1
|
Zhu Y, Zhuang W, Cheng H. Strategies to Enhance Protein Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6457-6470. [PMID: 40052814 PMCID: PMC11924232 DOI: 10.1021/acs.langmuir.4c04636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/19/2025]
Abstract
Therapeutic proteins play a crucial role in modern healthcare. However, the rapid clearance of proteins in the circulation system poses a significant threat to their therapeutic efficacy. The generation of anti-drug antibodies expedites drug clearance, resulting in another challenge to overcome in protein delivery. Several methods to increase the circulation half-lives of these proteins and to minimize their immunogenicity have been developed. This Review discusses the causes of protein clearance in the body, evaluates the FDA-approved strategies to prolong protein circulation, and highlights recent progress in the field. Additionally, the strengths and drawbacks of these methods and our perspectives for advancing protein delivery are provided.
Collapse
Affiliation(s)
- Yucheng Zhu
- Department of Materials Science
and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Weisi Zhuang
- Department of Materials Science
and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Hao Cheng
- Department of Materials Science
and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Wang J, Fu D, Tang C, Shu G, Zhang X, Zhang X, Pan J, Sun SK. Bismuth Chelate-Mediated Digital Subtraction Angiography. Adv Healthc Mater 2024; 13:e2401653. [PMID: 38830126 DOI: 10.1002/adhm.202401653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Indexed: 06/05/2024]
Abstract
Digital subtraction angiography (DSA) is considered the "gold standard" for the diagnosis of vascular diseases. However, the contrast agents used in DSA are limited to iodine (I)-based small molecules, which are unsuitable for patients with contraindications. Here, iodine-free DSA utilizing a bismuth (Bi) chelate, Bi-DTPA Dimeglumine, is proposed for vascular visualization for the first time. Bi-DTPA Dimeglumine possesses a simple synthesis process without the need for purification, large-scale production ability (over 200 g in the lab), superior X-ray imaging capability, renal clearance capacity, and good biocompatibility. Bi-DTPA-enhanced DSA can clearly display the arteries of the rabbit's head and lower limbs, with a minimum vascular resolution of 0.5 mm. The displayed integrity of terminal vessels by Bi-DTPA-enhanced DSA is superior to that of iopromide-enhanced DSA. In a rabbit model of thrombotic disease, Bi-DTPA Dimeglumine-enhanced DSA enables the detection of embolism and subsequent reevaluation of vascular conditions after recanalization therapy. This proposed iodine-free DSA provides a promising and universal approach for diagnosing vascular diseases.
Collapse
Affiliation(s)
- Jiaojiao Wang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Dianxun Fu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Cong Tang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Gang Shu
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xuejun Zhang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Xuening Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China
| |
Collapse
|
3
|
Neumann K. The case for poly(ylides) as a class of charge-neutral, hydrophilic polymers with applications in biomaterials science. Biomater Sci 2024; 12:5481-5490. [PMID: 39279503 DOI: 10.1039/d4bm00928b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Many applications of biomaterials require hydrophilic polymers as building blocks, including hydrogels and nanomedicinal devices. Besides enabling sufficient swelling properties in aqueous environments, hydrophilic polymers provide hydration layers, which are considered a major requirement when designing non-fouling surfaces and materials. For the last few decades, polyethylene glycol has been seen as the gold standard for such applications. However, reports on its stability and immunogenicity have urged chemists to identify alternatives with comparable or superior properties. In addition to biopolymers, zwitterionic polymers have gained increasing attention by effectively offering an overall charge-neutral scaffold capable of forming strong hydration layers. Driven by an enhanced understanding of the structure-property relationship of zwitterionic materials, poly(ylides) have emerged as a new class of hydrophilic and charge-neutral polymers. By having the negative charge adjacent to the positive charge, ylides offer not only a minimal dipole moment but also maintain their overall charge-neutral nature. Despite some early reports on their synthesis during the 1980s, polymeric ylides were largely overlooked as a class of polymers, and their utility as unique hydrophilic building blocks for the design of biomaterials and nanomedicinal tools remained elusive. In recent years, several groups have reported N-oxide and carbon-centered ylide-based polymers as highly effective building blocks for the design of antifouling materials and nanomedicines. Here, by reviewing recent progress and understanding of structure-property relationships, arguments are provided explaining why polymeric ylides should be classified as a standalone class of hydrophilic polymers. Consequently, the author concludes that the term 'poly(ylide)' or 'polymeric ylides' should be routinely used to adequately describe this emerging class of polymers.
Collapse
Affiliation(s)
- Kevin Neumann
- Institute for Molecules and Materials, Radboud University, The Netherlands.
| |
Collapse
|
4
|
Witzdam L, White T, Rodriguez-Emmenegger C. Steps Toward Recapitulating Endothelium: A Perspective on the Next Generation of Hemocompatible Coatings. Macromol Biosci 2024; 24:e2400152. [PMID: 39072925 DOI: 10.1002/mabi.202400152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Endothelium, the lining in this blood vessel, orchestrates three main critical functions such as protecting blood components, modulating of hemostasis by secreting various inhibitors, and directing clot digestion (fibrinolysis) by activating tissue plasminogen activator. No other surface can perform these tasks; thus, the contact of blood and blood-contacting medical devices inevitably leads to the activation of coagulation, often causing device failure, and thromboembolic complications. This perspective, first, discusses the biological mechanisms of activation of coagulation and highlights the efforts of advanced coatings to recapitulate one characteristic of endothelium, hereafter single functions of endothelium and noting necessity of the synergistic integration of its three main functions. Subsequently, it is emphasized that to overcome the challenges of blood compatibility an endothelium-mimicking system is needed, proposing a synergy of bottom-up synthetic biology, particularly synthetic cells, with passive- and bioactive surface coatings. Such integration holds promise for developing advanced biomaterials capable of recapitulating endothelial functions, thereby enhancing the hemocompatibility and performance of blood-contacting medical devices.
Collapse
Affiliation(s)
- Lena Witzdam
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Tom White
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
| | - Cesar Rodriguez-Emmenegger
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials and Nanomedicine, The Institute of Health Carlos III, Madrid, 28029, Spain
| |
Collapse
|
5
|
Maiti D, Yokoyama M, Shiraishi K. Impact of the Hydrophilicity of Poly(sarcosine) on Poly(ethylene glycol) (PEG) for the Suppression of Anti-PEG Antibody Binding. ACS OMEGA 2024; 9:34577-34588. [PMID: 39157078 PMCID: PMC11325419 DOI: 10.1021/acsomega.4c02655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 08/20/2024]
Abstract
A method of poly(ethylene glycol) (PEG) conjugation is known as PEGylation, which has been employed to deliver therapeutic drugs, proteins, or nanoparticles by considering the intrinsic non- or very low immunogenic property of PEG. However, PEG has its weaknesses, and one major concern is the potential immunogenicity of PEGylated proteins. Because of its hydrophilicity, poly(sarcosine) (P(Sar)) may be an attractive-and superior-substitute for PEG. In the present study, we designed a double hydrophilic diblock copolymer, methoxy-PEG-b-P(Sar) m (m = 5-55) (mPEG-P(Sar) m ), and synthesized a triblock copolymer with hydrophobic poly(l-isoleucine) (P(Ile)). We validated that double hydrophilic mPEG-P(Sar) block copolymers suppressed the specific binding of three monoclonal anti-PEG antibodies (anti-PEG mAbs) to PEG. The results of our indirect ELISAs indicate that P(Sar) significantly helps to reduce the binding of anti-PEG mAbs to PEG. Importantly, the steady suppression of this binding was made possible, in part, thanks to the maximum number of sarcosine units in the triblock copolymer, as evidenced by sandwich ELISA and biolayer interferometry assay (BLI): the intrinsic hydrophilicity of P(Sar) had a clear supportive effect on PEG. Finally, because we used P(Ile) as a hydrophobic block, PEG-P(Sar) might be an attractive alternative to PEG in the search for protein shields that minimize the immunogenicity of PEGylated proteins.
Collapse
Affiliation(s)
- Debabrata Maiti
- Research Center for Medical
Sciences, The Jikei University School of
Medicine, 163-1, Kashiwa-shita, Kashiwa, Chiba 277-0004, Japan
| | - Masayuki Yokoyama
- Research Center for Medical
Sciences, The Jikei University School of
Medicine, 163-1, Kashiwa-shita, Kashiwa, Chiba 277-0004, Japan
| | - Kouichi Shiraishi
- Research Center for Medical
Sciences, The Jikei University School of
Medicine, 163-1, Kashiwa-shita, Kashiwa, Chiba 277-0004, Japan
| |
Collapse
|
6
|
Wang J, Wang Y, Li J, Ying J, Mu Y, Zhang X, Zhou X, Sun L, Jiang H, Zhuo W, Shen Y, Zhou T, Liu X, Zhou Q. Neutrophil Extracellular Traps-Inhibiting and Fouling-Resistant Polysulfoxides Potently Prevent Postoperative Adhesion, Tumor Recurrence, and Metastasis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400894. [PMID: 38636448 DOI: 10.1002/adma.202400894] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/19/2024] [Indexed: 04/20/2024]
Abstract
Peritoneal metastasis (PM) is considered one of the most dreaded forms of cancer metastases for both patients and physicians. Aggressive cytoreductive surgery (CRS) is the primary treatment for peritoneal metastasis. Unfortunately, this intensive treatment frequently causes clinical complications, such as postoperative recurrence, metastasis, and adhesion formation. Emerging evidence suggests that neutrophil extracellular traps (NETs) released by inflammatory neutrophils contribute to these complications. Effective NET-targeting strategies thus show considerable potential in counteracting these complications but remain challenging. Here, one type of sulfoxide-containing homopolymer, PMeSEA, with potent fouling-resistant and NET-inhibiting capabilities, is synthesized and screened. Hydrating sulfoxide groups endow PMeSEA with superior nonfouling ability, significantly inhibiting protein/cell adhesion. Besides, the polysulfoxides can be selectively oxidized by ClO- which is required to stabilize the NETs rather than H2O2, and ClO- scavenging effectively inhibits NETs formation without disturbing redox homeostasis in tumor cells and quiescent neutrophils. As a result, PMeSEA potently prevents postoperative adhesions, significantly suppresses peritoneal metastasis, and shows synergetic antitumor activity with chemotherapeutic 5-Fluorouracil. Moreover, coupling CRS with PMeSEA potently inhibits CRS-induced tumor metastatic relapse and postoperative adhesions. Notably, PMeSEA exhibits low in vivo acute and subacute toxicities, implying significant potential for clinical postoperative adjuvant treatment.
Collapse
Affiliation(s)
- Jiafeng Wang
- Department of Pharmacology, and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yechun Wang
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Junjun Li
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Jiajia Ying
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Yongli Mu
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Xuanhao Zhang
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Xuefei Zhou
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Leimin Sun
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Haiping Jiang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Wei Zhuo
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310020, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310000, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Tianhua Zhou
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310020, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310000, China
| | - Xiangrui Liu
- Department of Pharmacology, and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310020, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310000, China
| | - Quan Zhou
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
7
|
Wang Y, Wang J, Li J, Mu Y, Ying J, Liu Z, Wu M, Geng Y, Zhou X, Zhou T, Shen Y, Sun L, Liu X, Zhou Q. Sulfoxide-containing polymers conjugated prodrug micelles with enhanced anticancer activity and reduced intestinal toxicity. J Control Release 2024; 371:313-323. [PMID: 38823585 DOI: 10.1016/j.jconrel.2024.05.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Poly(ethylene glycol) (PEG) is widely utilized as a hydrophilic coating to extend the circulation time and improve the tumor accumulation of polymeric micelles. Nonetheless, PEGylated micelles often activate complement proteins, leading to accelerated blood clearance and negatively impacting drug efficacy and safety. Here, we have crafted amphiphilic block copolymers that merge hydrophilic sulfoxide-containing polymers (psulfoxides) with the hydrophobic drug 7-ethyl-10-hydroxylcamptothecin (SN38) into drug-conjugate micelles. Our findings show that the specific variant, PMSEA-PSN38 micelles, remarkably reduce protein fouling, prolong blood circulation, and improve intratumoral accumulation, culminating in significantly increased anti-cancer efficacy compared with PEG-PSN38 counterpart. Additionally, PMSEA-PSN38 micelles effectively inhibit complement activation, mitigate leukocyte uptake, and attenuate hyperactivation of inflammatory cells, diminishing their ability to stimulate tumor metastasis and cause inflammation. As a result, PMSEA-PSN38 micelles show exceptional promise in the realm of anti-metastasis and significantly abate SN38-induced intestinal toxicity. This study underscores the promising role of psulfoxides as viable PEG substitutes in the design of polymeric micelles for efficacious anti-cancer drug delivery.
Collapse
Affiliation(s)
- Yechun Wang
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Jiafeng Wang
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - JunJun Li
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Yongli Mu
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Jiajia Ying
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Zimeng Liu
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Mengjie Wu
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yu Geng
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Xuefei Zhou
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Tianhua Zhou
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Leimin Sun
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Xiangrui Liu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China.
| | - Quan Zhou
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
8
|
Forgham H, Zhu J, Huang X, Zhang C, Biggs H, Liu L, Wang YC, Fletcher N, Humphries J, Cowin G, Mardon K, Kavallaris M, Thurecht K, Davis TP, Qiao R. Multifunctional Fluoropolymer-Engineered Magnetic Nanoparticles to Facilitate Blood-Brain Barrier Penetration and Effective Gene Silencing in Medulloblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401340. [PMID: 38647396 PMCID: PMC11220643 DOI: 10.1002/advs.202401340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/01/2024] [Indexed: 04/25/2024]
Abstract
Patients with brain cancers including medulloblastoma lack treatments that are effective long-term and without side effects. In this study, a multifunctional fluoropolymer-engineered iron oxide nanoparticle gene-therapeutic platform is presented to overcome these challenges. The fluoropolymers are designed and synthesized to incorporate various properties including robust anchoring moieties for efficient surface coating, cationic components to facilitate short interference RNA (siRNA) binding, and a fluorinated tail to ensure stability in serum. The blood-brain barrier (BBB) tailored system demonstrates enhanced BBB penetration, facilitates delivery of functionally active siRNA to medulloblastoma cells, and delivers a significant, almost complete block in protein expression within an in vitro extracellular acidic environment (pH 6.7) - as favored by most cancer cells. In vivo, it effectively crosses an intact BBB, provides contrast for magnetic resonance imaging (MRI), and delivers siRNA capable of slowing tumor growth without causing signs of toxicity - meaning it possesses a safe theranostic function. The pioneering methodology applied shows significant promise in the advancement of brain and tumor microenvironment-focused MRI-siRNA theranostics for the better treatment and diagnosis of medulloblastoma.
Collapse
Affiliation(s)
- Helen Forgham
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Jiayuan Zhu
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Xumin Huang
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Cheng Zhang
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
- National Imaging FacilityCentre for Advanced ImagingThe University of QueenslandSt LuciaQueensland4072Australia
| | - Heather Biggs
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Liwei Liu
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Yi Cheng Wang
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Nicholas Fletcher
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
- National Imaging FacilityCentre for Advanced ImagingThe University of QueenslandSt LuciaQueensland4072Australia
- ARC Training Centre for Innovation in Biomedical Imaging TechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - James Humphries
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
- National Imaging FacilityCentre for Advanced ImagingThe University of QueenslandSt LuciaQueensland4072Australia
- ARC Training Centre for Innovation in Biomedical Imaging TechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Gary Cowin
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
- National Imaging FacilityCentre for Advanced ImagingThe University of QueenslandSt LuciaQueensland4072Australia
| | - Karine Mardon
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
- National Imaging FacilityCentre for Advanced ImagingThe University of QueenslandSt LuciaQueensland4072Australia
| | - Maria Kavallaris
- Children's Cancer InstituteLowy Cancer Research CentreUNSW SydneyKensingtonNew South Wales2052Australia
- School of Clinical MedicineFaculty of Medicine & HealthUNSW SydneyKensingtonNew South Wales2052Australia
- UNSW Australian Centre for NanomedicineFaculty of EngineeringUNSW SydneyKensingtonNew South Wales2052Australia
- UNSW RNA InstituteFaculty of ScienceUNSW SydneyKensingtonNew South Wales2052Australia
| | - Kristofer Thurecht
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
- National Imaging FacilityCentre for Advanced ImagingThe University of QueenslandSt LuciaQueensland4072Australia
- ARC Training Centre for Innovation in Biomedical Imaging TechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Thomas P. Davis
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Ruirui Qiao
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| |
Collapse
|
9
|
Xin J, Lu X, Cao J, Wu W, Liu Q, Wang D, Zhou X, Ding D. Fluorinated Organic Polymers for Cancer Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404645. [PMID: 38678386 DOI: 10.1002/adma.202404645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/22/2024] [Indexed: 04/30/2024]
Abstract
In the realm of cancer therapy, the spotlight is on nanoscale pharmaceutical delivery systems, especially polymer-based nanoparticles, for their enhanced drug dissolution, extended presence in the bloodstream, and precision targeting achieved via surface engineering. Leveraging the amplified permeation and retention phenomenon, these systems concentrate therapeutic agents within tumor tissues. Nonetheless, the hurdles of systemic toxicity, biological barriers, and compatibility with living systems persist. Fluorinated polymers, distinguished by their chemical idiosyncrasies, are poised for extensive biomedical applications, notably in stabilizing drug metabolism, augmenting lipophilicity, and optimizing bioavailability. Material science heralds the advent of fluorinated polymers that, by integrating fluorine atoms, unveil a suite of drug delivery merits: the hydrophobic traits of fluorinated alkyl chains ward off lipid or protein disruption, the carbon-fluorine bond's stability extends the drug's lifecycle in the system, and a lower alkalinity coupled with a diminished ionic charge bolsters the drug's ability to traverse cellular membranes. This comprehensive review delves into the utilization of fluorinated polymers for oncological pharmacotherapy, elucidating their molecular architecture, synthetic pathways, and functional attributes, alongside an exploration of their empirical strengths and the quandaries they encounter in both experimental and clinical settings.
Collapse
Affiliation(s)
- Jingrui Xin
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xue Lu
- Frontiers Science Center for New Organic Matter, Nankai International Advanced Research Institute (Shenzhen, Futian), and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Weihui Wu
- Frontiers Science Center for New Organic Matter, Nankai International Advanced Research Institute (Shenzhen, Futian), and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Deping Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Xin Zhou
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Dan Ding
- Frontiers Science Center for New Organic Matter, Nankai International Advanced Research Institute (Shenzhen, Futian), and College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
10
|
Pavón C, Benetti EM, Lorandi F. Polymer Brushes on Nanoparticles for Controlling the Interaction with Protein-Rich Physiological Media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11843-11857. [PMID: 38787578 DOI: 10.1021/acs.langmuir.4c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The interaction of nanoparticles (NPs) with biological environments triggers the formation of a protein corona (PC), which significantly influences their behavior in vivo. This review explores the evolving understanding of PC formation, focusing on the opportunity for decreasing or suppressing protein-NP interactions by macromolecular engineering of NP shells. The functionalization of NPs with a dense, hydrated polymer brush shell is a powerful strategy for imparting stealth properties in order to elude recognition by the immune system. While poly(ethylene glycol) (PEG) has been extensively used for this purpose, concerns regarding its stability and immunogenicity have prompted the exploration of alternative polymers. The stealth properties of brush shells can be enhanced by tailoring functionalities and structural parameters, including the molar mass, grafting density, and polymer topology. Determining correlations between these parameters and biopassivity has enabled us to obtain polymer-grafted NPs with high colloidal stability and prolonged circulation time in biological media.
Collapse
Affiliation(s)
- Carlos Pavón
- Laboratory for Macromolecular and Organic Chemistry (MOC), Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Edmondo M Benetti
- Laboratory for Macromolecular and Organic Chemistry (MOC), Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Francesca Lorandi
- Laboratory for Macromolecular and Organic Chemistry (MOC), Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
11
|
Jungcharoen P, Panaampon J, Imemkamon T, Saengboonmee C. Magnetic nanoparticles: An emerging nanomedicine for cancer immunotherapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 209:183-214. [PMID: 39461752 DOI: 10.1016/bs.pmbts.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Cancer immunotherapy is a revolutionised strategy that strikingly improves cancer treatment in recent years. However, like other therapeutic modalities, immunotherapy faces several challenges and limitations. Many methods have been developed to overcome those limitations; thus, nanomedicine is one of the emerging fields with a highly promising application. Magnetite nanoparticles (MNPs) have long been used for medical applications, for example, as a contrast medium, and are being investigated as a tool for boosting and synergizing the effects of immunotherapy. With known physicochemical properties and the interaction with the surroundings in biological systems, MNPs are used to improve the efficacy of immunotherapy in both cell-based and antibody-based treatment. This chapter reviews and discusses state-of-the-art MNPs as a tool to advance cancer immunotherapy as well as its limitations that need further investigation for a better therapeutic outcome in preclinical and clinical settings.
Collapse
Affiliation(s)
- Phoomipat Jungcharoen
- Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, Thailand
| | - Jutatip Panaampon
- Division of Hematologic Neoplasm, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States; Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection Kumamoto University, Kumamoto, Japan
| | - Thanit Imemkamon
- Division of Medical Oncology, Department of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
12
|
Ediriweera GR, Butcher NJ, Kothapalli A, Zhao J, Blanchfield JT, Subasic CN, Grace JL, Fu C, Tan X, Quinn JF, Ascher DB, Whittaker MR, Whittaker AK, Kaminskas LM. Lipid sulfoxide polymers as potential inhalable drug delivery platforms with differential albumin binding affinity. Biomater Sci 2024; 12:2978-2992. [PMID: 38683548 DOI: 10.1039/d3bm02020g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Inhalable nanomedicines are increasingly being developed to optimise the pharmaceutical treatment of respiratory diseases. Large lipid-based nanosystems at the forefront of the inhalable nanomedicines development pipeline, though, have a number of limitations. The objective of this study was, therefore, to investigate the utility of novel small lipidated sulfoxide polymers based on poly(2-(methylsulfinyl)ethyl acrylate) (PMSEA) as inhalable drug delivery platforms with tuneable membrane permeability imparted by differential albumin binding kinetics. Linear PMSEA (5 kDa) was used as a hydrophilic polymer backbone with excellent anti-fouling and stealth properties compared to poly(ethylene glycol). Terminal lipids comprising single (1C2, 1C12) or double (2C12) chain diglycerides were installed to provide differing affinities for albumin and, by extension, albumin trafficking pathways in the lungs. Albumin binding kinetics, cytotoxicity, lung mucus penetration and cellular uptake and permeability through key cellular barriers in the lungs were examined in vitro. The polymers showed good mucus penetration and no cytotoxicity over 24 h at up to 1 mg ml-1. While 1C2-showed no interaction with albumin, 1C12-PMSEA and 2C12-PMSEA bound albumin with KD values of approximately 76 and 10 μM, respectively. Despite binding to albumin, 2C12-PMSEA showed reduced cell uptake and membrane permeability compared to the smaller polymers and the presence of albumin had little effect on cell uptake and membrane permeability. While PMSEA strongly shielded these lipids from albumin, the data suggest that there is scope to tune the lipid component of these systems to control membrane permeability and cellular interactions in the lungs to tailor drug disposition in the lungs.
Collapse
Affiliation(s)
- Gayathri R Ediriweera
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Neville J Butcher
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Ashok Kothapalli
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Jiacheng Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Joanne T Blanchfield
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Christopher N Subasic
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - James L Grace
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Xiao Tan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - John F Quinn
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Department of Chemical Engineering, Monash University, Clayton, VIC, Australia
| | - David B Ascher
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Michael R Whittaker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Lisa M Kaminskas
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
13
|
Forgham H, Zhu J, Zhang T, Huang X, Li X, Shen A, Biggs H, Talbo G, Xu C, Davis TP, Qiao R. Fluorine-modified polymers reduce the adsorption of immune-reactive proteins to PEGylated gold nanoparticles. Nanomedicine (Lond) 2024; 19:995-1012. [PMID: 38593053 PMCID: PMC11221377 DOI: 10.2217/nnm-2023-0357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/23/2024] [Indexed: 04/11/2024] Open
Abstract
Aim: To investigate the influence of fluorine in reducing the adsorption of immune-reactive proteins onto PEGylated gold nanoparticles. Methods: Reversible addition fragmentation chain transfer polymerization, the Turkevich method and ligand exchange were used to prepare polymer-coated gold nanoparticles. Subsequent in vitro physicochemical and biological characterizations and proteomic analysis were performed. Results: Fluorine-modified polymers reduced the adsorption of complement and other immune-reactive proteins while potentially improving circulatory times and modulating liver toxicity by reducing apolipoprotein E adsorption. Fluorine actively discouraged phagocytosis while encouraging the adsorption of therapeutic targets, CD209 and signaling molecule calreticulin. Conclusion: This study suggests that the addition of fluorine in the surface coating of nanoparticles could lead to improved performance in nanomedicine designed for the intravenous delivery of cargos.
Collapse
Affiliation(s)
- Helen Forgham
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Jiayuan Zhu
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Taoran Zhang
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Xumin Huang
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Xiangke Li
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Ao Shen
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Heather Biggs
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Gert Talbo
- Metabolomics Australia (Queensland Node), The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Chun Xu
- School of Dentistry, The University of Queensland, Herston, Queensland, 4006, Australia
| | - Thomas P Davis
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Ruirui Qiao
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
14
|
Güneş M, Aktaş K, Yalçın B, Burgazlı AY, Asilturk M, Ünşar AE, Kaya B. In vivo assessment of the toxic impact of exposure to magnetic iron oxide nanoparticles (IONPs) using Drosophila melanogaster. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104412. [PMID: 38492762 DOI: 10.1016/j.etap.2024.104412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/21/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Iron oxide nanoparticles (IONPs) have useful properties, such as strong magnetism and compatibility with living organisms which is preferable for medical applications such as drug delivery and imaging. However, increasing use of these materials, especially in medicine, has raised concerns regarding potential risks to human health. In this study, IONPs were coated with silicon dioxide (SiO2), citric acid (CA), and polyethylenimine (PEI) to enhance their dispersion and biocompatibility. Both coated and uncoated IONPs were assessed for genotoxic effects on Drosophila melanogaster. Results showed that uncoated IONPs induced genotoxic effects, including mutations and recombinations, while the coated IONPs demonstrated reduced or negligible genotoxicity. Additionally, bioinformatic analyses highlighted potential implications of induced recombination in various cancer types, underscoring the importance of understanding nanoparticle-induced genomic instability. This study highlights the importance of nanoparticle coatings in reducing potential genotoxic effects and emphasizes the necessity for comprehensive toxicity assessments in nanomaterial research.
Collapse
Affiliation(s)
- Merve Güneş
- Department of Biology, Faculty of Sciences, Akdeniz University, Antalya, Turkey.
| | - Kemal Aktaş
- Department of Environmental Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Burçin Yalçın
- Department of Biology, Faculty of Sciences, Akdeniz University, Antalya, Turkey
| | | | - Meltem Asilturk
- Department of Material Science and Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Ayca Erdem Ünşar
- Department of Environmental Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Bülent Kaya
- Department of Biology, Faculty of Sciences, Akdeniz University, Antalya, Turkey
| |
Collapse
|
15
|
Wang J, Han B, Ma M, Zhao Y, Li B, Zhou J, Wu C, Zhang X, Pan J, Sun SK. Magnetic Resonance Angiography with Hour-Scale Duration after Single Low-Dose Administration of Biocompatible Gadolinium Oxide Nanoprobe. Adv Healthc Mater 2024; 13:e2303389. [PMID: 38164886 DOI: 10.1002/adhm.202303389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/17/2023] [Indexed: 01/03/2024]
Abstract
Long-term contrast-enhanced angiography offers significant advantages in theranostics for diverse vascular diseases, particularly in terms of real-time dynamic monitoring during acute vascular events; However, achieving vascular imaging with a duration of hours through a single administration of low-dose contrast agent remains challenging. Herein, a hyaluronic acid-templated gadolinium oxide (HA@Gd2O3) nanoprobe-enhanced magnetic resonance angiography (MRA) is proposed to address this bottleneck issue for the first time. The HA@Gd2O3 nanoprobe synthesized from a facile one-pot biomineralization method owns ultrasmall size, good biocompatibility, optimal circulation half-life (≈149 min), and a relatively high T1 relaxivity (r1) under both clinical 3 T (8.215 mM-1s-1) and preclinical 9.4 T (4.023 mM-1s-1) equipment. The HA@Gd2O3 nanoprobe-enhanced MRA highlights major vessels readily with significantly improved contrast, extended imaging duration for at least 2 h, and ultrahigh resolution of 0.15 mm under 9.4 T, while only requiring half clinical dosage of Gd. This technique can enable rapid diagnosis and real-time dynamic monitoring of vascular changes in a model of acute superior mesenteric vein thrombosis with only a single injection of nanoprobe. The HA@Gd2O3 nanoprobe-enhanced MRA provides a sophisticated approach for long-term (hour scale) vascular imaging with ultrahigh resolution and high contrast through single administration of low-dose contrast agent.
Collapse
Affiliation(s)
- Jiaojiao Wang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Bing Han
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Min Ma
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yujie Zhao
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Bingjie Li
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Junzi Zhou
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chao Wu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xuening Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| |
Collapse
|
16
|
Davis E, Caparco AA, Steinmetz NF, Pokorski JK. Poly(Oxanorbornene)-Protein Conjugates Prepared by Grafting-to ROMP as Alternatives for PEG. Macromol Biosci 2024; 24:e2300255. [PMID: 37688508 DOI: 10.1002/mabi.202300255] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/14/2023] [Indexed: 09/11/2023]
Abstract
PEGylation is the gold standard in protein-polymer conjugation, improving circulation half-life of biologics while mitigating the immune response to a foreign substance. However, preexisting anti-PEG antibodies in healthy humans are becoming increasingly prevalent and elicitation of anti-PEG antibodies when patients are administered with PEGylated therapeutics challenges their safety profile. In the current study, two distinct amine-reactive poly(oxanorbornene) (PONB) imide-based water-soluble block co-polymers are synthesized using ring-opening metathesis polymerization (ROMP). The synthesized block-copolymers include PEG-based PONB-PEG and sulfobetaine-based PONB-Zwit. The polymers are then covalently conjugated to amine residues of lysozyme (Lyz) and urate oxidase (UO) using a grafting-to bioconjugation technique. Both Lyz-PONB and UO-PONB conjugates retained significant bioactivities after bioconjugation. Immune recognition studies of UO-PONB conjugates indicated a comparable lowering of protein immunogenicity when compared to PEGylated UO. PEG-specific immune recognition is negligible for UO-PONB-Zwit conjugates, as expected. These polymers provide a new alternative for PEG-based systems that retain high levels of activity for the biologic while showing improved immune recognition profiles.
Collapse
Affiliation(s)
- Elizabathe Davis
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Adam A Caparco
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, 92093, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jonathan K Pokorski
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
17
|
Eng YJ, Nguyen TM, Luo HK, Chan JMW. Antifouling polymers for nanomedicine and surfaces: recent advances. NANOSCALE 2023; 15:15472-15512. [PMID: 37740391 DOI: 10.1039/d3nr03164k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Antifouling polymers are materials that can resist nonspecific interactions with cells, proteins, and other biomolecules. Typically, they are hydrophilic polymers with polar or charged moieties that are capable of strong nonbonding interactions with water molecules. This propensity to bind water generates a surface hydration layer that reduces nonspecific interactions with other molecules and is paramount to the antifouling behavior. This property is especially useful for nanoscale applications such as nanomedicine and surface modifications at the molecular level. In nanomedicine, antifouling polymers such as poly(ethylene glycol) and its alternatives play a key role in shielding drug molecules and therapeutic proteins/genes from the immune system within nanoassemblies, thereby enabling effective delivery to target tissues. For coatings, antifouling polymers help to prevent adhesion of cells and molecules to surfaces and are thus valued in marine and biomedical device applications. In this Review, we survey recent advances in antifouling polymers in the context of nanomedicine and coatings, while shining the spotlight on the major polymer classes such as PEG, polyzwitterions, poly(oxazoline)s, and other nonionic hydrophilic polymers.
Collapse
Affiliation(s)
- Yi Jie Eng
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Tuan Minh Nguyen
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - He-Kuan Luo
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Julian M W Chan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| |
Collapse
|
18
|
Wang Q, Yu Y, Chang Y, Xu X, Wu M, Ediriweera GR, Peng H, Zhen X, Jiang X, Searles DJ, Fu C, Whittaker AK. Fluoropolymer-MOF Hybrids with Switchable Hydrophilicity for 19F MRI-Monitored Cancer Therapy. ACS NANO 2023; 17:8483-8498. [PMID: 37097065 DOI: 10.1021/acsnano.3c00694] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cancer theranostics that combines cancer diagnosis and therapy is a promising approach for personalized cancer treatment. However, current theranostic strategies suffer from low imaging sensitivity for visualization and an inability to target the diseased tissue site with high specificity, thus hindering their translation to the clinic. In this study, we have developed a tumor microenvironment-responsive hybrid theranostic agent by grafting water-soluble, low-fouling fluoropolymers to pH-responsive zeolitic imidazolate framework-8 (ZIF-8) nanoparticles by surface-initiated RAFT polymerization. The conjugation of the fluoropolymers to ZIF-8 nanoparticles not only allows sensitive in vivo visualization of the nanoparticles by 19F MRI but also significantly prolongs their circulation time in the bloodstream, resulting in improved delivery efficiency to tumor tissue. The ZIF-8-fluoropolymer nanoparticles can respond to the acidic tumor microenvironment, leading to progressive degradation of the nanoparticles and release of zinc ions as well as encapsulated anticancer drugs. The zinc ions released from the ZIF-8 can further coordinate to the fluoropolymers to switch the hydrophilicity and reverse the surface charge of the nanoparticles. This transition in hydrophilicity and surface charge of the polymeric coating can reduce the "stealth-like" nature of the agent and enhance specific uptake by cancer cells. Hence, these hybrid nanoparticles represent intelligent theranostics with highly sensitive imaging capability, significantly prolonged blood circulation time, greatly improved accumulation within the tumor tissue, and enhanced anticancer therapeutic efficiency.
Collapse
Affiliation(s)
- Qiaoyun Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ye Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yixin Chang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Xin Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Min Wu
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Gayathri R Ediriweera
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Xu Zhen
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Xiqun Jiang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Debra J Searles
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
19
|
Qiao R, Fu C, Forgham H, Javed I, Huang X, Zhu J, Whittaker AK, Davis TP. Magnetic Iron Oxide Nanoparticles for Brain Imaging and Drug Delivery. Adv Drug Deliv Rev 2023; 197:114822. [PMID: 37086918 DOI: 10.1016/j.addr.2023.114822] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/14/2023] [Accepted: 04/09/2023] [Indexed: 04/24/2023]
Abstract
Central nervous system (CNS) disorders affect as many as 1.5 billion people globally. The limited delivery of most imaging and therapeutic agents into the brain is a major challenge for treatment of CNS disorders. With the advent of nanotechnologies, controlled delivery of drugs with nanoparticles holds great promise in CNS disorders for overcoming the blood-brain barrier (BBB) and improving delivery efficacy. In recent years, magnetic iron oxide nanoparticles (MIONPs) have stood out as a promising theranostic nanoplatform for brain imaging and drug delivery as they possess unique physical properties and biodegradable characteristics. In this review, we summarize the recent advances in MIONP-based platforms as imaging and drug delivery agents for brain diseases. We firstly introduce the methods of synthesis and surface functionalization of MIONPs with emphasis on the inclusion of biocompatible polymers that allow for the addition of tailored physicochemical properties. We then discuss the recent advances in in vivo imaging and drug delivery applications using MIONPs. Finally, we present a perspective on the remaining challenges and possible future directions for MIONP-based brain delivery systems.
Collapse
Affiliation(s)
- Ruirui Qiao
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Changkui Fu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Helen Forgham
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ibrahim Javed
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xumin Huang
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiayuan Zhu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew K Whittaker
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Thomas P Davis
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
20
|
Tu JL, Hu AM, Guo L, Xia W. Iron-Catalyzed C(Sp 3)-H Borylation, Thiolation, and Sulfinylation Enabled by Photoinduced Ligand-to-Metal Charge Transfer. J Am Chem Soc 2023; 145:7600-7611. [PMID: 36958308 DOI: 10.1021/jacs.3c01082] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Catalytic C(sp3)-H functionalization has provided enormous opportunities to construct organic molecules, facilitating the derivatization of complex pharmaceutical compounds. Within this framework, direct hydrogen atom transfer (HAT) photocatalysis becomes an appealing approach to this goal. However, the viable substrates utilized in these protocols are limited, and the site selectivity shows preference to activated and thermodynamically favored C(sp3)-H bonds. Herein, we describe the development of undirected iron-catalyzed C(sp3)-H borylation, thiolation, and sulfinylation reactions enabled by the photoinduced ligand-to-metal charge transfer (LMCT) process. These reactions exhibit remarkably broad substrate scope (>150 examples in total), and most importantly, all of these three reactions show unconventional regioselectivity, with the occurrence of C(sp3)-H borylation, thiolation, and sulfinylation preferentially at the distal methyl position. The procedures are operationally simple and readily scalable and provide access to high-value products from simple hydrocarbons in one step. Mechanistic studies and control experiments indicate that the afforded site selectivity is not only relevant to the HAT species but also largely affected by the use of boron- and sulfone-based radical acceptors.
Collapse
Affiliation(s)
- Jia-Lin Tu
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Ao-Men Hu
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
21
|
Zhang P, Cui Y, Wang J, Cheng J, Zhu L, Liu C, Yue S, Pang R, Guan J, Xie B, Zhang N, Qin M, Jing L, Hou Y, Lan Y. Dual-stimuli responsive smart nanoprobe for precise diagnosis and synergistic multi-modalities therapy of superficial squamous cell carcinoma. J Nanobiotechnology 2023; 21:4. [PMID: 36597067 PMCID: PMC9808965 DOI: 10.1186/s12951-022-01759-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Although the promising advancements of current therapeutic approaches is available for the squamous cell carcinoma (SCC) patients, the clinical treatment of SCC still faces many difficulties. The surgical irreparable disfigurement and the postoperative wound infection largely hamper the recovery, and the chemo/radiotherapy leads to toxic side effects. RESULTS Herein, a novel pH/Hyaluronidase (HAase) dual-stimuli triggered smart nanoprobe FeIIITA@HA has been designed through the biomineralization of Fe3+ and polyphenol tannic acid (TA) under the control of hyaluronic acid (HA) matrix. With the HA residues on the outer surface, FeIIITA@HA nanoprobes can specifically target the SCC cells through the over-expressed CD44, and accumulate in the carcinoma region after intravenously administration. The abundant HAase in carcinoma microenvironment will trigger the degradation of HA molecules, thereby exposing the FeIIITA complex. After ingesting by tumor cells via CD44 mediated endocytosis, the acidic lysosomal condition will further trigger the protonation of TA molecules, finally leading to the Fe3+ release of nanoprobe, and inducing a hybrid ferroptosis/apoptosis of tumor cells through peroxidase activity and glutathione depletion. In addition, Owing to the outstanding T1 magnetic resonance imaging (MRI) performance and phototermal conversion efficiency of nanoprobes, the MRI-guided photothermal therapy (PTT) can be also combined to complement the Fe3+-induced cancer therapy. Meanwhile, it was also found that the nanoprobes can promote the recruitment of CD4+ and CD8+ T cells to inhibit the tumor growth through the cytokines secretion. In addition, the FeIIITA@HA nanoprobes can be eliminated from the body and no obvious adverse side effect can be found in histological analysis, which confirmed the biosafety of them. CONCLUSION The current FeIIITA@HA nanoprobe has huge potential in clinical translation in the field of precise diagnosis and intelligent synergistic therapy of superficial SCC. This strategy will promisingly avoid the surgical defects, and reduce the systemic side effect of traditional chemotherapy, paving a new way for the future SCC treatment.
Collapse
Affiliation(s)
- Peisen Zhang
- grid.79703.3a0000 0004 1764 3838Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, 510180 Guangzhou, China ,grid.48166.3d0000 0000 9931 8406College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029 China
| | - Yingying Cui
- grid.48166.3d0000 0000 9931 8406College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029 China
| | - Jian Wang
- grid.506261.60000 0001 0706 7839Department of Head and Neck Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021 China ,grid.13291.380000 0001 0807 1581Department of Psychiatry, West China Hospital, National Chengdu Center for Safety Evaluation of Drugs, Sichuan University, Chengdu, 610041 China
| | - Junwei Cheng
- grid.48166.3d0000 0000 9931 8406College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029 China
| | - Lichong Zhu
- grid.48166.3d0000 0000 9931 8406College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029 China
| | - Chuang Liu
- grid.48166.3d0000 0000 9931 8406College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029 China
| | - Saisai Yue
- grid.48166.3d0000 0000 9931 8406College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029 China
| | - Runxin Pang
- grid.48166.3d0000 0000 9931 8406College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029 China
| | - Jiaoqiong Guan
- grid.79703.3a0000 0004 1764 3838Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, 510180 Guangzhou, China
| | - Bixia Xie
- grid.48166.3d0000 0000 9931 8406College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029 China
| | - Ni Zhang
- grid.13291.380000 0001 0807 1581Department of Psychiatry, West China Hospital, National Chengdu Center for Safety Evaluation of Drugs, Sichuan University, Chengdu, 610041 China ,grid.9227.e0000000119573309Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Meng Qin
- grid.48166.3d0000 0000 9931 8406College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029 China ,grid.13291.380000 0001 0807 1581Department of Psychiatry, West China Hospital, National Chengdu Center for Safety Evaluation of Drugs, Sichuan University, Chengdu, 610041 China ,grid.9227.e0000000119573309Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Lihong Jing
- grid.9227.e0000000119573309Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Yi Hou
- grid.48166.3d0000 0000 9931 8406College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029 China
| | - Yue Lan
- grid.79703.3a0000 0004 1764 3838Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, 510180 Guangzhou, China
| |
Collapse
|
22
|
d’Arcy R, El Mohtadi F, Francini N, DeJulius CR, Back H, Gennari A, Geven M, Lopez-Cavestany M, Turhan ZY, Yu F, Lee JB, King MR, Kagan L, Duvall CL, Tirelli N. A Reactive Oxygen Species-Scavenging ‘Stealth’ Polymer, Poly(thioglycidyl glycerol), Outperforms Poly(ethylene glycol) in Protein Conjugates and Nanocarriers and Enhances Protein Stability to Environmental and Biological Stressors. J Am Chem Soc 2022; 144:21304-21317. [DOI: 10.1021/jacs.2c09232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Richard d’Arcy
- Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, U.K
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Farah El Mohtadi
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, U.K
| | - Nora Francini
- Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Carlisle R. DeJulius
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Hyunmoon Back
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
- Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
| | - Arianna Gennari
- Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Mike Geven
- Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Maria Lopez-Cavestany
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Zulfiye Yesim Turhan
- Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, U.K
| | - Fang Yu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jong Bong Lee
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
| | - Michael R. King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Leonid Kagan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
- Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Nicola Tirelli
- Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, U.K
| |
Collapse
|
23
|
Nguyen VD, Haug GC, Greco SG, Trevino R, Karki GB, Arman HD, Larionov OV. Decarboxylative Sulfinylation Enables a Direct, Metal-Free Access to Sulfoxides from Carboxylic Acids. Angew Chem Int Ed Engl 2022; 61:e202210525. [PMID: 36006859 PMCID: PMC9588746 DOI: 10.1002/anie.202210525] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 12/14/2022]
Abstract
The intermediate oxidation state of sulfoxides is central to the plethora of their applications in chemistry and medicine, yet it presents challenges for an efficient synthetic access, limiting the structural diversity of currently available sulfoxides. Here, we report a data-guided development of direct decarboxylative sulfinylation that enables the previously inaccessible functional group interconversion of carboxylic acids to sulfoxides in a reaction with sulfinates. Given the broad availability of carboxylic acids and the growing synthetic potential of sulfinates, the direct decarboxylative sulfinylation is poised to improve the structural diversity of synthetically accessible sulfoxides. The reaction is facilitated by a kinetically favored sulfoxide formation from the intermediate sulfinyl sulfones, despite the strong thermodynamic preference for the sulfone formation, unveiling the previously unknown and chemoselective radicalophilic sulfinyl sulfone reactivity.
Collapse
Affiliation(s)
- Viet D Nguyen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Graham C Haug
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Samuel G Greco
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Ramon Trevino
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Guna B Karki
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Hadi D Arman
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Oleg V Larionov
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| |
Collapse
|
24
|
Xu X, Wang Q, Chang Y, Zhang Y, Peng H, Whittaker AK, Fu C. Antifouling and Antibacterial Surfaces Grafted with Sulfur-Containing Copolymers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41400-41411. [PMID: 36040859 DOI: 10.1021/acsami.2c09698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antifouling and antibacterial surfaces that can prevent nonspecific biological adhesion are important to support a myriad of biomedical applications. In this study, we have used an innovative photopolymerization technology to develop sulfur-containing polymer-grafted antifouling and antibacterial surfaces. The relationship between the hydrophilic property and the capability to resist protein and macrophage adsorption of the surface copolymer brushes was investigated. The sulfide monomer incorporated into the surface copolymer brushes can be further ionized to carry positive charges and impart antibacterial activity, leading to surfaces with dual antifouling and antibacterial functions. We believe that the reported sulfur-containing polymer brushes can be considered an emerging and important polymer for antifouling and antibacterial applications.
Collapse
Affiliation(s)
- Xin Xu
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Qiaoyun Wang
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yixin Chang
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yuhao Zhang
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
25
|
Zhang Y, Zhang M, Xu X, Chan CHH, Peng H, Hill DJT, Fu C, Fraser J, Whittaker AK. Anti-Fouling Surfaces for Extracorporeal Membrane Oxygenation by Surface Grafting of Hydrophilic Sulfoxide Polymers. Biomacromolecules 2022; 23:4318-4326. [PMID: 36048616 DOI: 10.1021/acs.biomac.2c00775] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Non-thrombogenic surfaces for extracorporeal membrane oxygenation (ECMO) devices are important to increase their duration of usage and to enable long-term life support. However, the contact of blood with the hydrophobic synthetic ECMO membrane materials such as poly(4-methyl-1-pentene) (PMP) can activate the coagulation cascade, causing thrombosis and a series of consequent complications during ECMO operation. Targeting this problem, we proposed to graft highly hydrophilic sulfoxide polymer brushes onto the PMP surfaces via gamma ray irradiation-initiated polymerization to improve the hemocompatibility of the membrane. Through this chemical modification, the surface of the PMP film is altered from hydrophobic to hydrophilic. The extent of plasma protein adsorption and platelet adhesion, the prerequisite mediators of the coagulation cascade and thrombus formation, are drastically reduced compared with those of the unmodified PMP film. Therefore, the method provides a facile approach to modify PMP materials with excellent antifouling properties and improved hemocompatibility demanded by the applications in ECMO and other blood-contacting medical devices.
Collapse
Affiliation(s)
- Yuhao Zhang
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Meili Zhang
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Queensland, Australia.,School of Mechanical and Mining Engineering, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Xin Xu
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Chris H H Chan
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Queensland, Australia.,School of Engineering and Built Environment, Griffith University, Southport 4222, Queensland, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - David J T Hill
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - John Fraser
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Queensland, Australia.,Faculty of Medicine, The University of Queensland, St Lucia 4072, Queensland, Australia.,School of Medicine, Griffith University, Southport 4215, Queensland, Australia
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
26
|
MoS2 nanoflower-mediated enhanced intratumoral penetration and piezoelectric catalytic therapy. Biomaterials 2022; 290:121816. [DOI: 10.1016/j.biomaterials.2022.121816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/25/2022] [Accepted: 09/17/2022] [Indexed: 11/22/2022]
|
27
|
Nguyen VD, Haug GC, Greco SG, Trevino R, Karki GB, Arman HD, Larionov O. Decarboxylative Sulfinylation Enables a Direct, Metal‐Free Access to Sulfoxides from Carboxylic Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Viet D. Nguyen
- The University of Texas at San Antonio Department of Chemistry 78249 San Antonio UNITED STATES
| | - Graham C. Haug
- The University of Texas at San Antonio Deoartment of Chemistry 1 utsa circle 78249 SAN ANTONIO UNITED STATES
| | - Samuel G. Greco
- The University of Texas at San Antonio Department of Chemistry UNITED STATES
| | - Ramon Trevino
- The University of Texas at San Antonio Department of Chemistry UNITED STATES
| | - Guna B. Karki
- The University of Texas at San Antonio Department of Chemistry UNITED STATES
| | - Hadi D. Arman
- The University of Texas at San Antonio Department of Chemistry UNITED STATES
| | - Oleg Larionov
- University of Texas at San Antonio Department of Chemistry One UTSA Circle 78249 San Antonio UNITED STATES
| |
Collapse
|
28
|
Olszewski M, Jeong J, Szczepaniak G, Li S, Enciso A, Murata H, Averick S, Kapil K, Das SR, Matyjaszewski K. Sulfoxide-Containing Polyacrylamides Prepared by PICAR ATRP for Biohybrid Materials. ACS Macro Lett 2022; 11:1091-1096. [PMID: 35998359 DOI: 10.1021/acsmacrolett.2c00442] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Water-soluble and biocompatible polymers are of interest in biomedicine as the search for alternatives to PEG-based materials becomes more important. In this work, the synthesis of a new sulfoxide-containing monomer, 2-(methylsulfinyl)ethyl acrylamide (MSEAM), is reported. Well-defined polymers were prepared by photoinduced initiators for continuous activator regeneration atom transfer radical polymerization (PICAR ATRP). The polymerizations were performed in water under biologically relevant conditions in a small volume without degassing the reaction mixture. DNA-PMSEAM and protein-PMSEAM hybrids were also synthesized. The lower critical solution temperature (LCST) of PMSEAM was estimated to be approximately 170 °C by extrapolating the LCST for a series of copolymers with variable content of N-isopropylacrylamide. The cytotoxicity studies showed excellent biocompatibility of PMSEAM, even at concentrations up to 2.5 mg/mL. Furthermore, the MSEAM monomer exhibited relatively lower toxicity than similar (meth)acrylate-based monomers at comparable concentrations.
Collapse
Affiliation(s)
- Mateusz Olszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jaepil Jeong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Sipei Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Alan Enciso
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Hironobu Murata
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Saadyah Averick
- Neuroscience Disruptive Research Lab, Allegheny Health Network Research Institute, Pittsburgh, Pennsylvania 15212, United States
| | - Kriti Kapil
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Subha R Das
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.,Center for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
29
|
Chang Y, Wang Q, Xu W, Huang X, Xu X, Han FY, Qiao R, Ediriweera GR, Peng H, Fu C, Liu K, Whittaker AK. Low-Fouling Gold Nanorod Theranostic Agents Enabled by a Sulfoxide Polymer Coating. Biomacromolecules 2022; 23:3866-3874. [PMID: 35977724 DOI: 10.1021/acs.biomac.2c00696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gold nanorods (GNRs) are widely used in various biomedical applications such as disease imaging and therapy due to their unique plasmonic properties. To improve their bioavailability, GNRs often need to be coated with hydrophilic polymers so as to impart stealth properties. Poly(ethylene glycol) (PEG) has been long used as such a coating material for GNRs. However, there is increasing acknowledgement that the amphiphilic nature of PEG facilitates its interaction with protein molecules, leading to immune recognition and consequent side effects. This has motivated the search for new classes of low-fouling polymers with high hydrophilicity as alternative low-fouling surface coating materials for GNRs. Herein, we report the synthesis, characterization, and application of GNRs coated with highly hydrophilic sulfoxide-containing polymers. We investigated the effect of the sulfoxide polymer coating on the cellular uptake and in vivo circulation time of the GNRs and compared these properties with pegylated GNR counterparts. The photothermal effect and photoacoustic imaging of these polymer-coated GNRs were also explored, and the results show that these GNRs are promising as nanotheranostic particles for the treatment of cancer.
Collapse
Affiliation(s)
- Yixin Chang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Qiaoyun Wang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Weizhi Xu
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xumin Huang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Xin Xu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Felicity Y Han
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ruirui Qiao
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Gayathri R Ediriweera
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
30
|
Dworakowska S, Lorandi F, Gorczyński A, Matyjaszewski K. Toward Green Atom Transfer Radical Polymerization: Current Status and Future Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106076. [PMID: 35175001 PMCID: PMC9259732 DOI: 10.1002/advs.202106076] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 05/13/2023]
Abstract
Reversible-deactivation radical polymerizations (RDRPs) have revolutionized synthetic polymer chemistry. Nowadays, RDRPs facilitate design and preparation of materials with controlled architecture, composition, and functionality. Atom transfer radical polymerization (ATRP) has evolved beyond traditional polymer field, enabling synthesis of organic-inorganic hybrids, bioconjugates, advanced polymers for electronics, energy, and environmentally relevant polymeric materials for broad applications in various fields. This review focuses on the relation between ATRP technology and the 12 principles of green chemistry, which are paramount guidelines in sustainable research and implementation. The green features of ATRP are presented, discussing the environmental and/or health issues and the challenges that remain to be overcome. Key discoveries and recent developments in green ATRP are highlighted, while providing a perspective for future opportunities in this area.
Collapse
Affiliation(s)
- Sylwia Dworakowska
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Faculty of Chemical Engineering and TechnologyCracow University of TechnologyWarszawska 24Cracow31‐155Poland
| | - Francesca Lorandi
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Department of Industrial EngineeringUniversity of Padovavia Marzolo 9Padova35131Italy
| | - Adam Gorczyński
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Faculty of ChemistryAdam Mickiewicz UniversityUniwersytetu Poznańskiego 8Poznań61‐614Poland
| | | |
Collapse
|
31
|
Najer A, Belessiotis-Richards A, Kim H, Saunders C. Block Length-Dependent Protein Fouling on Poly(2-oxazoline)-Based Polymersomes: Influence on Macrophage Association and Circulation Behavior. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201993. [PMID: 35670200 PMCID: PMC7615485 DOI: 10.1002/smll.202201993] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Polymersomes are vesicular structures self-assembled from amphiphilic block copolymers and are considered an alternative to liposomes for applications in drug delivery, immunotherapy, biosensing, and as nanoreactors and artificial organelles. However, the limited availability of systematic stability, protein fouling (protein corona formation), and blood circulation studies hampers their clinical translation. Poly(2-oxazoline)s (POx) are valuable antifouling hydrophilic polymers that can replace the current gold-standard, poly(ethylene glycol) (PEG), yet investigations of POx functionality on nanoparticles are relatively sparse. Herein, a systematic study is reported of the structural, dynamic and antifouling properties of polymersomes made of poly(2-methyl-2-oxazoline)-block-poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline) (PMOXA-b-PDMS-b-PMOXA). The study relates in vitro antifouling performance of the polymersomes to atomistic molecular dynamics simulations of polymersome membrane hydration behavior. These observations support the experimentally demonstrated benefit of maximizing the length of PMOXA (degree of polymerization (DP) > 6) while keeping PDMS at a minimal length that still provides sufficient membrane stability (DP > 19). In vitro macrophage association and in vivo blood circulation evaluation of polymersomes in zebrafish embryos corroborate these findings. They further suggest that single copolymer presentation on polymersomes is outperformed by blends of varied copolymer lengths. This study helps to rationalize design rules for stable and low-fouling polymersomes for future medical applications.
Collapse
Affiliation(s)
- Adrian Najer
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Alexis Belessiotis-Richards
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Hyemin Kim
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Catherine Saunders
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
32
|
Bao J, Hu M, Zhang Y, Zhang Q, Zhu F, Zou Q, Tang J. Novel active stealth micelles based on β 2M achieved effective antitumor therapy. Biomed Pharmacother 2022; 151:113175. [PMID: 35623172 DOI: 10.1016/j.biopha.2022.113175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/12/2022] [Accepted: 05/22/2022] [Indexed: 11/19/2022] Open
Abstract
Micelles have been extensively investigated as drug delivery systems for loading of antitumor drugs with the advantages of good dispersibility, controllable size distribution, and high loading capacity. However, phagocytic clearance by the mononuclear phagocyte system remains a major impediment that inhibits blood circulation and thus tumor accumulation of micelles. Inspired by the antiphagocytic properties of β2-microglobulin (β2M), here we developed a β2M-derived peptide for the surface functionalization of micelles. A β2M-derived sequence was integrated with a matrix metalloproteinase-2 (MMP-2) cleavable sequence and then modified on the surface of poly(ethylene glycol)-b-poly(caprolactone) (PEG-PCL) micelles, endowing the micelles with both antiphagocytic and MMP-2-responsive properties. Compared to pristine PEG-PCL micelles, micelles modified with the dual-functional peptide exhibited higher inhibition of phagocytosis by macrophages in the absence of MMP-2, and enhanced internalization by tumor-associated macrophages in the presence of MMP-2, leading to enhanced tumor accumulation of the loaded photosensitizer, thus enabling antitumor therapy. These results demonstrated that antiphagocytic peptides derived from endogenous proteins are promising for functionalization of micelles in smart drug delivery.
Collapse
Affiliation(s)
- Jianwei Bao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Minxing Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yuanmei Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qianqian Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Feiyan Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qianli Zou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Jihui Tang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
33
|
Nowak-Jary J, Machnicka B. Pharmacokinetics of magnetic iron oxide nanoparticles for medical applications. J Nanobiotechnology 2022; 20:305. [PMID: 35761279 PMCID: PMC9235206 DOI: 10.1186/s12951-022-01510-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/07/2022] [Indexed: 12/05/2022] Open
Abstract
Magnetic iron oxide nanoparticles (MNPs) have been under intense investigation for at least the last five decades as they show enormous potential for many biomedical applications, such as biomolecule separation, MRI imaging and hyperthermia. Moreover, a large area of research on these nanostructures is concerned with their use as carriers of drugs, nucleic acids, peptides and other biologically active compounds, often leading to the development of targeted therapies. The uniqueness of MNPs is due to their nanometric size and unique magnetic properties. In addition, iron ions, which, along with oxygen, are a part of the MNPs, belong to the trace elements in the body. Therefore, after digesting MNPs in lysosomes, iron ions are incorporated into the natural circulation of this element in the body, which reduces the risk of excessive storage of nanoparticles. Still, one of the key issues for the therapeutic applications of magnetic nanoparticles is their pharmacokinetics which is reflected in the circulation time of MNPs in the bloodstream. These characteristics depend on many factors, such as the size and charge of MNPs, the nature of the polymers and any molecules attached to their surface, and other. Since the pharmacokinetics depends on the resultant of the physicochemical properties of nanoparticles, research should be carried out individually for all the nanostructures designed. Almost every year there are new reports on the results of studies on the pharmacokinetics of specific magnetic nanoparticles, thus it is very important to follow the achievements on this matter. This paper reviews the latest findings in this field. The mechanism of action of the mononuclear phagocytic system and the half-lives of a wide range of nanostructures are presented. Moreover, factors affecting clearance such as hydrodynamic and core size, core morphology and coatings molecules, surface charge and technical aspects have been described.
Collapse
Affiliation(s)
- Julia Nowak-Jary
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, Prof. Z. Szafrana 1, 65-516, Zielona Gora, Poland.
| | - Beata Machnicka
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, Prof. Z. Szafrana 1, 65-516, Zielona Gora, Poland
| |
Collapse
|
34
|
Huang X, Xu T, Shen A, Davis TP, Qiao R, Tang SY. Engineering Polymers via Understanding the Effect of Anchoring Groups for Highly Stable Liquid Metal Nanoparticles. ACS APPLIED NANO MATERIALS 2022; 5:5959-5971. [PMID: 35655929 PMCID: PMC9150068 DOI: 10.1021/acsanm.1c04138] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/31/2022] [Indexed: 05/03/2023]
Abstract
Liquid metal nanoparticles (LMNPs) have recently attracted much attention as soft functional materials for various biorelated applications. Despite the fact that several reports demonstrate highly stable LMNPs in aqueous solutions or organic solvents, it is still challenging to stabilize LMNPs in biological media with complex ionic environments. LMNPs grafted with functional polymers (polymers/LMNPs) have been fabricated for maintaining their colloidal and chemical stability; however, to the best of our knowledge, no related work has been conducted to systematically investigate the effect of anchoring groups on the stability of LMNPs. Herein, various anchoring groups, including phosphonic acids, trithiolcarbonates, thiols, and carboxylic acids, are incorporated into brush polymers via reversible addition-fragmentation chain transfer (RAFT) polymerization to graft LMNPs. Both the colloidal and chemical stability of such polymer/LMNP systems are then investigated in various biological media. Moreover, the influence of multidentate ligands is also investigated by incorporating different numbers of carboxylic or phosphonic acid into the brush polymers. We discover that increasing the number of anchoring groups enhances the colloidal stability of LMNPs, while polymers bearing phosphonic acids provide the optimum chemical stability for LMNPs due to surface passivation. Thus, polymers bearing multidentate phosphonic acids are desirable to decorate LMNPs to meet complex environments for biological studies.
Collapse
Affiliation(s)
- Xumin Huang
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tianhong Xu
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ao Shen
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas P. Davis
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ruirui Qiao
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Shi-Yang Tang
- Department
of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| |
Collapse
|
35
|
Han M, Li Y, Lu S, Yuan B, Cheng S, Cao C. Amyloid Protein-Biofunctionalized Polydopamine Nanoparticles Demonstrate Minimal Plasma Protein Fouling and Efficient Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13743-13757. [PMID: 35263991 DOI: 10.1021/acsami.2c00716] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polydopamine (PDA) shows great application potential in photothermal therapy (PTT) of tumors due to its excellent photothermal performance. However, PDA rich in a large number of catechin structures, with strong adhesion, can readily attach to plasma proteins in blood to form protein corona, which greatly hinders the transfer efficiency to tumors and reduces the bioavailability. In this paper, a simple, rapid phase-transitioned albumin biomimetic nanocorona (TBSA) is used for the surface camouflage of PDA nanoparticles for minimal plasma protein fouling and efficient PTT. TBSA coating is formed by the BSA-derived amyloid through the hydrophobic aggregation near the isoelectric point and the rupture of disulfide bonds by tris(2-carboxyethyl) phosphine. The stable PDA@TBSA complexes are formed by camouflaging TBSA onto the surface of PDA through hydrophobic, electrostatic, and covalent binding between TBSA and PDA, which showed excellent anti-plasma protein adsorption properties profited from the surface charge of PDA@TBSA approaching equilibrium and the surface passivation of BSA. The plasma protein thickness of the PDA@TBSA surface is 6 times lower than that of PDA at adsorption saturation. In vitro and in vivo experiments have revealed that PDA@TBSA has an excellent photothermal antitumor effect compared to PDA. Both PDA and PDA@TBSA treatment plus 808 nm laser irradiation result in more than 70% inhibition on tumor cell proliferation. In addition, PDA@TBSA does not cause a significant inflammatory response and tissue damage. Taken together, the TBSA coating endows PDA with low-fouling functions in blood and improves the residence time of PDA in blood and enrichment in the tumor tissue. This work offers a novel and efficient strategy for the design of functional nanosystems exploiting the speciality of the biomolecular corona formation around nanomaterials.
Collapse
Affiliation(s)
- Miaomiao Han
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Li
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Shun Lu
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Biao Yuan
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Shujie Cheng
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Chongjiang Cao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
36
|
Hariharan P, Sundarrajan S, Arthanareeswaran G, Seshan S, Das DB, Ismail AF. Advancements in modification of membrane materials over membrane separation for biomedical applications-Review. ENVIRONMENTAL RESEARCH 2022; 204:112045. [PMID: 34536369 DOI: 10.1016/j.envres.2021.112045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
A comprehensive overview of various modifications carried out on polymeric membranes for biomedical applications has been presented in this review paper. In particular, different methods of carrying out these modifications have been discussed. The uniqueness of the review lies in the sense that it discusses the surface modification techniques traversing the timeline from traditionally well-established technologies to emerging new techniques, thus giving an intuitive understanding of the evolution of surface modification techniques over time. A critical comparison of the advantages and pitfalls of commonly used traditional and emerging surface modification techniques have been discussed. The paper also highlights the tuning of specific properties of polymeric membranes that are critical for their increased applications in the biomedical industry specifically in drug delivery, along with current challenges faced and where the future potential of research in the field of surface modification of membranes.
Collapse
Affiliation(s)
- Pooja Hariharan
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, India
| | - Sujithra Sundarrajan
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, India
| | - G Arthanareeswaran
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, India.
| | - Sunanda Seshan
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, India
| | - Diganta B Das
- Department of Chemical Engineering, Loughborough University, Loughborough, LE11 3TU, UK
| | - A F Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor, Malaysia
| |
Collapse
|
37
|
Shanmugam H, Rengarajan C, Nataraj S, Sharma A. Interactions of plant food bioactives‐loaded nano delivery systems at the nano‐bio interface and its pharmacokinetics: An overview. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Haripriya Shanmugam
- Department of Nano Science and Technology Tamil Nadu Agricultural University Tamil Nadu India
| | - Chitra Rengarajan
- Department of Nano Science and Technology Tamil Nadu Agricultural University Tamil Nadu India
| | - Swathika Nataraj
- Department of Nano Science and Technology Tamil Nadu Agricultural University Tamil Nadu India
| | - Aashima Sharma
- Department of Chemistry Panjab University Chandigarh India
| |
Collapse
|
38
|
Andrikopoulos N, Song Z, Wan X, Douek AM, Javed I, Fu C, Xing Y, Xin F, Li Y, Kakinen A, Koppel K, Qiao R, Whittaker AK, Kaslin J, Davis TP, Song Y, Ding F, Ke PC. Inhibition of Amyloid Aggregation and Toxicity with Janus Iron Oxide Nanoparticles. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2021; 33:6484-6500. [PMID: 34887621 PMCID: PMC8651233 DOI: 10.1021/acs.chemmater.1c01947] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Amyloid aggregation is a ubiquitous form of protein misfolding underlying the pathologies of Alzheimer's disease (AD), Parkinson's disease (PD) and type 2 diabetes (T2D), three primary forms of human amyloid diseases. While much has been learned about the origin, diagnosis and management of these neurological and metabolic disorders, no cure is currently available due in part to the dynamic and heterogeneous nature of the toxic oligomers induced by amyloid aggregation. Here we synthesized beta casein-coated iron oxide nanoparticles (βCas IONPs) via a BPA-P(OEGA-b-DBM) block copolymer linker. Using a thioflavin T kinetic assay, transmission electron microscopy, Fourier transform infrared spectroscopy, discrete molecular dynamics simulations and cell viability assays, we examined the Janus characteristics and the inhibition potential of βCas IONPs against the aggregation of amyloid beta (Aβ), alpha synuclein (αS) and human islet amyloid polypeptide (IAPP) which are implicated in the pathologies of AD, PD and T2D. Incubation of zebrafish embryos with the amyloid proteins largely inhibited hatching and elicited reactive oxygen species, which were effectively rescued by the inhibitor. Furthermore, Aβ-induced damage to mouse brain was mitigated in vivo with the inhibitor. This study revealed the potential of Janus nanoparticles as a new nanomedicine against a diverse range of amyloid diseases.
Collapse
Affiliation(s)
- Nicholas Andrikopoulos
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Zhiyuan Song
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Xulin Wan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
| | - Alon M. Douek
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia
| | - Yanting Xing
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Fangyun Xin
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- School of Science, Dalian Maritime University, Dalian 116026, China
| | - Yuhuan Li
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia
| | - Kairi Koppel
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ruirui Qiao
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
| | - Thomas P. Davis
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia
- Corresponding Authors: Thomas P. Davis: ; Yang Song, ; Feng Ding: ; Pu Chun Ke:
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Corresponding Authors: Thomas P. Davis: ; Yang Song, ; Feng Ding: ; Pu Chun Ke:
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
- Corresponding Authors: Thomas P. Davis: ; Yang Song, ; Feng Ding: ; Pu Chun Ke:
| | - Pu Chun Ke
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia
- The GBA National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- Corresponding Authors: Thomas P. Davis: ; Yang Song, ; Feng Ding: ; Pu Chun Ke:
| |
Collapse
|
39
|
Shi L, Zhang J, Zhao M, Tang S, Cheng X, Zhang W, Li W, Liu X, Peng H, Wang Q. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. NANOSCALE 2021; 13:10748-10764. [PMID: 34132312 DOI: 10.1039/d1nr02065j] [Citation(s) in RCA: 344] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The rapid development of drug nanocarriers has benefited from the surface hydrophilic polymers of particles, which has improved the pharmacokinetics of the drugs. Polyethylene glycol (PEG) is a kind of polymeric material with unique hydrophilicity and electrical neutrality. PEG coating is a crucial factor to improve the biophysical and chemical properties of nanoparticles and is widely studied. Protein adherence and macrophage removal are effectively relieved due to the existence of PEG on the particles. This review discusses the PEGylation methods of nanoparticles and related techniques that have been used to detect the PEG coverage density and thickness on the surface of the nanoparticles in recent years. The molecular weight (MW) and coverage density of the PEG coating on the surface of nanoparticles are then described to explain the effects on the biophysical and chemical properties of nanoparticles.
Collapse
Affiliation(s)
- Liwang Shi
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, 1 Xinyang Rd., Daqing 163319, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhang W, Mehta A, Tong Z, Esser L, Voelcker NH. Development of Polymeric Nanoparticles for Blood-Brain Barrier Transfer-Strategies and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003937. [PMID: 34026447 PMCID: PMC8132167 DOI: 10.1002/advs.202003937] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/20/2020] [Indexed: 05/04/2023]
Abstract
Neurological disorders such as Alzheimer's disease, stroke, and brain cancers are difficult to treat with current drugs as their delivery efficacy to the brain is severely hampered by the presence of the blood-brain barrier (BBB). Drug delivery systems have been extensively explored in recent decades aiming to circumvent this barrier. In particular, polymeric nanoparticles have shown enormous potentials owing to their unique properties, such as high tunability, ease of synthesis, and control over drug release profile. However, careful analysis of their performance in effective drug transport across the BBB should be performed using clinically relevant testing models. In this review, polymeric nanoparticle systems for drug delivery to the central nervous system are discussed with an emphasis on the effects of particle size, shape, and surface modifications on BBB penetration. Moreover, the authors critically analyze the current in vitro and in vivo models used to evaluate BBB penetration efficacy, including the latest developments in the BBB-on-a-chip models. Finally, the challenges and future perspectives for the development of polymeric nanoparticles to combat neurological disorders are discussed.
Collapse
Affiliation(s)
- Weisen Zhang
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
| | - Ami Mehta
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- IITB Monash Research AcademyBombayMumbai400076India
| | - Ziqiu Tong
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
| | - Lars Esser
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVIC3168Australia
| | - Nicolas H. Voelcker
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVIC3168Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication FacilityClaytonVIC3168Australia
- Department of Materials Science and EngineeringMonash UniversityClaytonVIC3800Australia
| |
Collapse
|
41
|
Infante Teixeira L, Landfester K, Thérien-Aubin H. Selective Oxidation of Polysulfide Latexes to Produce Polysulfoxide and Polysulfone in a Waterborne Environment. Macromolecules 2021; 54:3659-3667. [PMID: 34083842 PMCID: PMC8161668 DOI: 10.1021/acs.macromol.1c00382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/28/2021] [Indexed: 11/27/2022]
Abstract
Polymers containing sulfur centers with high oxidation states in the main chain, polysulfoxide and polysulfone, display desirable properties such as thermomechanical and chemical stability. To circumvent their challenging direct synthesis, methods based on the oxidation of a parent polysulfide have been developed but are plagued by uncontrolled reactions, leading either to ill-defined mixtures of polysulfoxides and polysulfones or to polysulfones with reduced degrees of polymerization due to overoxidation of the polymer. We developed an alternative method to produce well-defined polysulfoxide and polysulfone in a waterborne colloidal emulsion using different oxidants to control the oxidation state of sulfur in the final materials. The direct oxidation of water-based polysulfide latexes avoided the use of volatile organic solvents and allowed for the control of the oxidation state of the sulfur atoms. Oxidation of parent polysulfides by tert-butyl hydroperoxide led to the production of pure polysulfoxides, even after 70 days of reaction time. Additionally, hydrogen peroxide produced both species through the course of the reaction but yielded fully converted polysulfones after 24 h. By employing mild oxidants, our approach controlled the oxidation state of the sulfur atoms in the final sulfur-containing polymer and prevented any overoxidation, thus ensuring the integrity of the polymer chains and colloidal stability of the system. We also verified the selectivity, versatility, and robustness of the method by applying it to polysulfides of different chemical compositions and structures. The universality demonstrated by this method makes it a powerful yet simple platform for the design of sulfur-containing polymers and nanoparticles.
Collapse
Affiliation(s)
| | - Katharina Landfester
- Max Planck Institute for
Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | |
Collapse
|
42
|
The Role of Polymeric Coatings for a Safe-by-Design Development of Biomedical Gold Nanoparticles Assessed in Zebrafish Embryo. NANOMATERIALS 2021; 11:nano11041004. [PMID: 33919768 PMCID: PMC8070688 DOI: 10.3390/nano11041004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
In the biomedical field, gold nanoparticles (GNPs) have attracted the attention of the scientific community thanks to their high potential in both diagnostic and therapeutic applications. The extensive use of GNPs led researchers to investigate their toxicity, identifying stability, size, shape, and surface charge as key properties determining their impact on biological systems, with possible strategies defined to reduce it according to a Safe-by-Design (SbD) approach. The purpose of the present work was to analyze the toxicity of GNPs of various sizes and with different coating polymers on the developing vertebrate model, zebrafish. In particular, increasing concentrations (from 0.001 to 1 nM) of 6 or 15 nm poly-(isobutylene-alt-maleic anhydride)-graft-dodecyl polymer (PMA)- or polyethylene glycol (PEG)-coated GNPs were tested on zebrafish embryos using the fish embryo test (FET). While GNP@PMA did not exert significant toxicity on zebrafish embryos, GNP@PEG induced a significant inhibition of embryo viability, a delay of hatching (with the smaller size NPs), and a higher incidence of malformations, in terms of tail morphology and eye development. Transmission electron microscope analysis evidenced that the more negatively charged GNP@PMA was sequestered by the positive charges of chorion proteins, with a consequent reduction in the amount of NPs able to reach the developing embryo and exert toxicological activity. The mild toxic response observed on embryos directly exposed to GNP@PMA suggest that these NPs are promising in terms of SbD development of gold-based biomedical nanodevices. On the other hand, the almost neutral GNP@PEG, which did not interact with the chorion surface and was free to cross chorion pores, significantly impacted the developing zebrafish. The present study raises concerns about the safety of PEGylated gold nanoparticles and contributes to the debated issue of the free use of this nanotool in medicine and nano-biotechnologies.
Collapse
|
43
|
Geven M, d'Arcy R, Turhan ZY, El-Mohtadi F, Alshamsan A, Tirelli N. Sulfur-based oxidation-responsive polymers. Chemistry, (chemically selective) responsiveness and biomedical applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110387] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Bao J, Zhang Q, Duan T, Hu R, Tang J. The Fate of Nanoparticles In Vivo and the Strategy of Designing Stealth Nanoparticle for Drug Delivery. Curr Drug Targets 2021; 22:922-946. [PMID: 33461465 DOI: 10.2174/1389450122666210118105122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 11/22/2022]
Abstract
Nano-drug delivery systems (Nano-DDS) offer powerful advantages in drug delivery and targeted therapy for diseases. Compared to the traditional drug formulations, Nano-DDS can increase solubility, biocompatibility, and reduce off-targeted side effects of free drugs. However, they still have some disadvantages that pose a limitation in reaching their full potential in clinical use. Protein adsorption in blood, activation of the complement system, and subsequent sequestration by the mononuclear phagocyte system (MPS) consequently result in nanoparticles (NPs) to be rapidly cleared from circulation. Therefore, NPs have low drug delivery efficiency. So, it is important to develop stealth NPs for reducing bio-nano interaction. In this review, we first conclude the interaction between NPs and biological environments, such as blood proteins and MPS, and factors influencing each other. Next, we will summarize the new strategies to reduce NPs protein adsorption and uptake by the MPS based on current knowledge of the bio-nano interaction. Further directions will also be highlighted for the development of biomimetic stealth nano-delivery systems by combining targeted strategies for a better therapeutic effect.
Collapse
Affiliation(s)
- Jianwei Bao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qianqian Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Tijie Duan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Rongfeng Hu
- key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Anhui "115" Xin'an Medicine Research & Development Innovation Team, Anhui Academy of Chinese Medicine, Hefei 230038, China
| | - Jihui Tang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
45
|
Nathanael AJ, Oh TH. Biopolymer Coatings for Biomedical Applications. Polymers (Basel) 2020; 12:E3061. [PMID: 33371349 PMCID: PMC7767366 DOI: 10.3390/polym12123061] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023] Open
Abstract
Biopolymer coatings exhibit outstanding potential in various biomedical applications, due to their flexible functionalization. In this review, we have discussed the latest developments in biopolymer coatings on various substrates and nanoparticles for improved tissue engineering and drug delivery applications, and summarized the latest research advancements. Polymer coatings are used to modify surface properties to satisfy certain requirements or include additional functionalities for different biomedical applications. Additionally, polymer coatings with different inorganic ions may facilitate different functionalities, such as cell proliferation, tissue growth, repair, and delivery of biomolecules, such as growth factors, active molecules, antimicrobial agents, and drugs. This review primarily focuses on specific polymers for coating applications and different polymer coatings for increased functionalization. We aim to provide broad overview of latest developments in the various kind of biopolymer coatings for biomedical applications, in order to highlight the most important results in the literatures, and to offer a potential outline for impending progress and perspective. Some key polymer coatings were discussed in detail. Further, the use of polymer coatings on nanomaterials for biomedical applications has also been discussed, and the latest research results have been reported.
Collapse
Affiliation(s)
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
46
|
Xu X, Huang X, Chang Y, Yu Y, Zhao J, Isahak N, Teng J, Qiao R, Peng H, Zhao CX, Davis TP, Fu C, Whittaker AK. Antifouling Surfaces Enabled by Surface Grafting of Highly Hydrophilic Sulfoxide Polymer Brushes. Biomacromolecules 2020; 22:330-339. [PMID: 33305948 DOI: 10.1021/acs.biomac.0c01193] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antifouling surfaces are important in a broad range of applications. An effective approach to antifouling surfaces is to covalently attach antifouling polymer brushes. This work reports the synthesis of a new class of antifouling polymer brushes based on highly hydrophilic sulfoxide polymers by surface-initiated photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. The sulfoxide polymer brushes are able to effectively reduce nonspecific adsorption of proteins and cells, demonstrating remarkable antifouling properties. Given the outstanding antifouling behavior of the sulfoxide polymers and versatility of surface-initiated PET-RAFT technology, this work presents a useful and general approach to engineering various material surfaces with antifouling properties, for potential biomedical applications in areas such as tissue engineering, medical implants, and regenerative medicine.
Collapse
Affiliation(s)
- Xin Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Xumin Huang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yixin Chang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ye Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jiacheng Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Naatasha Isahak
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jisi Teng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ruirui Qiao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Thomas P Davis
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
47
|
Koleoso M, Feng X, Xue Y, Li Q, Munshi T, Chen X. Micro/nanoscale magnetic robots for biomedical applications. Mater Today Bio 2020; 8:100085. [PMID: 33299981 PMCID: PMC7702192 DOI: 10.1016/j.mtbio.2020.100085] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 12/15/2022] Open
Abstract
Magnetic small-scale robots are devices of great potential for the biomedical field because of the several benefits of this method of actuation. Recent work on the development of these devices has seen tremendous innovation and refinement toward improved performance for potential clinical applications. This review briefly details recent advancements in small-scale robots used for biomedical applications, covering their design, fabrication, applications, and demonstration of ability, and identifies the gap in studies and the difficulties that have persisted in the optimization of the use of these devices. In addition, alternative biomedical applications are also suggested for some of the technologies that show potential for other functions. This study concludes that although the field of small-scale robot research is highly innovative there is need for more concerted efforts to improve functionality and reliability of these devices particularly in clinical applications. Finally, further suggestions are made toward the achievement of commercialization for these devices.
Collapse
Affiliation(s)
- M. Koleoso
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| | - X. Feng
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| | - Y. Xue
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| | - Q. Li
- School of Engineering, Institute for Energy Systems, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| | - T. Munshi
- School of Chemistry, University of Lincoln, Brayford Pool, Lincoln, Lincolnshire, LN6 7TS, UK
| | - X. Chen
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| |
Collapse
|
48
|
Zhang C, Liu T, Wang W, Bell CA, Han Y, Fu C, Peng H, Tan X, Král P, Gaus K, Gooding JJ, Whittaker AK. Tuning of the Aggregation Behavior of Fluorinated Polymeric Nanoparticles for Improved Therapeutic Efficacy. ACS NANO 2020; 14:7425-7434. [PMID: 32401485 DOI: 10.1021/acsnano.0c02954] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Incorporation of fluorinated moieties in polymeric nanoparticles has been shown in many instances to increase their uptake by living cells and, hence, has proven to be a useful approach to enhancing delivery to cells. However, it remains unclear how incorporation of fluorine affects critical transport processes, such as interactions with membranes, intracellular transport, and tumor penetration. In this study, we investigate the influence of fluorine on transport properties using a series of rationally designed poly(oligo(ethylene glycol) methyl ether acrylate)-block-perfluoropolyether (poly(OEGA)m-PFPE) copolymers. Copolymers with different fluorine contents were prepared and exhibit aggregate in solution in a manner dependent on the fluorine content. Doxorubicin-conjugated poly(OEGA)20-PFPE nanoparticles with lower fluorine content exist in solution as unimers, leading to greater exposure of hydrophobic PFPE segments to the cell surface. This, in turn, results in greater cellular uptake, deeper tumor penetration, as well as enhanced therapeutic efficacy compared to that with the micelle-state nanoaggregates (poly(OEGA)10-PFPE and poly(OEGA)5-PFPE) with higher fluorine content but with less PFPE exposed to the cell membranes. Our results demonstrate that the aggregation behavior of these fluorinated polymers plays a critical role in internalization and transport in living cells and 3D spheroids, providing important design criteria for the preparation of highly effective delivery agents.
Collapse
Affiliation(s)
- Cheng Zhang
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Tianqing Liu
- QIMR Berghofer Medical Research Institute, Brisbane, Qld 4006, Australia
| | | | | | | | | | | | | | - Petr Král
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | | | | | | |
Collapse
|
49
|
Yu Y, Xu W, Huang X, Xu X, Qiao R, Li Y, Han F, Peng H, Davis TP, Fu C, Whittaker AK. Proteins Conjugated with Sulfoxide-Containing Polymers Show Reduced Macrophage Cellular Uptake and Improved Pharmacokinetics. ACS Macro Lett 2020; 9:799-805. [PMID: 35648529 DOI: 10.1021/acsmacrolett.0c00291] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The conjugation of hydrophilic polymers to proteins is an effective approach to prolonging their circulation time in the bloodstream and, hence, improving their delivery to the target region of interest. In this work, we report the synthesis of protein-polymer conjugates using a highly water-soluble sulfoxide-containing polymer, poly(2-(methylsulfinyl)ethyl acrylate) (PMSEA), through a combination of "grafting-to" and "grafting-from" methods. Oligomeric MSEA was synthesized by conventional reversible addition-fragmentation chain transfer (RAFT) polymerization and subsequently conjugated to lysozyme to produce a macromolecular chain transfer agent. This was followed by a visible light-mediated chain extension polymerization of MSEA to obtain a lysozyme-PMSEA conjugate (Lyz-PMSEA). It was found that the Lyz-PMSEA conjugate exhibited much reduced macrophage cellular uptake compared with unmodified and PEGylated lysozyme. Moreover, the Lyz-PMSEA conjugate was able to circulate longer in the bloodstream, demonstrating significantly improved pharmacokinetics demanded for pharmaceutical applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuhuan Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|