tissue, however it needs external power-supplies complicating its application in the field. Here, we demonstrate that an OEIP can be powered by wind-driven leaf motion through contact electrification between a natural leaf and an artificial leaf. This plant-hybrid triboelectric nanogenerator (TENG) directly charges the OEIP, enabling proton delivery into a pH indicator solution, which triggers visible color changes as a proof-of-concept. The successful delivery of up to 44 nmol of protons was revealed by pH measurements after 17 h autonomous operation in air flow moving the plant and artificial leaves. Several control tests indicated that the proton delivery was powered uniquely by the charges generated during leaf fluttering. The OEIP-TENG combination opens the potential for targeted and self-powered long-term delivery of relevant chemicals in plants, with the possibility of enhancing growth and resistance to abiotic stressors.
Collapse
Affiliation(s)
- Serena Armiento
- Bioinspired Soft Robotics (BSR), Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Iwona Bernacka-Wojcik
- Laboratory of Organic Electronics, Department of Science and Technology, Linkoping University, Norrköping 601 74, Sweden
| | - Abdul Manan Dar
- Laboratory of Organic Electronics, Department of Science and Technology, Linkoping University, Norrköping 601 74, Sweden
| | - Fabian Meder
- Bioinspired Soft Robotics (BSR), Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
- Surface Phenomena and Integrated Systems, The BioRobotics Institute, Scuola Superiore Sant'Anna, Via C. Maffi 27, 56126 Pisa, Italy
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linkoping University, Norrköping 601 74, Sweden
| | - Barbara Mazzolai
- Bioinspired Soft Robotics (BSR), Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
2
|
Gurke J, Carnicer-Lombarte A, Naegele TE, Hansen AK, Malliaras GG. In vivo photopharmacological inhibition of hippocampal activity via multimodal probes - perspective and opening steps on experimental and computational challenges. J Mater Chem B 2024; 12:9894-9904. [PMID: 39189156 PMCID: PMC11348833 DOI: 10.1039/d4tb01117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Neurological conditions such as epilepsy can have a significant impact on people's lives. Here, we discuss a new perspective for the study/treatment of these conditions using photopharmacology. A multimodal, intracranial implant that incorporates fluidic channels for localised drug delivery, electrodes for recording and stimulation, and a light source for photoswitching is used for in vivo administration and deactivation of a photoresponsive AMPA antagonist. We review current advancements in the relevant disciplines and show experimentally that the inhibition of seizure-like events induced in the hippocampus by electrical stimulation can be altered upon switching the drug with light. We discuss the interconnection of the drug's photopharmacological properties with the design of the device by modelling light penetration into the rat brain with Monte Carlo simulations. This work delivers a new perspective, including initial experimental and computational efforts on in vivo photopharmacology to understand and eventually treat neurological conditions.
Collapse
Affiliation(s)
- Johannes Gurke
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
- University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge CB3 0FA, UK
- Fraunhofer Institute of Applied Polymer Research (IAP), Geiselbergstraße 69, 14476 Potsdam, Germany
| | | | - Tobias E Naegele
- University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge CB3 0FA, UK
| | - Anders K Hansen
- Technical University of Denmark, DTU Fotonik, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - George G Malliaras
- University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge CB3 0FA, UK
| |
Collapse
|
3
|
Asefifeyzabadi N, Nguyen T, Li H, Zhu K, Yang HY, Baniya P, Medina Lopez A, Gallegos A, Hsieh HC, Dechiraju H, Hernandez C, Schorger K, Recendez C, Tebyani M, Selberg J, Luo L, Muzzy E, Hsieh C, Barbee A, Orozco J, Alhamo MA, Levin M, Aslankoohi E, Gomez M, Zhao M, Teodorescu M, Isseroff RR, Rolandi M. A pro-reparative bioelectronic device for controlled delivery of ions and biomolecules. Wound Repair Regen 2024; 32:709-719. [PMID: 38794912 DOI: 10.1111/wrr.13191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/28/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Wound healing is a complex physiological process that requires precise control and modulation of many parameters. Therapeutic ion and biomolecule delivery has the capability to regulate the wound healing process beneficially. However, achieving controlled delivery through a compact device with the ability to deliver multiple therapeutic species can be a challenge. Bioelectronic devices have emerged as a promising approach for therapeutic delivery. Here, we present a pro-reparative bioelectronic device designed to deliver ions and biomolecules for wound healing applications. The device incorporates ion pumps for the targeted delivery of H+ and zolmitriptan to the wound site. In vivo studies using a mouse model further validated the device's potential for modulating the wound environment via H+ delivery that decreased M1/M2 macrophage ratios. Overall, this bioelectronic ion pump demonstrates potential for accelerating wound healing via targeted and controlled delivery of therapeutic agents to wounds. Continued optimization and development of this device could not only lead to significant advancements in tissue repair and wound healing strategies but also reveal new physiological information about the dynamic wound environment.
Collapse
Affiliation(s)
- Narges Asefifeyzabadi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Tiffany Nguyen
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Houpu Li
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Kan Zhu
- Department of Ophthalmology, School of Medicine, University of California Davis, Davis, California, USA
| | - Hsin-Ya Yang
- Department of Dermatology, School of Medicine, University of California Davis, Davis, California, USA
| | - Prabhat Baniya
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Andrea Medina Lopez
- Department of Dermatology, School of Medicine, University of California Davis, Davis, California, USA
| | - Anthony Gallegos
- Department of Dermatology, School of Medicine, University of California Davis, Davis, California, USA
| | - Hao-Chieh Hsieh
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Harika Dechiraju
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Cristian Hernandez
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Kaelan Schorger
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Cynthia Recendez
- Department of Ophthalmology, School of Medicine, University of California Davis, Davis, California, USA
| | - Maryam Tebyani
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - John Selberg
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Le Luo
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Elana Muzzy
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Cathleen Hsieh
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
- Department of Chemistry and Biochemistry, University of California Santa Cruz, California, Santa Cruz, USA
| | - Alexie Barbee
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Jonathan Orozco
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
- Department of Economics, University of California Santa Cruz, Santa Cruz, California, USA
| | - Moyasar A Alhamo
- Department of Dermatology, School of Medicine, University of California Davis, Davis, California, USA
| | - Michael Levin
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Elham Aslankoohi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Marcella Gomez
- Department of Applied Mathematics, University of California Santa Cruz, Santa Cruz, California, USA
| | - Min Zhao
- Department of Ophthalmology, School of Medicine, University of California Davis, Davis, California, USA
- Department of Dermatology, School of Medicine, University of California Davis, Davis, California, USA
| | - Mircea Teodorescu
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Roslyn Rivkah Isseroff
- Department of Dermatology, School of Medicine, University of California Davis, Davis, California, USA
- Dermatology Section, VA Northern California Health Care System, Mather, California, USA
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
4
|
Zhang C, Du FH, Wang RX, Han WB, Lv X, Zeng LH, Chen GQ. TSPAN6 reinforces the malignant progression of glioblastoma via interacting with CDK5RAP3 and regulating STAT3 signaling pathway. Int J Biol Sci 2024; 20:2440-2453. [PMID: 38725860 PMCID: PMC11077372 DOI: 10.7150/ijbs.85984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/20/2023] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma is the prevailing and highly malignant form of primary brain neoplasm with poor prognosis. Exosomes derived from glioblastoma cells act a vital role in malignant progression via regulating tumor microenvironment (TME), exosomal tetraspanin protein family members (TSPANs) are important actors of cell communication in TME. Among all the TSPANs, TSPAN6 exhibited predominantly higher expression levels in comparison to normal tissues. Meanwhile, glioblastoma patients with high level of TSPAN6 had shorter overall survival compared with low level of TSPAN6. Furthermore, TSPAN6 promoted the malignant progression of glioblastoma via promoting the proliferation and metastatic potential of glioblastoma cells. More interestingly, TSPAN6 overexpression in glioblastoma cells promoted the migration of vascular endothelial cell, and exosome secretion inhibitor reversed the migrative ability of vascular endothelial cells enhanced by TSPAN6 overexpressing glioblastoma cells, indicating that TSPAN6 might reinforce angiogenesis via exosomes in TME. Mechanistically, TSPAN6 enhanced the malignant progression of glioblastoma by interacting with CDK5RAP3 and regulating STAT3 signaling pathway. In addition, TSPAN6 overexpression in glioblastoma cells enhanced angiogenesis via regulating TME and STAT3 signaling pathway. Collectively, TSPAN6 has the potential to serve as both a therapeutic target and a prognostic biomarker for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Chong Zhang
- Affiliated Luqiao Hospital, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China, 310015
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China, 310015
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China, 310015
| | - Fei-hua Du
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China, 310015
- Department of Pharmacology, Zhejiang University, Hangzhou, Zhejiang, China, 310058
| | - Rou-xin Wang
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China, 310015
- Department of Pharmacology, Zhejiang University, Hangzhou, Zhejiang, China, 310058
| | - Wen-bo Han
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China, 310015
| | - Xing Lv
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China, 310015
| | - Ling-hui Zeng
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China, 310015
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China, 310015
| | - Guo-qing Chen
- Affiliated Luqiao Hospital, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China, 310015
| |
Collapse
|
5
|
Chapman CA, Fernandez-Patel S, Jahan N, Cuttaz EA, Novikov A, Goding JA, Green RA. Controlled electroactive release from solid-state conductive elastomer electrodes. Mater Today Bio 2023; 23:100883. [PMID: 38144517 PMCID: PMC10746364 DOI: 10.1016/j.mtbio.2023.100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
This work highlights the development of a conductive elastomer (CE) based electrophoretic platform that enables the transfer of charged molecules from a solid-state CE electrode directly to targeted tissues. Using an elastomer-based electrode containing poly (3,4-ethylenedioxythiophene) nanowires, controlled electrophoretic delivery of methylene blue (MB) and fluorescein (FLSC) was achieved with applied voltage. Electroactive release of positively charged MB and negatively charged FLSC achieved 33.19 ± 6.47 μg release of MB and 22.36 ± 3.05 μg release of FLSC, a 24 and 20-fold increase in comparison to inhibitory voltages over 1 h. Additionally, selective, and sequential release of the two oppositely charged molecules from a single CE device was demonstrated, showing the potential of this device to be used in multi-drug treatments.
Collapse
Affiliation(s)
- Christopher A.R. Chapman
- School of Engineering and Materials Science, Queen Mary University of London, Mile End, London, E1 4NS, UK
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Shanila Fernandez-Patel
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Nusrat Jahan
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Estelle A. Cuttaz
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Alexey Novikov
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Josef A. Goding
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Rylie A. Green
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| |
Collapse
|
6
|
Cherian D, Roy A, Bersellini Farinotti A, Abrahamsson T, Arbring Sjöström T, Tybrandt K, Nilsson D, Berggren M, Svensson CI, Poxson DJ, Simon DT. Flexible Organic Electronic Ion Pump Fabricated Using Inkjet Printing and Microfabrication for Precision In Vitro Delivery of Bupivacaine. Adv Healthc Mater 2023; 12:e2300550. [PMID: 37069480 PMCID: PMC11468791 DOI: 10.1002/adhm.202300550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/31/2023] [Indexed: 04/19/2023]
Abstract
The organic electronic ion pump (OEIP) is an on-demand electrophoretic drug delivery device, that via electronic to ionic signal conversion enables drug delivery without additional pressure or volume changes. The fundamental component of OEIPs is their polyelectrolyte membranes which are shaped into ionic channels that conduct and deliver ionic drugs, with high spatiotemporal resolution. The patterning of these membranes is essential in OEIP devices and is typically achieved using laborious microprocessing techniques. Here, the development of an inkjet printable formulation of polyelectrolyte is reported, based on a custom anionically functionalized hyperbranched polyglycerol (i-AHPG). This polyelectrolyte ink greatly simplifies the fabrication process and is used in the production of free-standing OEIPs on flexible polyimide (PI) substrates. Both i-AHPG and the OEIP devices are characterized, exhibiting favorable iontronic characteristics of charge selectivity and the ability to transport aromatic compounds. Further, the applicability of these technologies is demonstrated by the transport and delivery of the pharmaceutical compound bupivacaine to dorsal root ganglion cells with high spatial precision and effective nerve blocking, highlighting the applicability of these technologies for biomedical scenarios.
Collapse
Affiliation(s)
- Dennis Cherian
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Arghyamalya Roy
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | | | - Tobias Abrahamsson
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Theresia Arbring Sjöström
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Klas Tybrandt
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - David Nilsson
- Unit of Printed ElectronicsRISE Research Institutes of SwedenNorrköping60221Sweden
| | - Magnus Berggren
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Camilla I. Svensson
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm17177Sweden
| | - David J. Poxson
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Daniel T. Simon
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| |
Collapse
|
7
|
Kumari S, Gupta R, Ambasta RK, Kumar P. Multiple therapeutic approaches of glioblastoma multiforme: From terminal to therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188913. [PMID: 37182666 DOI: 10.1016/j.bbcan.2023.188913] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain cancer showing poor prognosis. Currently, treatment methods of GBM are limited with adverse outcomes and low survival rate. Thus, advancements in the treatment of GBM are of utmost importance, which can be achieved in recent decades. However, despite aggressive initial treatment, most patients develop recurrent diseases, and the overall survival rate of patients is impossible to achieve. Currently, researchers across the globe target signaling events along with tumor microenvironment (TME) through different drug molecules to inhibit the progression of GBM, but clinically they failed to demonstrate much success. Herein, we discuss the therapeutic targets and signaling cascades along with the role of the organoids model in GBM research. Moreover, we systematically review the traditional and emerging therapeutic strategies in GBM. In addition, we discuss the implications of nanotechnologies, AI, and combinatorial approach to enhance GBM therapeutics.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India.
| |
Collapse
|
8
|
Bernacka-Wojcik I, Talide L, Abdel Aziz I, Simura J, Oikonomou VK, Rossi S, Mohammadi M, Dar AM, Seitanidou M, Berggren M, Simon DT, Tybrandt K, Jonsson MP, Ljung K, Niittylä T, Stavrinidou E. Flexible Organic Electronic Ion Pump for Flow-Free Phytohormone Delivery into Vasculature of Intact Plants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206409. [PMID: 36935365 DOI: 10.1002/advs.202206409] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/03/2023] [Indexed: 05/18/2023]
Abstract
Plant vasculature transports molecules that play a crucial role in plant signaling including systemic responses and acclimation to diverse environmental conditions. Targeted controlled delivery of molecules to the vascular tissue can be a biomimetic way to induce long distance responses, providing a new tool for the fundamental studies and engineering of stress-tolerant plants. Here, a flexible organic electronic ion pump, an electrophoretic delivery device, for controlled delivery of phytohormones directly in plant vascular tissue is developed. The c-OEIP is based on polyimide-coated glass capillaries that significantly enhance the mechanical robustness of these microscale devices while being minimally disruptive for the plant. The polyelectrolyte channel is based on low-cost and commercially available precursors that can be photocured with blue light, establishing much cheaper and safer system than the state-of-the-art. To trigger OEIP-induced plant response, the phytohormone abscisic acid (ABA) in the petiole of intact Arabidopsis plants is delivered. ABA is one of the main phytohormones involved in plant stress responses and induces stomata closure under drought conditions to reduce water loss and prevent wilting. The OEIP-mediated ABA delivery triggered fast and long-lasting stomata closure far away from the delivery point demonstrating systemic vascular transport of the delivered ABA, verified delivering deuterium-labeled ABA.
Collapse
Affiliation(s)
- Iwona Bernacka-Wojcik
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
| | - Loïc Talide
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Ilaria Abdel Aziz
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
| | - Jan Simura
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Vasileios K Oikonomou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Stefano Rossi
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
| | - Mohsen Mohammadi
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Abdul Manan Dar
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
| | - Maria Seitanidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Daniel T Simon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Magnus P Jonsson
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Totte Niittylä
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| |
Collapse
|
9
|
Abstract
Ion pumps are important membrane-spanning transporters that pump ions against the electrochemical gradient across the cell membrane. In biological systems, ion pumping is essential to maintain intracellular osmotic pressure, to respond to external stimuli, and to regulate physiological activities by consuming adenosine triphosphate. In recent decades, artificial ion pumping systems with diverse geometric structures and functions have been developing rapidly with the progress of advanced materials and nanotechnology. In this Review, bioinspired artificial ion pumps, including four categories: asymmetric structure-driven ion pumps, pH gradient-driven ion pumps, light-driven ion pumps, and electron-driven ion pumps, are summarized. The working mechanisms, functions, and applications of those artificial ion pumping systems are discussed. Finally, a brief conclusion of underpinning challenges and outlook for future research are tentatively discussed.
Collapse
Affiliation(s)
- Tingting Mei
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P.R. China
| | - Hongjie Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P.R. China
| | - Kai Xiao
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P.R. China
| |
Collapse
|
10
|
Jenkins EPW, Finch A, Gerigk M, Triantis IF, Watts C, Malliaras GG. Electrotherapies for Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100978. [PMID: 34292672 PMCID: PMC8456216 DOI: 10.1002/advs.202100978] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/20/2021] [Indexed: 05/08/2023]
Abstract
Non-thermal, intermediate frequency (100-500 kHz) electrotherapies present a unique therapeutic strategy to treat malignant neoplasms. Here, pulsed electric fields (PEFs) which induce reversible or irreversible electroporation (IRE) and tumour-treating fields (TTFs) are reviewed highlighting the foundations, advances, and considerations of each method when applied to glioblastoma (GBM). Several biological aspects of GBM that contribute to treatment complexity (heterogeneity, recurrence, resistance, and blood-brain barrier(BBB)) and electrophysiological traits which are suggested to promote glioma progression are described. Particularly, the biological responses at the cellular and molecular level to specific parameters of the electrical stimuli are discussed offering ways to compare these parameters despite the lack of a universally adopted physical description. Reviewing the literature, a disconnect is found between electrotherapy techniques and how they target the biological complexities of GBM that make treatment difficult in the first place. An attempt is made to bridge the interdisciplinary gap by mapping biological characteristics to different methods of electrotherapy, suggesting important future research topics and directions in both understanding and treating GBM. To the authors' knowledge, this is the first paper that attempts an in-tandem assessment of the biological effects of different aspects of intermediate frequency electrotherapy methods, thus offering possible strategies toward GBM treatment.
Collapse
Affiliation(s)
- Elise P. W. Jenkins
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Alina Finch
- Institute of Cancer and Genomic ScienceUniversity of BirminghamBirminghamB15 2TTUK
| | - Magda Gerigk
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Iasonas F. Triantis
- Department of Electrical and Electronic EngineeringCity, University of LondonLondonEC1V 0HBUK
| | - Colin Watts
- Institute of Cancer and Genomic ScienceUniversity of BirminghamBirminghamB15 2TTUK
| | - George G. Malliaras
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| |
Collapse
|