1
|
Fernandez-Alarcon J, Cladera MA, Rodriguez-Camenforte N, Sitia G, Guerra-Rebollo M, Borros S, Fornaguera C. Regulation of mitochondrial apoptosis via siRNA-loaded metallo-alginate hydrogels: A localized and synergistic antitumor therapy. Biomaterials 2025; 318:123164. [PMID: 39923537 DOI: 10.1016/j.biomaterials.2025.123164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/13/2025] [Accepted: 02/01/2025] [Indexed: 02/11/2025]
Abstract
Preventing relapse after resection of a primary tumor continues to be an unmet clinical need. Development of adjuvant biomaterials with the capacity to kill residual cancer cells after tumor resection is of clinical importance. Here we developed a library of metallo-alginate hydrogels containing high concentrations of metallic ions such as Ca2+ in combination with Zn2+, Li+, or Mg2+ to disrupt Ca2+ homeostasis in the mitochondria of cancer cells by local hyperthermia. To synergistically kill tumor cells and suppress the growth of rechallenged tumors, we embedded oncogene-silencing nucleic acids (mTOR siRNA) loaded into polymerc nanoparticles (NPs) composed of poly (β-amino esters) in the metallo-alginate hydrogels, targeting cancer cells that activate multi-drug resistance pathways such PI3K/AKT/mTOR. Metabolomic studies showed alterations in the Warburg effect, mitochondrial transport, and the TCA cycle, confirming cancer cell damage. In vivo studies of this targeted therapy in mice demonstrated a sex-dependent effect. Male B16F10-tumor-bearing mice treated with the synergistic therapy showed restrained tumor growth. In contrast, no therapeutic effect was observed in female counterparts. Our results demonstrate that in situ-formed NP-loaded metallo-alginate hydrogels can modulate two distinct immune signaling networks that are relevant for enhancing cancer cell death. On the basis of our findings, this combination therapy emerges as a promising sex-dependent strategy for clinical translation.
Collapse
Affiliation(s)
- Jennifer Fernandez-Alarcon
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), 08017, Barcelona, Spain
| | - Margalida Artigues Cladera
- Grup d'Electroquímica i Bioanàlisi (EQBA), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), 08017, Barcelona, Spain
| | - Natalia Rodriguez-Camenforte
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), 08017, Barcelona, Spain
| | - Giovanni Sitia
- Experimental Hepatology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Marta Guerra-Rebollo
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), 08017, Barcelona, Spain
| | - Salvador Borros
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), 08017, Barcelona, Spain
| | - Cristina Fornaguera
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), 08017, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
2
|
Stoia D, Fazio E, Corsaro C, Campu A, Soritau O, Craciun AM, Chereches G, Focsan M, Neri G, Piperno A. A graphene-poly(methacrylic acid)-gold bipyramid hybrid plasmonic nanocomposite for in vitro bioimaging and photothermal therapy. J Mater Chem B 2025; 13:4433-4446. [PMID: 40099578 DOI: 10.1039/d5tb00097a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
This study presents two new hybrid nanosystems (G-PMA(1 : 1)@AuBPs and G-PMA(1 : 3)@AuBPs), constructed from amine graphene (G-NH2) functionalized with poly(methacrylic acid) (PMA) and gold nanoparticles with a bipyramidal shape (AuBPs). These nanoplatforms behave like efficient photothermal agents, making them suitable for effective in vitro photothermal therapy and for bioimaging applications simultaneously. The nanosystems were synthesized by combining covalent and supramolecular approaches and characterized by several techniques including XPS, Raman spectroscopy, UV-vis spectroscopy, XRD, and STEM. It was observed that G-PMA@AuBP systems demonstrate remarkable light-to-heat conversion efficiency under near-infrared irradiation at 785 and 808 nm. Both systems showed an enhancement of the photothermal properties compared to the individual materials. Particularly, a photothermal conversion efficiency exceeding 70% was estimated for the G-PMA(1 : 3)@AuBP sample under 808 nm irradiation. Beyond their photothermal capabilities, G-PMA@AuBP systems can be effective as label-free bioimaging probes. G-PMA(1 : 1)@AuBP has been successfully visualized within B16F10 melanoma cells using FLIM, conventional fluorescence, and dark-field microscopy techniques, with localization observed in the perinuclear region. Cytotoxicity assays confirmed the biocompatibility of both nanosystems. Finally, the in vitro phototherapeutic efficacy was validated under 808 nm laser irradiation, showing promising results for melanoma cell treatment through photothermal therapy.
Collapse
Affiliation(s)
- Daria Stoia
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania.
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Street, 400271 Cluj-Napoca, Romania
| | - Enza Fazio
- Department of Mathematical and Computer Sciences, Physics Science and Earth Science, University of Messina, 31 Viale F. Stagno D'Alcontres, 98166 Messina, Italy
| | - Carmelo Corsaro
- Department of Mathematical and Computer Sciences, Physics Science and Earth Science, University of Messina, 31 Viale F. Stagno D'Alcontres, 98166 Messina, Italy
| | - Andreea Campu
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Street, 400271 Cluj-Napoca, Romania
- Environmental Science, Physics, Physical Education and Sport Department, Faculty of Sciences, Lucian Blaga University, 5-7 Doctor Ion Raţiu Street, 550012 Sibiu, Romania
| | - Olga Soritau
- Department of Radiobiology and Tumor Biology, Oncology Institute Prof. Dr Ion Chiricuta, 34-36 Republicii Street, 400015 Cluj-Napoca, Cluj, Romania
| | - Ana Maria Craciun
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Street, 400271 Cluj-Napoca, Romania
| | - Gabriela Chereches
- Department of Radiobiology and Tumor Biology, Oncology Institute Prof. Dr Ion Chiricuta, 34-36 Republicii Street, 400015 Cluj-Napoca, Cluj, Romania
| | - Monica Focsan
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania.
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Street, 400271 Cluj-Napoca, Romania
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 31 Viale F. Stagno D'Alcontres, 98166 Messina, Italy.
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 31 Viale F. Stagno D'Alcontres, 98166 Messina, Italy.
| |
Collapse
|
3
|
Díaz-Riascos ZV, Llaguno-Munive M, Lafuente-Gómez N, Luengo Y, Holmes S, Volatron J, Ibarrola O, Mancilla S, Sarno F, Aguirre JJ, Razafindrakoto S, Southern P, Terán FJ, Keogh A, Salas G, Prina-Mello A, Lacal JC, Del Pozo A, Pankhurst QA, Hidalgo M, Gazeau F, Somoza Á, Schwartz S, Abasolo I. Preclinical Development of Magnetic Nanoparticles for Hyperthermia Treatment of Pancreatic Cancer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2924-2939. [PMID: 39745145 DOI: 10.1021/acsami.4c16129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a very challenging disease with a very poor prognosis. It is characterized by a dense desmoplastic stroma that hampers drug penetration and limits the effectiveness of conventional chemotherapy (CT). As an alternative, the combination of CT with hyperthermia (HT) has been proposed as an innovative treatment modality for PDAC. In previous works, we reported on the development of iron oxide magnetic nanoparticles (MNPs) that, when exposed to time-varying magnetic fields, exhibit strong HT responses that inhibited the growth of pancreatic cancers. We report here on advances toward the clinical use of these MNPs as an intratumorally administered sterile magnetic fluid (the "NoCanTher ThermoTherapy" or "NTT" Agent) alongside intravenous standard-of-care drugs (gemcitabine and nab-paclitaxel) for the treatment of PDAC. In vitro cell viability assays show that the combination of low doses of CT and HT is highly synergistic, particularly in the BxPC-3 cell line. In vivo, biodistribution assays showed that the NTT Agent MNPs remained mainly within the tumor, concentrated around areas with a high stromal component. Moreover, the combined CT/HT treatment shows clear advantages over CT alone in terms of drug penetration and reduction of the tumor volume, suggesting a potential direct effect of HT in the disruption of the interstitial stroma to facilitate the access of the drugs to malignant cells. These studies have led to the approval and commencement of a clinical investigational study at the Vall d'Hebron University Hospital (Barcelona, Spain) of the NTT Agent alongside CT in patients with locally advanced PDAC.
Collapse
Affiliation(s)
- Zamira V Díaz-Riascos
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain
- Functional Validation & Preclinical Research (FVPR), Unit20 ICTS Nanbiosis, Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
| | - Monserrat Llaguno-Munive
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
| | - Nuria Lafuente-Gómez
- IMDEA Nanociencia, Unidad Asociada al Centro Nacional de Biotecnología (CSIC) 28049 Madrid, Spain
| | - Yurena Luengo
- IMDEA Nanociencia, Unidad Asociada al Centro Nacional de Biotecnología (CSIC) 28049 Madrid, Spain
| | - Sarah Holmes
- Nanomedicine and Molecular Imaging group, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin (TCD), Dublin 8 Dublin, Ireland
| | - Jeanne Volatron
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, Université Paris Diderot, Paris 75205, cedex, France
| | | | - Sandra Mancilla
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain
- Functional Validation & Preclinical Research (FVPR), Unit20 ICTS Nanbiosis, Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
| | - Francesca Sarno
- Grupo de Oncología Traslacional, Hospital Universitario de Fuenlabrada, 28942 Madrid, Spain
| | | | - Sarah Razafindrakoto
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, Université Paris Diderot, Paris 75205, cedex, France
| | | | - Francisco J Terán
- IMDEA Nanociencia, Unidad Asociada al Centro Nacional de Biotecnología (CSIC) 28049 Madrid, Spain
- Unidad Asociada de Nanobiotecnología (CNB-CSIC e IMDEA Nanociencia), 28049 Madrid, Spain
- Unidad de Nanomateriales Avanzados, IMDEA Nanociencia (Unidad de I+D+I Asociada al Instituto de Ciencia de Materiales de Madrid, CSIC), 28049 Madrid, Spain
| | - Anna Keogh
- Department of Histopathology, St. James's Hospital and Trinity College Dublin, Cancer Molecular Diagnostics, Dublin 8 Dublin, Ireland
| | - Gorka Salas
- IMDEA Nanociencia, Unidad Asociada al Centro Nacional de Biotecnología (CSIC) 28049 Madrid, Spain
- Unidad Asociada de Nanobiotecnología (CNB-CSIC e IMDEA Nanociencia), 28049 Madrid, Spain
- Unidad de Nanomateriales Avanzados, IMDEA Nanociencia (Unidad de I+D+I Asociada al Instituto de Ciencia de Materiales de Madrid, CSIC), 28049 Madrid, Spain
| | - Adriele Prina-Mello
- Nanomedicine and Molecular Imaging group, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin (TCD), Dublin 8 Dublin, Ireland
- Trinity St. James's Cancer Institute, School of Medicine (TCD) and St. James's Hospital, Dublin 8 Dublin, Ireland
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM), TTMI, School of Medicine, Trinity College Dublin, Dublin 8 Dublin, Ireland
| | - Juan Carlos Lacal
- Grupo de Oncología Traslacional, Hospital Universitario de Fuenlabrada, 28942 Madrid, Spain
- Instituto de Investigaciones Biomédicas (IIB), CSIC, 28029 Madrid, Spain
| | - Angel Del Pozo
- Nanomedicine and Molecular Imaging group, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin (TCD), Dublin 8 Dublin, Ireland
| | - Quentin A Pankhurst
- Resonant Circuits Limited, London W1S 4BS, U.K
- Healthcare Biomagnetics Laboratory, University College London, London W1S 4BS, U.K
| | - Manuel Hidalgo
- Grupo de Oncología Traslacional, Hospital Universitario de Fuenlabrada, 28942 Madrid, Spain
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, Université Paris Diderot, Paris 75205, cedex, France
| | - Álvaro Somoza
- IMDEA Nanociencia, Unidad Asociada al Centro Nacional de Biotecnología (CSIC) 28049 Madrid, Spain
- Unidad Asociada de Nanobiotecnología (CNB-CSIC e IMDEA Nanociencia), 28049 Madrid, Spain
| | - Simó Schwartz
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain
- Servei de Bioquímica, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Ibane Abasolo
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain
- Functional Validation & Preclinical Research (FVPR), Unit20 ICTS Nanbiosis, Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
- Servei de Bioquímica, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Instituto de Química Avanzada de Cataluña (IQAC), CSIC, 08034 Barcelona, Spain
| |
Collapse
|
4
|
Yang J, Wang W, Huang S, Guo D, Yu L, Qiao W, Zhang X, Han Z, Song B, Xu X, Wu Z, Dordick JS, Zhang F, Xu H, Qiao M. Production, Characterization, and Application of Hydrophobin-Based IR780 Nanoparticles for Targeted Photothermal Cancer Therapy and Advanced Near-Infrared Imaging. Adv Healthc Mater 2025; 14:e2402311. [PMID: 39543440 DOI: 10.1002/adhm.202402311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/29/2024] [Indexed: 11/17/2024]
Abstract
As a promising approach for breast cancer treatment, photothermal therapy (PTT) features high spatial selectivity, noninvasiveness, and minimal drug resistance. IR780 (a near-infrared fluorescent dye) serves as an effective photosensitizer in PTT cancer therapy. However, the clinical application of IR780 in PTT has been hindered by its poor water solubility and unstable photostability. In this study, a genetically engineered dual-functional fusion protein tLyP-1-MGF6 is successfully constructed and expressed, which presents a novel use of hydrophobin MGF6 for its amphiphilicity combined with the tumor-penetrating peptide tLyP-1 to create an innovative carrier for IR780. These results show this fusion protein serving as a biodegradable and biocompatible carrier, significantly improves the water solubility of IR780 when formulated into nanoparticles. These studies demonstrate that the IR780@tLyP-1-MGF6 nanoparticles significantly enhance tumor targeting and photothermal therapeutic efficacy in comparison with control in vitro and in vivo. These advancements highlight the potential of the unique combination hydrophobin-based IR780 delivery system as a multifunctional nanoplatform for integrated imaging and targeted photothermal treatment of breast cancer.
Collapse
Affiliation(s)
- Jiyuan Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
- School of Life Science, Shanxi University, Shanxi, 030000, P. R. China
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Wenjun Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Siyuan Huang
- Key Laboratory of Functional Polymer Materials (Ministry of Education), Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Dingyi Guo
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Long Yu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Wanjin Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Xu Zhang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Zhiqiang Han
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Bo Song
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Xiaoting Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Zhenzhou Wu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Jonathan S Dordick
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
- School of Life Science, Shanxi University, Shanxi, 030000, P. R. China
| |
Collapse
|
5
|
Zhu H, Xu H, Zhang Y, Brodský J, Gablech I, Korabečná M, Neuzil P. Exploring the Frontiers of Cell Temperature Measurement and Thermogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2402135. [PMID: 39467049 PMCID: PMC11714221 DOI: 10.1002/advs.202402135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/24/2024] [Indexed: 10/30/2024]
Abstract
The precise measurement of cell temperature and an in-depth understanding of thermogenic processes are critical in unraveling the complexities of cellular metabolism and its implications for health and disease. This review focuses on the mechanisms of local temperature generation within cells and the array of methods developed for accurate temperature assessment. The contact and noncontact techniques are introduced, including infrared thermography, fluorescence thermometry, and other innovative approaches to localized temperature measurement. The role of thermogenesis in cellular metabolism, highlighting the integral function of temperature regulation in cellular processes, environmental adaptation, and the implications of thermogenic dysregulation in diseases such as metabolic disorders and cancer are further discussed. The challenges and limitations in this field are critically analyzed while technological advancements and future directions are proposed to overcome these barriers. This review aims to provide a consolidated resource for current methodologies, stimulate discussion on the limitations and challenges, and inspire future innovations in the study of cellular thermodynamics.
Collapse
Affiliation(s)
- Hanliang Zhu
- School of Mechanical EngineeringNorthwestern Polytechnical UniversityXi'anShaanxi710072P. R. China
| | - Haotian Xu
- School of Mechanical EngineeringNorthwestern Polytechnical UniversityXi'anShaanxi710072P. R. China
| | - Yue Zhang
- School of Mechanical EngineeringNorthwestern Polytechnical UniversityXi'anShaanxi710072P. R. China
| | - Jan Brodský
- Department of MicroelectronicsThe Faculty of Electrical Engineering and Communication TechnologyBrno University of TechnologyTechnická 3058/10Brno616 00Czech Republic
| | - Imrich Gablech
- Department of MicroelectronicsThe Faculty of Electrical Engineering and Communication TechnologyBrno University of TechnologyTechnická 3058/10Brno616 00Czech Republic
| | - Marie Korabečná
- Institute of Biology and Medical Genetics, First Faculty of MedicineCharles University and General University Hospital in PragueAlbertov 4Prague128 00Czech Republic
- Department of Laboratory MedicineFaculty of Health Care and Social WorkUniversity of Trnava in TrnavaUniversitne namestie 1Trnava918 43Slovakia
| | - Pavel Neuzil
- School of Mechanical EngineeringNorthwestern Polytechnical UniversityXi'anShaanxi710072P. R. China
| |
Collapse
|
6
|
Patrick PS, Stuckey DJ, Zhu H, Kalber TL, Iftikhar H, Southern P, Bear JC, Lythgoe MF, Hattersley SR, Pankhurst QA. Improved tumour delivery of iron oxide nanoparticles for magnetic hyperthermia therapy of melanoma via ultrasound guidance and 111In SPECT quantification. NANOSCALE 2024; 16:19715-19729. [PMID: 39044561 PMCID: PMC11488578 DOI: 10.1039/d4nr00240g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024]
Abstract
Magnetic field hyperthermia relies on the intra-tumoural delivery of magnetic nanoparticles by interstitial injection, followed by their heating on exposure to a remotely-applied alternating magnetic field (AMF). This offers a potential sole or adjuvant route to treating drug-resistant tumours for which no alternatives are currently available. However, two challenges in nanoparticle delivery currently hinder the effective clinical translation of this technology: obtaining enough magnetic material within the tumour to enable sufficient heating; and doing this accurately to limit or avoid damage to surrounding healthy tissue. A further complication is the lack of established methods to non-invasively quantify nanoparticle biodistribution, which is necessary to evaluate the performance of improved delivery strategies. Here we employ 111In radiolabelling and single-photon emission computed tomography (SPECT) to non-invasively quantify distribution of a clinical grade iron-oxide-based nanoparticle in a mouse model of melanoma. We show that compared to manual injection, ultrasound guided delivery together with syringe-pump-controlled infusion improves both the nanoparticle concentration within the tumour, and the accuracy of delivery - reducing off-target peri-tumoural delivery. Following AMF heating, injected melanomas shrank significantly compared to non-injected controls, validating therapeutic efficacy. Systemic off-target delivery was quantified and extrapolated to predict off-target energy absorbance within safe limits for the main sites of background accumulation. With many nanoparticle-based therapies currently in development for cancer, this image-guided delivery strategy has wide potential impact beyond the field of magnetic hyperthermia. Future use in representative patient cohorts would also be enabled by the high clinical availability of both SPECT and ultrasound imaging.
Collapse
Affiliation(s)
- P Stephen Patrick
- Centre for Advanced Biomedical Imaging (CABI), Department of Medicine, University College London, London WC1E 6DD, UK.
| | - Daniel J Stuckey
- Centre for Advanced Biomedical Imaging (CABI), Department of Medicine, University College London, London WC1E 6DD, UK.
| | - Huachen Zhu
- Centre for Advanced Biomedical Imaging (CABI), Department of Medicine, University College London, London WC1E 6DD, UK.
| | - Tammy L Kalber
- Centre for Advanced Biomedical Imaging (CABI), Department of Medicine, University College London, London WC1E 6DD, UK.
| | - Haadi Iftikhar
- Healthcare Biomagnetics Laboratory, University College London, 21 Albemarle Street, London, W1S 4BS, UK
| | - Paul Southern
- Healthcare Biomagnetics Laboratory, University College London, 21 Albemarle Street, London, W1S 4BS, UK
- Resonant Circuits Limited, 21 Albemarle Street, London, W1S 4BS, UK
| | - Joseph C Bear
- School of Life Science, Pharmacy & Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging (CABI), Department of Medicine, University College London, London WC1E 6DD, UK.
| | | | - Quentin A Pankhurst
- Healthcare Biomagnetics Laboratory, University College London, 21 Albemarle Street, London, W1S 4BS, UK
- Resonant Circuits Limited, 21 Albemarle Street, London, W1S 4BS, UK
| |
Collapse
|
7
|
Li S, Li Y, Shi M, Xing R, Van Hest JCM, Yan X. Assembly-enhanced indocyanine green nanoparticles for fluorescence imaging-guided photothermal therapy. J Mater Chem B 2024; 12:10915-10922. [PMID: 39347558 DOI: 10.1039/d4tb01604a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The development of theranostic agents that offer complete biocompatibility, coupled with enhanced diagnostic and therapeutic performance, is crucial for fluorescence imaging-guided photothermal therapy in anti-tumor applications. However, the fabrication of nanotheranostics meeting the aforementioned requirements is challenged by concerns regarding biosafety and limited control over construction. Herein, we reported a class of fluorescence imaging-guided photothermal theranostic nanomaterials that are composed of amino acid derivatives and clinically used small photoactive indocyanine green molecules. Through manipulation of noncovalent interactions, these binary building blocks can co-assemble into nanoparticles in a tunable manner. Significantly, such construction not only maintained the fluorescence properties of photoactive molecules, but also enhanced their stability to overcome barriers from photodegradation and complex physiological conditions. These collective features integrated their precise anti-tumor applications, including fluorescence imaging diagnosis and photothermal ablation therapy. This study reported a class of nanotheranostics characterized by biocompatibility, adjustable construction, and robust stability, which are beneficial for the clinical translation of fluorescence imaging-guided photothermal therapy against tumors.
Collapse
Affiliation(s)
- Shukun Li
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Beijing 100190, China.
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Yudong Li
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Mengqian Shi
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Beijing 100190, China.
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Beijing 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jan C M Van Hest
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Beijing 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Van Dieren L, Quisenaerts T, Licata M, Beddok A, Lellouch AG, Ysebaert D, Saldien V, Peeters M, Gorbaslieva I. Combined Radiotherapy and Hyperthermia: A Systematic Review of Immunological Synergies for Amplifying Radiation-Induced Abscopal Effects. Cancers (Basel) 2024; 16:3656. [PMID: 39518094 PMCID: PMC11545184 DOI: 10.3390/cancers16213656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION The abscopal effect is a systemic immune response characterized by metastases regression at sites distant from the irradiated lesion. This systematic review aims to explore the immunological mechanisms of action underlying the abscopal effect and to investigate how hyperthermia (HT) can increase the chances of radiotherapy (RT) triggering systemic anti-tumor immune responses. METHODS This review is created in accordance with the PRISMA guidelines. RESULTS AND CONCLUSION HT and RT have both complementary and synergistic immunological effects. Both methods trigger danger signal release, promoting cytokine and chemokine secretion, which increases T-cell infiltration and facilitates cell death. Both treatments upregulate extracellular tumor HSP70, which could amplify DAMP recognition by macrophages and DCs, leading to stronger tumor antigen presentation and CTL-mediated immune responses. Additionally, the combined increase in cell adhesion molecules (VCAM-1, ICAM-1, E-selectin, L-selectin) could enhance leukocyte adhesion to tumors, improving lymphocyte trafficking and boosting systemic anti-tumor effects. Lastly, HT causes vasodilation and improves blood flow, which might exacerbate those distant effects. We suggest the combination of local radiotherapy with fever-range whole-body hyperthermia to optimally enhance the chances of triggering the abscopal effect mediated by the immune system.
Collapse
Affiliation(s)
- Loïc Van Dieren
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Tom Quisenaerts
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | | | - Arnaud Beddok
- Institut Godinot, Radiation Oncology Department, 85054 Reims, France
- GCMI, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alexandre G. Lellouch
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dirk Ysebaert
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
- Department of Hepatobiliary, Transplantation and Endocrine Surgery, University Hospital of Antwerp, 2650 Edegem, Belgium
| | - Vera Saldien
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
- Department of Hepatobiliary, Transplantation and Endocrine Surgery, University Hospital of Antwerp, 2650 Edegem, Belgium
| | - Marc Peeters
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
- Department of Hepatobiliary, Transplantation and Endocrine Surgery, University Hospital of Antwerp, 2650 Edegem, Belgium
| | - Ivana Gorbaslieva
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
- Department of Hepatobiliary, Transplantation and Endocrine Surgery, University Hospital of Antwerp, 2650 Edegem, Belgium
| |
Collapse
|
9
|
Qin S, He G, Yang J. Nanomaterial combined engineered bacteria for intelligent tumor immunotherapy. J Mater Chem B 2024; 12:9795-9820. [PMID: 39225508 DOI: 10.1039/d4tb00741g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cancer remains the leading cause of human death worldwide. Compared to traditional therapies, tumor immunotherapy has received a lot of attention and research focus due to its potential to activate both innate and adaptive immunity, low toxicity to normal tissue, and long-term immune activity. However, its clinical effectiveness and large-scale application are limited due to the immunosuppression microenvironment, lack of spatiotemporal control, expensive cost, and long manufacturing time. Recently, nanomaterial combined engineered bacteria have emerged as a promising solution to the challenges of tumor immunotherapy, which offers spatiotemporal control, reversal of immunosuppression, and scalable production. Therefore, we summarize the latest research on nanomaterial-assisted engineered bacteria for precise tumor immunotherapies, including the cross-talk of nanomaterials and bacteria as well as their application in different immunotherapies. In addition, we further discuss the advantages and challenges of nanomaterial-engineered bacteria and their future prospects, inspiring more novel and intelligent tumor immunotherapy.
Collapse
Affiliation(s)
- Shurong Qin
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Guanzhong He
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Jingjing Yang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
10
|
Tang H, Zhang X, Bao Y, Shen H, Fan M, Wang Y, Xiang S, Ran X. Nucleic acid-functionalized gold nanoparticles as intelligent photothermal therapy agents for precise cancer treatment. NANOTECHNOLOGY 2024; 35:465101. [PMID: 39146957 DOI: 10.1088/1361-6528/ad6fa7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
We present an intelligent photothermal therapy agents by functionalizing gold nanoparticles with specific nucleic acid sequences. Hairpin nucleic acids are modified to the nanoparticles, forming AuNPs-1 and AuNPs-2. Upon infiltrating cancer cells, these nanoparticles undergo catalytic hairpin assembly in the presence of target miRNA, leading to aggregation and subsequent photothermal conversion. Under near-infrared laser irradiation, aggregated gold nanoparticles exhibit efficient photothermal conversion, selectively damaging cancer cells. This approach offers heightened selectivity, as nanoparticles only aggregate in environments with cancer biomarkers present, sparing normal cells. Cytotoxicity assays confirm minimal toxicity to normal cells. In vivo studies on mice bearing solid tumors validate the system's efficacy in tumor regression. Overall, this study highlights the potential of nucleic acid-functionalized gold nanoparticles in intelligent and selective cancer photothermal therapy, offering insights for targeted diagnosis and treatment development.
Collapse
Affiliation(s)
- Hongmei Tang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Xuetao Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Yuyan Bao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Huazhen Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Minglan Fan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Yangchen Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Siyun Xiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Xiang Ran
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| |
Collapse
|
11
|
Bravo M, Fortuni B, Mulvaney P, Hofkens J, Uji-I H, Rocha S, Hutchison JA. Nanoparticle-mediated thermal Cancer therapies: Strategies to improve clinical translatability. J Control Release 2024; 372:751-777. [PMID: 38909701 DOI: 10.1016/j.jconrel.2024.06.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Despite significant advances, cancer remains a leading global cause of death. Current therapies often fail due to incomplete tumor removal and nonspecific targeting, spurring interest in alternative treatments. Hyperthermia, which uses elevated temperatures to kill cancer cells or boost their sensitivity to radio/chemotherapy, has emerged as a promising alternative. Recent advancements employ nanoparticles (NPs) as heat mediators for selective cancer cell destruction, minimizing damage to healthy tissues. This approach, known as NP hyperthermia, falls into two categories: photothermal therapies (PTT) and magnetothermal therapies (MTT). PTT utilizes NPs that convert light to heat, while MTT uses magnetic NPs activated by alternating magnetic fields (AMF), both achieving localized tumor damage. These methods offer advantages like precise targeting, minimal invasiveness, and reduced systemic toxicity. However, the efficacy of NP hyperthermia depends on many factors, in particular, the NP properties, the tumor microenvironment (TME), and TME-NP interactions. Optimizing this treatment requires accurate heat monitoring strategies, such as nanothermometry and biologically relevant screening models that can better mimic the physiological features of the tumor in the human body. This review explores the state-of-the-art in NP-mediated cancer hyperthermia, discussing available nanomaterials, their strengths and weaknesses, characterization methods, and future directions. Our particular focus lies in preclinical NP screening techniques, providing an updated perspective on their efficacy and relevance in the journey towards clinical trials.
Collapse
Affiliation(s)
- M Bravo
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia; Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - B Fortuni
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - P Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - J Hofkens
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; Max Planck Institute for Polymer Research, Mainz D-55128, Germany
| | - H Uji-I
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Kita ward, Sapporo 001-0020, Hokkaido, Japan
| | - S Rocha
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium.
| | - J A Hutchison
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
12
|
Mimansa, Zafar MA, Verma DK, Das R, Agrewala JN, Shanavas A. Shielding against breast tumor relapse with an autologous chemo-photo-immune active Nano-Micro-Sera based fibrin implant. NANOSCALE 2024; 16:14006-14019. [PMID: 38989622 DOI: 10.1039/d4nr01076k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Local recurrence post-surgery in early-stage triple-negative breast cancer is a major challenge. To control the regrowth of a residual tumor, we have developed an autologous therapeutic hybrid fibrin glue for intra-operative implantation. Using autologous serum proteins as stabilizers, we have optimized high drug-loaded lapatinib-NanoSera (Lap-NS; ∼66% L.C.) and imiquimod-MicroSera (IMQ-MS; ∼92% L.C). Additionally, plasmonic nanosera (PNS) with an ∼67% photothermal conversion efficiency under 980 nm laser irradiation was also developed. While localized monotherapy with either Lap-NS or PNS reduced the tumor regrowth rate, their combination with IMQ-MS amplified the effect of immunogenic cell death with a high level of tumor infiltration by immune cells at the surgical site. The localized combination immunotherapy with a Nano-MicroSera based hybrid fibrin implant showed superior tumor inhibition and survival with significant promise for clinical translation.
Collapse
Affiliation(s)
- Mimansa
- Inorganic & Organic Nanomedicine (ION) Lab, Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India.
| | - Mohammad Adeel Zafar
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Dinesh Kumar Verma
- All India Institute of Medical Sciences Bilaspur, Changar Palasiyan, Noa, Himachal Pradesh, 174001, India
| | - Reena Das
- Department of Haematology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Javed Naim Agrewala
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Asifkhan Shanavas
- Inorganic & Organic Nanomedicine (ION) Lab, Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India.
| |
Collapse
|
13
|
Liu J, Sun B, Li W, Kim HJ, Gan SU, Ho JS, Rahmat JNB, Zhang Y. Wireless sequential dual light delivery for programmed PDT in vivo. LIGHT, SCIENCE & APPLICATIONS 2024; 13:113. [PMID: 38744817 PMCID: PMC11094163 DOI: 10.1038/s41377-024-01437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 05/16/2024]
Abstract
Using photodynamic therapy (PDT) to treat deep-seated cancers is limited due to inefficient delivery of photosensitizers and low tissue penetration of light. Polymeric nanocarriers are widely used for photosensitizer delivery, while the self-quenching of the encapsulated photosensitizers would impair the PDT efficacy. Furthermore, the generated short-lived reactive oxygen spieces (ROS) can hardly diffuse out of nanocarriers, resulting in low PDT efficacy. Therefore, a smart nanocarrier system which can be degraded by light, followed by photosensitizer activation can potentially overcome these limitations and enhance the PDT efficacy. A light-sensitive polymer nanocarrier encapsulating photosensitizer (RB-M) was synthesized. An implantable wireless dual wavelength microLED device which delivers the two light wavelengths sequentially was developed to programmatically control the release and activation of the loaded photosensitizer. Two transmitter coils with matching resonant frequencies allow activation of the connected LEDs to emit different wavelengths independently. Optimal irradiation time, dose, and RB-M concentration were determined using an agent-based digital simulation method. In vitro and in vivo validation experiments in an orthotopic rat liver hepatocellular carcinoma disease model confirmed that the nanocarrier rupture and sequential low dose light irradiation strategy resulted in successful PDT at reduced photosensitizer and irradiation dose, which is a clinically significant event that enhances treatment safety.
Collapse
Affiliation(s)
- Jiayi Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Bowen Sun
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Wenkai Li
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Han-Joon Kim
- Department of Electrical and Computer Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117583, Singapore
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, 39253, Republic of Korea
| | - Shu Uin Gan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - John S Ho
- Department of Electrical and Computer Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore, 117456, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, 119276, Singapore
| | - Juwita Norasmara Bte Rahmat
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117585, Singapore.
| | - Yong Zhang
- Department of Biomedical Engineering, College of Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
14
|
Turkmen Koc SN, Rezaei Benam S, Aral IP, Shahbazi R, Ulubayram K. Gold nanoparticles-mediated photothermal and photodynamic therapies for cancer. Int J Pharm 2024; 655:124057. [PMID: 38552752 DOI: 10.1016/j.ijpharm.2024.124057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Cancer remains one of the major causes of death globally, with one out of every six deaths attributed to the disease. The impact of cancer is felt on psychological, physical, and financial levels, affecting individuals, communities, and healthcare institutions. Conventional cancer treatments have many challenges and inadequacies. Nanomedicine, however, presents a promising solution by not only overcoming these problems but also offering the advantage of combined therapy for treatment-resistant cancers. Nanoparticles specifically engineered for use in nanomedicine can be efficiently targeted to cancer cells through a combination of active and passive techniques, leading to superior tumor-specific accumulation, enhanced drug availability, and reduced systemic toxicity. Among various nanoparticle formulations designed for cancer treatment, gold nanoparticles have gained prominence in the field of nanomedicine due to their photothermal, photodynamic, and immunologic effects without the need for photosensitizers or immunotherapeutic agents. To date, there is no comprehensive literature review that focuses on the photothermal, photodynamic, and immunologic effects of gold nanoparticles. In this review, significant attention has been devoted to examining the parameters pertaining to the structure of gold nanoparticles and laser characteristics, which play a crucial role in influencing the efficacy of photothermal therapy (PTT) and photodynamic therapy (PDT). Moreover, this article provides insights into the success of PTT and PDT mediated by gold nanoparticles in primary cancer treatment, as well as the immunological effects of PTT and PDT on metastasis and recurrence, providing a promising strategy for cancer therapy. In summary, gold nanoparticles, with their unique properties, have the potential for clinical application in various cancer therapies, including the treatment of primary cancer, recurrence and metastasis.
Collapse
Affiliation(s)
- Seyma Nur Turkmen Koc
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Ankara, Türkiye
| | - Sanam Rezaei Benam
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, USA
| | - Ipek Pınar Aral
- Department of Radiation Oncology, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara Bilkent City Hospital, Ankara, Türkiye
| | - Reza Shahbazi
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, USA; Tumor Microenvironment & Metastasis, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, USA; Brown Center for Immunotherapy, Indiana University School of Medicine, Indianapolis, USA.
| | - Kezban Ulubayram
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Ankara, Türkiye; Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Türkiye; Department of Bioengineering, Hacettepe University, Ankara, Türkiye.
| |
Collapse
|
15
|
Song Z, Guan C, Li T, Li C, Zhang N, Liu K, Yang C, Zhu Y, Xu Y. Vaporization phosphorization-mediated synthesis of phosphorus-doped TiO 2 nanocomposites for combined photodynamic and photothermal therapy of renal cell carcinoma. J Mater Chem B 2024; 12:4039-4052. [PMID: 38591157 DOI: 10.1039/d4tb00213j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a disease with high incidence and poor prognosis. The conventional treatment involves radiotherapy and chemotherapy, but chemotherapeutic agents are often associated with side effects, i.e., cytotoxicity to nontumor cells. Therefore, there is an urgent need for the development of novel therapeutic strategies for ccRCC. We synthesized spherical P/TiO2 nanoparticles (P/TiO2 NPs) by vaporization phosphorization (VP). X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS) analyses confirmed that the anatase TiO2 surface was successfully doped with phosphorus and produced a large number of oxygen vacancies (OV). Serving as a photosensitizer, P/TiO2 NPs not only extended the photoresponse range to the near-infrared II region (NIR II) but also introduced a donor energy level lower than the TiO2 conduction band, narrowing the band gap, which could facilitate the migration of photogenerated charges and trigger the synergistic treatment of photodynamic therapy (PDT) and photothermal therapy (PTT). During NIR irradiation in vitro, the P/TiO2 NPs generated local heat and various oxygen radicals, including 1O2, ˙O2-, H2O2, and ˙OH, which damaged the ccRCC cells. In vivo, administration of the P/TiO2 NPs + NIR reduced the tumor volume by 80%, and had the potential to inhibit tumor metastasis by suppressing intratumor neoangiogenesis. The P/TiO2 NPs showed superior safety and efficacy relative to the conventional chemotherapeutic agent used in ccRCC treatment. This study introduced an innovative paradigm for renal cancer treatment, highlighting the potential of P/TiO2 NPs as safe and effective nanomaterials and presenting a compelling new option for clinical applications in anticancer therapy.
Collapse
Affiliation(s)
- Zhuo Song
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Chen Guan
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Tianyang Li
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Chenyu Li
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ningxin Zhang
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Ke Liu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Chengyu Yang
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Yukun Zhu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Yan Xu
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
16
|
Tsauo J, Liu Y, Zhang X, Fu Y, Zhao H, Gong T, Li J, Li X. Local hyperthermia mediated by gold nanoparticle-integrated silicone-covered stent: feasibility and tissue response in a rat esophageal model. Eur Radiol Exp 2024; 8:40. [PMID: 38565836 PMCID: PMC10987532 DOI: 10.1186/s41747-024-00438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND To assess the feasibility and tissue response of using a gold nanoparticle (AuNP)-integrated silicone-covered self-expandable metal stent (SEMS) for local hyperthermia in a rat esophageal model. METHODS The study involved 42 Sprague-Dawley rats. Initially, 6 animals were subjected to near-infrared (NIR) laser irradiation (power output from 0.2 to 2.4 W) to assess the in vitro heating characteristics of the AuNP-integrated SEMS immediately after its placement. The surface temperature of the stented esophagus was then measured using an infrared thermal camera before euthanizing the animals. Subsequently, the remaining 36 animals were randomly divided into 4 groups of 9 each. Groups A and B received AuNP-integrated SEMS, while groups C and D received conventional SEMS. On day 14, groups A and C underwent NIR laser irradiation at a power output of 1.6 W for 2 min. By days 15 (3 animals per group) or 28 (6 animals per group), all groups were euthanized for gross, histological, and immunohistochemical analysis. RESULTS Under NIR laser irradiation, the surface temperature of the stented esophagus quickly increased to a steady-state level. The surface temperature of the stented esophagus increased proportionally with power outputs, being 47.3 ± 1.4 °C (mean ± standard deviation) at 1.6 W. Only group A attained full circumferential heating through all layers, from the epithelium to the muscularis propria, demonstrating marked apoptosis in these layers without noticeable necroptosis. CONCLUSIONS Local hyperthermia using the AuNP-integrated silicone-covered SEMS was feasible and induced cell death through apoptosis in a rat esophageal model. RELEVANCE STATEMENT A gold nanoparticle-integrated silicone-covered self-expanding metal stent has been developed to mediate local hyperthermia. This approach holds potential for irreversibly damaging cancer cells, improving the sensitivity of cancer cells to therapies, and triggering systemic anticancer immune responses. KEY POINTS • A gold nanoparticle-integrated silicone-covered self-expanding metal stent was placed in the rat esophagus. • Upon near-infrared laser irradiation, this stent quickly increased the temperature of the stented esophagus. • Local hyperthermia using this stent was feasible and resulted in cell death through apoptosis.
Collapse
Affiliation(s)
- Jiaywei Tsauo
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Interventional Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Yue Liu
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology. National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaowu Zhang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Yan Fu
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Zhao
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Gong
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jingui Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiao Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
17
|
Genin VD, Bucharskaya AB, Kirillin MY, Kurakina DA, Navolokin NA, Terentyuk GS, Khlebtsov BN, Khlebtsov NG, Maslyakova GN, Tuchin VV, Genina EA. Monitoring of optical properties of tumors during laser plasmon photothermal therapy. JOURNAL OF BIOPHOTONICS 2024; 17:e202300322. [PMID: 38221797 DOI: 10.1002/jbio.202300322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/04/2023] [Accepted: 12/25/2023] [Indexed: 01/16/2024]
Abstract
We studied grafted tumors obtained by subcutaneous implantation of kidney cancer cells into male white rats. Gold nanorods with a plasmon resonance of about 800 nm were injected intratumorally for photothermal heating. Experimental irradiation of tumors was carried out percutaneously using a near-infrared diode laser. Changes in the optical properties of the studied tissues in the spectral range 350-2200 nm under plasmonic photothermal therapy (PPT) were studied. Analysis of the observed changes in the absorption bands of water and hemoglobin made it possible to estimate the depth of thermal damage to the tumor. A significant decrease in absorption peaks was observed in the spectrum of the upper peripheral part and especially the tumor capsule. The obtained changes in the optical properties of tissues under laser irradiation can be used to optimize laboratory and clinical PPT procedures.
Collapse
Affiliation(s)
- Vadim D Genin
- Optics and Biophotonics Department, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| | - Alla B Bucharskaya
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
- Core Facility of Experimental Oncology, Saratov State Medical University named after V. I. Razumovsky, Saratov, Russia
| | - Mikhail Yu Kirillin
- Biophotonics Laboratory, Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod, Russia
- Applied Mathematics Department, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Daria A Kurakina
- Biophotonics Laboratory, Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Nikita A Navolokin
- Core Facility of Experimental Oncology, Saratov State Medical University named after V. I. Razumovsky, Saratov, Russia
| | - Georgy S Terentyuk
- Core Facility of Experimental Oncology, Saratov State Medical University named after V. I. Razumovsky, Saratov, Russia
| | - Boris N Khlebtsov
- Laboratory of Nanobiotechnology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Federal Research Centre "Saratov Scientific Centre of the Russian Academy of Sciences" (IBPPM RAS), Saratov, Russia
| | - Nikolai G Khlebtsov
- Optics and Biophotonics Department, Saratov State University, Saratov, Russia
- Laboratory of Nanobiotechnology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Federal Research Centre "Saratov Scientific Centre of the Russian Academy of Sciences" (IBPPM RAS), Saratov, Russia
| | - Galina N Maslyakova
- Core Facility of Experimental Oncology, Saratov State Medical University named after V. I. Razumovsky, Saratov, Russia
| | - Valery V Tuchin
- Optics and Biophotonics Department, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control, Federal Research Centre "Saratov Scientific Centre of the Russian Academy of Sciences", Saratov, Russia
| | - Elina A Genina
- Optics and Biophotonics Department, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| |
Collapse
|
18
|
Soeiro JF, Sousa FL, Monteiro MV, Gaspar VM, Silva NJO, Mano JF. Advances in screening hyperthermic nanomedicines in 3D tumor models. NANOSCALE HORIZONS 2024; 9:334-364. [PMID: 38204336 PMCID: PMC10896258 DOI: 10.1039/d3nh00305a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Hyperthermic nanomedicines are particularly relevant for tackling human cancer, providing a valuable alternative to conventional therapeutics. The early-stage preclinical performance evaluation of such anti-cancer treatments is conventionally performed in flat 2D cell cultures that do not mimic the volumetric heat transfer occurring in human tumors. Recently, improvements in bioengineered 3D in vitro models have unlocked the opportunity to recapitulate major tumor microenvironment hallmarks and generate highly informative readouts that can contribute to accelerating the discovery and validation of efficient hyperthermic treatments. Leveraging on this, herein we aim to showcase the potential of engineered physiomimetic 3D tumor models for evaluating the preclinical efficacy of hyperthermic nanomedicines, featuring the main advantages and design considerations under diverse testing scenarios. The most recent applications of 3D tumor models for screening photo- and/or magnetic nanomedicines will be discussed, either as standalone systems or in combinatorial approaches with other anti-cancer therapeutics. We envision that breakthroughs toward developing multi-functional 3D platforms for hyperthermia onset and follow-up will contribute to a more expedited discovery of top-performing hyperthermic therapies in a preclinical setting before their in vivo screening.
Collapse
Affiliation(s)
- Joana F Soeiro
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Filipa L Sousa
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Maria V Monteiro
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Nuno J O Silva
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
19
|
Ngo TLH, Wang KL, Pan WY, Ruan T, Lin YJ. Immunomodulatory Prodrug Micelles Imitate Mild Heat Effects to Reshape Tumor Microenvironment for Enhanced Cancer Immunotherapy. ACS NANO 2024; 18:5632-5646. [PMID: 38344992 PMCID: PMC10883120 DOI: 10.1021/acsnano.3c11186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
Physical stimulation with mild heat possesses the notable ability to induce immunomodulation within the tumor microenvironment (TME). It transforms the immunosuppressive TME into an immune-active state, making tumors more receptive to immune checkpoint inhibitor (ICI) therapy. Transient receptor potential vanilloid 1 (TRPV1), which can be activated by mild heat, holds the potential to induce these alterations in the TME. However, achieving precise temperature control within tumors while protecting neighboring tissues remains a significant challenge when using external heat sources. Taking inspiration from the heat sensation elicited by capsaicin-containing products activating TRPV1, this study employs capsaicin to chemically stimulate TRPV1, imitating immunomodulatory benefits akin to those induced by mild heat. This involves developing a glutathione (GSH)-responsive immunomodulatory prodrug micelle system to deliver capsaicin and an ICI (BMS202) concurrently. Following intravenous administration, the prodrug micelles accumulate at the tumor site through the enhanced permeability and retention effect. Within the GSH-rich TME, the micelles disintegrate and release capsaicin and BMS202. The released capsaicin activates TRPV1 expressed in the TME, enhancing programmed death ligand 1 expression on tumor cell surfaces and promoting T cell recruitment into the TME, rendering it more immunologically active. Meanwhile, the liberated BMS202 blocks immune checkpoints on tumor cells and T cells, activating the recruited T cells and ultimately eradicating the tumors. This innovative strategy represents a comprehensive approach to fine-tune the TME, significantly amplifying the effectiveness of cancer immunotherapy by exploiting the TRPV1 pathway and enabling in situ control of immunomodulation within the TME.
Collapse
Affiliation(s)
- Thi-Lan-Huong Ngo
- Research
Center for Applied Sciences, Academia Sinica, Taipei, 115201, Taiwan
| | - Kuan-Lin Wang
- Research
Center for Applied Sciences, Academia Sinica, Taipei, 115201, Taiwan
- School
of Medicine, College of Medicine, Fu Jen
Catholic University, New Taipei
City, 242062, Taiwan
| | - Wen-Yu Pan
- School
of Medical Laboratory Science and Biotechnology, College of Medical
Science and Technology, Taipei Medical University, Taipei, 110301, Taiwan
- Ph.D.
Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110301, Taiwan
| | - Ting Ruan
- School
of Medicine, College of Medicine, Fu Jen
Catholic University, New Taipei
City, 242062, Taiwan
| | - Yu-Jung Lin
- Research
Center for Applied Sciences, Academia Sinica, Taipei, 115201, Taiwan
| |
Collapse
|
20
|
Azizollahi F, Kamali H, Oroojalian F. Magnetic nanocarriers for cancer immunotherapy. NANOMEDICINE IN CANCER IMMUNOTHERAPY 2024:349-401. [DOI: 10.1016/b978-0-443-18770-4.00016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
21
|
Kang X, Huang Y, Wang H, Jadhav S, Yue Z, Tiwari AK, Babu RJ. Tumor-Associated Macrophage Targeting of Nanomedicines in Cancer Therapy. Pharmaceutics 2023; 16:61. [PMID: 38258072 PMCID: PMC10819517 DOI: 10.3390/pharmaceutics16010061] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
The tumor microenvironment (TME) is pivotal in tumor growth and metastasis, aligning with the "Seed and Soil" theory. Within the TME, tumor-associated macrophages (TAMs) play a central role, profoundly influencing tumor progression. Strategies targeting TAMs have surfaced as potential therapeutic avenues, encompassing interventions to block TAM recruitment, eliminate TAMs, reprogram M2 TAMs, or bolster their phagocytic capabilities via specific pathways. Nanomaterials including inorganic materials, organic materials for small molecules and large molecules stand at the forefront, presenting significant opportunities for precise targeting and modulation of TAMs to enhance therapeutic efficacy in cancer treatment. This review provides an overview of the progress in designing nanoparticles for interacting with and influencing the TAMs as a significant strategy in cancer therapy. This comprehensive review presents the role of TAMs in the TME and various targeting strategies as a promising frontier in the ever-evolving field of cancer therapy. The current trends and challenges associated with TAM-based therapy in cancer are presented.
Collapse
Affiliation(s)
- Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA;
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Yongzhuo Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangzhou 528400, China;
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
| | - Huiyuan Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
| | - Sanika Jadhav
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA;
| | - Zongliang Yue
- Department of Health Outcome and Research Policy, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA;
| | - Amit K. Tiwari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas of Medical Sciences, Little Rock, AR 72205, USA;
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA;
| |
Collapse
|
22
|
Gamal H, Tawfik W, El-Sayyad HI, Emam AN, Fahmy HM, El-Ghaweet HA. A new vision of photothermal therapy assisted with gold nanorods for the treatment of mammary cancers in adult female rats. NANOSCALE ADVANCES 2023; 6:170-187. [PMID: 38125593 PMCID: PMC10729923 DOI: 10.1039/d3na00595j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023]
Abstract
Over the past decade, the therapeutic landscape has markedly changed for patients with breast cancers (BCs), yet few studies have evaluated the power of the photothermal therapy (PTT) technique. The present study aimed to assess the potency of 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary cancer treatment with this technique. In total, forty-two adult virgin female Wistar rats were categorized into seven groups, negative control, polyvinylpyrrolidone-capped gold nanorods (PVP-AuNRs) positive control (400 μL per rat ∼ 78 ppm), NIR laser irradiation 808 nm positive control with an intensity of (808 nm NIR CW diode laser, 200 mW cm-2 for 5 min), DMBA-treatment, DMBA-induced mammary cancer group treated with polyvinylpyrrolidone-capped gold nanorods, DMBA-induced mammary cancer group treated with NIR laser irradiation, and DMBA-induced mammary cancer group treated with polyvinylpyrrolidone-capped gold nanorods and NIR laser irradiation. Treatment with polyvinylpyrrolidone-capped gold nanorods and/or NIR laser irradiation was performed after three weeks of DMBA-induced mammary cancer. The mammary tumor lesions in the rat model induced with DMBA are highly invasive. Synthesis and characterization of gold nanorods (AuNRs) with an aspect ratio ranging from 2.8 to 3 were employed to validate the nanostructure and polyvinylpyrrolidone capping and their stability in absorbing near-infrared light. As a result, the therapy strategy, DMBA + PVP-AuNRs + NIR, effectively treated the tumor and halted its growth. The mammary glands were dissected and subjected to biochemical analysis for serum and tissue. Our treatment technique improved the histological aspects of mammary cancer in various forms of mammary cancer detected. Immuno-histochemical localization and TEM images supported these results reflecting the efficacy of this technique. Finally, our findings uncover for the first time the revolutionary effect of the PTT strategy using PVP-capped AuNRs in selectively destroying mammary cancer cells in rats.
Collapse
Affiliation(s)
- Hend Gamal
- Department of Zoology, Faculty of Science, Mansoura University Mansoura Egypt
| | - Walid Tawfik
- National Institute of Laser Enhanced Sciences (NILES), Cairo University Cairo Egypt
| | - Hassan Ih El-Sayyad
- Department of Zoology, Faculty of Science, Mansoura University Mansoura Egypt
| | - Ahmed N Emam
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology & Mineral Resources Research Institute, National Research Centre (NRC) El Bohouth St. Dokki Cairo Egypt
- Nanomedicine & Tissue Engineering Research Lab, Medical Research Centre of Excellence, National Research Centre El Bohouth St., Dokki 12622 Cairo Egypt
| | - Heba Mohamed Fahmy
- Department of Biophysics, Faculty of Science Cairo University Cairo Egypt
| | - Heba A El-Ghaweet
- Department of Zoology, Faculty of Science, Mansoura University Mansoura Egypt
| |
Collapse
|
23
|
Wang T, Chang TMS. Superparamagnetic Artificial Cells PLGA-Fe 3O 4 Micro/Nanocapsules for Cancer Targeted Delivery. Cancers (Basel) 2023; 15:5807. [PMID: 38136352 PMCID: PMC10741498 DOI: 10.3390/cancers15245807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Artificial cells have been extensively used in many fields, such as nanomedicine, biotherapy, blood substitutes, drug delivery, enzyme/gene therapy, cancer therapy, and the COVID-19 vaccine. The unique properties of superparamagnetic Fe3O4 nanoparticles have contributed to increased interest in using superparamagnetic artificial cells (PLGA-Fe3O4 micro/nanocapsules) for targeted therapy. In this review, the preparation methods of Fe3O4 NPs and superparamagnetic artificial cell PLGA-drug-Fe3O4 micro/nanocapsules are discussed. This review also focuses on the recent progress of superparamagnetic PLGA-drug-Fe3O4 micro/nanocapsules as targeted therapeutics. We shall concentrate on the use of superparamagnetic artificial cells in the form of PLGA-drug-Fe3O4 nanocapsules for magnetic hyperthermia/photothermal therapy and cancer therapies, including lung breast cancer and glioblastoma.
Collapse
Affiliation(s)
| | - Thomas Ming Swi Chang
- Artificial Cells and Organs Research Centre, Departments of Medicine and Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
24
|
Chia DKA, Demuytere J, Ernst S, Salavati H, Ceelen W. Effects of Hyperthermia and Hyperthermic Intraperitoneal Chemoperfusion on the Peritoneal and Tumor Immune Contexture. Cancers (Basel) 2023; 15:4314. [PMID: 37686590 PMCID: PMC10486595 DOI: 10.3390/cancers15174314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Hyperthermia combined with intraperitoneal (IP) drug delivery is increasingly used in the treatment of peritoneal metastases (PM). Hyperthermia enhances tumor perfusion and increases drug penetration after IP delivery. The peritoneum is increasingly recognized as an immune-privileged organ with its own distinct immune microenvironment. Here, we review the immune landscape of the healthy peritoneal cavity and immune contexture of peritoneal metastases. Next, we review the potential benefits and unwanted tumor-promoting effects of hyperthermia and the associated heat shock response on the tumor immune microenvironment. We highlight the potential modulating effect of hyperthermia on the biomechanical properties of tumor tissue and the consequences for immune cell infiltration. Data from translational and clinical studies are reviewed. We conclude that (mild) hyperthermia and HIPEC have the potential to enhance antitumor immunity, but detailed further studies are required to distinguish beneficial from tumor-promoting effects.
Collapse
Affiliation(s)
- Daryl K. A. Chia
- Department of Surgery, National University Hospital, National University Health System, Singapore 119074, Singapore
| | - Jesse Demuytere
- Department of Human Structure and Repair, Experimental Surgery Lab, Ghent University, 9052 Ghent, Belgium; (J.D.); (S.E.); (H.S.)
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Sam Ernst
- Department of Human Structure and Repair, Experimental Surgery Lab, Ghent University, 9052 Ghent, Belgium; (J.D.); (S.E.); (H.S.)
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Hooman Salavati
- Department of Human Structure and Repair, Experimental Surgery Lab, Ghent University, 9052 Ghent, Belgium; (J.D.); (S.E.); (H.S.)
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Wim Ceelen
- Department of Human Structure and Repair, Experimental Surgery Lab, Ghent University, 9052 Ghent, Belgium; (J.D.); (S.E.); (H.S.)
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
- Department of GI Surgery, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
25
|
Namakshenas P, Di Matteo FM, Bianchi L, Faiella E, Stigliano S, Quero G, Saccomandi P. Optimization of laser dosimetry based on patient-specific anatomical models for the ablation of pancreatic ductal adenocarcinoma tumor. Sci Rep 2023; 13:11053. [PMID: 37422486 PMCID: PMC10329695 DOI: 10.1038/s41598-023-37859-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/28/2023] [Indexed: 07/10/2023] Open
Abstract
Laser-induced thermotherapy has shown promising potential for the treatment of unresectable primary pancreatic ductal adenocarcinoma tumors. Nevertheless, heterogeneous tumor environment and complex thermal interaction phenomena that are established under hyperthermic conditions can lead to under/over estimation of laser thermotherapy efficacy. Using numerical modeling, this paper presents an optimized laser setting for Nd:YAG laser delivered by a bare optical fiber (300 µm in diameter) at 1064 nm working in continuous mode within a power range of 2-10 W. For the thermal analysis, patient-specific 3D models were used, consisting of tumors in different portions of the pancreas. The optimized laser power and time for ablating the tumor completely and producing thermal toxic effects on the possible residual tumor cells beyond the tumor margins were found to be 5 W for 550 s, 7 W for 550 s, and 8 W for 550 s for the pancreatic tail, body, and head tumors, respectively. Based on the results, during the laser irradiation at the optimized doses, thermal injury was not evident either in the 15 mm lateral distances from the optical fiber or in the nearby healthy organs. The present computational-based predictions are also in line with the previous ex vivo and in vivo studies, hence, they can assist in the estimation of the therapeutic outcome of laser ablation for pancreatic neoplasms prior to clinical trials.
Collapse
Affiliation(s)
- Pouya Namakshenas
- Department of Mechanical Engineering, Politecnico di Milano, 20156, Milan, Italy
| | | | - Leonardo Bianchi
- Department of Mechanical Engineering, Politecnico di Milano, 20156, Milan, Italy
| | - Eliodoro Faiella
- Radiology Unit, Fondazione Policlinico Universitario Campus Biomedico, Rome, Italy
| | - Serena Stigliano
- Operative Endoscopy Department, Fondazione Policlinico Universitario Campus Biomedico, Rome, Italy
| | - Giuseppe Quero
- Pancreatic Surgery Unit, Gemelli Pancreatic Advanced Research Center (CRMPG), Fondazione Policlinico Universitario Agostino Gemelli IRCCS di Roma, Rome, Italy
- Università Cattolica del Sacro Cuore di Roma, 00168, Rome, Italy
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, 20156, Milan, Italy.
| |
Collapse
|
26
|
Lopes J, Ferreira-Gonçalves T, Ascensão L, Viana AS, Carvalho L, Catarino J, Faísca P, Oliva A, de Barros DPC, Rodrigues CMP, Gaspar MM, Reis CP. Safety of Gold Nanoparticles: From In Vitro to In Vivo Testing Array Checklist. Pharmaceutics 2023; 15:pharmaceutics15041120. [PMID: 37111608 PMCID: PMC10141475 DOI: 10.3390/pharmaceutics15041120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
In recent years, gold nanoparticles (AuNPs) have aroused the interest of many researchers due to their unique physicochemical and optical properties. AuNPs are being explored in a variety of biomedical fields, either in diagnostics or therapy, particularly for localized thermal ablation of cancer cells after light irradiation. Besides the promising therapeutic potential of AuNPs, their safety constitutes a highly important issue for any medicine or medical device. For this reason, in the present work, the production and characterization of physicochemical properties and morphology of AuNPs coated with two different materials (hyaluronic and oleic acids (HAOA) and bovine serum albumin (BSA)) were firstly performed. Based on the above importantly referred issue, the in vitro safety of developed AuNPs was evaluated in healthy keratinocytes, human melanoma, breast, pancreatic and glioblastoma cancer cells, as well as in a three-dimensional human skin model. Ex vivo and in vivo biosafety assays using, respectively, human red blood cells and Artemia salina were also carried out. HAOA-AuNPs were selected for in vivo acute toxicity and biodistribution studies in healthy Balb/c mice. Histopathological analysis showed no significant signs of toxicity for the tested formulations. Overall, several techniques were developed in order to characterize the AuNPs and evaluate their safety. All these results support their use for biomedical applications.
Collapse
Affiliation(s)
- Joana Lopes
- Research Institute for Medicines, iMed.ULisboa—Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Tânia Ferreira-Gonçalves
- Research Institute for Medicines, iMed.ULisboa—Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Lia Ascensão
- Centro de Estudos do Ambiente e do Mar (CESAM Lisboa), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Ana S. Viana
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Lina Carvalho
- Central Testing Laboratory, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José Catarino
- Faculty of Veterinary Medicine, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Pedro Faísca
- Faculty of Veterinary Medicine, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6 2780, 2780-156 Oeiras, Portugal
| | - Abel Oliva
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Av. da República, 2780-157 Oeiras, Portugal
| | - Dragana P. C. de Barros
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines, iMed.ULisboa—Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa—Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa—Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
27
|
Vaupel P, Piazena H, Notter M, Thomsen AR, Grosu AL, Scholkmann F, Pockley AG, Multhoff G. From Localized Mild Hyperthermia to Improved Tumor Oxygenation: Physiological Mechanisms Critically Involved in Oncologic Thermo-Radio-Immunotherapy. Cancers (Basel) 2023; 15:1394. [PMID: 36900190 PMCID: PMC10000497 DOI: 10.3390/cancers15051394] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
(1) Background: Mild hyperthermia (mHT, 39-42 °C) is a potent cancer treatment modality when delivered in conjunction with radiotherapy. mHT triggers a series of therapeutically relevant biological mechanisms, e.g., it can act as a radiosensitizer by improving tumor oxygenation, the latter generally believed to be the commensurate result of increased blood flow, and it can positively modulate protective anticancer immune responses. However, the extent and kinetics of tumor blood flow (TBF) changes and tumor oxygenation are variable during and after the application of mHT. The interpretation of these spatiotemporal heterogeneities is currently not yet fully clarified. (2) Aim and methods: We have undertaken a systematic literature review and herein provide a comprehensive insight into the potential impact of mHT on the clinical benefits of therapeutic modalities such as radio- and immuno-therapy. (3) Results: mHT-induced increases in TBF are multifactorial and differ both spatially and with time. In the short term, changes are preferentially caused by vasodilation of co-opted vessels and of upstream normal tissue vessels as well as by improved hemorheology. Sustained TBF increases are thought to result from a drastic reduction of interstitial pressure, thus restoring adequate perfusion pressures and/or HIF-1α- and VEGF-mediated activation of angiogenesis. The enhanced oxygenation is not only the result of mHT-increased TBF and, thus, oxygen availability but also of heat-induced higher O2 diffusivities, acidosis- and heat-related enhanced O2 unloading from red blood cells. (4) Conclusions: Enhancement of tumor oxygenation achieved by mHT cannot be fully explained by TBF changes alone. Instead, a series of additional, complexly linked physiological mechanisms are crucial for enhancing tumor oxygenation, almost doubling the initial O2 tensions in tumors.
Collapse
Affiliation(s)
- Peter Vaupel
- Department of Radiation Oncology, University Medical Center, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Helmut Piazena
- Department of Anaesthesiology and Intensive Care Medicine, Charité-University Medicine, Cooperative Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Markus Notter
- Department of Radiation Oncology, Lindenhofspital Bern, 3012 Bern, Switzerland
| | - Andreas R. Thomsen
- Department of Radiation Oncology, University Medical Center, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Anca-L. Grosu
- Department of Radiation Oncology, University Medical Center, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Felix Scholkmann
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
- Institute of Complementary and Integrative Medicine, University of Bern, 3012 Bern, Switzerland
| | - Alan Graham Pockley
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Gabriele Multhoff
- TranslaTUM—Central Institute for Translational Cancer Research, Technische Universität München (TUM), 81675 Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts der Isar (TUM), 81675 Munich, Germany
| |
Collapse
|
28
|
Chia BSH, Ho SZ, Tan HQ, Chua MLK, Tuan JKL. A Review of the Current Clinical Evidence for Loco-Regional Moderate Hyperthermia in the Adjunct Management of Cancers. Cancers (Basel) 2023; 15:cancers15020346. [PMID: 36672300 PMCID: PMC9856725 DOI: 10.3390/cancers15020346] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Regional hyperthermia therapy (RHT) is a treatment that applies moderate heat to tumours in an attempt to potentiate the effects of oncological treatments and improve responses. Although it has been used for many years, the mechanisms of action are not fully understood. Heterogenous practices, poor quality assurance, conflicting clinical evidence and lack of familiarity have hindered its use. Despite this, several centres recognise its potential and have adopted it in their standard treatment protocols. In recent times, significant technical improvements have been made and there is an increasing pool of evidence that could revolutionise its use. Our narrative review aims to summarise the recently published prospective trial evidence and present the clinical effects of RHT when added to standard cancer treatments. In total, 31 studies with higher-quality evidence across various subsites are discussed herein. Although not all of these studies are level 1 evidence, benefits of moderate RHT in improving local tumour control, survival outcomes and quality of life scores were observed across the different cancer subsites with minimal increase in toxicities. This paper may serve as a reference when considering this technique for specific indications.
Collapse
Affiliation(s)
- Brendan Seng Hup Chia
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
- Correspondence:
| | - Shaun Zhirui Ho
- Department of Radiation Oncology, 585 North Bridge Rd, Level 10 Raffles Specialist Centre, Singapore 188770, Singapore
| | - Hong Qi Tan
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
| | - Melvin Lee Kiang Chua
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
| | - Jeffrey Kit Loong Tuan
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
| |
Collapse
|
29
|
Hannon G, Prina-Mello A. Testing the Effects of Magnetic Hyperthermia in 2D Cell Culture. Methods Mol Biol 2023; 2645:251-261. [PMID: 37202625 DOI: 10.1007/978-1-0716-3056-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Magnetic hyperthermia is an innovative thermal therapy for the treatment of solid malignancies. This treatment approach utilizes magnetic nanoparticles that are stimulated by alternating magnetic fields to induce temperature elevations in tumor tissue, resulting in cell death. Magnetic hyperthermia is clinically approved for treating glioblastoma in Europe and is undergoing clinical evaluation for prostate cancer in the United States. Numerous studies have also demonstrated efficacy in other cancers, however, and its potential utility extends far beyond its current clinical indications. Despite this great promise, assessing the initial efficacy of magnetic hyperthermia in vitro is a complicated endeavor, with multiple hurdles worth considering, such as accurate thermal monitoring, accounting for nanoparticle interference, and a myriad of treatment controls that make robust experimental planning essential to evaluate treatment outcome. Presented here is an optimized magnetic hyperthermia treatment protocol to test the primary mechanism of cell death in vitro. This protocol can be applied to any cell line and ensures accurate temperature measurements, minimal nanoparticle interference, and controls for multiple factors that can influence experimental outcome.
Collapse
Affiliation(s)
- Gary Hannon
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland.
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| | - Adriele Prina-Mello
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, CRANN Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
30
|
Tutty MA, Prina-Mello A. Three-Dimensional Spheroids for Cancer Research. Methods Mol Biol 2023; 2645:65-103. [PMID: 37202612 DOI: 10.1007/978-1-0716-3056-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In vitro cell culture is one of the most widely used tools used today for increasing our understanding of various things such as protein production, mechanisms of drug action, tissue engineering, and overall cellular biology. For the past decades, however, cancer researchers have relied heavily on conventional two-dimensional (2D) monolayer culture techniques to test a variety of aspects of cancer research ranging from the cytotoxic effects of antitumor drugs to the toxicity of diagnostic dyes and contact tracers. However, many promising cancer therapies have either weak or no efficacy in real-life conditions, therefore delaying or stopping altogether their translating to the clinic. This is, in part, due to the reductionist 2D cultures used to test these materials, which lack appropriate cell-cell contacts, have altered signaling, do not represent the natural tumor microenvironment, and have different drug responses, due to their reduced malignant phenotype when compared to real in vivo tumors. With the most recent advances, cancer research has moved into 3D biological investigation. Three-dimensional (3D) cultures of cancer cells not only recapitulate the in vivo environment better than their 2D counterparts, but they have, in recent years, emerged as a relatively low-cost and scientifically accurate methodology for studying cancer. In this chapter, we highlight the importance of 3D culture, specifically 3D spheroid culture, reviewing some key methodologies for forming 3D spheroids, discussing the experimental tools that can be used in conjunction with 3D spheroids and finally their applications in cancer research.
Collapse
Affiliation(s)
- Melissa Anne Tutty
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, Dublin, Ireland.
| | - Adriele Prina-Mello
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, Dublin, Ireland
- Nanomedicine and Molecular Imaging Group, Trinity Translational Medicine Institute, (TTMI), School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, CRANN Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
31
|
Dewhirst MW, Oleson JR, Kirkpatrick J, Secomb TW. Accurate Three-Dimensional Thermal Dosimetry and Assessment of Physiologic Response Are Essential for Optimizing Thermoradiotherapy. Cancers (Basel) 2022; 14:1701. [PMID: 35406473 PMCID: PMC8997141 DOI: 10.3390/cancers14071701] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Numerous randomized trials have revealed that hyperthermia (HT) + radiotherapy or chemotherapy improves local tumor control, progression free and overall survival vs. radiotherapy or chemotherapy alone. Despite these successes, however, some individuals fail combination therapy; not every patient will obtain maximal benefit from HT. There are many potential reasons for failure. In this paper, we focus on how HT influences tumor hypoxia, since hypoxia negatively influences radiotherapy and chemotherapy response as well as immune surveillance. Pre-clinically, it is well established that reoxygenation of tumors in response to HT is related to the time and temperature of exposure. In most pre-clinical studies, reoxygenation occurs only during or shortly after a HT treatment. If this were the case clinically, then it would be challenging to take advantage of HT induced reoxygenation. An important question, therefore, is whether HT induced reoxygenation occurs in the clinic that is of radiobiological significance. In this review, we will discuss the influence of thermal history on reoxygenation in both human and canine cancers treated with thermoradiotherapy. Results of several clinical series show that reoxygenation is observed and persists for 24-48 h after HT. Further, reoxygenation is associated with treatment outcome in thermoradiotherapy trials as assessed by: (1) a doubling of pathologic complete response (pCR) in human soft tissue sarcomas, (2) a 14 mmHg increase in pO2 of locally advanced breast cancers achieving a clinical response vs. a 9 mmHg decrease in pO2 of locally advanced breast cancers that did not respond and (3) a significant correlation between extent of reoxygenation (as assessed by pO2 probes and hypoxia marker drug immunohistochemistry) and duration of local tumor control in canine soft tissue sarcomas. The persistence of reoxygenation out to 24-48 h post HT is distinctly different from most reported rodent studies. In these clinical series, comparison of thermal data with physiologic response shows that within the same tumor, temperatures at the higher end of the temperature distribution likely kill cells, resulting in reduced oxygen consumption rate, while lower temperatures in the same tumor improve perfusion. However, reoxygenation does not occur in all subjects, leading to significant uncertainty about the thermal-physiologic relationship. This uncertainty stems from limited knowledge about the spatiotemporal characteristics of temperature and physiologic response. We conclude with recommendations for future research with emphasis on retrieving co-registered thermal and physiologic data before and after HT in order to begin to unravel complex thermophysiologic interactions that appear to occur with thermoradiotherapy.
Collapse
Affiliation(s)
- Mark W Dewhirst
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - James R Oleson
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - John Kirkpatrick
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|