1
|
Li J, Wu D, Mu Y, Wang Y, Zhai L, Jia L. The combined damage of bisphenol A and high fat diet to learning and memory in young male mice: the regulatory effect of BDNF/TrkB/PI3K/AKT pathway on autophagy. ENVIRONMENTAL RESEARCH 2025; 276:121538. [PMID: 40187395 DOI: 10.1016/j.envres.2025.121538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/12/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
With the popularity of takeaway and processed food, combined exposure to Bisphenol A (BPA) and high fat diet (HFD) is becoming increasingly common. BPA or HFD intake in children could impair learning and memory ability, but the combined effect and mechanisms remain unclear. In this study, we fed young male mice with 0.1 μg/mL BPA (L-BPA), 0.2 μg/mL BPA (H-BPA), 60 %HFD (HFD), 0.1 BPA + HFD (L-BPA + HFD) and 0.2 BPA + HFD (H-BPA + HFD) for 8 weeks. The results showed that recognition memory and free exploration of mice were impaired in the BPA or HFD group, and the damage of exploration was more severe in the combined group. All treated groups showed morphological changes in hippocampal neurons. The levels of synaptic structural protein PSD-95 and SYN were reduced in BPA and HFD alone or in combination groups. BPA or HFD led to changes in autophagy levels in the hippocampus, manifested by decreased protein levels of mTOR and P62, increased level of LC3B, and more significant changes in the combined group. The BDNF/TrkB/PI3K/AKT pathway was inhibited in BPA or HFD groups, especially in the combined group. Our results suggested that combined BPA with HFD exposure could impair learning and memory ability, and the combined effect might be related to the BDNF/TrkB/PI3K/AKT pathway, which regulated mTOR mediated autophagy and finally caused hippocampal synaptic damage.
Collapse
Affiliation(s)
- Jinshi Li
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China.
| | - Dan Wu
- Department of Child and Adolescent Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| | - Yuyang Mu
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China.
| | - Yunzhu Wang
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China.
| | - Lingling Zhai
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China; Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning, China.
| | - Lihong Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China; Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
2
|
Al-Shami AS, Abd Elkader HTAE, Moussa N, Essawy AE, Haroun M. Early-life bisphenol A exposure causes neuronal pyroptosis in juvenile and adult male rats through the NF-κB/IL-1β/NLRP3/caspase-1 signaling pathway: exploration of age and dose as effective covariates using an in vivo and in silico modeling approach. Mol Cell Biochem 2025; 480:2301-2330. [PMID: 38941031 PMCID: PMC11961519 DOI: 10.1007/s11010-024-05039-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
Bisphenol A (BPA), a common endocrine-disrupting chemical, is found in a wide range of home plastics. Early-life BPA exposure has been linked to neurodevelopmental disorders; however, the link between neuroinflammation, pyroptosis, and the development of psychiatric disorders is rarely studied. The current study attempted to investigate the toxic effect of BPA on inflammatory and microglial activation markers, as well as behavioral responses, in the brains of male rats in a dose- and age-dependent manner. Early BPA exposure began on postnatal day (PND) 18 at dosages of 50 and 125 mg/kg/day. We started with a battery of behavioral activities, including open field, elevated plus- and Y-maze tests, performed on young PND 60 rats and adult PND 95 rats. BPA causes anxiogenic-related behaviors, as well as cognitive and memory deficits. The in vivo and in silico analyses revealed for the first time that BPA is a substantial activator of nuclear factor kappa B (NF-κB), interleukin (IL)-1β, -2, -12, cyclooxygenase-2, and the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, with higher beclin-1 and LC3B levels in BPA rats' PFC and hippocampus. Furthermore, BPA increased the co-localization of caspase-1 immunoreactive neurons, as well as unique neurodegenerative histopathological hallmarks. In conclusion, our results support the hypothesis that neuroinflammation and microglial activation are involved with changes in the brain after postnatal BPA exposure and that these alterations may be linked to the development of psychiatric conditions later in life. Collectively, our findings indicate that BPA triggers anxiety-like behaviors and pyroptotic death of nerve cells via the NF-κB/IL-1β/NLRP3/Caspase-1 pathway.
Collapse
Affiliation(s)
- Ahmed S Al-Shami
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | | | - Nermine Moussa
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Amina E Essawy
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Medhat Haroun
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Kourat D, Adli DEH, Brahmi M, Alkholifi FK, Bin Dayel FF, Arabi W, Fauconnier ML, Bouzouira B, Kahloula K, Slimani M, Sweilam SH. Role of Thymus ciliatus (Thyme) to Ameliorate the Acute Neurotoxicity Induced by Bisphenol A: In Vivo Supported with Virtual Study. Pharmaceuticals (Basel) 2025; 18:509. [PMID: 40283944 PMCID: PMC12030012 DOI: 10.3390/ph18040509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/17/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: The purpose of this research was to investigate the effects of bisphenol A (BPA) exposure on neurobehavioral testing in young Wistar rats and to evaluate the therapeutic potential of Thymus ciliatus (TEO) essential oil to attenuate the damage induced by this chemical toxin. Methods: The essential oil was extracted by hydro-distillation (yield of 2.26%), and the characterization by GC-MS indicates that the major components of Thymus ciliatus oil are thymol (63.33%), p-cymene (13.4%), and σ-terpinene (6.69%). Acute BPA intoxication was induced with a dose of 50 mg/kg orally for 60 days. The neurobehavioral evaluation, performed using a comprehensive set of tests including the forced swim test, dark/light box, Morris water maze, open field test, and sucrose preference test, clearly demonstrated that bisphenol A (BPA) exposure induced significant neurobehavioral impairments. Results: These impairments included reduced exploratory behavior indicative of heightened stress, anxiety, and depressive-like states, as well as deficits in memory and learning. Furthermore, BPA intoxication was associated with metabolic disturbances such as hyperglycemia along with histopathological evidence of brain tissue damage. However, TEO treatment attenuated these adverse effects by restoring neurobehavioral function. Molecular docking analysis revealed an affinity between the major essential oils identified in T. ciliatus, BPA, and the 5HT2C receptor and the MAO, AChE, and BChE enzymes, suggesting a potential mechanism underlying BPA's effects on behavior and memory. In addition, TEO also showed an interaction with these molecules, suggesting a therapeutic potential against BPA. These findings underscore the promising role of TEO in mitigating the poisonous effects of BPA and pave the way for additional research into the molecular mechanisms and therapeutic uses of natural bioactive compounds for the prevention and treatment of toxic diseases. Thymol, the major compound in TEO, exhibited activity related to the dopamine and serotonin pathways, so it could have potential antidepressant properties. Conclusions: Thymol might be a promising candidate for the treatment of neurodegenerative and neurological disorders such as depression, Parkinson's disease, and Alzheimer's disease while also preventing histological damage in the brain.
Collapse
Affiliation(s)
- Dallal Kourat
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Department of Biology, Faculty of Sciences, University of Dr Moulay Tahar, Saida 20000, Algeria; (D.K.); (D.E.H.A.); (W.A.); (K.K.); (M.S.)
| | - Djallal Eddine H. Adli
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Department of Biology, Faculty of Sciences, University of Dr Moulay Tahar, Saida 20000, Algeria; (D.K.); (D.E.H.A.); (W.A.); (K.K.); (M.S.)
| | - Mostapha Brahmi
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Department of Biology, Faculty of Sciences, University of Dr Moulay Tahar, Saida 20000, Algeria; (D.K.); (D.E.H.A.); (W.A.); (K.K.); (M.S.)
- Department of Biological Science, Faculty of Natural and Life Sciences, University of Relizane, Relizane 48000, Algeria
| | - Faisal K. Alkholifi
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (F.K.A.); (F.F.B.D.)
| | - Faten F. Bin Dayel
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (F.K.A.); (F.F.B.D.)
| | - Wafaa Arabi
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Department of Biology, Faculty of Sciences, University of Dr Moulay Tahar, Saida 20000, Algeria; (D.K.); (D.E.H.A.); (W.A.); (K.K.); (M.S.)
| | - Marie-Laure Fauconnier
- Laboratory of Natural Molecules Chemistry, Gembloux Agro-Bio Tech, University of Liège, 2 Passage des Déportés, B-5030 Gembloux, Belgium;
| | - Bakhta Bouzouira
- Department of Pathological Anatomy and Cytology, CHU of Sidi Bel Abbes, Sidi Bel Abbes 22000, Algeria;
| | - Khaled Kahloula
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Department of Biology, Faculty of Sciences, University of Dr Moulay Tahar, Saida 20000, Algeria; (D.K.); (D.E.H.A.); (W.A.); (K.K.); (M.S.)
| | - Miloud Slimani
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Department of Biology, Faculty of Sciences, University of Dr Moulay Tahar, Saida 20000, Algeria; (D.K.); (D.E.H.A.); (W.A.); (K.K.); (M.S.)
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt
| |
Collapse
|
4
|
Qin M, Guo X, Xu N, Su Y, Pan M, Zhang Z, Zeng H. Puerarin Attenuates the Cytotoxicity Effects of Bisphenol S in HT22 Cells by Regulating the BDNF/TrkB/CREB Signaling Pathway. TOXICS 2025; 13:162. [PMID: 40137489 PMCID: PMC11945520 DOI: 10.3390/toxics13030162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/16/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
Bisphenol S (BPS) is a widespread environmental endocrine disrupter that can cause hepatotoxicity, neurotoxicity and negative effects on reproduction. Puerarin (PUE) has been found to have anti-inflammatory, antioxidant, and neuroprotective properties, however, its potential protective effects against BPS-induced neurotoxicity and the underlying mechanisms are still not fully understood. In this study, HT22 cells were exposed to different concentrations of BPS with or without PUE. Cell viability, apoptosis, oxidative damage, and the expression level of axon-injury-related genes and the BDNF/TrkB/CREB pathway were analyzed. The results showed that 40 μM to 180 μM BPS and 100 μM to 180 μM PUE significantly decreased the cell viability of HT22 cells, but in the 80 μM PUE group, the cell viability was higher than control group, and the ratio of 1.1. Meanwhile, BPS increased the production of ROS and MDA but decreased the GSH and SOD. However, supplementation with PUE was alleviated the oxidative damage. PUE also alleviated the apoptosis rate that induced by BPS. Additionally, BPS decreased the expression levels of mRNA and proteins of synaptic-related genes, but inhibited the expression levels of mRNA and proteins of the BDNF/TrkB/CREB signaling pathway. Interestingly, PUE was found to significantly recover the expression of synaptic related genes, but also upregulated the expression of the BDNF/TrkB/CREB pathway. In conclusion, our study proved that PUE can attenuate the neurotoxicity effect of bisphenol S, which related to oxidative damage in HT22 cells by regulating the BDNF/TrkB/CREB signaling pathway. This study is not only the first to demonstrate that PUE can mitigate BPS-induced neurotoxicity through oxidative stress modulation, but also provides a novel therapeutic approach involving the BDNF/TrkB/CREB pathway. These findings offer promising insights into natural-based strategies for protecting against environmental neurotoxins and provide a foundation for future therapeutic developments targeting BPS-induced neurotoxicity.
Collapse
Affiliation(s)
- Meilin Qin
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China; (M.Q.); (X.G.); (N.X.); (Y.S.); (M.P.); (Z.Z.)
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Xinxin Guo
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China; (M.Q.); (X.G.); (N.X.); (Y.S.); (M.P.); (Z.Z.)
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Nuo Xu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China; (M.Q.); (X.G.); (N.X.); (Y.S.); (M.P.); (Z.Z.)
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yan Su
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China; (M.Q.); (X.G.); (N.X.); (Y.S.); (M.P.); (Z.Z.)
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Mengfen Pan
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China; (M.Q.); (X.G.); (N.X.); (Y.S.); (M.P.); (Z.Z.)
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Zhengbao Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China; (M.Q.); (X.G.); (N.X.); (Y.S.); (M.P.); (Z.Z.)
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Huaicai Zeng
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China; (M.Q.); (X.G.); (N.X.); (Y.S.); (M.P.); (Z.Z.)
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, School of Public Health, Guilin Medical University, Guilin 541199, China
| |
Collapse
|
5
|
Ren J, Bai W, Guo Y, Liu Q, Wang Y, Wang C. Maternal Bisphenol A Exposure Induces Hippocampal-Dependent Learning and Memory Deficits Through the PI3K/Akt/mTOR Pathway in Male Offspring Rats. J Biochem Mol Toxicol 2025; 39:e70100. [PMID: 39799553 DOI: 10.1002/jbt.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/18/2024] [Accepted: 12/08/2024] [Indexed: 01/15/2025]
Abstract
Bisphenol A (BPA), an environmental endocrine disrupting chemical, is one of the most widely used chemicals in the world and is widely distributed in the external environment, specifically in food, water, dust, and soil. BPA exposure is associated with abnormal cognitive behaviors. However, the underlying mechanism remains unclear. In this study, pregnant female Sprague Dawley rats were orally exposed to BPA at a low dose of 0, 0.04, 0.4, or 4 mg per kg·of body weight per day from embryonic Day 0 (ED 0) to postnatal Day 21 (PND 21). Spatial learning and memory were measured via a Morris water maze test on PND 22. PI3K/Akt/mTOR signaling pathway protein expression was detected in the hippocampi of male offspring using a western blot. The water maze test demonstrated that BPA exposure considerably reduced the learning and memory capacities of the male offspring exposure groups when compared to the control group. The male offspring rats' latency to escape increased significantly, the time taken to traverse a platform reduced, and latency to find a hidden platform showed an increasing trend. Meanwhile, maternal exposure to BPA downregulated the expression of PI3K/Akt/mTOR/p70S6K pathway in the hippocampi of the offspring. Moreover, BPA exposure improved the GSK3β and phosphorylated tau protein (T231) levels, increased malondialdehyde levels, and activated caspase-3 expression in the hippocampi of the male offspring rats. Taken together, these findings indicate that maternal exposure to BPA causes learning and memory impairment and that the PI3K/Akt/mTOR pathway participates in the mechanism of BPA-induced neurocognitive decline.
Collapse
Affiliation(s)
- Jiajia Ren
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Wenjie Bai
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, China
- Nursing College, Shanxi Datong University, Datong, China
| | - Yi Guo
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Qiling Liu
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yuxin Wang
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Chong Wang
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
6
|
Al-Shami AS, Haroun M, Essawy AE, Moussa N, Abd Elkader HTAE. Early-life bisphenol A exposure causes detrimental age-related changes in anxiety, depression, learning, and memory in juvenile and adult male rats: Involvement of NMDAR/PSD-95-PTEN/AKT signaling pathway. Neurotoxicology 2025; 106:17-36. [PMID: 39617347 DOI: 10.1016/j.neuro.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Bisphenol A (BPA) is an endocrine disruptor monomer that is widely used in the manufacturing of epoxy resins and polycarbonate plastics. Several lines of evidence indicate the function of the pre- or perinatally PI3K/AKT signaling pathway in the development of psychiatric disorders. The present study aimed to evaluate for the first time the effect of modifying the NMDAR/PSD-95-PTEN/AKT signaling pathway on behavioral and synaptic plasticity of early-life BPA exposure and its long-lasting influence on juvenile and adulthood stages of development. We investigated the effects of oral BPA doses of 50 and 125 mg/kg/day on the prefrontal cortex (PFC) and hippocampus of male Sprague Dawley rats from postnatal day (PND) 18-60 and PND 18-95, which correspond to juvenile and adolescent stages, respectively. Subsequently, we performed a series of rat behavioral tests, including the open field, elevated plus-maze, forced swimming, and Y-maze. Notably, neurotransmitter levels such as dopamine, serotonin, and gamma-aminobutyric acid, levels of postsynaptic density protein 95 and cAMP response element-binding protein, as well as mRNA levels of N-methyl-D-aspartate receptor subunits, fluctuated between reduction and elevation in the PFC and hippocampus. Furthermore, phosphatase and tensin (PTEN) mRNA and protein levels were upregulated in both brain areas, while PI3K, protein kinase B (AKT) and mammalian target of rapamycin (mTOR) mRNA and protein levels were decreased. Finally, our findings indicate that postnatal BPA exposure promotes long-term anxiety and depressive-like behaviors, as well as cognitive impairment, via modulation of the NMDAR/PSD-95-PTEN/AKT pathway. These findings could help to elucidate the potential developmental and neurobehavioral effects of early-life BPA exposure.
Collapse
Affiliation(s)
- Ahmed S Al-Shami
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Medhat Haroun
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Amina E Essawy
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nermine Moussa
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
7
|
Mangla A, Goswami P, Sharma B, Suramya S, Jindal G, Javed M, Saifi MA, Parvez S, Nag TC, Raisuddin S. Obesity aggravates neuroinflammatory and neurodegenerative effects of bisphenol A in female rats. Toxicol Mech Methods 2024; 34:781-794. [PMID: 38699799 DOI: 10.1080/15376516.2024.2349538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Bisphenol A (BPA), a common plasticizer, is categorized as a neurotoxic compound. Its impact on individuals exhibits sex-linked variations. Several biological and environmental factors impact the degree of toxicity. Moreover, nutritional factors have profound influence on toxicity outcome. BPA has been demonstrated to be an obesogen. However, research on the potential role of obesity as a confounding factor in BPA toxicity is lacking. We studied the neurodegenerative effects in high-fat diet (HFD)-induced obese female rats after exposure to BPA (10 mg/L via drinking water for 90 days). Four groups were taken in this study - Control, HFD, HFD + BPA and BPA. Cognitive function was evaluated through novel object recognition (NOR) test. Inflammatory changes in brain, and changes in hormonal level, lipid profile, glucose tolerance, oxidative stress, and antioxidants were also determined. HFD + BPA group rats showed a significant decline in memory function in NOR test. The cerebral cortex (CC) of the brain showed increased neurodegenerative changes as measured by microtubule-associated protein-2 (MAP-2) accompanied by histopathological confirmation. The increased level of neuroinflammation was demonstrated by microglial activation (Iba-1) and protein expression of nuclear factor- kappa B (NF-КB) in the brain. Obesity also caused significant (p < 0.05) increase in lipid peroxidation accompanied by reduced activities of antioxidant enzymes (glutathione S-transferase, catalase and glutathione peroxidase) and decrease in reduced-glutathione (p < 0.05) when compared to non-obese rats with BPA treatment. Overall, study revealed that obesity serves as a risk factor in the toxicity of BPA which may exacerbate the progression of neurological diseases.
Collapse
Affiliation(s)
- Anuradha Mangla
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Poonam Goswami
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Bhaskar Sharma
- Neurobiology Laboratory, Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Suramya Suramya
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Garima Jindal
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Mehjbeen Javed
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Mohd Anas Saifi
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Suhel Parvez
- Neurobiology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Tapas Chandra Nag
- Neurobiology Laboratory, Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sheikh Raisuddin
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| |
Collapse
|
8
|
Yang Y, Wang Y, Huang Q, Zhang R, Wang Y, Han J, Wang L. Enhancing the Catalytic Activity of Laccase@Copper-Metal-Organic Framework Nanofractal Microspheres: Synergistic Contribution of the Mass Transfer and Electron Transfer Pathway. Inorg Chem 2024; 63:11325-11339. [PMID: 38841862 DOI: 10.1021/acs.inorgchem.4c01342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Metal-organic frameworks (MOFs) are limited by small pores and buried active sites, and their enzyme-like catalytic activity is still very low. Herein, laccase was employed as the organic component to construct laccase@Cu3(BTC)2 nanofractal microspheres. During the preparation process, laccase adsorbed Cu2+ by electrostatic attractive interaction, then combined with Cu2+ by coordination interaction, and finally induced the in situ growth of H3BTC2 in multiple directions by electrostatic repulsion. Interestingly, electrostatic repulsion was tuned efficiently by adjusting the Cu2+ concentration to obtain laccase@Cu3(BTC)2 nanofractal microspheres (nanosheet microspheres, nanorod microspheres, and nanoneedle microspheres). Laccase@Cu3(BTC)2 nanorod microspheres exhibited the highest catalytic efficiency, which was 14-fold higher than that of smooth microspheres. The mechanism of the improvement of catalytic activity in the degradation of BPA was proposed for the first time. The enhanced catalytic activity depended on the adsorption effect of the nanorod framework and dual cycle synergistic catalysis of Cu+/Cu2+ active sites, which accelerated substrate diffusion and electron transfer. The catalytic mechanism of enzyme@MOF nanofractal microspheres not only deepens our understanding of enzyme and MOF synergistic catalysis but also provides new insights into the design of catalysts.
Collapse
Affiliation(s)
- Yulin Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yuanyuan Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Qizhen Huang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Rongzheng Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Juan Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
9
|
Meng L, Ouyang Z, Chen Y, Huang C, Yu Y, Fan R. Low-dose BPA-induced neuronal energy metabolism dysfunction and apoptosis mediated by PINK1/parkin mitophagy pathway in juvenile rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172655. [PMID: 38653419 DOI: 10.1016/j.scitotenv.2024.172655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Bisphenol A (BPA) is related to neurological disorders involving mitochondrial dysfunction, while the mechanism remains elusive. Therefore, we explored it through in vitro and in vivo experiments. In vitro, hippocampal neurons derived from neonatal rats of different genders were exposed to 1-100 nM and 100 μM BPA, autophagy activator Rapa and inhibitor 3-MA for 7 d. The results suggested that even nanomolar BPA (1-100 nM) disturbed Ca2+ homeostasis and damaged the integrity of mitochondrial cristae in neurons (p < 0.05). Furthermore, BPA increased the number of autophagic lysosomes, LC3II/LC3I ratio, and p62 expression, and decreased parkin expression (p < 0.05), suggesting that the entry of damaged mitochondria into autophagic pathway was prompted, while the autophagic degradation pathway was blocked. This further disrupts neuronal energy metabolism and promotes neuronal apoptosis. However, Rapa attenuated the adverse effects caused by BPA, while 3-MA exacerbated these reactions. In vivo, exposure of juvenile rats to 0.5, 50, 5000 μg/kg‧bw/day BPA during PND 7-21 markedly impaired the structure of hippocampal mitochondria, increased the number of autophagosomes, the rate of neuronal apoptosis, and the expression levels of pro-apoptotic proteins Cyt C, Bax, Bak1, and Caspase3, and decreased the expression of anti-apoptotic protein Bcl2 (p < 0.05). Particularly, male rats are more sensitive to low-dose BPA than females. Overall, environmental-doses BPA can induce the imbalance of energy metabolism in hippocampal neurons via PINK1/parkin mitophagy, thereby inducing their apoptosis. Importantly, this study provides a theoretical basis for attenuating BPA-related neurological diseases.
Collapse
Affiliation(s)
- Lingxue Meng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zedong Ouyang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yuxin Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Chengmeng Huang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
10
|
Liu ZH, Xia Y, Ai S, Wang HL. Health risks of Bisphenol-A exposure: From Wnt signaling perspective. ENVIRONMENTAL RESEARCH 2024; 251:118752. [PMID: 38513750 DOI: 10.1016/j.envres.2024.118752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Human beings are routinely exposed to chronic and low dose of Bisphenols (BPs) due to their widely pervasiveness in the environment. BPs hold similar chemical structures to 17β-estradiol (E2) and thyroid hormone, thus posing threats to human health by rendering the endocrine system dysfunctional. Among BPs, Bisphenol-A (BPA) is the best-known and extensively studied endocrine disrupting compound (EDC). BPA possesses multisystem toxicity, including reproductive toxicity, neurotoxicity, hepatoxicity and nephrotoxicity. Particularly, the central nervous system (CNS), especially the developing one, is vulnerable to BPA exposure. This review describes our current knowledge of BPA toxicity and the related molecular mechanisms, with an emphasis on the role of Wnt signaling in the related processes. We also discuss the role of oxidative stress, endocrine signaling and epigenetics in the regulation of Wnt signaling by BPA exposure. In summary, dysfunction of Wnt signaling plays a key role in BPA toxicity and thus can be a potential target to alleviate EDCs induced damage to organisms.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Yanzhou Xia
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Shu Ai
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| |
Collapse
|
11
|
Nayan NM, Kadir SHSA, Husin A, Siran R. Neurodevelopmental effects of prenatal Bisphenol A exposure on the role of microRNA regulating NMDA receptor subunits in the male rat hippocampus. Physiol Behav 2024; 280:114546. [PMID: 38583549 DOI: 10.1016/j.physbeh.2024.114546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024]
Abstract
Maternal bisphenol A (BPA) exposure has been reported to cause learning and memory deficits in born offspring. However, little is known that this impairment is potentially caused by epigenetic modulation on the development of NMDA receptor subunits. This study investigates the effect of prenatal BPA exposure on the hippocampal miR-19a and miR-539, which are responsible for regulating NMDA receptor subunits as well as learning and memory functions. Pregnant Sprague Dawley rats were orally administered with 5 mg/kg/day of BPA from pregnancy day 1 (PD1) until gestation day 21 (GD21), while control mothers received no BPA. The mothers were observed daily until GD21 for either a cesarean section or spontaneous delivery. The male offspring were sacrificed when reaching GD21 (fetus), postnatal days 7, 14, 21 (PND7, 14, 21) and adolescent age 35 (AD35) where their hippocampi were dissected from the brain. The expression of targeted miR-19a, miR-539, GRIN2A, and GRIN2B were determined by qRT-PCR while the level of GluN2A and GluN2B were estimated by western blot. At AD35, the rats were assessed with neurobehavioral tests to evaluate their learning and memory function. The findings showed that prenatal BPA exposure at 5 mg/kg/day significantly reduces the expression of miR-19a, miR-539, GRIN2A, and GRIN2B genes in the male rat hippocampus at all ages. The level of GluN2A and GluN2B proteins is also significantly reduced when reaching adolescent age. Consequently, the rats showed spatial and fear memory impairments when reaching AD35. In conclusion, prenatal BPA exposure disrupts the role of miR-19a and miR-539 in regulating the NMDA receptor subunit in the hippocampus which may be one of the causes of memory and learning impairment in adolescent rats.
Collapse
Affiliation(s)
- Norazirah Mat Nayan
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA 47000, Sungai Buloh, Selangor, Malaysia; Laboratory Animal Care Unit (LACU), Faculty of Medicine, Universiti Teknologi MARA 47000, Sungai Buloh, Selangor, Malaysia; Institute for Molecular Medicine and Biotechnology (IMMB) Faculty of Medicine, Universiti Teknologi MARA 47000, Sungai Buloh, Selangor, Malaysia
| | - Siti Hamimah Sheikh Abd Kadir
- Institute for Molecular Medicine and Biotechnology (IMMB) Faculty of Medicine, Universiti Teknologi MARA 47000, Sungai Buloh, Selangor, Malaysia
| | - Andrean Husin
- Faculty of Dentistry, Universiti Teknologi MARA 47000, Sungai Buloh, Selangor, Malaysia; Neuroscience Research Group (NRG), Faculty of Medicine, Universiti Teknologi MARA, 47000, Sungai Buloh, Selangor, Malaysia
| | - Rosfaiizah Siran
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA 47000, Sungai Buloh, Selangor, Malaysia; Neuroscience Research Group (NRG), Faculty of Medicine, Universiti Teknologi MARA, 47000, Sungai Buloh, Selangor, Malaysia..
| |
Collapse
|
12
|
Suresh S, Vellapandian C. Cyanidin improves spatial memory and cognition in bisphenol A-induced rat model of Alzheimer's-like neuropathology by restoring canonical Wnt signaling. Toxicol Appl Pharmacol 2024; 487:116953. [PMID: 38705400 DOI: 10.1016/j.taap.2024.116953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
INTRODUCTION Research has unveiled the neurotoxicity of Bisphenol A (BPA) linked to neuropathological traits of Alzheimer's disease (AD) through varied mechanisms. This study aims to investigate the neuroprotective properties of cyanidin, an anthocyanin, in an in vivo model of BPA-induced Alzheimer's-like neuropathology. METHODS Three-week-old Sprague-Dawley rats were randomly assigned to four groups: vehicle control, negative control (BPA exposure), low-dose cyanidin treatment (BPA + cyanidin 5 mg/kg), and high-dose cyanidin treatment (BPA + cyanidin 10 mg/kg). Spatial memory was assessed through behavioral tests, including the Y-maze, novel object recognition, and Morris water maze. After behavioral tests, animals were euthanized, and brain regions were examined for acetylcholinesterase inhibition, p-tau, Wnt3, GSK3β, and β-catenin levels, antioxidant activities, and histopathological changes. RESULTS BPA-exposed groups displayed memory impairments, while cyanidin-treated groups showed significant memory improvement (p < 0.0001). Cyanidin down regulated p-tau and glycogen synthase kinase-3β (GSK3β) and restored Wnt3 and β-catenin levels (p < 0.0001). Moreover, cyanidin exhibited antioxidant properties, elevating catalase and superoxide dismutase levels. The intervention significantly reduced the concentrations of acetylcholinesterase in the cortex and hippocampus in comparison to the groups treated with BPA (p < 0.0001). Significant gender-based disparities were not observed. CONCLUSION Cyanidin demonstrated potent neuroprotection against BPA-induced Alzheimer's-like neuropathology by enhancing antioxidant defenses, modulating tau phosphorylation by restoring the Wnt/β-catenin pathway, and ameliorating spatial memory deficits. This study highlights the therapeutic potential of cyanidin in countering neurotoxicity linked to BPA exposure.
Collapse
Affiliation(s)
- Swathi Suresh
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, India.
| |
Collapse
|
13
|
Jamka M, Kurek S, Makarewicz-Bukowska A, Miśkiewicz-Chotnicka A, Wasiewicz-Gajdzis M, Walkowiak J. No Differences in Urine Bisphenol A Concentrations between Subjects Categorized with Normal Cognitive Function and Mild Cognitive Impairment Based on Montreal Cognitive Assessment Scores. Metabolites 2024; 14:271. [PMID: 38786748 PMCID: PMC11123393 DOI: 10.3390/metabo14050271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
A link between bisphenol A (BPA) exposure and cognitive disorders has been suggested. However, the differences in BPA concentrations between subjects with and without cognitive impairment have not been analysed. Therefore, this observational study aimed to compare urine BPA levels in subjects with normal cognitive function (NCF) and mild cognitive impairment (MCI). A total of 89 MCI subjects and 89 well-matched NCF individuals were included in this study. Cognitive functions were assessed using the Montreal Cognitive Assessment (MOCA) scale. Urine BPA concentrations were evaluated by gas chromatography-mass spectrometry and adjusted for creatinine levels. Moreover, anthropometric parameters, body composition, sociodemographic factors, and physical activity were also assessed. Creatinine-adjusted urine BPA levels did not differ between the NCF and MCI groups (1.8 (1.4-2.7) vs. 2.2 (1.4-3.6) µg/g creatinine, p = 0.1528). However, there were significant differences in MOCA results between groups when the study population was divided into tertiles according to BPA concentrations (p = 0.0325). Nevertheless, multivariate logistic regression demonstrated that only education levels were independently associated with MCI. In conclusion, urine BPA levels are not significantly different between subjects with MCI and NCF, but these findings need to be confirmed in further studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznan, Poland; (M.J.); (S.K.); (A.M.-B.); (A.M.-C.); (M.W.-G.)
| |
Collapse
|
14
|
Zhang W, Zhang L, Liang W, Wang H, Hu F. Neurodevelopment effects of early life bisphenol-A exposure on visual memory: Insights into recovery dynamics. Toxicology 2024; 502:153718. [PMID: 38160929 DOI: 10.1016/j.tox.2023.153718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Bisphenol A (BPA), a ubiquitous endocrine disruptor, is implicated in the cognitive deficits observed in both children and animals. Especially, BPA-induced spatial memory deterioration during the whole development phase of rodents has been well delineated. However, whether BPA exposure on the different development phases exerts similar effects on the prefrontal cortex (PFC) dependent visual memory is still elusive. Here, we chose two exposure windows, the whole gestation and lactation phases (E0∼P21) and the whole juvenile and adolescent phases (P22∼P60), for exposing rats to BPA. The visual memory of those rats was accessed by object recognition testing in the open field after BPA exposure and a constant recovery interval. The results revealed a substantial decline of visual memory under both exposure conditions, accompanied by an increase in anxiety-like behavior in BPA-exposed rats. Notably, after a 20-day recovery period, those behavioral changes induced by BPA exposure during P22∼60, not E0∼P21, were reversed compared to the control rats. According to morphological analysis of those rats after recovery, we found that the spine density of pyramidal neurons in the PFC were significant decreased in rats with BPA exposure during E0∼P21 and there was no difference between rats with or without BPA exposure during P22∼P60. Additionally, a similar change trend in excitatory receptors expression was observed under both exposure conditions. After an additional 20 days of recovery, the behavioral changes in rats with perinatal BPA exposure reverted to the normal status. Our present findings illuminate the dynamic effects of BPA on PFC-dependent functions across two crucial early developmental stages of life.
Collapse
Affiliation(s)
- Wentai Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Linke Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Weifeng Liang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Huan Wang
- School of Life Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Fan Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China.
| |
Collapse
|
15
|
Liu H, Lin H, Xu T, Shi X, Yao Y, Khoso PA, Jiang Z, Xu S. New insights into brain injury in chickens induced by bisphenol A and selenium deficiency-Mitochondrial reactive oxygen species and mitophagy-apoptosis crosstalk homeostasis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166890. [PMID: 37683847 DOI: 10.1016/j.scitotenv.2023.166890] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Bisphenol A (BPA), a component of plastic products, can penetrate the blood-brain barrier and pose a threat to the nervous system. Selenium (Se) deficiency can also cause nervous system damage. Resulting from the rapid industrial development, BPA pollution and Se deficiency often coexist. However, it is unclear whether brain damage in chickens caused by BPA exposure and Se deficiency is related to the crosstalk disorder between mitophagy and apoptosis. In this study, 60 chickens (1 day old) were fed with a diet that contained 20 mg/kg BPA but was insufficient in Se (only 0.039 mg/kg) for 42 days to establish a chicken brain injury model. In vitro, the primary chicken embryo brain neurons were treated for 24 h with Se-deficient medium containing 75 μM BPA. The results showed that BPA exposure and Se deficiency inhibited the expression of the mitochondrial respiratory chain complex in brain neurons, and a large number of mitochondrial reactive oxygen species were released. Furthermore, the expression levels of mitochondrial fusion proteins (OPA1, Mfn1, and Mfn2) decreased, while the expression levels of mitochondrial fission proteins (Drp1, Mff, and Fis1) increased, thus exacerbating mitochondrial division. In addition, the results of immunofluorescence and flow cytometry analysis, as well as the elevated expressions of mitophagy related genes (PINK1, Parkin, ATG5, and LC3II/I) and pro-apoptotic markers (Bax, Cytc, Caspase3, and Caspase9) indicated that BPA exposure and Se deficiency disrupted the crosstalk homeostasis between mitophagy and apoptosis. However, this crosstalk homeostasis was restored after Mito-Tempo and Rapamycin treatment. In contrast, 3-methyladenine treatment exacerbated this crosstalk disorder. In conclusion, BPA exposure and Se deficiency can induce mitochondrial reactive oxygen species bursts and disorders of mitochondrial dynamics by destroying the mitochondrial respiratory chain complex. The result is indicative of an imbalance in mitochondrial autophagy and apoptosis crosstalk homeostasis, which damages the chicken brain.
Collapse
Affiliation(s)
- Huanyi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Pervez Ahmed Khoso
- Shaheed Benazir Bhutto, University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - Zhihui Jiang
- Henan Beiai Natural Product Application and Development Engineering Research Center, Anyang Institute of Technology, Anyang 455000, Henan, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
16
|
Fallahnezhad S, Ghorbani-Taherdehi F, Sahebkar A, Nadim A, Kafashzadeh M, Kafashzadeh M, Gorji-Valokola M. Potential neuroprotective effect of nanomicellar curcumin on learning and memory functions following subacute exposure to bisphenol A in adult male rats. Metab Brain Dis 2023; 38:2691-2720. [PMID: 37843661 DOI: 10.1007/s11011-023-01257-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/22/2023] [Indexed: 10/17/2023]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical commonly utilized in the manufacture of plastics, which may cause damage to brain tissue. Curcumin is a phytochemical with protective effects against neurological and mental diseases. The purpose of this research was to evaluate whether nanomicellar curcumin (NmCur) might protect rats against BPA-induced learning and memory deficits. After determining the proper dose of BPA, the animals were randomly divided into 8 groups (8 rats in each group) receiving dextrose 5% (as vehicle of NmCur) (Dex), sesame oil (as vehicle of BPA) (Sea), Sea plus Dex, NmCur (50 mg/kg), BPA (50 mg/kg), and 50 mg/kg BPA plus 10, 25, and 50 mg/kg NmCur groups, respectively. Behavioral tests performed using passive avoidance training (PAT), open-field (OF), and Morris water maze (MWM) tests. The expression of oxidative stress markers, proinflammatory cytokines, oxidative stress-scavenging enzymes, glutamate receptors, and MAPK and memory-related proteins was measured in rat hippocampus and cortical tissues. BPA up-regulated ROS, MDA, TNF-α, IL-6, IL-1β, SOD, GST, p-P38, and p-JNK levels; however, it down-regulated GSH, GPx, GR, CAT, p-AKT, p-ERK1/2, p-NR1, p-NR2A, p-NR2B, p-GluA1, p-CREB, and BDNF levels. BPA decreased step-through latency (STL) and peripheral and total, but not central, locomotor activity. It increased the time to find the hidden platform, the mean of escape latency time, and the traveled distance in the target quadrant, but decreased the time spent in the target quadrant. The combination of BPA (50 mg/kg) and NmCur (25 and 50 mg/kg) reversed all of BPA's adverse effects. Therefore, NmCur exhibited neuroprotective effects against subacute BPA-caused learning and memory impairment.
Collapse
Affiliation(s)
- Somaye Fallahnezhad
- Nervous System Stem Cell Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Anatomical Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Faezeh Ghorbani-Taherdehi
- Department of Anatomy and Cell Biology, School of Medicine, Esfahan University of Medical Sciences, Esfahan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azade Nadim
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrnaz Kafashzadeh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mehrnoosh Kafashzadeh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mahmoud Gorji-Valokola
- Department of Pharmacology, Brain and Spinal Injury Repair Research Center, Tehran University of Medical Science, Tehran, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
17
|
Mu X, Liu Z, Zhao X, Chen L, Jia Q, Wang C, Li T, Guo Y, Qiu J, Qian Y. Bisphenol analogues induced social defects and neural impairment in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:166307. [PMID: 37586522 DOI: 10.1016/j.scitotenv.2023.166307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/24/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
There is evidence in humans that endocrine disrupting chemicals exposure, such as bisphenol A (BPA), is tied to social behavior impacts when evaluated in early life stage. However, the potential social impact of BPA alternatives and its association with central nervous system (CNS) is poorly understood. Here, we performed behavioral test for zebrafish that are continuously exposed to environmental relevant concentrations (5 and 500 ng/L) of BPA, BPF, and BPAF since embryonic stage. Surprisingly, significant social behavior defects, including increased social distance and decreased contact time, were identified in zebrafish treated by 500 ng/L BPAF and BPA. These behavioral changes were accompanied by apparent histological injury, microglia activation, enhanced apoptosis and neuron loss in brain. The gut-brain transcriptional profile showed that genes involved in neuronal development pathways were up-regulated in all bisphenol analogs treatments, indicating a protective phenotype of CNS; however, these pathways were inhibited in gut. Besides, a variety of key regulators in the gut-brain regulation were identified based on protein interaction prediction, such as rac1-limk1, insrb1 and fosab. These findings implicated that the existence of bisphenol analogues in water would influence the social life of fish, and revealed a potential role of gut-brain transcriptional alteration in mediating this effect.
Collapse
Affiliation(s)
- Xiyan Mu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Zaiteng Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xiaoyu Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Lu Chen
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Qi Jia
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Tiejun Li
- Zhejiang Marine Fisheries Research Institute, China
| | - Yuanming Guo
- Zhejiang Marine Fisheries Research Institute, China
| | - Jing Qiu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| | - Yongzhong Qian
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
18
|
Baykal S, Nalbantoğlu A. An Examination of the Relationship Between Exposure to Bisphenol A and Attention-Deficit/Hyperactivity Disorder in Children and Adolescents. Clin Neuropharmacol 2023; 46:214-219. [PMID: 37962308 DOI: 10.1097/wnf.0000000000000574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
OBJECTIVES Exposure to environmental toxic agents in the prenatal and/or postnatal periods may play in the acquired development of attention-deficit/hyperactivity disorder (ADHD) in groups with genetic risks. Bisphenol A (BPA) is a widely used industrial chemical with neurotoxic effects. This study examined the relationship between exposure to BPA and clinical ADHD. METHODS This cross-sectional, case-controlled clinical study compared 45 drug-naive children and adolescents with ADHD and 30 healthy controls in terms of serum BPA levels. Psychiatric comorbidities in the ADHD group were determined using the "Schedule for Affective Disorders and Schizophrenia for school-aged children, lifetime version." The Child Behavior Checklist (CBCL) was also administered to all participants. RESULTS Serum BPA levels were significantly higher in the ADHD group than in the healthy control group. In addition, significant, weak positive correlation was found between BPA levels and CBCL attention and CBCL total problem scores. CONCLUSIONS Our results show that BPA may be an environmental toxic agent with a potential role in the etiology of ADHD and particularly attention deficiency. Preventive interventions can be developed if this can be confirmed with longitudinal studies and repeated measurements.
Collapse
Affiliation(s)
- Saliha Baykal
- Departments of Child and Adolescent Mental Health and Diseases
| | - Ayşin Nalbantoğlu
- Pediatrics, Tekirdağ Namık Kemal University Medical Faculty, Tekirdağ, Turkey
| |
Collapse
|
19
|
Wu D, Sun Q, Wei W, Bai Y, Zhai L, Jia L. Nrf2-mediated protective effect of alpha-lipoic acid on synaptic oxidative damage and inhibition of PKC/ERK/CREB pathway in bisphenol A-exposed HT-22 cells. Food Chem Toxicol 2023; 181:114112. [PMID: 37858839 DOI: 10.1016/j.fct.2023.114112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
The harmful effects of bisphenol A (BPA) on learning and memory may involve hippocampal oxidative damage; however, the underlying mechanism remains unclear. Antioxidants that antagonize BPA-induced neuronal oxidative damage lack research. This study aimed to develop an in vitro model using the HT-22 mouse hippocampal neuronal cell line to investigate the neurotoxic mechanism of BPA and the protective effect of alpha-lipoic acid (ALA) on nuclear factor erythroid 2-related factor 2 (Nrf2) inhibition. The results showed that ALA reduced BPA-induced reactive oxygen species and neuronal nitric oxide synthase (nNOS) levels; however, inhibiting Nrf2 weakened the protective effects of ALA. BPA reduced mitochondrial complex I/III activity and ATP levels, but ALA ameliorated this damage. ALA improved the BPA-induced downregulation of the kelch-like ECH-associated protein 1 (keap1)/Nrf2 system, synaptic-related proteins, and the protein kinase C (PKC)/extracellular signal-regulated kinase (ERK)/cAMP response element binding protein (CREB) pathway; however, the protective effects of ALA were weakened when Nrf2 was inhibited. Our results suggest that BPA causes oxidative damage to HT-22 cells by damaging mitochondrial function, nNOS, and the keap1/Nrf2 system, thereby impairing synaptic-related proteins and the PKC/ERK/CREB pathway. ALA counters BPA-induced damage via Nrf2, which may be a significant target for the protective action of ALA.
Collapse
Affiliation(s)
- Dan Wu
- Department of Child and Adolescent Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| | - Qi Sun
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China.
| | - Wei Wei
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China.
| | - Yinglong Bai
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China.
| | - Lingling Zhai
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China.
| | - Lihong Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
20
|
Meng L, Gui S, Ouyang Z, Wu Y, Zhuang Y, Pang Q, Fan R. Low-dose bisphenols exposure sex-specifically induces neurodevelopmental toxicity in juvenile rats and the antagonism of EGCG. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132074. [PMID: 37473573 DOI: 10.1016/j.jhazmat.2023.132074] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Bisphenols (BPs) can negatively affect neurobehaviors in rats, whereas the mechanism remains unclear. Here, the mechanism of BPs-induced neurodevelopmental toxicity and its effective detoxification measures were investigated in vitro and in vivo. In in vitro experiments, primary hippocampal neurons from neonatal rats of different genders were treated with bisphenol A (BPA), bisphenol S (BPS) and bisphenol B (BPB) at 1 nM-100 μM, epigallocatechin gallate (EGCG) and G15, an antagonist of G protein-coupled estrogen receptor (GPER) for 7 d. Results indicated that BPs affected neuronal morphogenesis, impaired GABA synthesis and Glu/GABA homeostasis. Neuronal morphogenetic damage induced by low-doses BPA may be mediated by GPER. Neurotoxicity of BPS is weaker than BPA and BPB. In in vivo studies, exposure to BPA (0.5 μg/kg·bw/day) on PND 10-40 caused oxidative stress and inflammation in rat hippocampus, disrupted neuronal morphogenesis and neurotransmitter homeostasis, ultimately impaired spatial memory of rats. Males are more sensitive to BPA exposure than females. Both in vivo and in vitro studies indicated that EGCG, a phytoestrogen, can alleviate BPA-induced neurotoxicity. Taken together, low-doses BPA exposure sex-specifically disrupted neurodevelopment and further impaired learning and memory ability in rats, which may be mediated by GPER. Promisingly, EGCG effectively mitigated the BPA-induced neurodevelopmental toxicity.
Collapse
Affiliation(s)
- Lingxue Meng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shiheng Gui
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zedong Ouyang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yajuan Wu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Youling Zhuang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qihua Pang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
21
|
Jiao H, Chen Y, Han T, Pan Q, Gao F, Li G. GGA1 participates in spermatogenesis in mice under stress. PeerJ 2023; 11:e15673. [PMID: 37551344 PMCID: PMC10404397 DOI: 10.7717/peerj.15673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/11/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Infertility is recognized as a common and worrisome problem of human reproduction worldwide. Based on previous studies, male factors account for about half of all infertility cases. Exposure to environmental toxicants is an important contributor to male infertility. Bisphenol A (BPA) is the most prominent toxic environmental contaminant worldwide affecting the male reproductive system. BPA can impair the function of the Golgi apparatus which is important in spermatogenesis. GGA1 is known as Golgi-localized, gamma adaptin ear-containing, ARF-binding protein 1. Previously, it has been shown that GGA1 is associated with spermatogenesis in Drosophila, however, its function in mammalian spermatogenesis remains unclear. METHODS Gga1 knockout mice were generated using the CRISPR/Cas9 system. Gga1-/- male mice and wild-type littermates received intraperitoneal (i.p.) injections of BPA (40 µg/kg) once daily for 2 weeks. Histological and immunofluorescence staining were performed to analyze the phenotypes of these mice. RESULTS Male mice lacking Gga1 had normal fertility without any obvious defects in spermatogenesis, sperm count and sperm morphology. Gga1 ablation led to infertility in male mice exposed to BPA, along with a significant reduction in sperm count, sperm motility and the percentage of normal sperm. Histological analysis of the seminiferous epithelium showed that spermatogenesis was severely disorganized, while apoptotic germ cells were significantly increased in the Gga1 null mice exposed to BPA. Our findings suggest that Gga1 protects spermatogenesis against damage induced by environmental pollutants.
Collapse
Affiliation(s)
- Haoyun Jiao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, P.R. China
| | - Yinghong Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, P.R. China
| | - Tingting Han
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, P.R. China
| | - Qiyu Pan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, P.R. China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Guoping Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, P.R. China
| |
Collapse
|
22
|
Wang R, Liu ZH, Bi N, Gu X, Huang C, Zhou R, Liu H, Wang HL. Dysfunction of the medial prefrontal cortex contributes to BPA-induced depression- and anxiety-like behavior in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115034. [PMID: 37210999 DOI: 10.1016/j.ecoenv.2023.115034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/14/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023]
Abstract
Bisphenol A (BPA), a well-known environmental endocrine disruptor, has been implicated in anxiety-like behavior. But the neural mechanism remains elusive. Herein, we found that mice exposed to 0.5 mg/kg/day BPA chronically from postnatal days (PND) 21 to PND 80 exhibited depression- and anxiety-like behavior. Further study showed that medial prefrontal cortex (mPFC), was associated with BPA-induced depression- and anxiety-like behavior, as evidenced by decreased c-fos expression in mPFC of BPA-exposed mice. Both the morphology and function of glutamatergic neurons (also called pyramidal neurons) in mPFC of mice were impaired following BPA exposure, characterized by reduced primary branches, weakened calcium signal, and decreased mEPSC frequency. Importantly, optogenetic activation of the pyramidal neurons in mPFC greatly reversed BPA-induced depression- and anxiety-like behavior in mice. Furthermore, we reported that microglial activation in mPFC of mice may also have a role in BPA-induced depression- and anxiety-like behavior. Taken together, the results indicated that mPFC is the brain region that is greatly damaged by BPA exposure and is associated with BPA-induced depression- and anxiety-like behavior. The study thus provides new insights into BPA-induced neurotoxicity and behavioral changes.
Collapse
Affiliation(s)
- Rongrong Wang
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui 230601, PR China
| | - Zhi-Hua Liu
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui 230601, PR China
| | - Nanxi Bi
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui 230601, PR China
| | - Xiaozhen Gu
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui 230601, PR China
| | - Chengqing Huang
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui 230601, PR China
| | - Ruiqing Zhou
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui 230601, PR China
| | - Haoyu Liu
- School of Pharmacy, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, PR China
| | - Hui-Li Wang
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui 230601, PR China.
| |
Collapse
|
23
|
Flores A, Moyano P, Sola E, García JM, García J, Frejo MT, Guerra-Menéndez L, Labajo E, Lobo I, Abascal L, Pino JD. Bisphenol-A Neurotoxic Effects on Basal Forebrain Cholinergic Neurons In Vitro and In Vivo. BIOLOGY 2023; 12:782. [PMID: 37372067 DOI: 10.3390/biology12060782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
The widely used plasticizer bisphenol-A (BPA) is well-known for producing neurodegeneration and cognitive disorders, following acute and long-term exposure. Although some of the BPA actions involved in these effects have been unraveled, they are still incompletely known. Basal forebrain cholinergic neurons (BFCN) regulate memory and learning processes and their selective loss, as observed in Alzheimer's disease and other neurodegenerative diseases, leads to cognitive decline. In order to study the BPA neurotoxic effects on BFCN and the mechanisms through which they are induced, 60-day old Wistar rats were used, and a neuroblastoma cholinergic cell line from the basal forebrain (SN56) was used as a basal forebrain cholinergic neuron model. Acute treatment of rats with BPA (40 µg/kg) induced a more pronounced basal forebrain cholinergic neuronal loss. Exposure to BPA, following 1- or 14-days, produced postsynaptic-density-protein-95 (PSD95), synaptophysin, spinophilin, and N-methyl-D-aspartate-receptor-subunit-1 (NMDAR1) synaptic proteins downregulation, an increase in glutamate content through an increase in glutaminase activity, a downregulation in the vesicular-glutamate-transporter-2 (VGLUT2) and in the WNT/β-Catenin pathway, and cell death in SN56 cells. These toxic effects observed in SN56 cells were mediated by overexpression of histone-deacetylase-2 (HDAC2). These results may help to explain the synaptic plasticity, cognitive dysfunction, and neurodegeneration induced by the plasticizer BPA, which could contribute to their prevention.
Collapse
Affiliation(s)
- Andrea Flores
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Paula Moyano
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Emma Sola
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José Manuel García
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jimena García
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María Teresa Frejo
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Lucia Guerra-Menéndez
- Departamento de Fisiología, Facultad de Medicina, Universidad San Pablo CEU, 28003 Madrid, Spain
| | - Elena Labajo
- Departamento de Medicina Legal, Psiquiatría y Patología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Inés Lobo
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Luisa Abascal
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Javier Del Pino
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
24
|
Shi Y, Wang H, Zhu Z, Ye Q, Lin F, Cai G. Association between exposure to phenols and parabens and cognitive function in older adults in the United States: A cross-sectional study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160129. [PMID: 36370798 DOI: 10.1016/j.scitotenv.2022.160129] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/09/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND People are commonly exposed to mixtures of parabens and phenols. Most studies investigating such exposure and cognitive performance tend to assess only single chemicals, and the tools used to assess cognitive function are not uniform. OBJECTIVE This study aimed to examine the association between multiple parabens and phenols and cognitive function in older Americans. METHODS The study included data of older Americans from two cycles of the NHANES survey. Participants were divided into normal cognitive performance and low cognitive performance groups based on the scores of four cognitive tests: the Immediate Recall test (IRT), the Delayed Recall test (DRT), the Animal Fluency test (AFT) and the Digit Symbol Substitution test (DSST). Generalized linear regression models (GLMs), restricted cubic spline (RCS), weighted quantile sum (WQS) and Bayesian kernel machine regression (BKMR) were used to assess relationships between chemical exposure and cognitive performance. RESULTS In this cross-sectional study, a total of 961 participants, 470 males and 491 females, were included. GLMs revealed positive association between high levels of bisphenol A (BPA) and low cognitive performance on DRT, especially in male (OR (95%CI): 2.25 (1.10-4.61)), and this association was consistent with WQS and BKMR. In female participants, the third quartile of BPA exposure showed a positive association with low cognition on IRT and global cognition. GLMs also showed that high levels of propylparaben were positively associated with cognitive performance on the IRT in male participants (OR (95%CI): 0.37 (0.18-0.76)). In BKMR, an overall positive correlation between the mixture and low cognition as measured with DRT was observed in male subjects when the mixture was at the 65th percentile or higher. CONCLUSION Exposure to a mixture of parabens and phenols was positively associated with low cognitive performance on DRT in older male subjects, while BPA was the main driver of this outcome.
Collapse
Affiliation(s)
- Yisen Shi
- Fujian Medical University, Fuzhou 35001, China; Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 35001, China
| | | | - Zhibao Zhu
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350005, Fujian, China
| | - Qinyong Ye
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 35001, China
| | - Fabin Lin
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou 35001, China.
| | - Guoen Cai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 35001, China.
| |
Collapse
|
25
|
Fei‐Sun Y, Huang M, Qin H, Campos de SouzaHan S, Xue H, Wang Y, Wang Y. Protective effect of isoflurane preconditioning on neurological function in rats with HIE. IBRAIN 2022; 8:500-515. [PMID: 37786586 PMCID: PMC10528772 DOI: 10.1002/ibra.12081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 10/04/2023]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is an important cause of neonatal death and disability, which can lead to long-term neurological and motor dysfunction. Currently, inhalation anesthetics are widely used in surgery, and some studies have found that isoflurane (ISO) may have a positive effect on neuroprotection. In this paper, we investigated whether ISO pretreatment has a neuroprotective effect on the neurological function of HIE rats. Here, 7-day-old neonatal rats were randomly divided into a sham group, a hypoxic-ischemic (HI) group, and an ISO pretreatment (pretreatment) group. The pretreatment group was pretreated with 2% ISO for 1 h, followed by the HI group to establish an HI animal model. The HI‑induced neurological injury was evaluated by Zea‑Longa scores and triphenyltetrazolium (TTC) staining. Neuronal number and histomorphological changes were observed with Nissl staining and Hematoxylin-eosin (HE) staining. In addition, motor learning memory function was evaluated by the Morris water maze (MWM), the Y-maze, and the rotarod tests. HI induced severe neurological dysfunction, brain infarction, and cell apoptosis as well as obvious neuron loss in neonatal rats. In the MWM, the rats in the pretreatment group showed a decrease in escape latency (p = 0.042), indicating that pretreatment with ISO could improve the learning ability of HI rats. The results of Nissl staining showed that in the HI group, there was an irregular arrangement of neurons and nuclear fixation; however, the cell damage was significantly reduced and the total number of neurons was increased after ISO pretreatment (p < 0.001). In conclusion, ISO pretreatment improved cognitive function and attenuated HI-induced reduction of Nissl-positive cells and spatial memory impairment, suggesting that pretreatment with ISO before HI modeling could reduce neuronal cell death in the hippocampus after HI.
Collapse
Affiliation(s)
- Yi Fei‐Sun
- Institute of Neurological Disease, National‐Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China HospitalSichuan UniversityChengduSichuanChina
- Center for Epigenetics and Induced Pluripotent Stem Cells, Kennedy Krieger InstituteJohns Hopkins UniversityBaltimoreUSA
| | - Miao Huang
- Department of AnesthesiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Hao‐Yue Qin
- Department of AnesthesiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Senio Campos de SouzaHan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacau SARChina
| | - Han Xue
- School of Basic Medical SciencesJinzhou Medical UniversityJinzhouLiaoningChina
| | - Yu‐Ying Wang
- School of Basic Medical SciencesJinzhou Medical UniversityJinzhouLiaoningChina
| | - Yi‐Bo Wang
- School of Basic Medical SciencesJinzhou Medical UniversityJinzhouLiaoningChina
| |
Collapse
|
26
|
Wang G, Li H, Li N, Chen D, He J, Xu Q, Lu J. Construction of Perylene‐based Amphiphilic Micelle and Its Efficient Adsorption and In Situ Photodegradation of Bisphenol A in Aqueous Solution. Angew Chem Int Ed Engl 2022; 61:e202210619. [DOI: 10.1002/anie.202210619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Guan Wang
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Hua Li
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Najun Li
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Dongyun Chen
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Jinghui He
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Qingfeng Xu
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Jianmei Lu
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| |
Collapse
|
27
|
Wang G, Li H, Li N, Chen D, He J, Xu Q, Lu JM. Construction of Perylene‐based Amphiphilic Micelle and Its Efficient Adsorption and In‐situ Photodegradation of Bisphenol A in Aqueous Solution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guan Wang
- Soochow University College of Chemistry, Chemical Engineering and Materials Science Soochow University, No. 199, Ren'ai Road, Suzhou city, Jiangsu province 215000 CHINA
| | - Hua Li
- Soochow University College of Chemistry, Chemical Engineering and Materials Science Soochow University, No. 199, Ren'ai Road, Suzhou city, Jiangsu province 215000 CHINA
| | - Najun Li
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Dongyun Chen
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Jinghui He
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Qingfeng Xu
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Jian-Mei Lu
- Soochow University College of Chemistry, Chemical Engineering and Materials Science No.199 Renai RoadSuzhou Industrial Park 215123 Suzhou CHINA
| |
Collapse
|
28
|
Hyun SA, Ko MY, Jang S, Lee BS, Rho J, Kim KK, Kim WY, Ka M. Bisphenol-A impairs synaptic formation and function by RGS4-mediated negative regulation of BDNF/NTRK2 signaling in the cerebral cortex. Dis Model Mech 2022; 15:276081. [PMID: 35781563 PMCID: PMC9346518 DOI: 10.1242/dmm.049177] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
Bisphenol-A (BPA) is a representative endocrine disruptor, widely used in a variety of products including plastics, medical equipment and receipts. Hence, most people are exposed to BPA via the skin, digestive system or inhalation in everyday life. Furthermore, BPA crosses the blood–brain barrier and is linked to multiple neurological dysfunctions found in neurodegenerative and neuropsychological disorders. However, the mechanisms underlying BPA-associated neurological dysfunctions remain poorly understood. Here, we report that BPA exposure alters synapse morphology and function in the cerebral cortex. Cortical pyramidal neurons treated with BPA showed reduced size and number of dendrites and spines. The density of excitatory synapses was also decreased by BPA treatment. More importantly, we found that BPA disrupted normal synaptic transmission and cognitive behavior. RGS4 and its downstream BDNF/NTRK2 pathway appeared to mediate the effect of BPA on synaptic and neurological function. Our findings provide molecular mechanistic insights into anatomical and physiological neurotoxic consequences related to a potent endocrine modifier. Summary: Bisphenol-A (BPA) disrupts normal synaptic transmission and cognitive behavior in mice. Rgs4 transcription factor and its downstream BDNF/NTRK2 pathway appear to mediate the effect of BPA on synaptic and neurological function.
Collapse
Affiliation(s)
- Sung-Ae Hyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.,Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Moon Yi Ko
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.,Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Sumi Jang
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Byoung-Seok Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Jaerang Rho
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kee K Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Minhan Ka
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| |
Collapse
|
29
|
Mu X, Liu J, Wang H, Yuan L, Wang C, Li Y, Qiu J. Bisphenol F Impaired Zebrafish Cognitive Ability through Inducing Neural Cell Heterogeneous Responses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8528-8540. [PMID: 35616434 DOI: 10.1021/acs.est.2c01531] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The central nervous system (CNS) is a sensitive target for endocrine-disrupting chemicals, such as bisphenol analogues. Bisphenol A (BPA) usage is associated with the occurrence of many neurological diseases. With the restricted use of BPA, bisphenol F (BPF) has been greatly introduced for industrial manufacture and brings new hazards to public CNS health. To understand how BPF affects the neural system, we performed a cognitive test for zebrafish that are continuously exposed to environmentally relevant concentrations (0.5 and 5.0 μg/L) of BPF since embryonic stage and identified suppressed cognitive ability in adulthood. Single-cell RNA sequencing of neural cells revealed a cell composition shift in zebrafish brain post BPF exposure, including increase in microglia and decrease in neurons; these changes were further validated by immune staining. At the same time, a significant inflammatory response and increased phagocytic activity were detected in zebrafish brain post BPF exposure, which were consistent with the activation of microglia. Cell-specific transcriptomic profiles showed that abnormal phagocytosis, activated brain cell death, and apoptosis occurred in microglia post BPF exposure, which are responsible for the neuron loss. In addition, certain neurological diseases were affected by BPF in both excitatory and inhibitory neurons, such as the movement disorder and neural muscular disease, however, with distinctly involved genes. These findings indicate that BPF exposure could lead to an abnormal cognitive behavior of zebrafish through inducing heterogeneous changes of neural cells in brain and revealed the dominating role of microglia in mediating this effect.
Collapse
Affiliation(s)
- Xiyan Mu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100098, People's Republic of China
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing 100141, People's Republic of China
| | - Jia Liu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing 100141, People's Republic of China
| | - Hui Wang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing 100141, People's Republic of China
| | - Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing 100141, People's Republic of China
| | - Chengju Wang
- College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing 100141, People's Republic of China
| | - Jing Qiu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100098, People's Republic of China
| |
Collapse
|
30
|
Welch C, Mulligan K. Does Bisphenol A Confer Risk of Neurodevelopmental Disorders? What We Have Learned from Developmental Neurotoxicity Studies in Animal Models. Int J Mol Sci 2022; 23:2894. [PMID: 35270035 PMCID: PMC8910940 DOI: 10.3390/ijms23052894] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023] Open
Abstract
Substantial evidence indicates that bisphenol A (BPA), a ubiquitous environmental chemical used in the synthesis of polycarbonate plastics and epoxy resins, can impair brain development. Clinical and epidemiological studies exploring potential connections between BPA and neurodevelopmental disorders in humans have repeatedly identified correlations between early BPA exposure and developmental disorders, such as attention deficit/hyperactivity disorder and autism spectrum disorder. Investigations using invertebrate and vertebrate animal models have revealed that developmental exposure to BPA can impair multiple aspects of neuronal development, including neural stem cell proliferation and differentiation, synapse formation, and synaptic plasticity-neuronal phenotypes that are thought to underpin the fundamental changes in behavior-associated neurodevelopmental disorders. Consistent with neuronal phenotypes caused by BPA, behavioral analyses of BPA-treated animals have shown significant impacts on behavioral endophenotypes related to neurodevelopmental disorders, including altered locomotor activity, learning and memory deficits, and anxiety-like behavior. To contextualize the correlations between BPA and neurodevelopmental disorders in humans, this review summarizes the current literature on the developmental neurotoxicity of BPA in laboratory animals with an emphasis on neuronal phenotypes, molecular mechanisms, and behavioral outcomes. The collective works described here predominantly support the notion that gestational exposure to BPA should be regarded as a risk factor for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Chloe Welch
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA;
| | - Kimberly Mulligan
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA 95819, USA
| |
Collapse
|
31
|
Nayan NM, Husin A, Kadir SHSA, Aziz CBA, Mazlan M, Siran R. Prenatal bisphenol A exposure impairs the aversive and spatial memory reduces the level of NMDA receptor subunits in the hippocampus of male Sprague Dawley rats. BRAIN SCIENCE ADVANCES 2022; 8:57-69. [DOI: 10.26599/bsa.2022.9050009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Memory impairment in children is an ongoing issue worldwide related to a learning disability. This neurobiological condition has been suggested to associate with bisphenol A (BPA) exposure during pregnancy. BPA is an inorganic compound used to produce polycarbonate plastics and epoxy resins. We conduct this study to investigate the effects of prenatal BPA exposure on the level of the N-methyl-D-aspartate (NMDA) receptor subunits, synaptic markers of the hippocampus and neurobehavioral outcomes in rats. The pregnant rats were given a daily dose of 5 mg/kg and 50 mg/kg of BPA with 0.5% Tween 80 orally from gestation day 2 until 21 (GD21). The level of GluN2A, GluN2B, PSD-95 and synapsin I in the hippocampus and its neurobehaviour outcomes were quantified and evaluated in the male foetus and adolescent rat. Prenatal BPA exposure reduced GluN2A, GluN2B, synapsin I and PSD-95 (Postsynaptic Density-95) in the male foetus and adolescent rat hippocampus compared to the control group. The prenatal BPA exposed rats demonstrated anxiety-related behaviour and impairment in aversive and spatial memory. The findings suggested that the impairment in neurobehavioral performance may inhibit the signalling pathway in the NMDA receptor subunits in the male foetus rat hippocampus leading to learning and memory deficits when reaching adolescence.
Collapse
Affiliation(s)
- Norazirah Mat Nayan
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
- Institute of Molecular Medicine Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
| | - Andrean Husin
- Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
- Neuroscience Research Group (NRG), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
| | - Siti Hamimah Sheikh Abd Kadir
- Institute of Molecular Medicine Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
| | - Che Badariah Abd Aziz
- Faculty of Medicine, Universiti Sains Malaysia, Kubang Kerian 15200, Kota Bharu Kelantan, Malaysia
| | - Musalmah Mazlan
- Neuroscience Research Group (NRG), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
| | - Rosfaiizah Siran
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
- Neuroscience Research Group (NRG), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
| |
Collapse
|
32
|
Hu F, Liang W, Zhang L, Wang H, Li Z, Zhou Y. Hyperactivity of basolateral amygdala mediates behavioral deficits in mice following exposure to bisphenol A and its analogue alternative. CHEMOSPHERE 2022; 287:132044. [PMID: 34474391 DOI: 10.1016/j.chemosphere.2021.132044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/03/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA) is a known endocrine disruptor and has been gradually replaced in industrial applications by other bisphenols, such as bisphenol S (BPS). However, whether these analogues are any safer for the central nervous system remains elusive. Here, we investigated behavioral impairments in mice after BPA and BPS exposure from postnatal days 21-49 (P21~P49). Results showed that BPA (0.1 and 1 mg/kg/d) and BPS (1 mg/kg/d) impaired emotion and social interaction of mice, while low dose exposure (0.1 mg/kg/d) induced no observable changes on emotion in mice. The behavioral deficits were accompanied by hyperactivation of the basolateral amygdala (BLA), i.e., dose-dependent increase in neuronal firing rates and local field potential power. In addition, glutamate receptors were up-regulated in the BLA, showing the same activation trend after exposure to different doses of BPA and BPS. Taken together, these findings imply that BPA and BPS cause behavioral impairments in juvenile mice by disrupting local neuronal activation in the BLA. Although BPS exerted less adverse effects on mice than BPA at the low dose, it does not appear to be a safe alternative to BPA in regard to brain function after prolonged high-volume exposure.
Collapse
Affiliation(s)
- Fan Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China.
| | - Weifeng Liang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Linke Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Huan Wang
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Zimu Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Yifeng Zhou
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| |
Collapse
|
33
|
Machnik P, Schuster S. Recording from an Identified Neuron Efficiently Reveals Hazard for Brain Function in Risk Assessment. Molecules 2021; 26:molecules26226935. [PMID: 34834026 PMCID: PMC8622100 DOI: 10.3390/molecules26226935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Modern societies use a continuously growing number of chemicals. Because these are released into the environment and are taken up by humans, rigorous (but practicable) risk assessment must precede the approval of new substances for commerce. A number of tests is applicable, but it has been very difficult to efficiently assay the effect of chemicals on communication and information processing in vivo in the adult vertebrate brain. Here, we suggest a straightforward way to rapidly and accurately detect effects of chemical exposure on action potential generation, synaptic transmission, central information processing, and even processing in sensory systems in vivo by recording from a single neuron. The approach is possible in an identified neuron in the hindbrain of fish that integrates various sources of information and whose properties are ideal for rapid analysis of the various effects chemicals can have on the nervous system. The analysis uses fish but, as we discuss here, key neuronal functions are conserved and differences can only be due to differences in metabolism or passage into the brain, factors that can easily be determined. Speed and efficiency of the method, therefore, make it suitable to provide information in risk assessment, as we illustrate here with the effects of bisphenols on adult brain function.
Collapse
|
34
|
Hu F, Xu G, Zhang L, Wang H, Liu J, Chen Z, Zhou Y. Chronic bisphenol A exposure triggers visual perception dysfunction through impoverished neuronal coding ability in the primary visual cortex. Arch Toxicol 2021; 96:625-637. [PMID: 34783864 DOI: 10.1007/s00204-021-03192-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022]
Abstract
Contrast perception is a fundamental visual ability that allows us to distinguish objects from the background. However, whether it is perturbed by chronic exposure to environmental xenoestrogen, bisphenol A (BPA), is still elusive. Here, we used adult cats to explore BPA-induced changes in contrast sensitivity (CS) and its underlying neuronal coding mechanism. Behavioral results showed that 14 days of BPA exposure (0.4 mg/kg/day) was sufficient to induce CS declines at the tested spatial frequencies (0.05-2 cycles/deg) in all four cats. Furthermore, based on multi-channel electrophysiological recording and interneuronal correlation analysis, we found that the BPA-exposed cats exhibited an obvious up-regulation in noise correlation in the primary visual cortex (area 17, A17), thus providing a population neuronal coding basis for their perceptual dysfunction. Moreover, single neuron responses in A17 of BPA-exposed cats revealed a slight but marked decrease in CS compared to that of control cats. Additionally, these neuronal responses presented an overt decrease in signal-to-noise ratio, accompanied by increased trial-to-trial response variability (i.e., noise). To some extent, these neuron population and unit dysfunctions in A17 of BPA-exposed cats were attributable to decreased response activity of fast-spiking neurons. Together, our findings demonstrate that chronic BPA exposure restricts contrast perception, in response to impoverished neuronal coding ability in A17.
Collapse
Affiliation(s)
- Fan Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, People's Republic of China.
| | - Guangwei Xu
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China.
| | - Linke Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, People's Republic of China
| | - Huan Wang
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| | - Jiachen Liu
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| | - Zhi Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, People's Republic of China
| | - Yifeng Zhou
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China. .,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Science, 15 Datun Road, Beijing, 100101, People's Republic of China.
| |
Collapse
|
35
|
Bi N, Ding J, Zou R, Gu X, Liu ZH, Wang HL. Developmental exposure of bisphenol A induces spatial memory deficits by weakening the excitatory neural circuits of CA3-CA1 and EC-CA1 in mice. Toxicol Appl Pharmacol 2021; 426:115641. [PMID: 34242568 DOI: 10.1016/j.taap.2021.115641] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/08/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
Bisphenol-A (BPA) is an environmental endocrine disruptor and impairs learning and memory. However, the direct evidence for BPA exposure affecting neural circuits has been limited. In this study, a virus tracing assay has been established to explore the brain's neural circuits. Thy1-Cre mice were used to investigate the effects of BPA on the neural projection of glutamatergic pyramidal neurons in hippocampal CA1 based on Thy1 promoter. These transgenic mice were orally exposed to BPA (0, 0.5 mg/kg/day) from postnatal day (PND) 0 to PND60 and then subjected to behavioral tests. Morris water maze(MWM)and Barnes maze's showed that the spatial memory was seriously impaired in BPA exposed Thy1-Cre mice. Virus tracing assay indicated that CA1 pyramidal neurons mainly received neural inputs from hippocampal CA3, entorhinal cortex (EC), and medial septum (MS). The analysis showed that BPA reduced the number of RV+ neurons in CA3 and EC but not MS. The immunohistochemistry experiment displayed that BPA decreased the percentage of CaMKIIRV+ cells in CA3 and EC. The results demonstrated that the synaptic connection of upstream glutamatergic neurons and CA1 pyramidal cells was weakened by BPA exposure. These point to potentially detrimental effects of BPA exposure on the excitatory neural circuit of CA3-CA1 and EC-CA1 in memory formation. Thus, our findings revealed that the decrease in excitatory neural circuits of CA3-CA1 and EC-CA1 contribute to the BPA-induced spatial memory deficits in Thy1-Cre mice.
Collapse
Affiliation(s)
- Nanxi Bi
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Jinjun Ding
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Rongxin Zou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Xiaozhen Gu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Zhi-Hua Liu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| |
Collapse
|
36
|
Essawy AE, Abd Elkader HTAE, Khamiss OA, Eweda SM, Abdou HM. Therapeutic effects of astragaloside IV and Astragalus spinosus saponins against bisphenol A-induced neurotoxicity and DNA damage in rats. PeerJ 2021; 9:e11930. [PMID: 34434659 PMCID: PMC8359804 DOI: 10.7717/peerj.11930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/18/2021] [Indexed: 12/28/2022] Open
Abstract
Background Bisphenol A (BPA) is an endocrine disruptor to which humans are often subjected during daily life. This study aimed to investigate the ameliorative effect of astragaloside IV (ASIV) or saponins extracted from Astragalus spinosus (A. spinosus) against DNA damage and neurotoxic effects induced by BPA in prefrontal cortex (PFC), hippocampal and striatal brain regions of developing male rats. Materials and Methods Juvenile PND20 (pre-weaning; age of 20 days) male Sprague Dawley rats were randomly and equally divided into four groups: control, BPA, BPA+ASIV and BPA+A. spinosus saponins groups. Bisphenol A (125 mg/kg/day) was administrated orally to male rats from day 20 (BPA group) and along with ASIV (80 mg/kg/day) (BPA+ASIV group) or A. spinosus saponin (100 mg/kg/day) (BPA+ A. spinosus saponins group) from day 50 to adult age day 117. Results Increased level of nitric oxide (NO) and decreased level of glutamate (Glu), glutamine (Gln), glutaminase (GA) and glutamine synthetase (GS) were observed in the brain regions of BPA treated rats compared with the control. On the other hand, co-administration of ASIV or A. spinosus saponin with BPA considerably improved levels of these neurochemicals. The current study also revealed restoration of the level of brain derived neurotrophic factor (BDNF) and N-methyl-D-aspartate receptors (NR2A and NR2B) gene expression in BPA+ ASIV and BPA+A. spinosus saponins groups. The co-treatment of BPA group with ASIV or A. spinosus saponin significantly reduced the values of comet parameters as well as the intensity of estrogen receptors (ERs) immunoreactive cells and improved the histological alterations induced by BPA in different brain regions. Conclusion It could be concluded that ASIV or A. spinosus saponins has a promising role in modulating the neurotoxicity and DNA damage elicited by BPA.
Collapse
Affiliation(s)
- Amina E Essawy
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | - Omaima A Khamiss
- Animal Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI-USC), University of Sadat City, Sadat City, Egypt
| | - Saber Mohamed Eweda
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt.,Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah, KSA, Saudi Arabia
| | - Heba Mohamed Abdou
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
37
|
Huang J, Tan YX, Xue LL, Du RL, Chen JJ, Chen L, Li TT, Bai X, Yang SJ, Xiong LL, Wang TH. Panax notoginseng saponin attenuates the hypoxic-ischaemic injury in neonatal rats by regulating the expression of neurotrophin factors. Eur J Neurosci 2021; 54:6304-6321. [PMID: 34405468 DOI: 10.1111/ejn.15428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/06/2021] [Accepted: 08/04/2021] [Indexed: 02/05/2023]
Abstract
Neonatal hypoxic-ischaemic (HI) injury is a serious complication of neonatal asphyxia and the leading cause of neonatal acute death and chronic neurological injury, and the effective therapeutic method is lacking to improve patients' outcomes. We reported in this study that panax notoginseng saponin (PNS) may provide a treatment option for HI. HI model was established using neonatal Sprague-Dawley rats and then intraperitoneally injected with different dosage of PNS, once a day for 7 days. Histological staining and behavioural evaluations were performed to elucidate the pathological changes and neurobehavioural variation after PNS treatment. We found PNS administration significantly reduced the infarct volume of brain tissues and improved the autonomous activities of neonatal rats, especially with higher dosage. PNS treatment at 40 mg/kg reduced neuronal damage, suppressed neuronal apoptosis and depressed astroglial reactive response. Moreover, the long-term cognitive and motor functions were also improved after PNS treatment at 40 mg/kg. Importantly, PNS treatment elevated the levels of BDNF and TrkB but decreased the expression of p75NTR both in the cortex and hippocampus of HI rats. The therapeutic efficacy of PNS might be correlated with PNS-activated BDNF/TrkB signalling and inactivation of p75NTR expression, providing a novel potential therapy for alleviating HI injury.
Collapse
Affiliation(s)
- Jin Huang
- Institute of Neuroscience, School of Preclinical Medicine, Kunming Medical University, Kunming, China
| | - Ya-Xin Tan
- Institute of Neuroscience, School of Preclinical Medicine, Kunming Medical University, Kunming, China.,Department of Pediatrics, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Lu-Lu Xue
- Animal Zoology Department, Kunming Medical University, Kunming, China
| | - Ruo-Lan Du
- Animal Zoology Department, Kunming Medical University, Kunming, China
| | - Jun-Jie Chen
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Li Chen
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ting-Ting Li
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xue Bai
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Si-Jin Yang
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Liu-Lin Xiong
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Ting-Hua Wang
- Animal Zoology Department, Kunming Medical University, Kunming, China.,Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Abd Elkader HTAE, Abdou HM, Khamiss OA, Essawy AE. Anti-anxiety and antidepressant-like effects of astragaloside IV and saponins extracted from Astragalus spinosus against the bisphenol A-induced motor and cognitive impairments in a postnatal rat model of schizophrenia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35171-35187. [PMID: 33666843 DOI: 10.1007/s11356-021-12927-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is a chemical endocrine disruptor to which humans are often exposed in daily life. Postnatal administration of BPA results in schizophrenia (SCZ)-like behaviours in rats. The present study was designed to elucidate whether treatment with astragaloside IV (ASIV) or saponins extracted from Astragalus spinosus improves the neurobehavioural and neurochemical disturbances induced by BPA. Fifty-two juvenile (PND20) male Sprague Dawley rats were divided into four groups. The rats in Group I were considered the control rats, while the rats in Group II were orally administered BPA (125 mg/kg) daily from PND20 to adult age (PND117). The rats in the third and fourth groups were administered BPA (125 mg/kg/day) supplemented with astragaloside IV (80 mg/kg/d) on PND20 or A. spinosus saponins (100 mg/kg/d) from PND50 to PND117, respectively. Administration of ASIV and saponins extracted from Astragalus spinosus reversed the anxiogenic and depressive-like behaviours and the social defects that were observed in the rats treated with BPA alone. Additionally, these compounds improved memory impairments, restored dopamine (DA), serotonin (5-HT), and monoamine oxidase (MAO-A) levels and normalized Tph2 mRNA expression towards the control values. Taken together, it can be concluded that orally administered ASIV and A. spinosus saponins exhibit neuroprotective effects and that these compounds can be used as therapeutic strategies against BPA-induced neuropsychiatric symptoms in a rat model of SCZ.
Collapse
Affiliation(s)
| | - Heba Mohamed Abdou
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Omaima Ahmed Khamiss
- Department of Genetic Engineering and Biotechnology, Institute of Genetic Engineering and Biotechnology, Sadat City University, Sadat City, Egypt
| | - Amina Essawy Essawy
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
39
|
Lee CY, Hyun SA, Ko MY, Kim HR, Rho J, Kim KK, Kim WY, Ka M. Maternal Bisphenol A (BPA) Exposure Alters Cerebral Cortical Morphogenesis and Synaptic Function in Mice. Cereb Cortex 2021; 31:5598-5612. [PMID: 34171088 DOI: 10.1093/cercor/bhab183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022] Open
Abstract
Early-life exposure to bisphenol A (BPA), synthetic compound used in polycarbonate plastic, is associated with altered cognitive and emotional behavior later in life. However, the brain mechanism underlying the behavioral deficits is unknown. Here, we show that maternal BPA exposure disrupted self-renewal and differentiation of neural progenitors during cortical development. The BPA exposure reduced the neuron number, whereas it increased glial cells in the cerebral cortex. Also, synaptic formation and transmission in the cerebral cortex were suppressed after maternal BPA exposure. These changes appeared to be associated with autophagy as a gene ontology analysis of RNA-seq identified an autophagy domain in the BPA condition. Mouse behavioral tests revealed that maternal BPA caused hyperactivity and social deficits in adult offspring. Together, these results suggest that maternal BPA exposure leads to abnormal cortical architecture and function likely by activating autophagy.
Collapse
Affiliation(s)
- Chang Youn Lee
- Substance Abuse Pharmacology Group, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Sung-Ae Hyun
- Substance Abuse Pharmacology Group, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.,Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Moon Yi Ko
- Substance Abuse Pharmacology Group, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.,Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hye Ryeong Kim
- Substance Abuse Pharmacology Group, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Jaerang Rho
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kee K Kim
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Minhan Ka
- Substance Abuse Pharmacology Group, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| |
Collapse
|
40
|
Wu D, Liu H, Liu Y, Wei W, Sun Q, Wen D, Jia L. Protective effect of alpha-lipoic acid on bisphenol A-induced learning and memory impairment in developing mice: nNOS and keap1/Nrf2 pathway. Food Chem Toxicol 2021; 154:112307. [PMID: 34058234 DOI: 10.1016/j.fct.2021.112307] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022]
Abstract
The adverse effects of bisphenol A (BPA) on learning and memory may be related with oxidative stress, but the mechanisms are unclear. This study aimed to investigate the mechanism of damaged learning and memory caused by BPA through inducing oxidative stress, as well as to explore whether alpha-lipoic acid (ALA) show a protective action. Female mice were exposed to 0.1 μg/mL BPA, 0.2 μg/mL BPA, 0.6 mg/mL ALA, and 0.2 BPA + ALA through drinking water for 8 weeks. The results showed that ALA protected against the impairment of spatial, recognition, and avoidance memory caused by BPA. ALA replenished the reduce of hippocampus coefficient, serum estradiol (E2) level, and hippocampal neurotransmitters levels induced by BPA. ALA alleviated BPA-induced oxidative stress and hippocampal histological changes. BPA exposure reduced the levels of synaptic structural proteins and PKC/ERK/CREB pathway proteins, and ALA improved these reductions. ALA altered the protein levels of nNOS and keap1/Nrf2 pathway affected by BPA. Our results suggested that impairments of learning and memory caused by BPA was related to the damage of hippocampal synapses mediated by oxidative stress, and ALA protected learning and memory by reducing the oxidative stress induced by BPA through regulating the nNOS and keap1/Nrf2 pathway.
Collapse
Affiliation(s)
- Dan Wu
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, 110122, China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China.
| | - Hezuo Liu
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, 110122, China.
| | - Yang Liu
- Institute of Health Science, China Medical University, Shenyang, 110122, China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China.
| | - Wei Wei
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, 110122, China.
| | - Qi Sun
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, 110122, China.
| | - Deliang Wen
- Institute of Health Science, China Medical University, Shenyang, 110122, China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China.
| | - Lihong Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, 110122, China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China.
| |
Collapse
|
41
|
Bisphenols exert detrimental effects on neuronal signaling in mature vertebrate brains. Commun Biol 2021; 4:465. [PMID: 33846518 PMCID: PMC8041872 DOI: 10.1038/s42003-021-01966-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
Bisphenols are important plasticizers currently in use and are released at rates of hundreds of tons each year into the biosphere1–3. However, for any bisphenol it is completely unknown if and how it affects the intact adult brain4–6, whose powerful homeostatic mechanisms could potentially compensate any effects bisphenols might have on isolated neurons. Here we analyzed the effects of one month of exposition to BPA or BPS on an identified neuron in the vertebrate brain, using intracellular in vivo recordings in the uniquely suited Mauthner neuron in goldfish. Our findings demonstrate an alarming and uncompensated in vivo impact of both BPA and BPS—at environmentally relevant concentrations—on essential communication functions of neurons in mature vertebrate brains and call for the rapid development of alternative plasticizers. The speed and resolution of the assay we present here could thereby be instrumental to accelerate the early testing phase of next-generation plasticizers. Elisabeth Schirmer, Stefan Schuster and Peter Machnik investigated the effects of bisphenols A and S on neuronal functioning. Using in vivo recordings in goldfish they demonstrate that basic neuronal properties such as action potentials and synaptic transmission are perturbed after chronic exposure to bisphenols.
Collapse
|
42
|
Xiong LL, Xue LL, Du RL, Zhou HL, Tan YX, Ma Z, Jin Y, Zhang ZB, Xu Y, Hu Q, Bobrovskaya L, Zhou XF, Liu J, Wang TH. Vi4-miR-185-5p-Igfbp3 Network Protects the Brain From Neonatal Hypoxic Ischemic Injury via Promoting Neuron Survival and Suppressing the Cell Apoptosis. Front Cell Dev Biol 2020; 8:529544. [PMID: 33262982 PMCID: PMC7688014 DOI: 10.3389/fcell.2020.529544] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 09/14/2020] [Indexed: 02/05/2023] Open
Abstract
Neonatal hypoxic ischemic encephalopathy (HIE) due to birth asphyxia is common and causes severe neurological deficits, without any effective therapies currently available. Neuronal death is an important driving factors of neurological disorders after HIE, but the regulatory mechanisms are still uncertain. Long non-coding RNA (lncRNA) or ceRNA network act as a significant regulator in neuroregeneration and neuronal apoptosis, thus owning a great potential as therapeutic targets in HIE. Here, we found a new lncRNA, is the most functional in targeting the Igfbp3 gene in HIE, which enriched in the cell growth and cell apoptosis processes. In addition, luciferase reporter assay showed competitive regulatory binding sites to the target gene Igfbp3 between TCONS00044054 (Vi4) and miR-185-5p. The change in blood miR-185-5p and Igfbp3 expression is further confirmed in patients with brain ischemia. Moreover, Vi4 overexpression and miR-185-5p knock-out promote the neuron survival and neurite growth, and suppress the cell apoptosis, then further improve the motor and cognitive deficits in rats with HIE, while Igfbp3 interfering got the opposite results. Together, Vi4-miR-185-5p-Igfbp3 regulatory network plays an important role in neuron survival and cell apoptosis and further promote the neuro-functional recovery from HIE, therefore is a likely a drug target for HIE therapy.
Collapse
Affiliation(s)
- Liu-Lin Xiong
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China.,School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, South Australia
| | - Lu-Lu Xue
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.,Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Ruo-Lan Du
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hao-Li Zhou
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ya-Xin Tan
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China.,Shijiazhuang Maternity and Child Healthcare Hospital, Shijaizhuang, China
| | - Zheng Ma
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Yuan Jin
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Zi-Bin Zhang
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Xu
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiao Hu
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Larisa Bobrovskaya
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, South Australia
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, South Australia
| | - Jia Liu
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Ting-Hua Wang
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.,Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| |
Collapse
|
43
|
Vahdati Hassani F, Masjedi E, Hosseinzadeh H, Bedrood Z, Abnous K, Mehri S. Protective effect of crocin on bisphenol A - induced spatial learning and memory impairment in adult male rats: Role of oxidative stress and AMPA receptor. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1146-1154. [PMID: 32963736 PMCID: PMC7491498 DOI: 10.22038/ijbms.2020.41097.9714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/16/2020] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Bisphenol A (BPA), a xenoestrogenic endocrine disrupting agent, is widely used in the production of polycarbonate plastics and has potential adverse effects on the developing nervous system, memory and learning abilities. The protective effect of the crocin, an important active constituent in Crocus sativus L, on memory impairment induced by BPA in rat was determined through evaluation of oxidative stress and the level of NMDA (N-methyl-D-aspartate receptors) and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole-propionicd acid) receptors. MATERIALS AND METHODS Rats were orally treated with BPA (100 mg/kg) or sesame seed oil in control group for 28 days. Crocin (10, 20, and 40 mg/kg, IP) was administrated in BPA-orally treated groups for 28 days. Memory and learning functions were evaluated by Morris water maze. The level of malondialdehyde (MDA) and glutathione (GSH) contents were determined in rat hippocampus. Additionally, the expression of NMDA and AMPA receptors were analyzed using Western blot method. RESULTS Administration of BPA significantly reduced memory and learning functions. Crocin significantly protected against learning and memory impairments induced by BPA. BPA administration markedly reduced GSH content and induced lipid peroxidation, while crocin was able to increase GSH content in rat hippocampus. The expression of NMDA receptor did not change in BPA-treated rats, while the significant reduction in AMPA receptor expression was observed. Moreover, crocin (20 mg/kg) significantly elevated the expression of AMPA receptor. CONCLUSION Crocin recovered spatial learning and memory defects induced by BPA in part through anti-oxidant activity and modulation the expression of AMPA receptor in rat hippocampus.
Collapse
Affiliation(s)
- Faezeh Vahdati Hassani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elaheh Masjedi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeinab Bedrood
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
44
|
Wu D, Wu F, Lin R, Meng Y, Wei W, Sun Q, Jia L. Impairment of learning and memory induced by perinatal exposure to BPA is associated with ERα-mediated alterations of synaptic plasticity and PKC/ERK/CREB signaling pathway in offspring rats. Brain Res Bull 2020; 161:43-54. [PMID: 32380187 DOI: 10.1016/j.brainresbull.2020.04.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
The effect of bisphenol A (BPA) on learning and memory has attracted much attention recently, but its underlying mechanism remains unclear. We aimed to investigate whether the impairment of learning and memory induced by perinatal exposure to BPA was associated with the hippocampal estrogen receptor α (ERα)-mediated synaptic plasticity and PKC/ERK/CREB signaling pathway in different sex offspring rats. Pregnant Sprague-Dawley rats were treated with BPA (1 and 10 μg/mL) through drinking water from gestational day (GD) 6 to postnatal day (PND) 21. After weaning, offspring drank BPA-free water until PND 56. Morris water maze, placement and object recognition, and step-down passive avoidance task were performed. The serum estradiol (E2) levels, histopathology of hippocampus, and the expression of learning and memory related proteins were measured. The results showed that spatial and recognition memory were impaired in BPA-exposed female and male offspring, but the impaired passive avoidance memory presented only in males, not in females. The serum E2 levels were increased in BPA-exposed females and males. BPA altered the morphology and quantity of hippocampal neurons. The levels of ERα, NMDA receptor subunit 2B (NR2B), p-NR2B, AMPA receptor 1 (GluA1), p-GluA1, PSD-95, synapsin I, PKC, p-ERK and p-CREB protein expression were decreased in BPA exposed females and males, and there were interactions of sex × BPA exposure in ERα, p-NR2B and p-ERK levels. These findings suggested that perinatal exposure to BPA has sex-specific effects on learning and memory, which is associated with ERα-mediated impairment of synaptic plasticity and down-regulation of PKC/ERK/CREB signaling pathway.
Collapse
Affiliation(s)
- Dan Wu
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Fengjuan Wu
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Ren Lin
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Yuan Meng
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Wei Wei
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Qi Sun
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Lihong Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
45
|
Yin Z, Hua L, Chen L, Hu D, Li J, An Z, Tian T, Ning H, Ge Y. Bisphenol-A exposure induced neurotoxicity and associated with synapse and cytoskeleton in Neuro-2a cells. Toxicol In Vitro 2020; 67:104911. [PMID: 32512148 DOI: 10.1016/j.tiv.2020.104911] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 05/07/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022]
Abstract
Bisphenol A (BPA) is an environmental chemical that induces neurotoxic effects for human. Synaptophysin (SYP) and drebrin (Dbn) proteins are involved in regulating synaptic morphology. The stability of the cytoskeleton in nerve cells in the brain is regulated by Tau and MAP2. This study aimed to determine the toxicity of BPA to Neuro-2a cells by investigating the synaptic and cytoskeletal damage induced in these cells by 24 h of exposure to 0 (MEM), 50, 100, 150, or 200 μM BPA or DMSO. MTT and LDH assays showed that the death rates of Neuro-2a cells increased, as the BPA concentration increased. Ultrastructural assays revealed that cells underwent nucleolar swelling as well as nuclear membrane and partial mitochondrial dissolution or condensation, following BPA exposure. Morphological analysis further revealed that compared with the cells in the control group, the cells in the BPA-treated groups shrank, became rounded, and exhibited a reduced number of synapses. BPA also significantly decreased the relative protein and mRNA expression levels of Dbn, MAP2 and Tau (P < .01), but increased the relative protein and mRNA expression levels of SYP (P < .01). These results indicated that BPA suppressed the development and proliferation of Neuro-2a cells by disrupting cellular and synaptic integrity and inflicting cytoskeleton injury.
Collapse
Affiliation(s)
- Zhihong Yin
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Liushuai Hua
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Lingli Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Dongfang Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Jinglong Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Zhixing An
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Tian Tian
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Hongmei Ning
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Yaming Ge
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China.
| |
Collapse
|
46
|
Hu F, Zhang L, Li T, Wang H, Liang W, Zhou Y. Bisphenol-A Exposure during Gestation and Lactation Causes Visual Perception Deficits in Rat Pups Following a Decrease in Interleukin 1β Expression in the Primary Visual Cortex. Neuroscience 2020; 434:148-160. [PMID: 32222558 DOI: 10.1016/j.neuroscience.2020.03.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 10/24/2022]
Abstract
Bisphenol-A (BPA) exposure can affect cognitive functions of rodents and humans. However, whether information inputs for these functions in the brain are perturbed by BPA remains unclear. Here, visual perception in rats was assessed by testing their ability to discriminate between vertical and horizontal grating. We found that BPA exposure (1 mg/kg/day) during gestation and lactation markedly decreased the grating discrimination ability in rat pups (postnatal 21 days). The results of neuronal functions in the primary visual cortex (V1) showed that the orientation selectivity and signal extraction ability and fidelity were notably decreased after BPA exposure. These effects were accompanied by a reduction in synaptic plasticity (i.e., spine density and maturity) in the V1. According to inflammatory factor expression and glial cell morphology, no increase in inflammatory activation was observed after BPA exposure. However, BPA-exposed rat pups exhibited a significant decrease in IL-1β expression in the V1, accompanied by a decline in P38 phosphorylation. After local injection of IL-1β (10 ng/ml) in the V1, these two visual properties recovered to normal levels. Thus, our findings imply that physiological dysfunction of IL-1β may contribute to orientation perception deficits in BPA-exposed rats.
Collapse
Affiliation(s)
- Fan Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China.
| | - Linke Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Tingting Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Huan Wang
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Weifeng Liang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Yifeng Zhou
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China.
| |
Collapse
|
47
|
Bisphenol a Exposure in Utero Disrupts Hypothalamic Gene Expression Particularly Genes Suspected in Autism Spectrum Disorders and Neuron and Hormone Signaling. Int J Mol Sci 2020; 21:ijms21093129. [PMID: 32365465 PMCID: PMC7246794 DOI: 10.3390/ijms21093129] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 01/09/2023] Open
Abstract
Bisphenol A (BPA) is an endocrine-disrupting compound detected in the urine of more than 92% of humans, easily crosses the placental barrier, and has been shown to influence gene expression during fetal brain development. The purpose of this study was to investigate the effect of in utero BPA exposure on gene expression in the anterior hypothalamus, the basal nucleus of the stria terminalis (BNST), and hippocampus in C57BL/6 mice. Mice were exposed in utero to human-relevant doses of BPA, and then RNA sequencing was performed on male PND 28 tissue from whole hypothalamus (n = 3/group) that included the medial preoptic area (mPOA) and BNST to determine whether any genes were differentially expressed between BPA-exposed and control mice. A subset of genes was selected for further study using RT-qPCR on adult tissue from hippocampus to determine whether any differentially expressed genes (DEGs) persisted into adulthood. Two different RNA-Seq workflows indicated a total of 259 genes that were differentially expressed between BPA-exposed and control mice. Gene ontology analysis indicated that those DEGs were overrepresented in categories relating to mating, cell-cell signaling, behavior, neurodevelopment, neurogenesis, synapse formation, cognition, learning behaviors, hormone activity, and signaling receptor activity, among others. Ingenuity Pathway Analysis was used to interrogate novel gene networks and upstream regulators, indicating the top five upstream regulators as huntingtin, beta-estradiol, alpha-synuclein, Creb1, and estrogen receptor (ER)-alpha. In addition, 15 DE genes were identified that are suspected in autism spectrum disorders.
Collapse
|
48
|
Santoro A, Chianese R, Troisi J, Richards S, Nori SL, Fasano S, Guida M, Plunk E, Viggiano A, Pierantoni R, Meccariello R. Neuro-toxic and Reproductive Effects of BPA. Curr Neuropharmacol 2020; 17:1109-1132. [PMID: 31362658 PMCID: PMC7057208 DOI: 10.2174/1570159x17666190726112101] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/04/2019] [Accepted: 07/19/2019] [Indexed: 02/08/2023] Open
Abstract
Background: Bisphenol A (BPA) is one of the highest volume chemicals produced worldwide. It has recognized activity as an endocrine-disrupting chemical and has suspected roles as a neurological and reproductive toxicant. It interferes in steroid signaling, induces oxidative stress, and affects gene expression epigenetically. Gestational, perinatal and neonatal exposures to BPA affect developmental processes, including brain development and gametogenesis, with consequences on brain functions, behavior, and fertility. Methods: This review critically analyzes recent findings on the neuro-toxic and reproductive effects of BPA (and its ana-logues), with focus on neuronal differentiation, synaptic plasticity, glia and microglia activity, cognitive functions, and the central and local control of reproduction. Results: BPA has potential human health hazard associated with gestational, peri- and neonatal exposure. Beginning with BPA’s disposition, this review summarizes recent findings on the neurotoxicity of BPA and its analogues, on neuronal dif-ferentiation, synaptic plasticity, neuro-inflammation, neuro-degeneration, and impairment of cognitive abilities. Furthermore, it reports the recent findings on the activity of BPA along the HPG axis, effects on the hypothalamic Gonadotropin Releas-ing Hormone (GnRH), and the associated effects on reproduction in both sexes and successful pregnancy. Conclusion: BPA and its analogues impair neuronal activity, HPG axis function, reproduction, and fertility. Contrasting re-sults have emerged in animal models and human. Thus, further studies are needed to better define their safety levels. This re-view offers new insights on these issues with the aim to find the “fil rouge”, if any, that characterize BPA’s mechanism of action with outcomes on neuronal function and reproduction.
Collapse
Affiliation(s)
- Antonietta Santoro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Jacopo Troisi
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Theoreo srl - Spin-off company of the University of Salerno, Salerno, Italy.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Sean Richards
- University of Tennessee College of Medicine, Department of Obstetrics and Gynecology, Chattanooga, TN, United States.,Department of Biology, Geology and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Stefania Lucia Nori
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Silvia Fasano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Maurizio Guida
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Theoreo srl - Spin-off company of the University of Salerno, Salerno, Italy.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Elizabeth Plunk
- University of Tennessee College of Medicine, Department of Obstetrics and Gynecology, Chattanooga, TN, United States
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Riccardo Pierantoni
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Rosaria Meccariello
- Department of Movement Sciences and Wellbeing, Parthenope University of Naples, Naples, Italy
| |
Collapse
|
49
|
Hu F, Liu J, Xu G, Wang H, Shen J, Zhou Y. Bisphenol A exposure inhibits contrast sensitivity in cats involving increased response noise and inhibitory synaptic transmission. Brain Res Bull 2020; 157:1-9. [PMID: 31982453 DOI: 10.1016/j.brainresbull.2020.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/25/2019] [Accepted: 01/21/2020] [Indexed: 12/18/2022]
Abstract
Contrast sensitivity (CS) is one of the primary fundamental factors determining how well we can see, and it directly influences object recognition. Whether bisphenol-A (BPA, an environmental xenoestrogen) can perturb contrast detection in the visual system has yet to be elucidated. In the present study, we analyzed CS of single neurons in the primary visual cortex (area 17, A17) of cats before and after BPA exposure using a multiple-channel recording technique. The results showed that CS of A17 neurons was markedly depressed with an increased contrast threshold after two hour of intravenous BPA administration, which had a positive correlation with decreased firing rates of A17 neurons. Additionally, responses of these neurons presented an overt increase in the trial-to-trail response variability (a kind of neuronal noise), which could disturb the information-filtering function of single neurons. We also found that neuronal CS in the visual relay station was not disturbed after BPA administration, which rules out the contribution of CS alteration in the optical pathway. Importantly, acute BPA treatment obviously increased the inhibitory innervation to the visual pyramidal neurons. This implies that alteration of intracortical inhibitory regulation contributes to the compromised contrast detection in the visual system after BPA treatment.
Collapse
Affiliation(s)
- Fan Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China.
| | - Jiachen Liu
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Guangwei Xu
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Huan Wang
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Jiawei Shen
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Yifeng Zhou
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China.
| |
Collapse
|
50
|
Zhang H, Kuang H, Luo Y, Liu S, Meng L, Pang Q, Fan R. Low-dose bisphenol A exposure impairs learning and memory ability with alterations of neuromorphology and neurotransmitters in rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134036. [PMID: 31476513 DOI: 10.1016/j.scitotenv.2019.134036] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
To investigate the developmental neurotoxicity of environmental bisphenol A (BPA) exposure for infants and children, postnatal rats were used as the animal model and were divided into four groups. Then, they were treated with different concentrations of BPA (i.e., 0, 0.5, 50, or 5000 μg/kg·bw/day of BPA as the control, low-, medium- and high-exposed group) from postnatal days 7 to 21. Y-maze tests, Golgi-Cox assays and liquid chromatography-tandem mass spectrometry (LC/MS/MS) were performed to test the changes of learning and memory ability, hippocampal neuromorphology and neurotransmitter levels, respectively. The results showed that the BPA-exposed rats, especially the low- and high-exposed rats, needed more trials and longer times to qualify for the learned criterion than the control rats. Additionally, rats after low- or high-exposure to BPA exhibited decreased DG dendritic complexity and reduced CA1 and DG dendritic spine densities in the hippocampus. Low-dosage BPA treatment could significantly alter the neurotransmitter contents in the hippocampus. In male rats, the levels of glutamic acid (Glu) and acetylcholine increased, while the 5-hydroxytryptamine (5-HT) and γ-aminobutyric acid (GABA) levels decreased, which lead to an unbalanced Glu/GABA ratio. However, in female rats, only 5-HT levels decreased. In conclusion, postnatal exposure to BPA could sex- and dose-dependently disrupt dendritic development and neurotransmitter homeostasis in the rat hippocampus. The impaired spatial learning and memory ability of rats induced by low-dose BPA is associated with both disrupted dendritic development and neurotransmitter homeostasis in the hippocampus.
Collapse
Affiliation(s)
- Haibin Zhang
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Hongxuan Kuang
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yifan Luo
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shuhua Liu
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lingxue Meng
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qihua Pang
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ruifang Fan
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|