1
|
Fang N, Shi L, Su X, Chen R, Hu L, Li L, Wang X, Wu Z, Chen J. Texture Analysis of Fibrous Meningioma Using Label-Free Multiphoton Microscopy. JOURNAL OF BIOPHOTONICS 2025; 18:e202400241. [PMID: 39605177 DOI: 10.1002/jbio.202400241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/10/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Fibrous meningiomas, a common type of brain tumor, present surgical challenges due to their variable hardness, which is crucial for complete resection and patient prognosis. This study explores the use of label-free multiphoton microscopy (MPM) for the objective assessment of the texture of fibrous meningiomas. Fresh tumor samples from 20 patients were analyzed using both multichannel and lambda mode MPM, with quantitative image analysis algorithms determining collagen content and multi-peak spectral fitting providing additional optical collagen metrics. The study compared medium and hard fibrous meningiomas, utilizing receiver operating characteristic analysis to evaluate predictive performance. Microstructural features were clearly visualized, enabling accurate diagnosis. Collagen-related parameters significantly differentiated between moderate and hard tumors (p < 0.05). High predictive values were observed for collagen content, collagen-to-NADH-free ratio, and collagen-to-FAD ratio (AUC = 0.748-0.839). A multivariate logistic model combining these biomarkers significantly improved diagnostic accuracy (AUC = 0.907). The findings suggest that MPM, with its ability to visualize and quantify microstructures such as collagen and cells without the need for staining, holds strong potential for rapid, objective, and accurate assessment of tumor texture during neurosurgery. The integration of MPM with multiphoton endoscopy paves the way for potential in vivo applications in the future.
Collapse
Affiliation(s)
- Na Fang
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Linjing Shi
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Xiaoli Su
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Rong Chen
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Liwen Hu
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Lianhuang Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Xingfu Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Zanyi Wu
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jianxin Chen
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
2
|
Holzer CS, Pukaluk A, Viertler C, Regitnig P, Charry EM, Wolinski H, Eschbach M, Caulk AW, Holzapfel GA. Implications of compressive loading of the stomach wall: Interplay between mechanical deformation and microstructure. Acta Biomater 2025; 192:101-118. [PMID: 39694163 DOI: 10.1016/j.actbio.2024.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
During gastric surgery, the stomach wall is compressed with clamps and sutures or staple lines. These short- and long-term deformations can severely compromise the integrity of the tissue and make it difficult for the stomach wall to respond and remodel to the new loading conditions. Consequently, serious intra- and postoperative complications such as the formation of leaks during bariatric surgeries, can be associated with these immense tissue deformations. Hence, the study aimed to investigate the effects of compressive loading of the stomach wall in the radial direction. This was done by macroscopic mechanical loading of the stomach wall in each region of the stomach and evaluating the microstructural changes inflicted in the tissue. For this purpose, several imaging techniques were used, i.e., a histological analysis, second-harmonic generation microscopy, and X-ray micro-computed tomography. The combination of these three methods allowed us to investigate the gradual compression of the different stomach layers as well as the local reorientation and deformation of the main microstructural components, e.g., collagen fibers and muscle bundles. Importantly, this study found that the collagen bundles in the stomach wall straighten and reorient toward the circumferential-longitudinal plane and partially fan out with increased radial compressive deformation. The 3D scans of the stomach wall indicated a deterioration of the blood vessels and buckling of the mucosal glands due to compression. Statement of significance Unfortunately, little is known about the load transfer in the stomach wall during gastric surgery and the associated deformations on the macro- and microscale. The present study investigates the structural changes of the stomach wall, its layers and the inherent biological building blocks using histology, multi-photon microscopy, and micro-computed tomography. For the first time, the layer-specific response to stepwise radial compression of the stomach wall was studied, the related collagen fiber parameters were estimated, and a 3D sample structure was visualized. This clinically-oriented study links the structural changes within the wall to the postoperative remodel- ing process and the irreversibly altered gastric motility, thereby underscoring its relevance to the field of biomedical engineering, e.g., the development and improvement of surgical instruments.
Collapse
Affiliation(s)
| | - Anna Pukaluk
- Institute of Biomechanics, Graz University of Technology, Austria
| | - Christian Viertler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria
| | - Peter Regitnig
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria
| | | | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Austria; Field of Excellence BioHealth - University of Graz, Austria
| | | | | | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering, NTNU, Norway.
| |
Collapse
|
3
|
Wu X, Kong Y, Yi Y, Xu S, Chen J, Chen J, Jin P. Label-Free Monitoring of Endometrial Cancer Progression Using Multiphoton Microscopy. Ann Biomed Eng 2024; 52:3113-3124. [PMID: 38960975 PMCID: PMC11511711 DOI: 10.1007/s10439-024-03574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Endometrial cancer is the most common gynecological cancer in the developed world. However, the accuracy of current diagnostic methods is still unsatisfactory and time-consuming. Here, we presented an alternate approach to monitoring the progression of endometrial cancer via multiphoton microscopy imaging and analysis of collagen, which is often overlooked in current endometrial cancer diagnosis protocols but can offer a crucial signature in cancer biology. Multiphoton microscopy (MPM) based on the second-harmonic generation and two-photon excited fluorescence was introduced to visualize the microenvironment of endometrium in normal, hyperplasia without atypia, atypical hyperplasia, and endometrial cancer specimens. Furthermore, automatic image analysis based on the MPM image processing algorithm was used to quantify the differences in the collagen morphological features among them. MPM enables the visualization of the morphological details and alterations of the glands in the development process of endometrial cancer, including irregular changes in the structure of the gland, increased ratio of the gland to the interstitium, and atypical changes in the glandular epithelial cells. Moreover, the destructed basement membrane caused by gland proliferation and fusion is clearly shown in SHG images, which is a key feature for identifying endometrial cancer progression. Quantitative analysis reveals that the formation of endometrial cancer is accompanied by an increase in collagen fiber length and width, a progressive linearization and loosening of interstitial collagen, and a more random arrangement of interstitial collagen. Observation and quantitative analysis of interstitial collagen provide invaluable information in monitoring the progression of endometrial cancer. Label-free multiphoton imaging reported here has the potential to become an in situ histological tool for effective and accurate early diagnosis and detection of malignant lesions in endometrial cancer.
Collapse
Affiliation(s)
- Xuzhen Wu
- Department of Gynecology, Shenzhen Maternity and Child Healthcare Hospital, Shandong University, Shenzhen, 518028, China
| | - Yanqing Kong
- Department of Pathology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, 518028, China
| | - Yu Yi
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350117, China
| | - Shuoyu Xu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jianhua Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350117, China.
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China.
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350117, China.
| | - Ping Jin
- Department of Gynecology, Shenzhen Maternity and Child Healthcare Hospital, Shandong University, Shenzhen, 518028, China.
| |
Collapse
|
4
|
Campbell JM, Gosnell M, Agha A, Handley S, Knab A, Anwer AG, Bhargava A, Goldys EM. Label-Free Assessment of Key Biological Autofluorophores: Material Characteristics and Opportunities for Clinical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403761. [PMID: 38775184 DOI: 10.1002/adma.202403761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/04/2024] [Indexed: 06/13/2024]
Abstract
Autofluorophores are endogenous fluorescent compounds that naturally occur in the intra and extracellular spaces of all tissues and organs. Most have vital biological functions - like the metabolic cofactors NAD(P)H and FAD+, as well as the structural protein collagen. Others are considered to be waste products - like lipofuscin and advanced glycation end products - which accumulate with age and are associated with cellular dysfunction. Due to their natural fluorescence, these materials have great utility for enabling non-invasive, label-free assays with direct ties to biological function. Numerous technologies, with different advantages and drawbacks, are applied to their assessment, including fluorescence lifetime imaging microscopy, hyperspectral microscopy, and flow cytometry. Here, the applications of label-free autofluorophore assessment are reviewed for clinical and health-research applications, with specific attention to biomaterials, disease detection, surgical guidance, treatment monitoring, and tissue assessment - fields that greatly benefit from non-invasive methodologies capable of continuous, in vivo characterization.
Collapse
Affiliation(s)
- Jared M Campbell
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | | | - Adnan Agha
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Shannon Handley
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Aline Knab
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Ayad G Anwer
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Akanksha Bhargava
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Ewa M Goldys
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| |
Collapse
|
5
|
Wang T, Dremel J, Richter S, Polanski W, Uckermann O, Eyüpoglu I, Czarske JW, Kuschmierz R. Resolution-enhanced multi-core fiber imaging learned on a digital twin for cancer diagnosis. NEUROPHOTONICS 2024; 11:S11505. [PMID: 38298866 PMCID: PMC10828892 DOI: 10.1117/1.nph.11.s1.s11505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 02/02/2024]
Abstract
Significance Deep learning enables label-free all-optical biopsies and automated tissue classification. Endoscopic systems provide intraoperative diagnostics to deep tissue and speed up treatment without harmful tissue removal. However, conventional multi-core fiber (MCF) endoscopes suffer from low resolution and artifacts, which hinder tumor diagnostics. Aim We introduce a method to enable unpixelated, high-resolution tumor imaging through a given MCF with a diameter of around 0.65 mm and arbitrary core arrangement and inhomogeneous transmissivity. Approach Image reconstruction is based on deep learning and the digital twin concept of the single-reference-based simulation with inhomogeneous optical properties of MCF and transfer learning on a small experimental dataset of biological tissue. The reference provided physical information about the MCF during the training processes. Results For the simulated data, hallucination caused by the MCF inhomogeneity was eliminated, and the averaged peak signal-to-noise ratio and structural similarity were increased from 11.2 dB and 0.20 to 23.4 dB and 0.74, respectively. By transfer learning, the metrics of independent test images experimentally acquired on glioblastoma tissue ex vivo can reach up to 31.6 dB and 0.97 with 14 fps computing speed. Conclusions With the proposed approach, a single reference image was required in the pre-training stage and laborious acquisition of training data was bypassed. Validation on glioblastoma cryosections with transfer learning on only 50 image pairs showed the capability for high-resolution deep tissue retrieval and high clinical feasibility.
Collapse
Affiliation(s)
- Tijue Wang
- TU Dresden, Laboratory of Measurement and Sensor System Technique, Dresden, Germany
- TU Dresden, Competence Center BIOLAS, Dresden, Germany
- TU Dresden, Else Kröner Fresenius Center for Digital Health, Germany
| | - Jakob Dremel
- TU Dresden, Laboratory of Measurement and Sensor System Technique, Dresden, Germany
- TU Dresden, Competence Center BIOLAS, Dresden, Germany
- TU Dresden, Else Kröner Fresenius Center for Digital Health, Germany
| | - Sven Richter
- TU Dresden, Else Kröner Fresenius Center for Digital Health, Germany
- University Hospital Carl Gustav Carus, TU Dresden, Department of Neurosurgery, Dresden, Germany
| | - Witold Polanski
- TU Dresden, Else Kröner Fresenius Center for Digital Health, Germany
- University Hospital Carl Gustav Carus, TU Dresden, Department of Neurosurgery, Dresden, Germany
| | - Ortrud Uckermann
- TU Dresden, Else Kröner Fresenius Center for Digital Health, Germany
- University Hospital Carl Gustav Carus, TU Dresden, Department of Neurosurgery, Dresden, Germany
- University Hospital Carl Gustav Carus, TU Dresden, Division of Medical Biology, Department of Psychiatry, Faculty of Medicine, Dresden, Germany
| | - Ilker Eyüpoglu
- TU Dresden, Else Kröner Fresenius Center for Digital Health, Germany
- University Hospital Carl Gustav Carus, TU Dresden, Department of Neurosurgery, Dresden, Germany
| | - Jürgen W. Czarske
- TU Dresden, Laboratory of Measurement and Sensor System Technique, Dresden, Germany
- TU Dresden, Competence Center BIOLAS, Dresden, Germany
- TU Dresden, Else Kröner Fresenius Center for Digital Health, Germany
- TU Dresden, Excellence Cluster Physics of Life, Dresden, Germany
- TU Dresden, School of Science, Faculty of Physics, Dresden, Germany
| | - Robert Kuschmierz
- TU Dresden, Laboratory of Measurement and Sensor System Technique, Dresden, Germany
- TU Dresden, Competence Center BIOLAS, Dresden, Germany
- TU Dresden, Else Kröner Fresenius Center for Digital Health, Germany
| |
Collapse
|
6
|
Florea MA, Eftimie LG, Glogojeanu RR, Hristu R, Stanciu GA, Costache M. Imaging of colorectal adenomas with pseudoinvasion and malignant polyps using two-photon excitation microscopy. Front Oncol 2024; 14:1394493. [PMID: 38947893 PMCID: PMC11211392 DOI: 10.3389/fonc.2024.1394493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction Although the incidence and mortality rates of colorectal cancer exhibit significant variability, it remains one of the most prevalent cancers worldwide. Endeavors to prevent colorectal cancer development focus on detecting precursor lesions during colonoscopy. The diagnosis of endoscopically resected polyps relies on hematoxylin and eosin staining examination. For challenging cases like adenomatous polyps with epithelial misplacement, additional diagnostic methods could prove beneficial. Methods This paper aims to underscore stromal changes observed in malignant polyps and polyps with pseudoinvasion, leveraging two-photon excitation microscopy (TPEM), a technique extensively employed in the medical field in recent years. Results and discussions Both the subjective and quantitative analysis of TPEM images revealed distinct distributions and densities of collagen at the invasion front in malignant polyps compared to areas of pseudoinvasion. TPEM holds potential in discerning true invasion in malignant polyps from pseudoinvasion, offering enhanced visualization of local stromal changes.
Collapse
Affiliation(s)
- Maria-Alexandra Florea
- Pathology Department, Central University Emergency Military Hospital, Bucharest, Romania
- Pathology Department, University of Medicine and Pharmacy, Carol Davila’, Bucharest, Romania
| | - Lucian George Eftimie
- Pathology Department, Central University Emergency Military Hospital, Bucharest, Romania
- Center for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica Bucharest, Bucharest, Romania
- Department of Special Motricity and Medical Recovery, The National University of Physical Education and Sports, Bucharest, Romania
| | - Remus Relu Glogojeanu
- Department of Special Motricity and Medical Recovery, The National University of Physical Education and Sports, Bucharest, Romania
| | - Radu Hristu
- Center for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica Bucharest, Bucharest, Romania
| | - George A. Stanciu
- Center for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica Bucharest, Bucharest, Romania
| | - Mariana Costache
- Pathology Department, University of Medicine and Pharmacy, Carol Davila’, Bucharest, Romania
| |
Collapse
|
7
|
Wang J, Chen C, You W, Jiao Y, Liu X, Jiang X, Lu W. Honeycomb effect elimination in differential phase fiber-bundle-based endoscopy. OPTICS EXPRESS 2024; 32:20682-20694. [PMID: 38859444 DOI: 10.1364/oe.526033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 06/12/2024]
Abstract
Fiber-bundle-based endoscopy, with its ultrathin probe and micrometer-level resolution, has become a widely adopted imaging modality for in vivo imaging. However, the fiber bundles introduce a significant honeycomb effect, primarily due to the multi-core structure and crosstalk of adjacent fiber cores, which superposes the honeycomb pattern image on the original image. To tackle this issue, we propose an iterative-free spatial pixel shifting (SPS) algorithm, designed to suppress the honeycomb effect and enhance real-time imaging performance. The process involves the creation of three additional sub-images by shifting the original image by one pixel at 0, 45, and 90 degree angles. These four sub-images are then used to compute differential maps in the x and y directions. By performing spiral integration on these differential maps, we reconstruct a honeycomb-free image with improved details. Our simulations and experimental results, conducted on a self-built fiber bundle-based endoscopy system, demonstrate the effectiveness of the SPS algorithm. SPS significantly improves the image quality of reflective objects and unlabeled transparent scattered objects, laying a solid foundation for biomedical endoscopic applications.
Collapse
|
8
|
Galli R, Uckermann O. Vibrational spectroscopy and multiphoton microscopy for label-free visualization of nervous system degeneration and regeneration. Biophys Rev 2024; 16:219-235. [PMID: 38737209 PMCID: PMC11078905 DOI: 10.1007/s12551-023-01158-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/22/2023] [Indexed: 05/14/2024] Open
Abstract
Neurological disorders, including spinal cord injury, peripheral nerve injury, traumatic brain injury, and neurodegenerative diseases, pose significant challenges in terms of diagnosis, treatment, and understanding the underlying pathophysiological processes. Label-free multiphoton microscopy techniques, such as coherent Raman scattering, two-photon excited autofluorescence, and second and third harmonic generation microscopy, have emerged as powerful tools for visualizing nervous tissue with high resolution and without the need for exogenous labels. Coherent Raman scattering processes as well as third harmonic generation enable label-free visualization of myelin sheaths, while their combination with two-photon excited autofluorescence and second harmonic generation allows for a more comprehensive tissue visualization. They have shown promise in assessing the efficacy of therapeutic interventions and may have future applications in clinical diagnostics. In addition to multiphoton microscopy, vibrational spectroscopy methods such as infrared and Raman spectroscopy offer insights into the molecular signatures of injured nervous tissues and hold potential as diagnostic markers. This review summarizes the application of these label-free optical techniques in preclinical models and illustrates their potential in the diagnosis and treatment of neurological disorders with a special focus on injury, degeneration, and regeneration. Furthermore, it addresses current advancements and challenges for bridging the gap between research findings and their practical applications in a clinical setting.
Collapse
Affiliation(s)
- Roberta Galli
- Medical Physics and Biomedical Engineering, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ortrud Uckermann
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Division of Medical Biology, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
9
|
Miao J, Zhang Z, Zhang X, Huang X, Zhang S, Zhan Z, Chen J, Chen L, Li L. Label-free assessment of pathological changes in pancreatic intraepithelial neoplasia by biomedical multiphoton microscopy. JOURNAL OF BIOPHOTONICS 2024; 17:e202300417. [PMID: 38221649 DOI: 10.1002/jbio.202300417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/26/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
Pancreatic intraepithelial neoplasia (PanIN) is the most common precursor lesion that has the potential to progress to invasive pancreatic cancer, and early and rapid detection may offer patients a chance for treatment before the development of invasive carcinoma. Therefore, the identification of PanIN holds significant clinical importance. In this study, we first used multiphoton microscopy (MPM) combining two-photon excitation fluorescence and second-harmonic generation imaging to label-free detect PanIN and attempted to differentiate between normal pancreatic ducts and different grades of PanIN. Then, we also developed an automatic image processing strategy to extract eight morphological features of collagen fibers from MPM images to quantify the changes in collagen fibers surrounding the ducts. Experimental results demonstrate that the combination of MPM and quantitative information can accurately identify normal pancreatic ducts and different grades of PanIN. This study may contribute to the rapid diagnosis of pancreatic diseases and may lay the foundation for further clinical application of MPM.
Collapse
Affiliation(s)
- Jikui Miao
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, China
| | - Zheng Zhang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, China
| | - Xiong Zhang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, China
| | - Xingxin Huang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, China
| | - Shichao Zhang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, China
| | - Zhenlin Zhan
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, China
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, China
| | - Linying Chen
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Lianhuang Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, China
| |
Collapse
|
10
|
Wu W, Brandt C, Zhou X, Tang S. Label-free multimodal imaging with simultaneous two-photon and three-photon microscopy and kernel-based nonlinear scaling denoising. BIOMEDICAL OPTICS EXPRESS 2024; 15:114-130. [PMID: 38223188 PMCID: PMC10783916 DOI: 10.1364/boe.504550] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 01/16/2024]
Abstract
We report on a compact multimodal imaging system that can acquire two-photon microscopy (2PM) and three-photon microscopy (3PM) images simultaneously. With dual excitation wavelengths, multiple contrasts including two-photon-excitation-fluorescence (2PEF), second harmonic generation (SHG), and third harmonic generation (THG) are acquired simultaneously from cells, collagen fibers, and interfaces, all label-free. Challenges related to the excitation by two wavelengths and the effective separation of 2PM and 3PM signals are discussed and addressed. The data processing challenge where multiple contrasts can have significantly varying signal levels is also addressed. A kernel-based nonlinear scaling (KNS) denoising method is introduced to reduce noise from ultra-low signal images and generate high-quality multimodal images. Simultaneous 2PM and 3PM imaging is demonstrated on various tissue samples. The simultaneous acquisition speeds up the imaging process and minimizes the commonly encountered problem of motion artifacts and mechanical drift in sequential acquisition. Multimodal imaging with simultaneous 2PM and 3PM will have great potential for label-free in-vivo imaging of biological tissues.
Collapse
Affiliation(s)
- Wentao Wu
- Department of Electrical and Computer Engineering, University of British Columbia, 5500-2332 Main Mall, Vancouver, BC V6 T 1Z4, Canada
| | - Christoph Brandt
- Department of Electrical and Computer Engineering, University of British Columbia, 5500-2332 Main Mall, Vancouver, BC V6 T 1Z4, Canada
| | - Xin Zhou
- Department of Electrical and Computer Engineering, University of British Columbia, 5500-2332 Main Mall, Vancouver, BC V6 T 1Z4, Canada
| | - Shuo Tang
- Department of Electrical and Computer Engineering, University of British Columbia, 5500-2332 Main Mall, Vancouver, BC V6 T 1Z4, Canada
| |
Collapse
|
11
|
Astratov VN, Sahel YB, Eldar YC, Huang L, Ozcan A, Zheludev N, Zhao J, Burns Z, Liu Z, Narimanov E, Goswami N, Popescu G, Pfitzner E, Kukura P, Hsiao YT, Hsieh CL, Abbey B, Diaspro A, LeGratiet A, Bianchini P, Shaked NT, Simon B, Verrier N, Debailleul M, Haeberlé O, Wang S, Liu M, Bai Y, Cheng JX, Kariman BS, Fujita K, Sinvani M, Zalevsky Z, Li X, Huang GJ, Chu SW, Tzang O, Hershkovitz D, Cheshnovsky O, Huttunen MJ, Stanciu SG, Smolyaninova VN, Smolyaninov II, Leonhardt U, Sahebdivan S, Wang Z, Luk’yanchuk B, Wu L, Maslov AV, Jin B, Simovski CR, Perrin S, Montgomery P, Lecler S. Roadmap on Label-Free Super-Resolution Imaging. LASER & PHOTONICS REVIEWS 2023; 17:2200029. [PMID: 38883699 PMCID: PMC11178318 DOI: 10.1002/lpor.202200029] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 06/18/2024]
Abstract
Label-free super-resolution (LFSR) imaging relies on light-scattering processes in nanoscale objects without a need for fluorescent (FL) staining required in super-resolved FL microscopy. The objectives of this Roadmap are to present a comprehensive vision of the developments, the state-of-the-art in this field, and to discuss the resolution boundaries and hurdles which need to be overcome to break the classical diffraction limit of the LFSR imaging. The scope of this Roadmap spans from the advanced interference detection techniques, where the diffraction-limited lateral resolution is combined with unsurpassed axial and temporal resolution, to techniques with true lateral super-resolution capability which are based on understanding resolution as an information science problem, on using novel structured illumination, near-field scanning, and nonlinear optics approaches, and on designing superlenses based on nanoplasmonics, metamaterials, transformation optics, and microsphere-assisted approaches. To this end, this Roadmap brings under the same umbrella researchers from the physics and biomedical optics communities in which such studies have often been developing separately. The ultimate intent of this paper is to create a vision for the current and future developments of LFSR imaging based on its physical mechanisms and to create a great opening for the series of articles in this field.
Collapse
Affiliation(s)
- Vasily N. Astratov
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001, USA
| | - Yair Ben Sahel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yonina C. Eldar
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Luzhe Huang
- Electrical and Computer Engineering Department, University of California, Los Angeles, California 90095, USA
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
- California Nano Systems Institute (CNSI), University of California, Los Angeles, California 90095, USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, California 90095, USA
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
- California Nano Systems Institute (CNSI), University of California, Los Angeles, California 90095, USA
- David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Nikolay Zheludev
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
- Centre for Disruptive Photonic Technologies, The Photonics Institute, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Junxiang Zhao
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Zachary Burns
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Zhaowei Liu
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
- Material Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Evgenii Narimanov
- School of Electrical Engineering, and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Neha Goswami
- Quantitative Light Imaging Laboratory, Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - Gabriel Popescu
- Quantitative Light Imaging Laboratory, Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - Emanuel Pfitzner
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Philipp Kukura
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Yi-Teng Hsiao
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica 1, Roosevelt Rd. Sec. 4, Taipei 10617 Taiwan
| | - Chia-Lung Hsieh
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica 1, Roosevelt Rd. Sec. 4, Taipei 10617 Taiwan
| | - Brian Abbey
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Melbourne, Victoria, Australia
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, Australia
| | - Alberto Diaspro
- Optical Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Via Enrico Melen 83B, 16152 Genoa, Italy
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy
| | - Aymeric LeGratiet
- Optical Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Via Enrico Melen 83B, 16152 Genoa, Italy
- Université de Rennes, CNRS, Institut FOTON - UMR 6082, F-22305 Lannion, France
| | - Paolo Bianchini
- Optical Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Via Enrico Melen 83B, 16152 Genoa, Italy
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy
| | - Natan T. Shaked
- Tel Aviv University, Faculty of Engineering, Department of Biomedical Engineering, Tel Aviv 6997801, Israel
| | - Bertrand Simon
- LP2N, Institut d’Optique Graduate School, CNRS UMR 5298, Université de Bordeaux, Talence France
| | - Nicolas Verrier
- IRIMAS UR UHA 7499, Université de Haute-Alsace, Mulhouse, France
| | | | - Olivier Haeberlé
- IRIMAS UR UHA 7499, Université de Haute-Alsace, Mulhouse, France
| | - Sheng Wang
- School of Physics and Technology, Wuhan University, China
- Wuhan Institute of Quantum Technology, China
| | - Mengkun Liu
- Department of Physics and Astronomy, Stony Brook University, USA
- National Synchrotron Light Source II, Brookhaven National Laboratory, USA
| | - Yeran Bai
- Boston University Photonics Center, Boston, MA 02215, USA
| | - Ji-Xin Cheng
- Boston University Photonics Center, Boston, MA 02215, USA
| | - Behjat S. Kariman
- Optical Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Via Enrico Melen 83B, 16152 Genoa, Italy
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy
| | - Katsumasa Fujita
- Department of Applied Physics and the Advanced Photonics and Biosensing Open Innovation Laboratory (AIST); and the Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Moshe Sinvani
- Faculty of Engineering and the Nano-Technology Center, Bar-Ilan University, Ramat Gan, 52900 Israel
| | - Zeev Zalevsky
- Faculty of Engineering and the Nano-Technology Center, Bar-Ilan University, Ramat Gan, 52900 Israel
| | - Xiangping Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Guan-Jie Huang
- Department of Physics and Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shi-Wei Chu
- Department of Physics and Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Omer Tzang
- School of Chemistry, The Sackler faculty of Exact Sciences, and the Center for Light matter Interactions, and the Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel
| | - Dror Hershkovitz
- School of Chemistry, The Sackler faculty of Exact Sciences, and the Center for Light matter Interactions, and the Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel
| | - Ori Cheshnovsky
- School of Chemistry, The Sackler faculty of Exact Sciences, and the Center for Light matter Interactions, and the Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel
| | - Mikko J. Huttunen
- Laboratory of Photonics, Physics Unit, Tampere University, FI-33014, Tampere, Finland
| | - Stefan G. Stanciu
- Center for Microscopy – Microanalysis and Information Processing, Politehnica University of Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Vera N. Smolyaninova
- Department of Physics Astronomy and Geosciences, Towson University, 8000 York Rd., Towson, MD 21252, USA
| | - Igor I. Smolyaninov
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA
| | - Ulf Leonhardt
- Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sahar Sahebdivan
- EMTensor GmbH, TechGate, Donau-City-Strasse 1, 1220 Wien, Austria
| | - Zengbo Wang
- School of Computer Science and Electronic Engineering, Bangor University, Bangor, LL57 1UT, United Kingdom
| | - Boris Luk’yanchuk
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Limin Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Alexey V. Maslov
- Department of Radiophysics, University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia
| | - Boya Jin
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001, USA
| | - Constantin R. Simovski
- Department of Electronics and Nano-Engineering, Aalto University, FI-00076, Espoo, Finland
- Faculty of Physics and Engineering, ITMO University, 199034, St-Petersburg, Russia
| | - Stephane Perrin
- ICube Research Institute, University of Strasbourg - CNRS - INSA de Strasbourg, 300 Bd. Sébastien Brant, 67412 Illkirch, France
| | - Paul Montgomery
- ICube Research Institute, University of Strasbourg - CNRS - INSA de Strasbourg, 300 Bd. Sébastien Brant, 67412 Illkirch, France
| | - Sylvain Lecler
- ICube Research Institute, University of Strasbourg - CNRS - INSA de Strasbourg, 300 Bd. Sébastien Brant, 67412 Illkirch, France
| |
Collapse
|
12
|
Li L, Hong S, Kang D, Huang X, Zhang S, Zhang Z, Zhou Y, Chen J. Two-photon imaging reveals histopathological changes in the gastric tumor microenvironment induced by neoadjuvant treatment. BIOMEDICAL OPTICS EXPRESS 2023; 14:5085-5096. [PMID: 37854573 PMCID: PMC10581806 DOI: 10.1364/boe.501519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 10/20/2023]
Abstract
There is a close association between tumor response and survival in gastric cancer patients after receiving neoadjuvant treatment. An accurate and rapid assessment of therapeutic efficacy would be helpful for subsequent treatments and individual prognosis. At present, pathological examination is the gold standard for evaluating treatment response, however, it requires additional staining and the process is tedious, labor-intensive, as well as time-consuming. Here, we introduce a label-free imaging technique, two-photon imaging, to evaluate histopathological changes induced by pre-operative therapy, with a focus on assessing tumor regression as well as stromal response. Imaging data show that two-photon imaging allows label-free, rapid visualization of various aspects of pathological alterations in tumor microenvironment such as fibrotic reaction, inflammatory cell infiltration, mucinous response, isolated residual tumor cells. Moreover, a semi-automatic image processing approach is developed to extract the collagen morphological features, and statistical results show that there are significant differences in collagen area, length, width, cross-link space between the gastric cancer tissues with and without treatment. With the advent of a portable, miniaturized two-photon imaging device, we have enough reason to believe that this technique will become as an important auxiliary diagnostic tool in assessing neoadjuvant treatment response and thereby tailoring the most appropriate therapy strategies for the patients.
Collapse
Affiliation(s)
- Lianhuang Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Shichai Hong
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Department of Vascular Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China
| | - Deyong Kang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Xingxin Huang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Shichao Zhang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Zhenlin Zhang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Yongjian Zhou
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
13
|
Mühlberg A, Ritter P, Langer S, Goossens C, Nübler S, Schneidereit D, Taubmann O, Denzinger F, Nörenberg D, Haug M, Schürmann S, Horstmeyer R, Maier AK, Goldmann WH, Friedrich O, Kreiss L. SEMPAI: a Self-Enhancing Multi-Photon Artificial Intelligence for Prior-Informed Assessment of Muscle Function and Pathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206319. [PMID: 37582656 PMCID: PMC10558688 DOI: 10.1002/advs.202206319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/30/2023] [Indexed: 08/17/2023]
Abstract
Deep learning (DL) shows notable success in biomedical studies. However, most DL algorithms work as black boxes, exclude biomedical experts, and need extensive data. This is especially problematic for fundamental research in the laboratory, where often only small and sparse data are available and the objective is knowledge discovery rather than automation. Furthermore, basic research is usually hypothesis-driven and extensive prior knowledge (priors) exists. To address this, the Self-Enhancing Multi-Photon Artificial Intelligence (SEMPAI) that is designed for multiphoton microscopy (MPM)-based laboratory research is presented. It utilizes meta-learning to optimize prior (and hypothesis) integration, data representation, and neural network architecture simultaneously. By this, the method allows hypothesis testing with DL and provides interpretable feedback about the origin of biological information in 3D images. SEMPAI performs multi-task learning of several related tasks to enable prediction for small datasets. SEMPAI is applied on an extensive MPM database of single muscle fibers from a decade of experiments, resulting in the largest joint analysis of pathologies and function for single muscle fibers to date. It outperforms state-of-the-art biomarkers in six of seven prediction tasks, including those with scarce data. SEMPAI's DL models with integrated priors are superior to those without priors and to prior-only approaches.
Collapse
Affiliation(s)
- Alexander Mühlberg
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
| | - Paul Ritter
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
- Erlangen Graduate School in Advanced Optical TechnologiesPaul‐Gordan‐Str. 691052ErlangenGermany
| | - Simon Langer
- Pattern Recognition LabDepartment of Computer ScienceFriedrich‐Alexander University Erlangen‐NurembergMartensstr. 391058ErlangenGermany
| | - Chloë Goossens
- Clinical Division and Laboratory of Intensive Care MedicineKU LeuvenUZ Herestraat 49 – P.O. box 7003Leuven3000Belgium
| | - Stefanie Nübler
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
| | - Dominik Schneidereit
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
- Erlangen Graduate School in Advanced Optical TechnologiesPaul‐Gordan‐Str. 691052ErlangenGermany
| | - Oliver Taubmann
- Pattern Recognition LabDepartment of Computer ScienceFriedrich‐Alexander University Erlangen‐NurembergMartensstr. 391058ErlangenGermany
| | - Felix Denzinger
- Pattern Recognition LabDepartment of Computer ScienceFriedrich‐Alexander University Erlangen‐NurembergMartensstr. 391058ErlangenGermany
| | - Dominik Nörenberg
- Department of Radiology and Nuclear MedicineUniversity Medical Center MannheimMedical Faculty MannheimTheodor‐Kutzer‐Ufer 1–368167MannheimGermany
| | - Michael Haug
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
| | - Sebastian Schürmann
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
| | - Roarke Horstmeyer
- Computational Optics LabDepartment of Biomedical EngineeringDuke University101 Science DrDurhamNC27708USA
| | - Andreas K. Maier
- Pattern Recognition LabDepartment of Computer ScienceFriedrich‐Alexander University Erlangen‐NurembergMartensstr. 391058ErlangenGermany
| | - Wolfgang H. Goldmann
- Biophysics GroupDepartment of PhysicsFriedrich‐Alexander University Erlangen‐NurembergHenkestr. 9191052ErlangenGermany
| | - Oliver Friedrich
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
- Erlangen Graduate School in Advanced Optical TechnologiesPaul‐Gordan‐Str. 691052ErlangenGermany
| | - Lucas Kreiss
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
- Erlangen Graduate School in Advanced Optical TechnologiesPaul‐Gordan‐Str. 691052ErlangenGermany
- Computational Optics LabDepartment of Biomedical EngineeringDuke University101 Science DrDurhamNC27708USA
| |
Collapse
|
14
|
Xiang F, Yu J, Jiang D, Hu W, Zhang R, Huang C, Wu T, Gao Y, Zheng A, Liu TM, Zheng W, Li X, Li H. Quantitative multiphoton imaging of cell metabolism, stromal fibers, and keratinization enables label-free discrimination of esophageal squamous cell carcinoma. BIOMEDICAL OPTICS EXPRESS 2023; 14:4137-4155. [PMID: 37799684 PMCID: PMC10549756 DOI: 10.1364/boe.492109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/02/2023] [Accepted: 06/29/2023] [Indexed: 10/07/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) features atypical clinical manifestations and a low 5-year survival rate (< 5% in many developing countries where most of the disease occurs). Precise ESCC detection and grading toward timely and effective intervention are therefore crucial. In this study, we propose a multidimensional, slicing-free, and label-free histopathological evaluation method based on multispectral multiphoton fluorescence lifetime imaging microscopy (MM-FLIM) for precise ESCC identification. To assess the feasibility of this method, comparative imaging on fresh human biopsy specimens of different ESCC grades is performed. By constructing fluorescence spectrum- and lifetime-coded images, ESCC-induced morphological variations are unveiled. Further quantification of cell metabolism and stromal fibers reveals potential indicators for ESCC detection and grading. The specific identification of keratin pearls provides additional support for the early detection of ESCC. These findings demonstrate the viability of using MM-FLIM and the series of derived indicators for histopathological evaluation of ESCC. As there is an increasing interest in developing multiphoton endoscopes and multiphoton FLIM systems for clinical use, the proposed method would probably allow noninvasive, label-free, and multidimensional histological detection and grading of ESCC in the future.
Collapse
Affiliation(s)
- Feng Xiang
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jia Yu
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Institute of Translational Medicine, Faculty of Health Sciences & Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Danling Jiang
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shen Zhen 518036, China
| | - Weiwang Hu
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Rongli Zhang
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chenming Huang
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ting Wu
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yufeng Gao
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Aiping Zheng
- Department of Pathology, Peking University Shenzhen Hospital, Shen Zhen 518036, China
| | - Tzu-Ming Liu
- Institute of Translational Medicine, Faculty of Health Sciences & Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Wei Zheng
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xi Li
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shen Zhen 518036, China
| | - Hui Li
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
15
|
Stanciu SG, König K, Song YM, Wolf L, Charitidis CA, Bianchini P, Goetz M. Toward next-generation endoscopes integrating biomimetic video systems, nonlinear optical microscopy, and deep learning. BIOPHYSICS REVIEWS 2023; 4:021307. [PMID: 38510341 PMCID: PMC10903409 DOI: 10.1063/5.0133027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/26/2023] [Indexed: 03/22/2024]
Abstract
According to the World Health Organization, the proportion of the world's population over 60 years will approximately double by 2050. This progressive increase in the elderly population will lead to a dramatic growth of age-related diseases, resulting in tremendous pressure on the sustainability of healthcare systems globally. In this context, finding more efficient ways to address cancers, a set of diseases whose incidence is correlated with age, is of utmost importance. Prevention of cancers to decrease morbidity relies on the identification of precursor lesions before the onset of the disease, or at least diagnosis at an early stage. In this article, after briefly discussing some of the most prominent endoscopic approaches for gastric cancer diagnostics, we review relevant progress in three emerging technologies that have significant potential to play pivotal roles in next-generation endoscopy systems: biomimetic vision (with special focus on compound eye cameras), non-linear optical microscopies, and Deep Learning. Such systems are urgently needed to enhance the three major steps required for the successful diagnostics of gastrointestinal cancers: detection, characterization, and confirmation of suspicious lesions. In the final part, we discuss challenges that lie en route to translating these technologies to next-generation endoscopes that could enhance gastrointestinal imaging, and depict a possible configuration of a system capable of (i) biomimetic endoscopic vision enabling easier detection of lesions, (ii) label-free in vivo tissue characterization, and (iii) intelligently automated gastrointestinal cancer diagnostic.
Collapse
Affiliation(s)
- Stefan G. Stanciu
- Center for Microscopy-Microanalysis and Information Processing, University Politehnica of Bucharest, Bucharest, Romania
| | | | | | - Lior Wolf
- School of Computer Science, Tel Aviv University, Tel-Aviv, Israel
| | - Costas A. Charitidis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Paolo Bianchini
- Nanoscopy and NIC@IIT, Italian Institute of Technology, Genoa, Italy
| | - Martin Goetz
- Medizinische Klinik IV-Gastroenterologie/Onkologie, Kliniken Böblingen, Klinikverbund Südwest, Böblingen, Germany
| |
Collapse
|
16
|
Shah VS, Hou J, Vinarsky V, Xu J, Surve MV, Lin CP, Rajagopal J. Autofluorescence imaging permits label-free cell type assignment and reveals the dynamic formation of airway secretory cell associated antigen passages (SAPs). eLife 2023; 12:e84375. [PMID: 36994985 PMCID: PMC10154029 DOI: 10.7554/elife.84375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/29/2023] [Indexed: 03/31/2023] Open
Abstract
The specific functional properties of a tissue are distributed amongst its component cell types. The various cells act coherently, as an ensemble, in order to execute a physiologic response. Modern approaches for identifying and dissecting novel physiologic mechanisms would benefit from an ability to identify specific cell types in live tissues that could then be imaged in real time. Current techniques require the use of fluorescent genetic reporters that are not only cumbersome, but which only allow the study of three or four cell types at a time. We report a non-invasive imaging modality that capitalizes on the endogenous autofluorescence signatures of the metabolic cofactors NAD(P)H and FAD. By marrying morphological characteristics with autofluorescence signatures, all seven of the airway epithelial cell types can be distinguished simultaneously in mouse tracheal explants in real time. Furthermore, we find that this methodology for direct cell type-specific identification avoids pitfalls associated with the use of ostensibly cell type-specific markers that are, in fact, altered by clinically relevant physiologic stimuli. Finally, we utilize this methodology to interrogate real-time physiology and identify dynamic secretory cell associated antigen passages (SAPs) that form in response to cholinergic stimulus. The identical process has been well documented in the intestine where the dynamic formation of SAPs and goblet cell associated antigen passages (GAPs) enable luminal antigen sampling. Airway secretory cells with SAPs are frequently juxtaposed to antigen presenting cells, suggesting that airway SAPs, like their intestinal counterparts, not only sample antigen but convey their cargo for immune cell processing.
Collapse
Affiliation(s)
- Viral S Shah
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General HospitalBostonUnited States
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
| | - Jue Hou
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Vladimir Vinarsky
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
| | - Jiajie Xu
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
| | - Manalee V Surve
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
| | - Charles P Lin
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Jayaraj Rajagopal
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General HospitalBostonUnited States
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
- Klarman Cell Observatory, Broad InstituteCambridgeUnited States
| |
Collapse
|
17
|
Kučikas V, Werner MP, Schmitz-Rode T, Louradour F, van Zandvoort MAMJ. Two-Photon Endoscopy: State of the Art and Perspectives. Mol Imaging Biol 2023; 25:3-17. [PMID: 34779969 PMCID: PMC9971078 DOI: 10.1007/s11307-021-01665-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/15/2021] [Accepted: 10/05/2021] [Indexed: 10/19/2022]
Abstract
In recent years, the demand for non-destructive deep-tissue imaging modalities has led to interest in multiphoton endoscopy. In contrast to bench top systems, multiphoton endoscopy enables subcellular resolution imaging in areas not reachable before. Several groups have recently presented their development towards the goal of producing user friendly plug and play system, which could be used in biological research and, potentially, clinical applications. We first present the technological challenges, prerequisites, and solutions in two-photon endoscopic systems. Secondly, we focus on the applications already found in literature. These applications mostly serve as a quality check of the built system, but do not answer a specific biomedical research question. Therefore, in the last part, we will describe our vision on the enormous potential applicability of adult two-photon endoscopic systems in biological and clinical research. We will thus bring forward the concept that two-photon endoscopy is a sine qua non in bringing this technique to the forefront in clinical applications.
Collapse
Affiliation(s)
- Vytautas Kučikas
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany. .,XLIM Research Institute, Limoges University, CNRS, Limoges, France.
| | - Maximilian P Werner
- Department of Biohybrid and Medical Textiles (BioTex), RWTH Aachen University, Aachen, Germany
| | - Thomas Schmitz-Rode
- Department of Biohybrid and Medical Textiles (BioTex), RWTH Aachen University, Aachen, Germany
| | | | - Marc A M J van Zandvoort
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.,Institute for Cardiovascular Diseases CARIM, Department of Molecular Cell Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
18
|
Li L, Huang X, Zhang S, Zhan Z, Kang D, Guan G, Xu S, Zhou Y, Chen J. Rapid and label-free detection of gastrointestinal stromal tumor via a combination of two-photon microscopy and imaging analysis. BMC Cancer 2023; 23:38. [PMID: 36627575 PMCID: PMC9830707 DOI: 10.1186/s12885-023-10520-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Gastrointestinal stromal tumor (GIST) is currently regarded as a potentially malignant tumor, and early diagnosis is the best way to improve its prognosis. Therefore, it will be meaningful to develop a new method for auxiliary diagnosis of this disease. METHODS Here we try out a new means to detect GIST by combining two-photon imaging with automatic image processing strategy. RESULTS Experimental results show that two-photon microscopy has the ability to label-freely identify the structural characteristics of GIST such as tumor cells, desmoplastic reaction, which are entirely different from those from gastric adenocarcinoma. Moreover, an image processing approach is used to extract eight collagen morphological features from tumor microenvironment and normal muscularis, and statistical analysis demonstrates that there are significant differences in three features-fiber area, density and cross-link density. The three morphological characteristics may be considered as optical imaging biomarkers to differentiate between normal and abnormal tissues. CONCLUSION With continued improvement and refinement of this technology, we believe that two-photon microscopy will be an efficient surveillance tool for GIST and lead to better management of this disease.
Collapse
Affiliation(s)
- Lianhuang Li
- grid.411503.20000 0000 9271 2478Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, 350007 Fuzhou, P. R. China
| | - Xingxin Huang
- grid.411503.20000 0000 9271 2478Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, 350007 Fuzhou, P. R. China
| | - Shichao Zhang
- grid.411503.20000 0000 9271 2478Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, 350007 Fuzhou, P. R. China
| | - Zhenlin Zhan
- grid.411503.20000 0000 9271 2478Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, 350007 Fuzhou, P. R. China
| | - Deyong Kang
- grid.411176.40000 0004 1758 0478Department of Pathology, Fujian Medical University Union Hospital, 350001 Fuzhou, P. R. China
| | - Guoxian Guan
- grid.412683.a0000 0004 1758 0400Department of Colorectal Surgery, the First Affiliated Hospital of Fujian Medical University, 350001 Fuzhou, P. R. China
| | - Shuoyu Xu
- grid.416466.70000 0004 1757 959XDepartment of General Surgery, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, P. R. China
| | - Yongjian Zhou
- grid.411176.40000 0004 1758 0478Department of Gastric Surgery, Fujian Medical University Union Hospital, 350001 Fuzhou, P. R. China
| | - Jianxin Chen
- grid.411503.20000 0000 9271 2478Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, 350007 Fuzhou, P. R. China
| |
Collapse
|
19
|
Stanciu SG, Hristu R, Stanciu GA, Tranca DE, Eftimie L, Dumitru A, Costache M, Stenmark HA, Manders H, Cherian A, Tark-Dame M, Manders EMM. Super-resolution re-scan second harmonic generation microscopy. Proc Natl Acad Sci U S A 2022; 119:e2214662119. [PMID: 36375085 PMCID: PMC9704717 DOI: 10.1073/pnas.2214662119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/13/2022] [Indexed: 07/26/2023] Open
Abstract
Second harmonic generation microscopy (SHG) is generally acknowledged as a powerful tool for the label-free three-dimensional visualization of tissues and advanced materials, with one of its most popular applications being collagen imaging. Despite the great need, progress in super-resolved SHG imaging lags behind the developments reported over the past years in fluorescence-based optical nanoscopy. In this work, we demonstrate super-resolved re-scan SHG, qualitatively and quantitatively showing on collagenous tissues the available resolution advantage over the diffraction limit. We introduce as well super-resolved re-scan two-photon excited fluorescence microscopy, an imaging modality not explored to date.
Collapse
Affiliation(s)
- Stefan G. Stanciu
- Center for Microscopy-Microanalysis and Information Processing, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Radu Hristu
- Center for Microscopy-Microanalysis and Information Processing, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - George A. Stanciu
- Center for Microscopy-Microanalysis and Information Processing, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Denis E. Tranca
- Center for Microscopy-Microanalysis and Information Processing, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Lucian Eftimie
- Pathology Department, Emergency Military Hospital, 010825 Bucharest, Romania
| | - Adrian Dumitru
- Department of Pathology, Bucharest Emergency University Hospital, 050098 Bucharest, Romania
- Department of Pathology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Mariana Costache
- Department of Pathology, Bucharest Emergency University Hospital, 050098 Bucharest, Romania
- Department of Pathology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Harald A. Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway
| | - Harm Manders
- Confocal.nl BV, Science Park 406, 1098XG Amsterdam, The Netherlands
| | - Amit Cherian
- Confocal.nl BV, Science Park 406, 1098XG Amsterdam, The Netherlands
| | | | | |
Collapse
|
20
|
Li Y, Shen B, Lu Y, Shi J, Zhao Z, Li H, Hu R, Qu J, Liu L. Multidimensional quantitative characterization of the tumor microenvironment by multicontrast nonlinear microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:5517-5532. [PMID: 36425619 PMCID: PMC9664882 DOI: 10.1364/boe.470104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Characterization of the microenvironment features of tumors, such as its microstructures, biomolecular metabolism, and functional dynamics, may provide essential pathologic information about the tumor, tumor margin, and adjacent normal tissue for early and intraoperative diagnosis. However, it can be particularly challenging to obtain faithful and comprehensive pathological information simultaneously from unperturbed tissues due to the complexity of the microenvironment in organisms. Super-multiplex nonlinear optical imaging system emerged and matured as an attractive tool for acquisition and elucidation of the nonlinear properties correlated with tumor microenvironment. Here, we introduced a nonlinear effects-based multidimensional optical imaging platform and methodology to simultaneously and efficiently capture contrasting and complementary nonlinear optical signatures of freshly excised human skin tissues. The qualitative and quantitative analysis of autofluorescence (FAD), collagen fiber, and intracellular components (lipids and proteins) illustrated the differences about morphological changes and biomolecular metabolic processes of the epidermis and dermis in different skin carcinogenic types. Interpretation of multi-parameter stain-free histological findings complements conventional H&E-stained slides for investigating basal cell carcinoma and pigmented nevus, validates the platform's versatility and efficiency for classifying subtypes of skin carcinoma, and provides the potential to translate endogenous molecule into biomarker for assisting in rapid cancer screening and diagnosis.
Collapse
Affiliation(s)
- Yanping Li
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Binglin Shen
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuan Lu
- The Sixth People’s Hospital of Shenzhen, Shenzhen 518052, China
| | - Jinhui Shi
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zewei Zhao
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Huixian Li
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Rui Hu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
21
|
Kreiss L, Ganzleben I, Mühlberg A, Ritter P, Schneidereit D, Becker C, Neurath MF, Friedrich O, Schürmann S, Waldner M. Label-free analysis of inflammatory tissue remodeling in murine lung tissue based on multiphoton microscopy, Raman spectroscopy and machine learning. JOURNAL OF BIOPHOTONICS 2022; 15:e202200073. [PMID: 35611635 DOI: 10.1002/jbio.202200073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Inflammatory fibrotic tissue remodeling can lead to severe morbidity. Histopathology grading requires extraction of biopsies and elaborate tissue processing. Label-free optical technologies can provide diagnostic readout without preparation and artificial stainings and show potential for in vivo applications. Here, we present an integration of Raman spectroscopy (RS) and multiphoton microscopy for joint investigation of the bio-chemical composition and morphological features related to cellular components and connective tissue. Both modalities show that collagen signatures were significantly increased in a murine fibrosis model. Furthermore, autofluorescence signatures assigned to immune cells show high correlation with disease severity. RS indicates increased levels of elastin and lipids. Further, we investigated the effect of joint data sets on prediction performance in machine learning models. Although binary classification did not benefit from adding more features, multi-class classification was improved by integrated data sets.
Collapse
Affiliation(s)
- Lucas Kreiss
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ingo Ganzleben
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Ludwig Demling Center for Molecular Imaging, Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander Mühlberg
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Paul Ritter
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dominik Schneidereit
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Ludwig Demling Center for Molecular Imaging, Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Schürmann
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian Waldner
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Ludwig Demling Center for Molecular Imaging, Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
22
|
Hong S, Lee J, Moon J, Kong E, Jeon J, Kim YS, Kim HR, Kim P. Intravital longitudinal cellular visualization of oral mucosa in a murine model based on rotatory side-view confocal endomicroscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:4160-4174. [PMID: 36032579 PMCID: PMC9408257 DOI: 10.1364/boe.462269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Oral mucosa is a soft tissue lining the inside of the mouth, protecting the oral cavity from microbiological insults. The mucosal immune system is composed of diverse types of cells that defend against a wide range of pathogens. The pathophysiology of various oral mucosal diseases has been studied mostly by ex vivo histological analysis of harvested specimens. However, to analyze dynamic cellular processes in the oral mucosa, longitudinal in vivo observation of the oral mucosa in a single mouse during pathogenesis is a highly desirable and efficient approach. Herein, by utilizing micro GRIN lens-based rotatory side-view confocal endomicroscopy, we demonstrated non-invasive longitudinal cellular-level in vivo imaging of the oral mucosa, visualizing fluorescently labeled cells including various immune cells, pericytes, nerve cells, and lymphatic and vascular endothelial cells. With rotational and sliding movement of the side-view endomicroscope on the oral mucosa, we successfully achieved a multi-color wide-area cellular-level visualization in a noninvasive manner. By using a transgenic mouse expressing photoconvertible protein, Kaede, we achieved longitudinal repetitive imaging of the same microscopic area in the buccal mucosa of a single mouse for up to 10 days. Finally, we performed longitudinal intravital visualization of the oral mucosa in a DNFB-derived oral contact allergy mouse model, which revealed highly dynamic spatiotemporal changes of CSF1R or LysM expressing immune cells such as monocytes, macrophages, and granulocytes in response to allergic challenge for one week. This technique can be a useful tool to investigate the complex pathophysiology of oral mucosal diseases.
Collapse
Affiliation(s)
- Sujung Hong
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jingu Lee
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jieun Moon
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Eunji Kong
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jehwi Jeon
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yeon soo Kim
- Department of Otorhinolaryngology, Konyang University College of Medicine, Konyang University Hospital, Daejeon, 35365, Republic of Korea
| | - Hyung-Ryong Kim
- Department of Pharmacology, College of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
23
|
Kreiss L, Thoma OM, Lemire S, Lechner K, Carlé B, Dilipkumar A, Kunert T, Scheibe K, Heichler C, Merten AL, Weigmann B, Neufert C, Hildner K, Vieth M, Neurath MF, Friedrich O, Schürmann S, Waldner MJ. Label-Free Characterization and Quantification of Mucosal Inflammation in Common Murine Colitis Models With Multiphoton Imaging. Inflamm Bowel Dis 2022; 28:1637-1646. [PMID: 35699622 PMCID: PMC9629455 DOI: 10.1093/ibd/izac114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Clinical challenges in inflammatory bowel diseases require microscopic in vivo evaluation of inflammation. Here, label-free imaging holds great potential, and recently, our group demonstrated the advantage of using in vivo multiphoton endomicroscopy for longitudinal animal studies. This article extends our previous work by in-depth analysis of label-free tissue features in common colitis models quantified by the multiphoton colitis score (MCS). METHODS Fresh mucosal tissues were evaluated from acute and chronic dextran sulfate sodium (DSS), TNBS, oxazolone, and transfer colitis. Label-free imaging was performed by using second harmonic generation and natural autofluorescence. Morphological changes in mucosal crypts, collagen fibers, and cellularity in the stroma were analyzed and graded. RESULTS Our approach discriminated between healthy (mean MCS = 2.5) and inflamed tissue (mean MCS > 5) in all models, and the MCS was validated by hematoxylin and eosin scoring of the same samples (85.2% agreement). Moreover, specific characteristics of each phenotype were identified. While TNBS, oxazolone, and transfer colitis showed high cellularity in stroma, epithelial damage seemed specific for chronic, acute DSS and transfer colitis. Crypt deformations were mostly observed in acute DSS. CONCLUSIONS Quantification of label-free imaging is promising for in vivo endoscopy. In the future, this could be valuable for monitoring of inflammatory pathways in murine models, which is highly relevant for the development of new inflammatory bowel disease therapeutics.
Collapse
Affiliation(s)
- Lucas Kreiss
- Address correspondence to: Lucas Kreiss, Dr.-Ing, Institute of Medical Biotechnology, Paul-Gordan-Str 3, 91052 Erlangen, Germany ()
| | | | - Sarah Lemire
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Kristina Lechner
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Birgitta Carlé
- Institute of Medical Biotechnology, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany
| | - Ashwathama Dilipkumar
- Institute of Medical Biotechnology, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany
| | - Timo Kunert
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Kristina Scheibe
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Christina Heichler
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Anna-Lena Merten
- Institute of Medical Biotechnology, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany
| | - Benno Weigmann
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Clemens Neufert
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Kai Hildner
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Bayreuth, Germany,Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
24
|
Matsui T, Iwasa A, Mimura M, Taniguchi S, Sudo T, Uchida Y, Kikuta J, Morizono H, Horii R, Motoyama Y, Morii E, Ohno S, Kiyota Y, Ishii M. Label-free multiphoton excitation imaging as a promising diagnostic tool for breast cancer. Cancer Sci 2022; 113:2916-2925. [PMID: 35579268 PMCID: PMC9357641 DOI: 10.1111/cas.15428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/28/2022] Open
Abstract
Histopathological diagnosis is the ultimate method of attaining the final diagnosis; however, the observation range is limited to the two‐dimensional plane, and it requires thin slicing of the tissue, which limits diagnostic information. To seek solutions for these problems, we proposed a novel imaging‐based histopathological examination. We used the multiphoton excitation microscopy (MPM) technique to establish a method for visualizing unfixed/unstained human breast tissues. Under near‐infrared ray excitation, fresh human breast tissues emitted fluorescent signals with three major peaks, which enabled visualizing the breast tissue morphology without any fixation or dye staining. Our study using human breast tissue samples from 32 patients indicated that experienced pathologists can estimate normal or cancerous lesions using only these MPM images with a kappa coefficient of 1.0. Moreover, we developed an image classification algorithm with artificial intelligence that enabled us to automatically define cancer cells in small areas with a high sensitivity of ≥0.942. Taken together, label‐free MPM imaging is a promising method for the real‐time automatic diagnosis of breast cancer.
Collapse
Affiliation(s)
- Takahiro Matsui
- Department of Immunology and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan.,WPI-Immunology Frontier Research Center, Osaka University, 3-1 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Akio Iwasa
- Yokohama Plant, Nikon Corporation, 471 Nagaodai-cho, Sakae-ku, Yokohama, Kanagawa 244-8533, Japan
| | - Masafumi Mimura
- Yokohama Plant, Nikon Corporation, 471 Nagaodai-cho, Sakae-ku, Yokohama, Kanagawa 244-8533, Japan
| | - Seiji Taniguchi
- Department of Immunology and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan.,WPI-Immunology Frontier Research Center, Osaka University, 3-1 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Takao Sudo
- Department of Immunology and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan.,WPI-Immunology Frontier Research Center, Osaka University, 3-1 Yamada-Oka, Suita, Osaka 565-0871, Japan.,Department of Hematology and Oncology, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Yutaka Uchida
- Department of Immunology and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan.,WPI-Immunology Frontier Research Center, Osaka University, 3-1 Yamada-Oka, Suita, Osaka 565-0871, Japan.,Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan.,WPI-Immunology Frontier Research Center, Osaka University, 3-1 Yamada-Oka, Suita, Osaka 565-0871, Japan.,Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Hidetomo Morizono
- Breast Oncology Center, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.,Department of Breast Surgical Oncology, New Tokyo Hospital, 1271 Wanagaya, Matsudo, Chiba 270-2232, Japan
| | - Rie Horii
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.,Department of Pathology, Saitama Cancer Center, 780 Komuro, Ina, Kita-adachi-gun, Saitama 362-0806, Japan
| | - Yuichi Motoyama
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Shinji Ohno
- Breast Oncology Center, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Yasujiro Kiyota
- Yokohama Plant, Nikon Corporation, 471 Nagaodai-cho, Sakae-ku, Yokohama, Kanagawa 244-8533, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan.,WPI-Immunology Frontier Research Center, Osaka University, 3-1 Yamada-Oka, Suita, Osaka 565-0871, Japan.,Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
25
|
Wu W, Liu Q, Brandt C, Tang S. Dual-wavelength multimodal multiphoton microscope with SMA-based depth scanning. BIOMEDICAL OPTICS EXPRESS 2022; 13:2754-2771. [PMID: 35774327 PMCID: PMC9203102 DOI: 10.1364/boe.456390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/19/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
We report on a multimodal multiphoton microscopy (MPM) system with depth scanning. The multimodal capability is realized by an Er-doped femtosecond fiber laser with dual output wavelengths of 1580 nm and 790 nm that are responsible for three-photon and two-photon excitation, respectively. A shape-memory-alloy (SMA) actuated miniaturized objective enables the depth scanning capability. Image stacks combined with two-photon excitation fluorescence (TPEF), second harmonic generation (SHG), and third harmonic generation (THG) signals have been acquired from animal, fungus, and plant tissue samples with a maximum depth range over 200 µm.
Collapse
Affiliation(s)
- Wentao Wu
- Department of Electrical and Computer Engineering, University of British Columbia, 5500-2332 Main Mall, Vancouver, BC V6 T 1Z4, Canada
| | - Qihao Liu
- Department of Electrical and Computer Engineering, University of British Columbia, 5500-2332 Main Mall, Vancouver, BC V6 T 1Z4, Canada
| | - Christoph Brandt
- Department of Electrical and Computer Engineering, University of British Columbia, 5500-2332 Main Mall, Vancouver, BC V6 T 1Z4, Canada
| | - Shuo Tang
- Department of Electrical and Computer Engineering, University of British Columbia, 5500-2332 Main Mall, Vancouver, BC V6 T 1Z4, Canada
| |
Collapse
|
26
|
Lemire S, Thoma OM, Kreiss L, Völkl S, Friedrich O, Neurath MF, Schürmann S, Waldner MJ. Natural NADH and FAD Autofluorescence as Label-Free Biomarkers for Discriminating Subtypes and Functional States of Immune Cells. Int J Mol Sci 2022; 23:ijms23042338. [PMID: 35216453 PMCID: PMC8880312 DOI: 10.3390/ijms23042338] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Abstract
Immune cell activity is a major factor for disease progression in inflammatory bowel diseases (IBD). Classifying the type and functional state of immune cells is therefore crucial in clinical diagnostics of IBD. Label-free optical technologies exploiting NADH and FAD autofluorescence, such as multiphoton microscopy, have been used to describe tissue morphology in healthy and inflamed colon samples. Nevertheless, a strategy for the identification of single immune cell subtypes within the tissue is yet to be developed. This work aims to initiate an understanding of autofluorescence changes depending on immune cell type and activation state. For this, NADH and FAD autofluorescence signals of different murine immune cell subtypes under native conditions, as well as upon in vitro stimulation and cell death, have been evaluated. Autofluorescence was assessed using flow cytometry and multiphoton microscopy. Our results reveal significantly increased NADH and FAD signals in innate immune cells compared to adaptive immune cells. This allowed identification of relative amounts of neutrophils and CD4+ T cells in mixed cell suspensions, by using NADH signals as a differentiation marker. Furthermore, in vitro stimulation significantly increased NADH and FAD autofluorescence in adaptive immune cells and macrophages. Cell death induced a significant drop in NADH autofluorescence, while FAD signals were hardly affected. Taken together, these results demonstrate the value of autofluorescence as a tool to characterize immune cells in different functional states, paving the way to the label-free clinical classification of IBD in the future.
Collapse
Affiliation(s)
- Sarah Lemire
- Department of Internal Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany; (O.-M.T.); (L.K.); (M.F.N.)
- Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Correspondence: (S.L.); (M.J.W.); Tel.: +49-9131-8535894 (S.L.); +49-9131-8535000 (M.J.W.)
| | - Oana-Maria Thoma
- Department of Internal Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany; (O.-M.T.); (L.K.); (M.F.N.)
- Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Lucas Kreiss
- Department of Internal Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany; (O.-M.T.); (L.K.); (M.F.N.)
- Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany; (O.F.); (S.S.)
| | - Simon Völkl
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany; (O.F.); (S.S.)
- Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany
| | - Markus F. Neurath
- Department of Internal Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany; (O.-M.T.); (L.K.); (M.F.N.)
- Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Sebastian Schürmann
- Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany; (O.F.); (S.S.)
- Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany
| | - Maximilian J. Waldner
- Department of Internal Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany; (O.-M.T.); (L.K.); (M.F.N.)
- Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany
- Correspondence: (S.L.); (M.J.W.); Tel.: +49-9131-8535894 (S.L.); +49-9131-8535000 (M.J.W.)
| |
Collapse
|
27
|
Li Y, Shen B, Zou G, Hu R, Pan Y, Qu J, Liu L. Super-Multiplex Nonlinear Optical Imaging Unscrambles the Statistical Complexity of Cancer Subtypes and Tumor Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104379. [PMID: 34927370 PMCID: PMC8844469 DOI: 10.1002/advs.202104379] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/12/2021] [Indexed: 05/21/2023]
Abstract
Label-free nonlinear optical imaging (NLOI) has made tremendous inroads toward unscrambling the microcosmic complexity of cancers. However, harmonic and Raman microscopy offers throughput without redox information to reveal metabolic differentiation, and fluorescence lifetime microscopy lacks the vibrational response of molecules to visualize specific molecular constituents such as lipid. Here, a flexible, robust simultaneous multi-nonlinear imaging and cross-modality system that combines complementary imaging contrast mechanisms is demonstrated. This system, utilizing multiplexed ultrashort pulses, ingeniously integrates typical nonlinear processes, and high-dimension lifetime extension in a single setup to enhance the imaging dimensions and quality. Using this system, the authors perform label-free comprehensive evaluation of clinicopathological tissues of ovarian carcinoma due to its statistical complexity. The results show that the technology provides statistically rich, insightful information with high accuracy, sensitivity, and specificity, in contrast to standard histopathology, and can potentially be a powerful tool for fundamental cancer research and clinical applications.
Collapse
Affiliation(s)
- Yanping Li
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Binglin Shen
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Gengjin Zou
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Rui Hu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Ying Pan
- China–Japan Union Hospital of Jilin UniversityChangchun130033China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| |
Collapse
|
28
|
Wang X, Zhang D, Zhang X, Xing Y, Wu J, Sui X, Huang X, Chang G, Li L. Application of Multiphoton Microscopic Imaging in Study of Gastric Cancer. Technol Cancer Res Treat 2022; 21:15330338221133244. [PMID: 36379591 PMCID: PMC9676310 DOI: 10.1177/15330338221133244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024] Open
Abstract
Multiphoton microscopy (MPM) imaging relies on the nonlinear interaction between ultrashort optical pulses and the samples to achieve image contrast. Featuring larger penetration depth, less phototoxicity, 3-dimensional sectioning capability, no need for labeling, MPM become a powerful medical imaging technique that can identify structural characteristics of tissues at the cellular and subcellular levels. In this review paper, we introduce the working principle of MPM imaging, present the current results of MPM imaging applied to the study of gastric tumors, and discuss the future prospects of this interdisciplinary research field.
Collapse
Affiliation(s)
- Xiaoying Wang
- Strategic Support Force Medical Center, Beijing, China
| | - Di Zhang
- Ningxia Jingyuan County People's Hospital, Ningxia, China
| | - Xiaochun Zhang
- General Hospital of Ningxia Medical University, Ningxia, China
| | - Yuting Xing
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Jihua Wu
- Strategic Support Force Medical Center, Beijing, China
| | - Xinke Sui
- Strategic Support Force Medical Center, Beijing, China
| | - Xin Huang
- Strategic Support Force Medical Center, Beijing, China
| | - Guoqing Chang
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Lianyong Li
- Strategic Support Force Medical Center, Beijing, China
| |
Collapse
|
29
|
Liu G, Valvo V, Ahn SW, Thompson D, Deans K, Kang JW, Bhagavatula S, Dominas C, Jonas O. A Two-Photon Microimaging-Microdevice System for Four-Dimensional Imaging of Local Drug Delivery in Tissues. Int J Mol Sci 2021; 22:11752. [PMID: 34769180 PMCID: PMC8584268 DOI: 10.3390/ijms222111752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Advances in the intratumor measurement of drug responses have included a pioneering biomedical microdevice for high throughput drug screening in vivo, which was further advanced by integrating a graded-index lens based two-dimensional fluorescence micro-endoscope to monitor tissue responses in situ across time. While the previous system provided a bulk measurement of both drug delivery and tissue response from a given region of the tumor, it was incapable of visualizing drug distribution and tissue responses in a three-dimensional (3D) way, thus missing the critical relationship between drug concentration and effect. Here we demonstrate a next-generation system that couples multiplexed intratumor drug release with continuous 3D spatial imaging of the tumor microenvironment via the integration of a miniaturized two-photon micro-endoscope. This enables optical sectioning within the live tissue microenvironment to effectively profile the entire tumor region adjacent to the microdevice across time. Using this novel microimaging-microdevice (MI-MD) system, we successfully demonstrated the four-dimensional imaging (3 spatial dimensions plus time) of local drug delivery in tissue phantom and tumors. Future studies include the use of the MI-MD system for monitoring of localized intra-tissue drug release and concurrent measurement of tissue responses in live organisms, with applications to study drug resistance due to nonuniform drug distribution in tumors, or immune cell responses to anti-cancer agents.
Collapse
Affiliation(s)
- Guigen Liu
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA; (G.L.); (V.V.); (S.W.A.); (D.T.); (K.D.); (S.B.); (C.D.)
| | - Veronica Valvo
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA; (G.L.); (V.V.); (S.W.A.); (D.T.); (K.D.); (S.B.); (C.D.)
| | - Sebastian W. Ahn
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA; (G.L.); (V.V.); (S.W.A.); (D.T.); (K.D.); (S.B.); (C.D.)
| | - Devon Thompson
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA; (G.L.); (V.V.); (S.W.A.); (D.T.); (K.D.); (S.B.); (C.D.)
| | - Kyle Deans
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA; (G.L.); (V.V.); (S.W.A.); (D.T.); (K.D.); (S.B.); (C.D.)
| | - Jeon Woong Kang
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Sharath Bhagavatula
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA; (G.L.); (V.V.); (S.W.A.); (D.T.); (K.D.); (S.B.); (C.D.)
| | - Christine Dominas
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA; (G.L.); (V.V.); (S.W.A.); (D.T.); (K.D.); (S.B.); (C.D.)
| | - Oliver Jonas
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA; (G.L.); (V.V.); (S.W.A.); (D.T.); (K.D.); (S.B.); (C.D.)
| |
Collapse
|
30
|
Li B, Li J, Gan W, Tan Y, Yuan Q. Unveiling the Molecular Dynamics in a Living Cell to the Subcellular Organelle Level Using Second-Harmonic Generation Spectroscopy and Microscopy. Anal Chem 2021; 93:14146-14152. [PMID: 34648265 DOI: 10.1021/acs.analchem.1c02604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Second-harmonic generation (SHG) microscopy has been proved to be a powerful method for investigating the structures of biomaterials. SHG spectra were also generally used to probe the adsorption and cross-membrane transport of molecules on lipid bilayers in situ and in real time. In this work, we applied SHG and two-photon fluorescence (TPF) spectra to investigate the dynamics of an amphiphilic ion with an SHG and TPF chromophore, D289 (4-(4-diethylaminostyry)-1-methyl-pyridinium iodide), on the surface of human chronic myelogenous leukemia (K562) cells and the subcellular structures inside the cells. The adsorption and cross-membrane transport of D289 into the cells and then into the organelles such as mitochondria were revealed. SHG images were also recorded and used to demonstrate their capability of probing molecular dynamics in organelles in K562 cells. This work demonstrated the first SHG investigation of the cross-membrane transport dynamics on the surface of subcellular organelles. It may also shed light on the differentiation of different types of subcellular structures in cells.
Collapse
Affiliation(s)
- Bifei Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Also School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Jianhui Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Also School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Wei Gan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Also School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Qunhui Yuan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Also School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China
| |
Collapse
|
31
|
Tang Y, Anandasabapathy S, Richards‐Kortum R. Advances in optical gastrointestinal endoscopy: a technical review. Mol Oncol 2021; 15:2580-2599. [PMID: 32915503 PMCID: PMC8486567 DOI: 10.1002/1878-0261.12792] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/23/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Optical endoscopy is the primary diagnostic and therapeutic tool for management of gastrointestinal (GI) malignancies. Most GI neoplasms arise from precancerous lesions; thus, technical innovations to improve detection and diagnosis of precancerous lesions and early cancers play a pivotal role in improving outcomes. Over the last few decades, the field of GI endoscopy has witnessed enormous and focused efforts to develop and translate accurate, user-friendly, and minimally invasive optical imaging modalities. From a technical point of view, a wide range of novel optical techniques is now available to probe different aspects of light-tissue interaction at macroscopic and microscopic scales, complementing white light endoscopy. Most of these new modalities have been successfully validated and translated to routine clinical practice. Herein, we provide a technical review of the current status of existing and promising new optical endoscopic imaging technologies for GI cancer screening and surveillance. We summarize the underlying principles of light-tissue interaction, the imaging performance at different scales, and highlight what is known about clinical applicability and effectiveness. Furthermore, we discuss recent discovery and translation of novel molecular probes that have shown promise to augment endoscopists' ability to diagnose GI lesions with high specificity. We also review and discuss the role and potential clinical integration of artificial intelligence-based algorithms to provide decision support in real time. Finally, we provide perspectives on future technology development and its potential to transform endoscopic GI cancer detection and diagnosis.
Collapse
Affiliation(s)
- Yubo Tang
- Department of BioengineeringRice UniversityHoustonTXUSA
| | | | | |
Collapse
|
32
|
Hristu R, Stanciu SG, Dumitru A, Paun B, Floroiu I, Costache M, Stanciu GA. Influence of hematoxylin and eosin staining on the quantitative analysis of second harmonic generation imaging of fixed tissue sections. BIOMEDICAL OPTICS EXPRESS 2021; 12:5829-5843. [PMID: 34692218 PMCID: PMC8515976 DOI: 10.1364/boe.428701] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 05/13/2023]
Abstract
Second harmonic generation (SHG) microscopy has emerged over the past two decades as a powerful tool for tissue characterization and diagnostics. Its main applications in medicine are related to mapping the collagen architecture of in-vivo, ex-vivo and fixed tissues based on endogenous contrast. In this work we present how H&E staining of excised and fixed tissues influences the extraction and use of image parameters specific to polarization-resolved SHG (PSHG) microscopy, which are known to provide quantitative information on the collagen structure and organization. We employ a theoretical collagen model for fitting the experimental PSHG datasets to obtain the second order susceptibility tensor elements ratios and the fitting efficiency. Furthermore, the second harmonic intensity acquired under circular polarization is investigated. The evolution of these parameters in both forward- and backward-collected SHG are computed for both H&E-stained and unstained tissue sections. Consistent modifications are observed between the two cases in terms of the fitting efficiency and the second harmonic intensity. This suggests that similar quantitative analysis workflows applied to PSHG images collected on stained and unstained tissues could yield different results, and hence affect the diagnostic accuracy.
Collapse
Affiliation(s)
- Radu Hristu
- Center for Microcopy-Microanalysis and Information Processing, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Stefan G. Stanciu
- Center for Microcopy-Microanalysis and Information Processing, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Adrian Dumitru
- Department of Pathology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Bogdan Paun
- Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, 40002 Cluj-Napoca, Romania
| | - Iustin Floroiu
- Center for Microcopy-Microanalysis and Information Processing, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Mariana Costache
- Department of Pathology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - George A. Stanciu
- Center for Microcopy-Microanalysis and Information Processing, University Politehnica of Bucharest, 060042 Bucharest, Romania
| |
Collapse
|
33
|
Bojarski C, Waldner M, Rath T, Schürmann S, Neurath MF, Atreya R, Siegmund B. Innovative Diagnostic Endoscopy in Inflammatory Bowel Diseases: From High-Definition to Molecular Endoscopy. Front Med (Lausanne) 2021; 8:655404. [PMID: 34368180 PMCID: PMC8333704 DOI: 10.3389/fmed.2021.655404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/22/2021] [Indexed: 12/30/2022] Open
Abstract
High-definition endoscopy is one essential step in the initial diagnosis of inflammatory bowel disease (IBD) characterizing the extent and severity of inflammation, as well as discriminating ulcerative colitis (UC) from Crohn's disease (CD). Following general recommendations and national guidelines, individual risk stratification should define the appropriate surveillance strategy, biopsy protocol and frequency of endoscopies. Beside high-definition videoendoscopy the application of dyes applied via a spraying catheter is of additional diagnostic value with a higher detection rate of intraepithelial neoplasia (IEN). Virtual chromoendoscopy techniques (NBI, FICE, I-scan, BLI) should not be recommended as a single surveillance strategy in IBD, although newer data suggest a higher comparability to dye-based chromoendoscopy than previously assumed. First results of oral methylene blue formulation are promising for improving the acceptance rate of classical chromoendoscopy. Confocal laser endomicroscopy (CLE) is still an experimental but highly innovative endoscopic procedure with the potential to contribute to the detection of dysplastic lesions. Molecular endoscopy in IBD has taken application of CLE to a higher level and allows topical application of labeled probes, mainly antibodies, against specific target structures expressed in the tissue to predict response or failure to biological therapies. First pre-clinical and in vivo data from label-free multiphoton microscopy (MPM) are now available to characterize mucosal and submucosal inflammation on endoscopy in more detail. These new techniques now have opened the door to individualized and highly specific molecular imaging in IBD in the future and pave the path to personalized medicine approaches. The quality of evidence was stated according to the Oxford Center of evidence-based medicine (March 2009). For this review a Medline search up to January 2021 was performed using the words "inflammatory bowel disease," "ulcerative colitis," "crohn's disease," "chromoendoscopy," "high-definition endoscopy," "confocal laser endomicroscopy," "confocal laser microscopy," "molecular imaging," "multiphoton microscopy."
Collapse
Affiliation(s)
- Christian Bojarski
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for Medicine (Gastroenterology, Infectious diseases, Rheumatology), Berlin, Germany
| | - Maximilian Waldner
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Timo Rath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Schürmann
- Department of Chemical and Biological Engineering, Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie DZI, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie DZI, Erlangen, Germany
| | - Britta Siegmund
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for Medicine (Gastroenterology, Infectious diseases, Rheumatology), Berlin, Germany
| |
Collapse
|
34
|
Liu G, Kang JW, Jonas O. Long-GRIN-Lens Microendoscopy Enabled by Wavefront Shaping for a Biomedical Microdevice: An Analytical Investigation. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3392. [PMID: 34207445 PMCID: PMC8234019 DOI: 10.3390/ma14123392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022]
Abstract
We analytically investigate the feasibility of long graded-index (GRIN)-lens-based microendoscopes through wavefront shaping. Following the very well-defined ray trajectories in a GRIN lens, mode-dependent phase delay is first determined. Then, the phase compensation needed for obtaining diffraction limited resolution is derived. Finally, the diffraction pattern of the lens output is computed using the Rayleigh-Sommerfeld diffraction theory. We show that diffraction-limited resolution is obtained for a 0.5 mm diameter lens with a length over 1 m. It is also demonstrated that different imaging working distances (WDs) can be realized by modifying the phase compensation. When a short design WD is used, a large imaging numerical aperture (NA) higher than 0.4 is achievable even when a low NA lens (NA = 0.1) is used. The long- and thin-GRIN-lens-based microendoscope investigated here, which is attractive for biomedical applications, is being prioritized for use in a clinical stage microdevice that measures three-dimensional drug responses inside the body. The advance described in this work may enable superior imaging capabilities in clinical applications in which long and flexible imaging probes are favored.
Collapse
Affiliation(s)
- Guigen Liu
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA;
| | - Jeon Woong Kang
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Oliver Jonas
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA;
| |
Collapse
|
35
|
Benson S, de Moliner F, Fernandez A, Kuru E, Asiimwe NL, Lee JS, Hamilton L, Sieger D, Bravo IR, Elliot AM, Feng Y, Vendrell M. Photoactivatable metabolic warheads enable precise and safe ablation of target cells in vivo. Nat Commun 2021; 12:2369. [PMID: 33888691 PMCID: PMC8062536 DOI: 10.1038/s41467-021-22578-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/19/2021] [Indexed: 02/02/2023] Open
Abstract
Photoactivatable molecules enable ablation of malignant cells under the control of light, yet current agents can be ineffective at early stages of disease when target cells are similar to healthy surrounding tissues. In this work, we describe a chemical platform based on amino-substituted benzoselenadiazoles to build photoactivatable probes that mimic native metabolites as indicators of disease onset and progression. Through a series of synthetic derivatives, we have identified the key chemical groups in the benzoselenadiazole scaffold responsible for its photodynamic activity, and subsequently designed photosensitive metabolic warheads to target cells associated with various diseases, including bacterial infections and cancer. We demonstrate that versatile benzoselenadiazole metabolites can selectively kill pathogenic cells - but not healthy cells - with high precision after exposure to non-toxic visible light, reducing any potential side effects in vivo. This chemical platform provides powerful tools to exploit cellular metabolic signatures for safer therapeutic and surgical approaches.
Collapse
Affiliation(s)
- Sam Benson
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Fabio de Moliner
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Antonio Fernandez
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Erkin Kuru
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Nicholas L Asiimwe
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST) & Bio-Med Program KIST-School UST, Seoul, South Korea
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University College of Medicine, Seoul, South Korea
| | - Lloyd Hamilton
- The Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Dirk Sieger
- The Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Isabel R Bravo
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Abigail M Elliot
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Yi Feng
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK.
| | - Marc Vendrell
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
36
|
Solitano V, D’Amico F, Allocca M, Fiorino G, Zilli A, Loy L, Gilardi D, Radice S, Correale C, Danese S, Peyrin-Biroulet L, Furfaro F. Rediscovering histology: what is new in endoscopy for inflammatory bowel disease? Therap Adv Gastroenterol 2021; 14:17562848211005692. [PMID: 33948114 PMCID: PMC8053840 DOI: 10.1177/17562848211005692] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/08/2021] [Indexed: 02/04/2023] Open
Abstract
The potential of endoscopic evaluation in the management of inflammatory bowel diseases (IBD) has undoubtedly grown over the last few years. When dealing with IBD patients, histological remission (HR) is now considered a desirable target along with symptomatic and endoscopic remission, due to its association with better long-term outcomes. Consequently, the ability of endoscopic techniques to reflect microscopic findings in vivo without having to collect biopsies has become of upmost importance. In this context, a more accurate evaluation of inflammatory disease activity and the detection of dysplasia represent two mainstay targets for IBD endoscopists. New diagnostic technologies have been developed, such as dye-less chromoendoscopy, endomicroscopy, and molecular imaging, but their real incorporation in daily practice is not yet well defined. Although dye-chromoendoscopy is still recommended as the gold standard approach in dysplasia surveillance, recent research questioned the superiority of this technique over new advanced dye-less modalities [narrow band imaging (NBI), Fuji intelligent color enhancement (FICE), i-scan, blue light imaging (BLI) and linked color imaging (LCI)]. The endoscopic armamentarium might also be enriched by new video capsule endoscopy for monitoring disease activity, and high expectations are placed on the application of artificial intelligence (AI) systems to reduce operator-subjectivity and inter-observer variability. The goal of this review is to provide an updated insight on contemporary knowledge regarding new endoscopic techniques and devices, with special focus on their role in the assessment of disease activity and colorectal cancer surveillance.
Collapse
Affiliation(s)
- Virginia Solitano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Ferdinando D’Amico
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy,IBD Center, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Mariangela Allocca
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy,IBD Center, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Gionata Fiorino
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy,IBD Center, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Alessandra Zilli
- IBD Center, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Laura Loy
- IBD Center, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Daniela Gilardi
- IBD Center, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Simona Radice
- IBD Center, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Carmen Correale
- IBD Center, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Silvio Danese
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy,IBD Center, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology and Inserm NGERE U1256, University Hospital of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | | |
Collapse
|
37
|
Borile G, Sandrin D, Filippi A, Anderson KI, Romanato F. Label-Free Multiphoton Microscopy: Much More Than Fancy Images. Int J Mol Sci 2021; 22:2657. [PMID: 33800802 PMCID: PMC7961783 DOI: 10.3390/ijms22052657] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Multiphoton microscopy has recently passed the milestone of its first 30 years of activity in biomedical research. The growing interest around this approach has led to a variety of applications from basic research to clinical practice. Moreover, this technique offers the advantage of label-free multiphoton imaging to analyze samples without staining processes and the need for a dedicated system. Here, we review the state of the art of label-free techniques; then, we focus on two-photon autofluorescence as well as second and third harmonic generation, describing physical and technical characteristics. We summarize some successful applications to a plethora of biomedical research fields and samples, underlying the versatility of this technique. A paragraph is dedicated to an overview of sample preparation, which is a crucial step in every microscopy experiment. Afterwards, we provide a detailed review analysis of the main quantitative methods to extract important information and parameters from acquired images using second harmonic generation. Lastly, we discuss advantages, limitations, and future perspectives in label-free multiphoton microscopy.
Collapse
Affiliation(s)
- Giulia Borile
- Laboratory of Optics and Bioimaging, Institute of Pediatric Research Città della Speranza, 35127 Padua, Italy;
- Department of Physics and Astronomy “G. Galilei”, University of Padua, 35131 Padua, Italy; (D.S.); (A.F.)
| | - Deborah Sandrin
- Department of Physics and Astronomy “G. Galilei”, University of Padua, 35131 Padua, Italy; (D.S.); (A.F.)
- L.I.F.E.L.A.B. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, 35128 Padua, Italy
| | - Andrea Filippi
- Department of Physics and Astronomy “G. Galilei”, University of Padua, 35131 Padua, Italy; (D.S.); (A.F.)
| | - Kurt I. Anderson
- Crick Advanced Light Microscopy Facility (CALM), The Francis Crick Institute, London NW1 1AT, UK;
| | - Filippo Romanato
- Laboratory of Optics and Bioimaging, Institute of Pediatric Research Città della Speranza, 35127 Padua, Italy;
- Department of Physics and Astronomy “G. Galilei”, University of Padua, 35131 Padua, Italy; (D.S.); (A.F.)
- L.I.F.E.L.A.B. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, 35128 Padua, Italy
| |
Collapse
|
38
|
A Miniaturized Platform for Multiplexed Drug Response Imaging in Live Tumors. Cancers (Basel) 2021; 13:cancers13040653. [PMID: 33562152 PMCID: PMC7915324 DOI: 10.3390/cancers13040653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary We have developed an implantable microdevice that is placed into a live tumor, and can directly image how effective various chemotherapy drugs are at inducing cell death, without having to remove or process the tumor tissue. Currently drug optimization is performed by assessing tumor shrinkage after treating a patient with systemic doses of a chemotherapy agent; this only evaluates a single treatment at a time and typically takes weeks-months before an optimal treatment strategy is found (if found at all) for a specific patient. In contrast, using the technology presented here, a personalized cancer treatment strategy can potentially be optimized and tailored to a specific patient’s tumor characteristics within several hours, without requiring surgical tissue removal or prolonged trials of potentially ineffective chemotherapies. Abstract By observing the activity of anti-cancer agents directly in tumors, there is potential to greatly expand our understanding of drug response and develop more personalized cancer treatments. Implantable microdevices (IMD) have been recently developed to deliver microdoses of chemotherapeutic agents locally into confined regions of live tumors; the tissue can be subsequently removed and analyzed to evaluate drug response. This method has the potential to rapidly screen multiple drugs, but requires surgical tissue removal and only evaluates drug response at a single timepoint when the tissue is excised. Here, we describe a “lab-in-a-tumor” implantable microdevice (LIT-IMD) platform to image cell-death drug response within a live tumor, without requiring surgical resection or tissue processing. The LIT-IMD is inserted into a live tumor and delivers multiple drug microdoses into spatially discrete locations. In parallel, it locally delivers microdose levels of a fluorescent cell-death assay, which diffuses into drug-exposed tissues and accumulates at sites of cell death. An integrated miniaturized fluorescence imaging probe images each region to evaluate drug-induced cell death. We demonstrate ability to evaluate multi-drug response over 8 h using murine tumor models and show correlation with gold-standard conventional fluorescence microscopy and histopathology. This is the first demonstration of a fully integrated platform for evaluating multiple chemotherapy responses in situ. This approach could enable a more complete understanding of drug activity in live tumors, and could expand the utility of drug-response measurements to a wide range of settings where surgery is not feasible.
Collapse
|
39
|
Schneidereit D, Bröllochs A, Ritter P, Kreiß L, Mokhtari Z, Beilhack A, Krönke G, Ackermann JA, Faas M, Grüneboom A, Schürmann S, Friedrich O. An advanced optical clearing protocol allows label-free detection of tissue necrosis via multiphoton microscopy in injured whole muscle. Am J Cancer Res 2021; 11:2876-2891. [PMID: 33456578 PMCID: PMC7806485 DOI: 10.7150/thno.51558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/12/2020] [Indexed: 01/27/2023] Open
Abstract
Rationale: Structural remodeling or damage as a result of disease or injury is often not evenly distributed throughout a tissue but strongly depends on localization and extent of damaging stimuli. Skeletal muscle as a mechanically active organ can express signs of local or even systemic myopathic damage, necrosis, or repair. Conventionally, muscle biopsies (patients) or whole muscles (animal models) are mechanically sliced and stained to assess structural alterations histologically. Three-dimensional tissue information can be obtained by applying deep imaging modalities, e.g. multiphoton or light-sheet microscopy. Chemical clearing approaches reduce scattering, e.g. through matching refractive tissue indices, to overcome optical penetration depth limits in thick tissues. Methods: Here, we optimized a range of different clearing protocols. We find aqueous solution-based protocols employing (20-80%) 2,2'-thiodiethanol (TDE) to be advantageous over organic solvents (dibenzyl ether, cinnamate) regarding the preservation of muscle morphology, ease-of-use, hazard level, and costs. Results: Applying TDE clearing to a mouse model of local cardiotoxin (CTX)-induced muscle necrosis, a complete loss of myosin-II signals was observed in necrotic areas with little change in fibrous collagen or autofluorescence (AF) signals. The 3D aspect of myofiber integrity could be assessed, and muscle necrosis in whole muscle was quantified locally via the ratios of detected AF, forward- and backward-scattered Second Harmonic Generation (fSHG, bSHG) signals. Conclusion: TDE optical clearing is a versatile tool to study muscle architecture in conjunction with label-free multiphoton imaging in 3D in injury/myopathy models and might also be useful in studying larger biofabricated constructs in regenerative medicine.
Collapse
|
40
|
Kreiß L, Thoma OM, Dilipkumar A, Carlé B, Longequeue P, Kunert T, Rath T, Hildner K, Neufert C, Vieth M, Neurath MF, Friedrich O, Schürmann S, Waldner MJ. Label-Free In Vivo Histopathology of Experimental Colitis via 3-Channel Multiphoton Endomicroscopy. Gastroenterology 2020; 159:832-834. [PMID: 32544392 DOI: 10.1053/j.gastro.2020.05.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Lucas Kreiß
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany; Erlangen Graduate School in Advanced Optical Technologies
| | - Oana-Maria Thoma
- Erlangen Graduate School in Advanced Optical Technologies; Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ashwathama Dilipkumar
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany; Erlangen Graduate School in Advanced Optical Technologies
| | - Birgitta Carlé
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Pascal Longequeue
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Timo Kunert
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Timo Rath
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Kai Hildner
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Clemens Neufert
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Bayreuth, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany; Deutsches Zentrum Immuntherapie DZI, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany; Erlangen Graduate School in Advanced Optical Technologies
| | - Sebastian Schürmann
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany; Erlangen Graduate School in Advanced Optical Technologies
| | - Maximilian J Waldner
- Erlangen Graduate School in Advanced Optical Technologies; Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany; Deutsches Zentrum Immuntherapie DZI, Erlangen, Germany.
| |
Collapse
|
41
|
Le Fur M, Zhou IY, Catalano O, Caravan P. Toward Molecular Imaging of Intestinal Pathology. Inflamm Bowel Dis 2020; 26:1470-1484. [PMID: 32793946 PMCID: PMC7500524 DOI: 10.1093/ibd/izaa213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel disease (IBD) is defined by a chronic relapsing and remitting inflammation of the gastrointestinal tract, with intestinal fibrosis being a major complication. The etiology of IBD remains unknown, but it is thought to arise from a dysregulated and excessive immune response to gut luminal microbes triggered by genetic and environmental factors. To date, IBD has no cure, and treatments are currently directed at relieving symptoms and treating inflammation. The current diagnostic of IBD relies on endoscopy, which is invasive and does not provide information on the presence of extraluminal complications and molecular aspect of the disease. Cross-sectional imaging modalities such as computed tomography enterography (CTE), magnetic resonance enterography (MRE), positron emission tomography (PET), single photon emission computed tomography (SPECT), and hybrid modalities have demonstrated high accuracy for the diagnosis of IBD and can provide both functional and morphological information when combined with the use of molecular imaging probes. This review presents the state-of-the-art imaging techniques and molecular imaging approaches in the field of IBD and points out future directions that could help improve our understanding of IBD pathological processes, along with the development of efficient treatments.
Collapse
Affiliation(s)
- Mariane Le Fur
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, The Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, MA, USA
| | - Iris Y Zhou
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, The Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, MA, USA
| | - Onofrio Catalano
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, The Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, MA, USA,The Division of Abdominal Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, MA, USA
| | - Peter Caravan
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, The Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, MA, USA,Address correspondence to: Peter Caravan, PhD, The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, The Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Charlestown 02129, MA, USA. E-mail:
| |
Collapse
|
42
|
Sehm T, Uckermann O, Galli R, Meinhardt M, Rickelt E, Krex D, Schackert G, Kirsch M. Label-free multiphoton microscopy as a tool to investigate alterations of cerebral aneurysms. Sci Rep 2020; 10:12359. [PMID: 32704100 PMCID: PMC7378195 DOI: 10.1038/s41598-020-69222-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/25/2020] [Indexed: 12/21/2022] Open
Abstract
Cerebral aneurysms are abnormal focal dilatations of arterial vessel walls with pathological vessel structure alterations. Sudden rupture can lead to a subarachnoid hemorrhage, which is associated with a high mortality. Therefore, the origin of cerebral aneurysms as well as the progression to the point of rupture needs to be further investigated. Label-free multimodal multiphoton microscopy (MPM) was performed on resected human aneurysm domes and integrated three modalities: coherent anti-Stokes Raman scattering, endogenous two-photon fluorescence and second harmonic generation. We showed that MPM is a completely label-free and real-time powerful tool to detect pathognomonic histopathological changes in aneurysms, e.g. thickening and thinning of vessel walls, intimal hyperplasia, intra-wall haemorrhage, calcification as well as atherosclerotic changes. In particular, the loss or fragmentation of elastin as well as fibromatous wall remodelling appeared very distinct. Remarkably, cholesterol and lipid deposits were clearly visible in the multiphoton images. MPM provides morphological and biochemical information that are crucial for understanding the mechanisms of aneurysm formation and progression.
Collapse
Affiliation(s)
- Tina Sehm
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Fetscherstraße 74, 01307, Dresden, Saxony, Germany
- Neurosurgery, University Hospital Magdeburg, Otto-Von-Guericke University, Magdeburg, Saxony-Anhalt, Germany
| | - Ortrud Uckermann
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Fetscherstraße 74, 01307, Dresden, Saxony, Germany.
| | - Roberta Galli
- Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, , Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Saxony, Germany
- National Center for Tumor Diseases (NCT), Dresden, Saxony, Germany
| | - Matthias Meinhardt
- Pathology and Neuropathology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Saxony, Germany
| | - Elke Rickelt
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Fetscherstraße 74, 01307, Dresden, Saxony, Germany
| | - Dietmar Krex
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Fetscherstraße 74, 01307, Dresden, Saxony, Germany
| | - Gabriele Schackert
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Fetscherstraße 74, 01307, Dresden, Saxony, Germany
- National Center for Tumor Diseases (NCT), Dresden, Saxony, Germany
| | - Matthias Kirsch
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Fetscherstraße 74, 01307, Dresden, Saxony, Germany
- CRTD/DFG-Center for Regenerative Therapies Dresden - Cluster of Excellence, Dresden, Saxony, Germany
- National Center for Tumor Diseases (NCT), Dresden, Saxony, Germany
- Asklepios Kliniken Schildautal, Seesen, Lower Saxony, Germany
| |
Collapse
|
43
|
Esquibel CR, Wendt KD, Lee HC, Gaire J, Shoffstall A, Urdaneta ME, Chacko JV, Brodnick SK, Otto KJ, Capadona JR, Williams JC, Eliceiri KW. Second Harmonic Generation Imaging of Collagen in Chronically Implantable Electrodes in Brain Tissue. Front Neurosci 2020; 14:95. [PMID: 32733179 PMCID: PMC7358524 DOI: 10.3389/fnins.2020.00095] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/23/2020] [Indexed: 12/15/2022] Open
Abstract
Advances in neural engineering have brought about a number of implantable devices for improved brain stimulation and recording. Unfortunately, many of these micro-implants have not been adopted due to issues of signal loss, deterioration, and host response to the device. While glial scar characterization is critical to better understand the mechanisms that affect device functionality or tissue viability, analysis is frequently hindered by immunohistochemical tissue processing methods that result in device shattering and tissue tearing artifacts. Devices are commonly removed prior to sectioning, which can itself disturb the quality of the study. In this methods implementation study, we use the label free, optical sectioning method of second harmonic generation (SHG) to examine brain slices of various implanted intracortical electrodes and demonstrate collagen fiber distribution not found in normal brain tissue. SHG can easily be used in conjunction with multiphoton microscopy to allow direct intrinsic visualization of collagen-containing glial scars on the surface of cortically implanted electrode probes without imposing the physical strain of tissue sectioning methods required for other high resolution light microscopy modalities. Identification and future measurements of these collagen fibers may be useful in predicting host immune response and device signal fidelity.
Collapse
Affiliation(s)
- Corinne R. Esquibel
- Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
| | - Kristy D. Wendt
- Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
| | - Heui C. Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Janak Gaire
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Andrew Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Morgan E. Urdaneta
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Jenu V. Chacko
- Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
| | - Sarah K. Brodnick
- Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
| | - Kevin J. Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Jeffrey R. Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Justin C. Williams
- Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
| | - K. W. Eliceiri
- Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
- Morgridge Institute for Research, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
44
|
Li W, He P, Yuan W, Yu Y. Efficiency-enhanced and sidelobe-suppressed super-oscillatory lenses for sub-diffraction-limit fluorescence imaging with ultralong working distance. NANOSCALE 2020; 12:7063-7071. [PMID: 32187246 DOI: 10.1039/c9nr10697a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Super-oscillatory lens (SOL) optical microscopy, behaving as a non-invasive and universal imaging technique, as well as being a simple post-processing procedure, may provide a potential application for sub-diffraction-limit fluorescence imaging. However, the low energy concentration, high-intensity sidelobes and micrometer-scale working distance of the reported planar SOLs impose unavoidable restrictions on the ground-state applications. Here, we demonstrate step-shaped SOLs based on the multiple-phase-modulated (MPM) method to improve the focusing efficiency. Two pivotal advantages are thus generated: (i) the fabrication complexity can be effectively reduced based on several conventional optical lithography steps; (ii) the focusing efficiency is much higher than that of the random MPM ones due to the efficient manipulation of the wavefronts, bringing about a stronger light concentration to the focal spot. Additionally, the ratio of the sidelobe intensity is flexibly tuned to meet the customized requirements, and a 2 mm-working-distance MPM SOL with the sidelobe intensity highly suppressed is finally exploited. For the first time, as far as we know, a SOL-based fluorescence microscopy without the pinhole filter to map the horizontal morphology of the dispersive fluorescent particles is established. Compared with the results achieved by the conventional wide-field microscopy, the sample details beating the diffraction limit can be reconstructed by simple imaging fusion. This research demonstrates the promising applications of SOLs for low-cost, simplified and highly customized sub-diffraction-limit fluorescence imaging systems free from photobleaching and an extremely short working distance.
Collapse
Affiliation(s)
- Wenli Li
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Room 2501, No.45, Gaoxin South 9th Road, Nanshan District, Guangdong, Shenzhen 518057, China
| | | | | | | |
Collapse
|
45
|
Bardet SM, Cortese J, Blanc R, Mounayer C, Rouchaud A. Multiphoton microscopy for pre-clinical evaluation of flow-diverter stents for treating aneurysms. J Neuroradiol 2020; 48:200-206. [PMID: 32205257 DOI: 10.1016/j.neurad.2020.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Conventional histological analyses are the gold standard for the study of aneurysms and vascular pathologies in pre-clinical research. Over the past decade, in vivo and ex vivo imaging using multiphoton microscopy have emerged as powerful pre-clinical tools for detailed tissue analyses that can assess morphology, the extracellular matrix (ECM), cell density and vascularisation. Multiphoton microscopy allows for deeper tissue penetration with minor phototoxicity. OBJECTIVE The present study aimed to demonstrate the current status of multimodality imaging, including multiphoton microscopy, for detailed analyses of neo-endothelialisation and ECM evolution after flow-diverter stent (FDS) treatment in an experimental rabbit model of aneurysms. METHODS Multiphoton microscopy tools for assessing autofluorescence and second harmonic generation (SHG) signals from biological tissues were used to evaluate the endovascular treatment of intracranial aneurysms in an animal model of aneurysms (pig, rabbit). Results from multiphoton microscopy were compared to those from standard histology, electronic and bright field microscopy. CONCLUSIONS The present study describes novel evaluation modes based on multiphoton microscopy for visualising tissue morphology (e.g., collagen, elastin, and cells) to qualify and quantify the extent of neo-intimal formation of covered arteries and device integration into the arterial wall using a rabbit model of intracranial aneurysms treated with FDS.
Collapse
Affiliation(s)
- Sylvia M Bardet
- University of Limoges, 123, avenue Albert-Thomas, XLIM UMR CNRS 7252, 87060 Limoges, France.
| | - Jonathan Cortese
- Bichat University Hospital, INSERM U1148-LVTS, Paris, France; Bicetre Hospital, Department of Interventional Neuroradiology, Paris, France
| | - Raphaël Blanc
- Department of Interventional Neuroradiology, Fondation Ophtalmologique Adolphe-de-Rothschild, Paris, France
| | - Charbel Mounayer
- University of Limoges, 123, avenue Albert-Thomas, XLIM UMR CNRS 7252, 87060 Limoges, France; University Hospital, Department of Interventional Neuroradiology, Limoges, France
| | - Aymeric Rouchaud
- University of Limoges, 123, avenue Albert-Thomas, XLIM UMR CNRS 7252, 87060 Limoges, France; University Hospital, Department of Interventional Neuroradiology, Limoges, France.
| |
Collapse
|
46
|
Mundo AI, Greening GJ, Fahr MJ, Hale LN, Bullard EA, Rajaram N, Muldoon TJ. Diffuse reflectance spectroscopy to monitor murine colorectal tumor progression and therapeutic response. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-16. [PMID: 32141266 PMCID: PMC7058691 DOI: 10.1117/1.jbo.25.3.035002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/17/2020] [Indexed: 05/08/2023]
Abstract
SIGNIFICANCE Many studies in colorectal cancer (CRC) use murine ectopic tumor models to determine response to treatment. However, these models do not replicate the tumor microenvironment of CRC. Physiological information of treatment response derived via diffuse reflectance spectroscopy (DRS) from murine primary CRC tumors provide a better understanding for the development of new drugs and dosing strategies in CRC. AIM Tumor response to chemotherapy in a primary CRC model was quantified via DRS to extract total hemoglobin content (tHb), oxygen saturation (StO2), oxyhemoglobin, and deoxyhemoglobin in tissue. APPROACH A multimodal DRS and imaging probe (0.78 mm outside diameter) was designed and validated to acquire diffuse spectra longitudinally-via endoscopic guidance-in developing colon tumors under 5-fluoruracil (5-FU) maximum-tolerated (MTD) and metronomic regimens. A filtering algorithm was developed to compensate for positional uncertainty in DRS measurements Results: A maximum increase in StO2 was observed in both MTD and metronomic chemotherapy-treated murine primary CRC tumors at week 4 of neoadjuvant chemotherapy, with 21 ± 6 % and 17 ± 6 % fold changes, respectively. No significant changes were observed in tHb. CONCLUSION Our study demonstrates the feasibility of DRS to quantify response to treatment in primary CRC models.
Collapse
Affiliation(s)
- Ariel I. Mundo
- University of Arkansas, Department of Biomedical Engineering, Fayetteville, Arkansas, United States
| | - Gage. J. Greening
- University of Arkansas, Department of Biomedical Engineering, Fayetteville, Arkansas, United States
| | - Michael J. Fahr
- University of Arkansas, Department of Computer Science, Fayetteville, Arkansas, United States
| | - Lawrence N. Hale
- University of Arkansas, Department of Chemistry and Biochemistry, Fayetteville, Arkansas, United States
| | - Elizabeth A. Bullard
- University of Arkansas, Department of Biomedical Engineering, Fayetteville, Arkansas, United States
| | - Narasimhan Rajaram
- University of Arkansas, Department of Biomedical Engineering, Fayetteville, Arkansas, United States
| | - Timothy J. Muldoon
- University of Arkansas, Department of Biomedical Engineering, Fayetteville, Arkansas, United States
- Address all correspondence to Timothy J. Muldoon, E-mail:
| |
Collapse
|