1
|
Möhler JS, Pickl M, Reiter T, Simić S, Rackl JW, Kroutil W, Wennemers H. Peptide and Enzyme Catalysts Work in Concert in Stereoselective Cascade Reactions-Oxidation followed by Conjugate Addition. Angew Chem Int Ed Engl 2024; 63:e202319457. [PMID: 38235524 DOI: 10.1002/anie.202319457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
Enzymes and peptide catalysts consist of the same building blocks but require vastly different environments to operate best. Herein, we show that an enzyme and a peptide catalyst can work together in a single reaction vessel to catalyze a two-step cascade reaction with high chemo- and stereoselectivity. Abundant linear alcohols, nitroolefins, an alcohol oxidase, and a tripeptide catalyst provided chiral γ-nitroaldehydes in aqueous buffer. High yields (up to 92 %) and stereoselectivities (up to 98 % ee) were achieved for the cascade through the rational design of the peptide catalyst and the identification of common reaction conditions.
Collapse
Affiliation(s)
- Jasper S Möhler
- Laboratorium für Organische Chemie, D-CHAB, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Mathias Pickl
- University of Graz, Institute of Chemistry NAWI Graz, BioTechMed Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Tamara Reiter
- University of Graz, Institute of Chemistry NAWI Graz, BioTechMed Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Stefan Simić
- University of Graz, Institute of Chemistry NAWI Graz, BioTechMed Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Jonas W Rackl
- Laboratorium für Organische Chemie, D-CHAB, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Wolfgang Kroutil
- University of Graz, Institute of Chemistry NAWI Graz, BioTechMed Graz, Heinrichstraße 28, 8010, Graz, Austria
- Field of Excellence BioHealth-, University of Graz, 8010, Graz, Austria
| | - Helma Wennemers
- Laboratorium für Organische Chemie, D-CHAB, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
2
|
López‐Agudo M, Ríos‐Lombardía N, González‐Sabín J, Lavandera I, Gotor‐Fernández V. Chemoenzymatic Oxosulfonylation-Bioreduction Sequence for the Stereoselective Synthesis of β-Hydroxy Sulfones. CHEMSUSCHEM 2022; 15:e202101313. [PMID: 34409744 PMCID: PMC9292901 DOI: 10.1002/cssc.202101313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/26/2021] [Indexed: 06/13/2023]
Abstract
A series of optically active β-hydroxy sulfones has been obtained through an oxosulfonylation-stereoselective reduction sequence in aqueous medium. Firstly, β-keto sulfones were synthesized from arylacetylenes and sodium sulfinates to subsequently develop the carbonyl reduction in a highly selective fashion using alcohol dehydrogenases as biocatalysts. Optimization of the chemical oxosulfonylation reaction was investigated, finding inexpensive iron(III) chloride hexahydrate (FeCl3 ⋅ 6H2 O) as the catalyst of choice. The selection of isopropanol in the alcohol-water media resulted in high compatibility with the enzymatic process for enzyme cofactor recycling purposes, providing a straightforward access to both (R)- and (S)-β-hydroxy sulfones. The practical usefulness of this transformation was illustrated by describing the synthesis of a chiral intermediate of Apremilast. Interestingly, the development of a chemoenzymatic cascade approach avoided the isolation of β-keto sulfone intermediates, which allowed the preparation of chiral β-hydroxy sulfones in high conversion values (83-94 %) and excellent optical purities (94 to >99 % ee).
Collapse
Affiliation(s)
- Marina López‐Agudo
- Organic and Inorganic Chemistry DepartmentUniversity of OviedoAvenida Julián Clavería 8Oviedo33006Spain
| | | | | | - Iván Lavandera
- Organic and Inorganic Chemistry DepartmentUniversity of OviedoAvenida Julián Clavería 8Oviedo33006Spain
| | - Vicente Gotor‐Fernández
- Organic and Inorganic Chemistry DepartmentUniversity of OviedoAvenida Julián Clavería 8Oviedo33006Spain
| |
Collapse
|
3
|
Taday F, Cairns R, O'Connell A, O'Reilly E. Combining bio- and organocatalysis for the synthesis of piperidine alkaloids. Chem Commun (Camb) 2022; 58:1697-1700. [PMID: 35022626 DOI: 10.1039/d1cc03865f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
There is continued interest in developing cascade processes for the synthesis of key chiral building blocks and bioactive natural products (or analogues). Here, we report a hybrid bio-organocatalytic cascade for the synthesis of a small panel of 2-substituted piperidines, relying on a transaminase to generate a key reactive intermediate for the complexity building Mannich reaction.
Collapse
Affiliation(s)
- Freya Taday
- School of Chemistry, University of Nottingham, University Park, NG7 2RD, UK
| | - Ryan Cairns
- School of Chemistry, University of Nottingham, University Park, NG7 2RD, UK
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Adam O'Connell
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Elaine O'Reilly
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
4
|
Schober L, Tonin F, Hanefeld U, Gröger H. Combination of Asymmetric Organo‐ and Biocatalysis in Flow Processes and Comparison with their Analogous Batch Syntheses. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lukas Schober
- Bielefeld University: Universitat Bielefeld Faculty of Chemistry GERMANY
| | - Fabio Tonin
- TU Delft: Technische Universiteit Delft Research Section Biocatalysis NETHERLANDS
| | - Ulf Hanefeld
- TU Delft: Technische Universiteit Delft Research Section Biocatalysis NETHERLANDS
| | - Harald Gröger
- Universität Bielefeld Fakultät für Chemie Organische Chemie I Universitätsstr. 25 33615 Bielefeld GERMANY
| |
Collapse
|
5
|
Agarwal S, Kalal P, Sethiya A, Soni J. Taurine: A Water Friendly Organocatalyst in Organic Reactions. MINI-REV ORG CHEM 2021. [DOI: 10.2174/1570193x18666211122112327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
Organocatalysis has become a powerful tool in organic synthesis for the formation of C-C and C-X (N, S, O, etc.) bonds, leading to the formation of complex molecules from easily available starting materials. It provides an alternative platform to the conventional synthesis and fulfills the principles of green chemistry. During the last decades, taurine has emerged as a promising organocatalyst in an array of organic transformations in addition to its plentiful biological properties. It is highly stable, easy to store and separate, water-soluble, of low cost, easily available, and recyclable. The present article highlights the recent and up-to-date applications of taurine in organic transformations.
Collapse
Affiliation(s)
- Shikha Agarwal
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU, Udaipur, 313001, India
| | - Priyanka Kalal
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU, Udaipur, 313001, India
| | - Ayushi Sethiya
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU, Udaipur, 313001, India
| | - Jay Soni
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU, Udaipur, 313001, India
| |
Collapse
|
6
|
Mali G, Shaikh BA, Garg S, Kumar A, Bhattacharyya S, Erande RD, Chate AV. Design, Synthesis, and Biological Evaluation of Densely Substituted Dihydropyrano[2,3- c]pyrazoles via a Taurine-Catalyzed Green Multicomponent Approach. ACS OMEGA 2021; 6:30734-30742. [PMID: 34805701 PMCID: PMC8600639 DOI: 10.1021/acsomega.1c04773] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/18/2021] [Indexed: 05/07/2023]
Abstract
An efficient taurine-catalyzed green multicomponent approach has been described for the first time to synthesize densely substituted therapeutic core dihydropyrano[2,3-c]pyrazoles. Applications of the developed synthetic strategies and technologies revealed the synthesis of a series of newly designed 1,4-dihydropyrano[2,3-c]pyrazoles containing isonicotinamide, spirooxindole, and indole moieties. Detailed in silico analysis of the synthesized analogues revealed their potential to bind wild-type and antibiotic-resistant variants of dihydrofolate reductase, a principal drug target enzyme for emerging antibiotic-resistant pathogenic Staphylococcus aureus strains. Hence, the synthesized dihydropyrano[2,3-c]pyrazole derivatives presented herein hold immense promise to develop future antistaphylococcal therapeutic agents.
Collapse
Affiliation(s)
- Ghanshyam Mali
- Department
of Chemistry, Indian Institute of Technology
Jodhpur, Jodhpur 342037, India
| | - Badrodin A. Shaikh
- Department
of Chemistry, Dr. Babasaheb Ambedkar Marathwada
University, Aurangabad 431004, India
| | - Shivani Garg
- Department
of Bioscience and Bioengineering, Indian
Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Akhilesh Kumar
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, India
| | - Sudipta Bhattacharyya
- Department
of Bioscience and Bioengineering, Indian
Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Rohan D. Erande
- Department
of Chemistry, Indian Institute of Technology
Jodhpur, Jodhpur 342037, India
| | - Asha V. Chate
- Department
of Chemistry, Dr. Babasaheb Ambedkar Marathwada
University, Aurangabad 431004, India
| |
Collapse
|
7
|
Mantel M, Giesler M, Guder M, Rüthlein E, Hartmann L, Pietruszka J. Lewis‐Base‐Brønsted‐Säure‐Enzym‐Katalyse in enantioselektiven mehrstufigen Eintopf‐Synthesen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Marvin Mantel
- Institut für Bioorganische Chemie Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich Stetternicher Forst, Geb. 15.8 52426 Jülich Deutschland
| | - Markus Giesler
- Institut für Organische und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Deutschland
| | - Marian Guder
- Institut für Bio- und Geowissenschaften: Biotechnologie (IBG-1) Forschungszentrum Jülich GmbH 52428 Jülich Deutschland
| | - Elisabeth Rüthlein
- Institut für Bioorganische Chemie Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich Stetternicher Forst, Geb. 15.8 52426 Jülich Deutschland
| | - Laura Hartmann
- Institut für Organische und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Deutschland
| | - Jörg Pietruszka
- Institut für Bioorganische Chemie Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich Stetternicher Forst, Geb. 15.8 52426 Jülich Deutschland
- Institut für Bio- und Geowissenschaften: Biotechnologie (IBG-1) Forschungszentrum Jülich GmbH 52428 Jülich Deutschland
| |
Collapse
|
8
|
Mantel M, Giesler M, Guder M, Rüthlein E, Hartmann L, Pietruszka J. Lewis Base-Brønsted Acid-Enzyme Catalysis in Enantioselective Multistep One-Pot Syntheses. Angew Chem Int Ed Engl 2021; 60:16700-16706. [PMID: 33856095 PMCID: PMC8360128 DOI: 10.1002/anie.202103406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/08/2021] [Indexed: 12/23/2022]
Abstract
Establishing one-pot, multi-step protocols combining different types of catalysts is one important goal for increasing efficiency in modern organic synthesis. In particular, the high potential of biocatalysts still needs to be harvested. Based on an in-depth mechanistic investigation of a new organocatalytic protocol employing two catalysts {1,4-diazabicyclo[2.2.2]octane (DABCO); benzoic acid (BzOH)}, a sequence was established providing starting materials for enzymatic refinement (ene reductase; alcohol dehydrogenase): A gram-scale access to a variety of enantiopure key building blocks for natural product syntheses was enabled utilizing up to six catalytic steps within the same reaction vessel.
Collapse
Affiliation(s)
- Marvin Mantel
- Institut für Bioorganische ChemieHeinrich-Heine-Universität Düsseldorf im Forschungszentrum JülichStetternicher Forst, Geb. 15.852426JülichGermany
| | - Markus Giesler
- Institut für Organische und Makromolekulare ChemieHeinrich-Heine-Universität Düsseldorf40225DüsseldorfGermany
| | - Marian Guder
- Institut für Bio- und Geowissenschaften: Biotechnologie (IBG-1)Forschungszentrum Jülich GmbH52428JülichGermany
| | - Elisabeth Rüthlein
- Institut für Bioorganische ChemieHeinrich-Heine-Universität Düsseldorf im Forschungszentrum JülichStetternicher Forst, Geb. 15.852426JülichGermany
| | - Laura Hartmann
- Institut für Organische und Makromolekulare ChemieHeinrich-Heine-Universität Düsseldorf40225DüsseldorfGermany
| | - Jörg Pietruszka
- Institut für Bioorganische ChemieHeinrich-Heine-Universität Düsseldorf im Forschungszentrum JülichStetternicher Forst, Geb. 15.852426JülichGermany
- Institut für Bio- und Geowissenschaften: Biotechnologie (IBG-1)Forschungszentrum Jülich GmbH52428JülichGermany
| |
Collapse
|
9
|
Abstract
Abstract
During the last 20 years, organocatalysis has significantly advanced as a field. Thanks to contributions from hundreds of groups and companies around the world, the area has risen from a few mechanistically ill-defined niche reactions, to one of the most vibrant and innovative fields in chemistry, providing several well-defined generic activation modes for selective catalysis. Organocatalysis is also on the rise in industrial settings, especially for the production of enantiomers, which are of use in fine chemistry, pharma, crop-protection, and fragrance chemistry. Here we will look at some of the specific elements of organocatalysis that we think are particularly attractive and contribute to this successful development.
Collapse
Affiliation(s)
- Miles H. Aukland
- Max-Planck-Institut für Kohlenforschung , Mulheim an der Ruhr , Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung , Mulheim an der Ruhr , Germany
| |
Collapse
|
10
|
González‐Granda S, Lavandera I, Gotor‐Fernández V. Alcohol Dehydrogenases and N‐Heterocyclic Carbene Gold(I) Catalysts: Design of a Chemoenzymatic Cascade towards Optically Active β,β‐Disubstituted Allylic Alcohols. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sergio González‐Granda
- Organic and Inorganic Chemistry Department University of Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| | - Iván Lavandera
- Organic and Inorganic Chemistry Department University of Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| | - Vicente Gotor‐Fernández
- Organic and Inorganic Chemistry Department University of Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| |
Collapse
|
11
|
González-Granda S, Lavandera I, Gotor-Fernández V. Alcohol Dehydrogenases and N-Heterocyclic Carbene Gold(I) Catalysts: Design of a Chemoenzymatic Cascade towards Optically Active β,β-Disubstituted Allylic Alcohols. Angew Chem Int Ed Engl 2021; 60:13945-13951. [PMID: 33721361 DOI: 10.1002/anie.202015215] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/22/2021] [Indexed: 12/14/2022]
Abstract
The combination of gold(I) and enzyme catalysis is used in a two-step approach, including Meyer-Schuster rearrangement of a series of readily available propargylic alcohols followed by stereoselective bioreduction of the corresponding allylic ketone intermediates, to provide optically pure β,β-disubstituted allylic alcohols. This cascade involves a gold N-heterocyclic carbene and an enzyme, demonstrating the compatibility of both catalyst types in aqueous medium under mild reaction conditions. The combination of [1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene][bis(trifluoromethanesulfonyl)-imide]gold(I) (IPrAuNTf2 ) and a selective alcohol dehydrogenase (ADH-A from Rhodococcus ruber, KRED-P1-A12 or KRED-P3-G09) led to the synthesis of a series of optically active (E)-4-arylpent-3-en-2-ols in good yields (65-86 %). The approach was also extended to various 2-hetarylpent-3-yn-2-ol, hexynol, and butynol derivatives. The use of alcohol dehydrogenases of opposite selectivity led to the production of both allyl alcohol enantiomers (93->99 % ee) for a broad panel of substrates.
Collapse
Affiliation(s)
- Sergio González-Granda
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| | - Iván Lavandera
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| | - Vicente Gotor-Fernández
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
12
|
Oliva M, Coppola GA, Van der Eycken EV, Sharma UK. Photochemical and Electrochemical Strategies towards Benzylic C−H Functionalization: A Recent Update. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001581] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Monica Oliva
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Guglielmo A. Coppola
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
- Peoples' Friendship University of Russia (RUDN University) 6 Miklukho-Maklaya street RU-117198 Moscow Russia
| | - Upendra K. Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| |
Collapse
|
13
|
Peñafiel I, Dryfe RAW, Turner NJ, Greaney MF. Integrated Electro‐Biocatalysis for Amine Alkylation with Alcohols. ChemCatChem 2021. [DOI: 10.1002/cctc.202001757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Itziar Peñafiel
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
- Future Biomanufacturing Research Hub The University of Manchester Manchester Institute of Biotechnology 131 Princess Street Manchester M1 7DN UK
| | - Robert A. W. Dryfe
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Nicholas J. Turner
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
- Future Biomanufacturing Research Hub The University of Manchester Manchester Institute of Biotechnology 131 Princess Street Manchester M1 7DN UK
| | - Michael F. Greaney
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
14
|
Lancien A, Wojcieszak R, Cuvelier E, Duban M, Dhulster P, Paul S, Dumeignil F, Froidevaux R, Heuson E. Hybrid Conversion of
5
‐Hydroxymethylfurfural to
5
‐Aminomethyl‐
2
‐furancarboxylic acid: Toward New Bio‐sourced Polymers. ChemCatChem 2020. [DOI: 10.1002/cctc.202001446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Antoine Lancien
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394, Joint Research Unit BioEcoAgro ICV – Institut Charles Viollette F-59000 Lille France
| | - Robert Wojcieszak
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS – Unité de Catalyse et Chimie du Solide F-59000 Lille France
| | - Eric Cuvelier
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS – Unité de Catalyse et Chimie du Solide F-59000 Lille France
| | - Matthieu Duban
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394, Joint Research Unit BioEcoAgro ICV – Institut Charles Viollette F-59000 Lille France
| | - Pascal Dhulster
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394, Joint Research Unit BioEcoAgro ICV – Institut Charles Viollette F-59000 Lille France
| | - Sébastien Paul
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS – Unité de Catalyse et Chimie du Solide F-59000 Lille France
| | - Franck Dumeignil
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS – Unité de Catalyse et Chimie du Solide F-59000 Lille France
| | - Renato Froidevaux
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394, Joint Research Unit BioEcoAgro ICV – Institut Charles Viollette F-59000 Lille France
| | - Egon Heuson
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394, Joint Research Unit BioEcoAgro ICV – Institut Charles Viollette F-59000 Lille France
| |
Collapse
|
15
|
Nawaz MZ, Bilal M, Tariq A, Iqbal HMN, Alghamdi HA, Cheng H. Bio-purification of sugar industry wastewater and production of high-value industrial products with a zero-waste concept. Crit Rev Food Sci Nutr 2020; 61:3537-3554. [PMID: 32820646 DOI: 10.1080/10408398.2020.1802696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent years, biorefinery approach with a zero-waste concept has gained a lot research impetus to boost the environment and bioeconomy in a sustainable manner. The wastewater from sugar industries contains miscellaneous compounds and need to be treated chemically or biologically before being discharged into water bodies. Efficient utilization of wastewater produced by sugar industries is a key point to improve its economy. Thus, interest in the sugar industry wastes has grown in both fundamental and applied research fields, over the years. Although, traditional methods being used to process such wastewaters are effective yet are tedious, laborious and time intensive. Considering the diverse nature of wastewaters from various sugar-manufacturing processes, the development of robust, cost-competitive, sustainable and clean technologies has become a challenging task. Under the recent scenario of cleaner production and consumption, the biorefinery and/or close-loop concept, though using different technologies and multi-step processes, namely, bio-reduction, bio-accumulation or biosorption using a variety of microbial strains, has stepped-up as the method of choice for a sustainable exploitation of a wide range of organic waste matter along with the production of high-value products of industrial interests. This review comprehensively describes the use of various microbial strains employed for eliminating the environmental pollutants from sugar industry wastewater. Moreover, the main research gaps are also critically discussed along with the prospects for the efficient purification of sugar industry wastewaters with the concomitant production of high-value products using a biorefinery approach. In this review, we emphasized that the biotransformation/biopurification of sugar industry waste into an array of value-added compounds such as succinic acid, L-arabinose, solvents, and xylitol is a need of hour and is futuristic approach toward achieving cleaner production and consumption.
Collapse
Affiliation(s)
- Muhammad Zohaib Nawaz
- Center for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Arslan Tariq
- Center for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Pakistan
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Huda Ahmed Alghamdi
- Department of Biology, College of Sciences, King Khalid University, Abha, Saudi Arabia
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Kim J, Oh K. Copper‐Catalyzed Aerobic Oxidation of Amines to Benzothiazoles via Cross Coupling of Amines and Arene Thiolation Sequence. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jihyeon Kim
- Center for Metareceptome Research, Graduate School of Pharmaceutical SciencesChung-Ang University, 84 Heukseok-ro, Dongjak Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical SciencesChung-Ang University, 84 Heukseok-ro, Dongjak Seoul 06974, Republic of Korea
| |
Collapse
|
17
|
Ceccoli RD, Bianchi DA, Carabajal MA, Rial DV. Genome mining reveals new bacterial type I Baeyer-Villiger monooxygenases with (bio)synthetic potential. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Nödling AR, Santi N, Williams TL, Tsai YH, Luk LYP. Enabling protein-hosted organocatalytic transformations. RSC Adv 2020; 10:16147-16161. [PMID: 33184588 PMCID: PMC7654312 DOI: 10.1039/d0ra01526a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/25/2020] [Indexed: 12/30/2022] Open
Abstract
In this review, the development of organocatalytic artificial enzymes will be discussed. This area of protein engineering research has underlying importance, as it enhances the biocompatibility of organocatalysis for applications in chemical and synthetic biology research whilst expanding the catalytic repertoire of enzymes. The approaches towards the preparation of organocatalytic artificial enzymes, techniques used to improve their performance (selectivity and reactivity) as well as examples of their applications are presented. Challenges and opportunities are also discussed.
Collapse
Affiliation(s)
- Alexander R Nödling
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, UK.
| | - Nicolò Santi
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, UK.
| | - Thomas L Williams
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, UK.
| | - Yu-Hsuan Tsai
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, UK.
| | - Louis Y P Luk
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, UK.
| |
Collapse
|
19
|
Frey M, Seyidova L, Richard D, Fongarland P. Hybrid catalysis: Study of a model reaction for one-pot reactor combining an enzyme and a heterogeneous catalyst. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.04.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Aranda C, Oksdath‐Mansilla G, Bisogno FR, Gonzalo G. Deracemisation Processes Employing Organocatalysis and Enzyme Catalysis. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901112] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Carmen Aranda
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC Avda/Reina Mercedes 10 41012 Sevilla Spain
| | - Gabriela Oksdath‐Mansilla
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Instituto de Investigaciones en Físico-Química Córdoba (INFIQC-CONICET)Universidad Nacional de Córdoba, Medina Allende y Haya de la Torre, Ciudad Universitaria 5000 Córdoba Argentina
| | - Fabricio R. Bisogno
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Instituto de Investigaciones en Físico-Química Córdoba (INFIQC-CONICET)Universidad Nacional de Córdoba, Medina Allende y Haya de la Torre, Ciudad Universitaria 5000 Córdoba Argentina
| | - Gonzalo Gonzalo
- Departamento de Química OrgánicaUniversidad de Sevilla c/Profesor García González 2 41012 Sevilla Spain
| |
Collapse
|
21
|
Heuson E, Dumeignil F. The various levels of integration of chemo- and bio-catalysis towards hybrid catalysis. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00696c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hybrid catalysis is an emerging concept that combines chemo- and biocatalysts in a wide variety of approaches. Combining the specifications and advantages of multiple disciplines, it is a very promising way to diversify tomorrow's catalysis.
Collapse
Affiliation(s)
- Egon Heuson
- Univ. Lille
- INRA
- ISA
- Univ. Artois
- Univ. Littoral Côte d'Opale
| | | |
Collapse
|
22
|
Beaud R, Michelet B, Reviriot Y, Martin‐Mingot A, Rodriguez J, Bonne D, Thibaudeau S. Enantioenriched Methylene‐Bridged Benzazocanes Synthesis by Organocatalytic and Superacid Activations. Angew Chem Int Ed Engl 2019; 59:1279-1285. [DOI: 10.1002/anie.201912043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/28/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Rodolphe Beaud
- Aix Marseille Université CNRS Centrale Marseille, iSm2 Marseille France
| | - Bastien Michelet
- Université de Poitiers UMR-CNRS 7285, IC2MP Equipe Synthèse Organique “Superacid Group” 4 rue Michel Brunet, TSA 51106 86073 Poitiers Cedex 9 France
| | - Yasmin Reviriot
- Aix Marseille Université CNRS Centrale Marseille, iSm2 Marseille France
| | - Agnès Martin‐Mingot
- Université de Poitiers UMR-CNRS 7285, IC2MP Equipe Synthèse Organique “Superacid Group” 4 rue Michel Brunet, TSA 51106 86073 Poitiers Cedex 9 France
| | - Jean Rodriguez
- Aix Marseille Université CNRS Centrale Marseille, iSm2 Marseille France
| | - Damien Bonne
- Aix Marseille Université CNRS Centrale Marseille, iSm2 Marseille France
| | - Sébastien Thibaudeau
- Université de Poitiers UMR-CNRS 7285, IC2MP Equipe Synthèse Organique “Superacid Group” 4 rue Michel Brunet, TSA 51106 86073 Poitiers Cedex 9 France
| |
Collapse
|
23
|
Beaud R, Michelet B, Reviriot Y, Martin‐Mingot A, Rodriguez J, Bonne D, Thibaudeau S. Enantioenriched Methylene‐Bridged Benzazocanes Synthesis by Organocatalytic and Superacid Activations. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rodolphe Beaud
- Aix Marseille Université CNRS Centrale Marseille, iSm2 Marseille France
| | - Bastien Michelet
- Université de Poitiers UMR-CNRS 7285, IC2MP Equipe Synthèse Organique “Superacid Group” 4 rue Michel Brunet, TSA 51106 86073 Poitiers Cedex 9 France
| | - Yasmin Reviriot
- Aix Marseille Université CNRS Centrale Marseille, iSm2 Marseille France
| | - Agnès Martin‐Mingot
- Université de Poitiers UMR-CNRS 7285, IC2MP Equipe Synthèse Organique “Superacid Group” 4 rue Michel Brunet, TSA 51106 86073 Poitiers Cedex 9 France
| | - Jean Rodriguez
- Aix Marseille Université CNRS Centrale Marseille, iSm2 Marseille France
| | - Damien Bonne
- Aix Marseille Université CNRS Centrale Marseille, iSm2 Marseille France
| | - Sébastien Thibaudeau
- Université de Poitiers UMR-CNRS 7285, IC2MP Equipe Synthèse Organique “Superacid Group” 4 rue Michel Brunet, TSA 51106 86073 Poitiers Cedex 9 France
| |
Collapse
|
24
|
Kao HK, Lin XJ, Hong BC, Yang VW, Lee GH. Enantioselective Synthesis of Yohimbine Analogues by an Organocatalytic and Pot-Economic Strategy. J Org Chem 2019; 84:12138-12147. [PMID: 31291725 DOI: 10.1021/acs.joc.9b01193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An efficient and one-pot method has been developed for the enantioselective synthesis of pentacyclic indole derivatives with the yohimbane skeleton via a sequence of asymmetric Michael-Michael-Mannich-reduction-amidation-Bischler-Napieralski-reduction reactions with a high diastereoselectivity and high enantioselectivities (up to >99% ee). The seven-step reaction sequence, which generates five bonds and five stereocenters, can be conducted with a pot-economic synthetic strategy and one-pot operation in good yields. The structure and absolute stereochemistry of two products were confirmed by X-ray crystallography analysis.
Collapse
Affiliation(s)
- Hsin-Kai Kao
- Department of Chemistry and Biochemistry , National Chung Cheng University , Chia-Yi 621 , Taiwan, R.O.C
| | - Xin-Jie Lin
- Department of Chemistry and Biochemistry , National Chung Cheng University , Chia-Yi 621 , Taiwan, R.O.C
| | - Bor-Cherng Hong
- Department of Chemistry and Biochemistry , National Chung Cheng University , Chia-Yi 621 , Taiwan, R.O.C
| | - Van-Wei Yang
- Department of Chemistry and Biochemistry , National Chung Cheng University , Chia-Yi 621 , Taiwan, R.O.C
| | - Gene-Hsiang Lee
- Instrumentation Center , National Taiwan University , Taipei 106 , Taiwan, R.O.C
| |
Collapse
|
25
|
Chate AV, Shaikh BA, Bondle GM, Sangle SM. Efficient atom-economic one-pot multicomponent synthesis of benzylpyrazolyl coumarins and novel pyrano[2,3-c]pyrazoles catalysed by 2-aminoethanesulfonic acid (taurine) as a bio-organic catalyst. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1619772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Asha V. Chate
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - Badrodin Ayyub Shaikh
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - Giribala M. Bondle
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | | |
Collapse
|
26
|
Kshatriya R, Jejurkar VP, Saha S. Advances in The Catalytic Synthesis of Triarylmethanes (TRAMs). European J Org Chem 2019. [DOI: 10.1002/ejoc.201900465] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rajpratap Kshatriya
- Department of Dyestuff Technology; Institute of Chemical Technology; 400019 Mumbai, N. P. Marg, Matunga, Mumbai India
| | - Valmik P. Jejurkar
- Department of Dyestuff Technology; Institute of Chemical Technology; 400019 Mumbai, N. P. Marg, Matunga, Mumbai India
| | - Satyajit Saha
- Department of Dyestuff Technology; Institute of Chemical Technology; 400019 Mumbai, N. P. Marg, Matunga, Mumbai India
| |
Collapse
|
27
|
Foley AM, Maguire AR. The Impact of Recent Developments in Technologies which Enable the Increased Use of Biocatalysts. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900208] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Aoife M. Foley
- School of Chemistry; Analytical & Biological Chemistry Research Facility; Synthesis & Solid State Pharmaceutical Centre; University College Cork; Cork Ireland
| | - Anita R. Maguire
- School of Chemistry & School of Pharmacy; Analytical & Biological Chemistry Research Facility; Synthesis & Solid State Pharmaceutical Centre; University College Cork; Cork Ireland
| |
Collapse
|
28
|
Guruge C, Rfaish SY, Byrd C, Yang S, Starrett AK, Guisbert E, Nesnas N. Caged Proline in Photoinitiated Organocatalysis. J Org Chem 2019; 84:5236-5244. [PMID: 30908906 DOI: 10.1021/acs.joc.9b00220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Organocatalysis is an emerging field, in which small metal-free organic structures catalyze a diversity of reactions with a remarkable stereoselectivity. The ability to selectively switch on such pathways upon demand has proven to be a valuable tool in biological systems. Light as a trigger provides the ultimate spatial and temporal control of activation. However, there have been limited examples of phototriggered catalytic systems. Herein, we describe the synthesis and application of a caged proline system that can initiate organocatalysis upon irradiation. The caged proline was generated using the highly efficient 4-carboxy-5,7-dinitroindolinyl (CDNI) photocleavable protecting group in a four-step synthesis. Advantages of this system include water solubility, biocompatibility, high quantum yield for catalyst release, and responsiveness to two-photon excitation. We showed the light-triggered catalysis of a crossed aldol reaction, a Mannich reaction, and a self-aldol condensation reaction. We also demonstrated light-initiated catalysis, leading to the formation of a biocide in situ, which resulted in the growth inhibition of E. coli, with as little as 3 min of irradiation. This technique can be broadly applied to other systems, by which the formation of active forms of drugs can be catalytically assembled remotely via two-photon irradiation.
Collapse
Affiliation(s)
- Charitha Guruge
- Department of Biomedical and Chemical Engineering and Sciences , Florida Institute of Technology , Melbourne , Florida 32901 , United States
| | - Saad Y Rfaish
- Department of Biomedical and Chemical Engineering and Sciences , Florida Institute of Technology , Melbourne , Florida 32901 , United States
| | - Chanel Byrd
- Department of Biomedical and Chemical Engineering and Sciences , Florida Institute of Technology , Melbourne , Florida 32901 , United States
| | - Shukun Yang
- Department of Biomedical and Chemical Engineering and Sciences , Florida Institute of Technology , Melbourne , Florida 32901 , United States
| | - Anthony K Starrett
- Department of Biomedical and Chemical Engineering and Sciences , Florida Institute of Technology , Melbourne , Florida 32901 , United States
| | - Eric Guisbert
- Department of Biomedical and Chemical Engineering and Sciences , Florida Institute of Technology , Melbourne , Florida 32901 , United States
| | - Nasri Nesnas
- Department of Biomedical and Chemical Engineering and Sciences , Florida Institute of Technology , Melbourne , Florida 32901 , United States
| |
Collapse
|
29
|
Heredia AA, López-Vidal MG, Kurina-Sanz M, Bisogno FR, Peñéñory AB. Thiol-free chemoenzymatic synthesis of β-ketosulfides. Beilstein J Org Chem 2019; 15:378-387. [PMID: 30873224 PMCID: PMC6404416 DOI: 10.3762/bjoc.15.34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/28/2018] [Indexed: 12/17/2022] Open
Abstract
A preparation of β-ketosulfides avoiding the use of thiols is described. The combination of a multicomponent reaction and a lipase-catalysed hydrolysis has been developed in order to obtain high chemical diversity employing a single sulfur donor. This methodology for the selective synthesis of a set of β-ketosulfides is performed under mild conditions and can be set up in one-pot two-step and on a gram-scale.
Collapse
Affiliation(s)
- Adrián A Heredia
- INFIQC-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Martín G López-Vidal
- INFIQC-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Marcela Kurina-Sanz
- INTEQUI-CONICET, Área de Química Orgánica, Facultad de Química, Bioquímica y Farmacia, UNSL. Chacabuco y Pedernera, San Luis, 5700, Argentina
| | - Fabricio R Bisogno
- INFIQC-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Alicia B Peñéñory
- INFIQC-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| |
Collapse
|
30
|
Pauly J, Gröger H, Patel AV. Catalysts Encapsulated in Biopolymer Hydrogels for Chemoenzymatic One‐Pot Processes in Aqueous Media. ChemCatChem 2019. [DOI: 10.1002/cctc.201802070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jan Pauly
- Fermentation and Formulation of Biologicals and Chemicals Faculty of Engineering and MathematicsBielefeld University of Applied Sciences Interaktion 1 33619 Bielefeld Germany
- Chair of Organic Chemistry I Faculty of ChemistryBielefeld University Universitätsstrasse 25 33615 Bielefeld Germany
| | - Harald Gröger
- Chair of Organic Chemistry I Faculty of ChemistryBielefeld University Universitätsstrasse 25 33615 Bielefeld Germany
| | - Anant V. Patel
- Fermentation and Formulation of Biologicals and Chemicals Faculty of Engineering and MathematicsBielefeld University of Applied Sciences Interaktion 1 33619 Bielefeld Germany
| |
Collapse
|
31
|
New drugs for pharmacological extension of replicative life span in normal and progeroid cells. NPJ Aging Mech Dis 2019; 5:2. [PMID: 30675378 PMCID: PMC6335401 DOI: 10.1038/s41514-018-0032-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023] Open
Abstract
A high-throughput anti-aging drug screen was developed that simultaneously measures senescence-associated β-galactosidase activity and proliferation. Applied to replicatively pre-aged fibroblasts, this screen yielded violuric acid (VA) and 1-naphthoquinone-2-monoxime (N2N1) as its top two hits. These lead compounds extended the replicative life spans of normal and progeroid human cells in a dose-dependent manner and also extended the chronological life spans of mice and C. elegans. They are further shown here to function as redox catalysts in oxidations of NAD(P)H. They thus slow age-related declines in NAD(P)+/NAD(P)H ratios. VA participates in non-enzymatic electron transfers from NAD(P)H to oxidized glutathione or peroxides. N2N1 transfers electrons from NAD(P)H to cytochrome c or CoQ10 via NAD(P)H dehydrogenase (quinone) 1 (NQO1). Our results indicate that pharmacologic manipulation of NQO1 activity via redox catalysts may reveal mechanisms of senescence and aging. Two drugs were discovered that can extend the life spans of normally aged human cells and thus potentially slow human aging. The anti-aging drugs were identified using a novel method that screens drugs across a two-dimensional endpoint space of senescence-associated galactosidase activity as a general axis of aging and ATP as an axis representing proliferation. The two most potent substances were, likely more than coincidentally, electrons carriers that transfer electrons from NAD(P)H to molecules and cellular structures that demand reducing power to repair oxidative damage that accumulates with aging. Treatment of single cells and whole organisms with these new anti-aging drugs increased their lifespans. The mechanism of the drug action may advance our understanding of the complex, yet resolvable, biological process of aging.
Collapse
|
32
|
Franconetti A, de Gonzalo G. Recent Developments on Supported Hydrogen-bond Organocatalysts. ChemCatChem 2018. [DOI: 10.1002/cctc.201801459] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Antonio Franconetti
- Departamento de Química; Universitat Autonoma de Barcelona; Cerdanyola del Vallés 01893 Spain
| | - Gonzalo de Gonzalo
- Departamento de Química Orgánica; Universidad de Sevilla; c/ Profesor García González 2 41012 Sevilla Spain
| |
Collapse
|
33
|
Liardo E, Ríos-Lombardía N, Morís F, González-Sabín J, Rebolledo F. A Straightforward Deracemization of sec
-Alcohols Combining Organocatalytic Oxidation and Biocatalytic Reduction. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800569] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Elisa Liardo
- Departamento de Química Orgánica e Inorgánica; Universidad de Oviedo; 33006 Oviedo Spain
| | | | - Francisco Morís
- Vivero Ciencias de la Salud; EntreChem SL; Santo Domingo de Guzmán 33011 Oviedo Spain
| | - Javier González-Sabín
- Vivero Ciencias de la Salud; EntreChem SL; Santo Domingo de Guzmán 33011 Oviedo Spain
| | - Francisca Rebolledo
- Departamento de Química Orgánica e Inorgánica; Universidad de Oviedo; 33006 Oviedo Spain
| |
Collapse
|
34
|
Rao B, Kinjo R. Boron-Based Catalysts for C−C Bond-Formation Reactions. Chem Asian J 2018; 13:1279-1292. [DOI: 10.1002/asia.201701796] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Bin Rao
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| | - Rei Kinjo
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
35
|
Świderek K, Nödling AR, Tsai YH, Luk LYP, Moliner V. Reaction Mechanism of Organocatalytic Michael Addition of Nitromethane to Cinnamaldehyde: A Case Study on Catalyst Regeneration and Solvent Effects. J Phys Chem A 2018; 122:451-459. [PMID: 29256614 PMCID: PMC5785706 DOI: 10.1021/acs.jpca.7b11803] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
![]()
The Michael addition
of nitromethane to cinnamaldehyde has been
computationally studied in the absence of a catalyst and the presence
of a biotinylated secondary amine by a combined computational and
experimental approach. The calculations were performed at the density
functional theory (DFT) level with the M06-2X hybrid functional, and
a polarizable continuum model has been employed to mimic the effect
of two different solvents: dichloromethane (DCM) and water. Contrary
to common assumption, the product-derived iminium intermediate was
absent in both of the solvents tested. Instead, hydrating the C1–C2
double bond in the enamine intermediate directly yields the tetrahedral
intermediate, which is key for forming the product and regenerating
the catalyst. Enamine hydration is concerted and found to be rate-limiting
in DCM but segregated into two non-rate-limiting steps when the solvent
is replaced with water. However, further analysis revealed that the
use of water as solvent also raises the energy barriers for other
chemical steps, particularly the critical step of C–C bond
formation between the iminium intermediate and nucleophile; this consequently
lowers both the reaction yield and enantioselectivity of this LUMO-lowering
reaction, as experimentally detected. These findings provide a logical
explanation to why water often enhances organocatalysis when used
as an additive but hampers the reaction progress when employed as
a solvent.
Collapse
Affiliation(s)
- Katarzyna Świderek
- Departament de Química Física i Analítica, Universitat Jaume I , 12071 Castellón, Spain
| | | | - Yu-Hsuan Tsai
- School of Chemistry, Cardiff University , CF10 3AT Cardiff, United Kingdom
| | - Louis Y P Luk
- School of Chemistry, Cardiff University , CF10 3AT Cardiff, United Kingdom
| | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I , 12071 Castellón, Spain.,School of Chemistry, University of Bath , BA2 7AY Bath, United Kingdom
| |
Collapse
|
36
|
Dumeignil F, Guehl M, Gimbernat A, Capron M, Ferreira NL, Froidevaux R, Girardon JS, Wojcieszak R, Dhulster P, Delcroix D. From sequential chemoenzymatic synthesis to integrated hybrid catalysis: taking the best of both worlds to open up the scope of possibilities for a sustainable future. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01190g] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Here an overview of all pathways that integrate chemical and biological catalysis is presented. We emphasize the factors to be considered in order to understand catalytic synergy.
Collapse
Affiliation(s)
| | - Marie Guehl
- Univ. Lille
- CNRS
- Centrale Lille
- ENSCL
- Univ. Artois
| | | | | | | | | | | | | | | | - Damien Delcroix
- IFP Energies Nouvelles
- Rond-point de l'échangeur de Solaize
- France
| |
Collapse
|