1
|
Hu X, Shen Z, Hao H, Ma K, Zhen A, Yang Y, Liang K, Chen Z, Li J, Lv Y, Chao S, Pei Y, Qu Z, Pei Z. NIR II light-driven nanomotor synergistically enhances immunogenic cell death through photothermal and chemodynamic therapy for melanoma immunotherapy. J Colloid Interface Sci 2025; 694:137688. [PMID: 40300374 DOI: 10.1016/j.jcis.2025.137688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/01/2025]
Abstract
Melanoma is a highly invasive and metastatic malignant skin tumor. Recently, immunogenic cell death (ICD) has attracted great attention as a promising approach to immunotherapy. However, efficiently and comprehensively activating ICD throughout the dense tumor tissue is a key challenge. Herein, we designed a NIR II light-driven asymmetric nanomotor drug delivery system (Sor@CS-ZIF-8@MO1) to achieve deep penetration into the tumor tissue. By combining photothermal therapy (PTT) and chemodynamic therapy (CDT) to synergistically induce ICD, the immunotherapeutic efficacy against melanoma is enhanced. The research results showed that Sor@CS-ZIF-8@MO1 exhibited good photothermal performance and motor-driven performance, and was able to effectively penetrate 3D tumor cell spheroids deeply. Sor@CS-ZIF-8@MO1 targeted tumor tissues through mannose and controllably released sorafenib under the low pH conditions in tumor tissues and photothermal stimulation, thereby promoting tumor tissue angiogenesis to improve its hypoxic microenvironment and effectively enhancing the CDT effect induced by Cu+/2+. This could synergistically enhance the ICD of tumor cells with the PTT. Meanwhile, the tumor-associated antigens released by ICD, together with ovalbumin and mannose, stimulated immune response, reshaped the tumor immune microenvironment, enhanced tumor immunity, and ultimately effectively inhibited the growth and metastasis of melanoma tumors. In this work, a nanomotor delivery system that integrates multiple modalities and is capable of deeply penetrating tumor tissues to efficiently and comprehensively induce immunogenic cell death (ICD) has been designed, providing a new strategy to address the problem of insufficient induction of ICD in melanoma immunotherapy.
Collapse
Affiliation(s)
- Xuan Hu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Ziyan Shen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Huahua Hao
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Nanolattix Biotechnology Co., Ltd., Taiyuan, Shanxi 030032, PR China
| | - Ke Ma
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Aihua Zhen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Shandong Sheelian Pharmaceutical Co., Ltd., Yuncheng, Shandong 274700, PR China
| | - Yibo Yang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Kai Liang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zelong Chen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jiaxuan Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yinghua Lv
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Shuang Chao
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Yuxin Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Zhican Qu
- Nanolattix Biotechnology Co., Ltd., Taiyuan, Shanxi 030032, PR China.
| | - Zhichao Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
2
|
Huang X, Hou S, Li Y, Xu G, Xia N, Duan Z, Luo K, Tian B. Targeting lipid metabolism via nanomedicine: A prospective strategy for cancer therapy. Biomaterials 2025; 317:123022. [PMID: 39754967 DOI: 10.1016/j.biomaterials.2024.123022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/20/2024] [Accepted: 12/13/2024] [Indexed: 01/06/2025]
Abstract
Lipid metabolism has been increasingly recognized to play an influencing role in tumor initiation, progression, metastasis, and therapeutic drug resistance. Targeting lipid metabolic reprogramming represents a promising therapeutic strategy. Despite their structural complexity and poor targeting efficacy, lipid-metabolizing drugs, either used alone or in combination with chemotherapeutic agents, have been employed in clinical practice. The advent of nanotechnology offers new approaches to enhancing therapeutic effects, includingthe targeted delivery and integration of lipid metabolic reprogramming with chemotherapy, photodynamic therapy (PDT), and immunotherapy. The integrated nanoformulation, nanomedicine, could significantly advance the field of lipid metabolism therapy. In this review, we will briefly introduce the concept of cancer lipid metabolism reprogramming, then elaborate the latest advances in engineered nanomedicine for targeting lipid metabolism during cancer treatment, and finally provide our insights into future perspectives of nanomedicine for interference with lipid metabolism in the tumor microenvironment.
Collapse
Affiliation(s)
- Xing Huang
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shengzhong Hou
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinggang Li
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gang Xu
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Ning Xia
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Duan
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
| | - Kui Luo
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
| | - Bole Tian
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Weinstein LA, Wei B. Hiding in Plain Sight: Cell Biomimicry for Improving Hematological Cancer Outcomes. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:739. [PMID: 40423130 DOI: 10.3390/nano15100739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Accepted: 05/13/2025] [Indexed: 05/28/2025]
Abstract
The field of nanomedicine has been fruitful in creating novel drug delivery ideas to battle hematologic cancers. However, one persistent barrier to efficient nanoparticle treatment is phagocytic uptake or the clearance of nanoparticles by immune cells. To prevent this immune uptake, scientists have utilized biomimicry, the emulation of natural structures for engineered applications, to create particles that are able to remain unrecognized by immune cells. This method aims to improve the overall circulation time of nanoparticles by decreasing the amount of particles filtered out of the blood. It can even lead to homotypic cancer cell targeting, decreasing cancer cell vitality. This review summarizes recent in vivo and in vitro studies to prove that biomimetic cargo delivery is a unique and tenable way of increasing survival outcomes in patients with hematologic cancers.
Collapse
Affiliation(s)
- Laura A Weinstein
- Department of Biomedical Engineering, University of Delaware, Newark 19716, DE, USA
| | - Bingqing Wei
- Department of Mechanical Engineering, University of Delaware, Newark 19716, DE, USA
| |
Collapse
|
4
|
Mei YK, Zhu YW, Wei YW, Li SD, Zhou X, Yao YN, Qiu J. Metal-polydopamine coordinated coatings on titanium surface: enhancing corrosion resistance and biological property. RSC Adv 2025; 15:13603-13617. [PMID: 40297004 PMCID: PMC12036513 DOI: 10.1039/d5ra00301f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
Previous studies on polydopamine (PDA)-modified titanium implants have primarily focused on single-metal-ion systems (e.g., Ag+, Cu2+, or Zn2+), while overlooking the interplay between corrosion resistance, antioxidant retention, and antimicrobial efficacy under clinically relevant oxidative conditions. Here, we present a comparative analysis of Ag-, Cu-, and Zn-integrated PDA coatings fabricated via a two-step coordination strategy, addressing these limitations through systematic multi-parameter evaluation. Unlike prior studies, this study reveals distinct metal-PDA interaction mechanisms: XPS/EDS analyses confirm Zn2+ and Cu2+ form coordination complexes with PDA's catechol groups, whereas Ag+ undergoes reduction to metallic nanoparticles (Ag0), leading to divergent ion-release profiles (Zn2+ > Cu2+ > Ag+) and biofunctional outcomes. Electrochemical testing under H2O2-simulated oxidative stress demonstrates Zn-PDA coatings exhibit superior corrosion resistance (polarization resistance: 4330 vs. 3900 and 2850 kΩ cm2 for Cu-PDA and Ag-PDA, respectively), while Ag-PDA achieves the highest antibacterial efficacy (>95% reduction against S. aureus and E. coli). Notably, Zn/Cu-PDA coatings retain >80% of PDA's intrinsic antioxidant capacity, in contrast to Ag-PDA, which exhibits significant antioxidant depletion due to redox interference. In vivo rat models further differentiate our approach: all coatings show comparable soft-tissue integration and systemic biosafety, contrasting with earlier reports of Ag-induced cytotoxicity. By elucidating metal-specific performance trade-offs and establishing a design framework to balance corrosion resistance, ROS scavenging, and antimicrobial activity, this work advances clinically adaptable strategies for enhancing peri-implant tissue stability.
Collapse
Affiliation(s)
- Yu-Kun Mei
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University 1# Shanghai Road Nanjing 210029 China
- Jiangsu Province Key Laboratory of Oral Diseases Nanjing China
| | - Ya-Wen Zhu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University 1# Shanghai Road Nanjing 210029 China
- Jiangsu Province Key Laboratory of Oral Diseases Nanjing China
| | - Yu-Wen Wei
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University 1# Shanghai Road Nanjing 210029 China
- Jiangsu Province Key Laboratory of Oral Diseases Nanjing China
| | - Shu-di Li
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University 1# Shanghai Road Nanjing 210029 China
- Jiangsu Province Key Laboratory of Oral Diseases Nanjing China
| | - Xuan Zhou
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University 1# Shanghai Road Nanjing 210029 China
- Jiangsu Province Key Laboratory of Oral Diseases Nanjing China
| | - Ya-Nan Yao
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University 1# Shanghai Road Nanjing 210029 China
- Jiangsu Province Key Laboratory of Oral Diseases Nanjing China
| | - Jing Qiu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University 1# Shanghai Road Nanjing 210029 China
- Jiangsu Province Key Laboratory of Oral Diseases Nanjing China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine Nanjing China
| |
Collapse
|
5
|
Tao J, Ning W, Lu W, Wang R, Zhou H, Zhang H, Xu J, Wang S, Teng Z, Wang L. Smart self-transforming nano-systems for overcoming biological barrier and enhancing tumor treatment efficacy. J Control Release 2025; 380:85-107. [PMID: 39880041 DOI: 10.1016/j.jconrel.2025.01.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Nanomedicines need to overcome multiple biological barriers in the body to reach the target area. However, traditional nanomedicines with constant physicochemical properties are not sufficient to meet the diverse and sometimes conflicting requirements during in vivo transport, making it difficult to penetrate various biological barriers, resulting in suboptimal drug delivery efficiency. Smart self-transforming nano-systems (SSTNs), capable of altering their own physicochemical properties (including size, charge, hydrophobicity, stiffness, morphology, etc.) under different physiological conditions, hold the potential to break through multiple biological barriers, thereby improving drug delivery efficiency and the efficacy of cancer treatment. In this review, we first summarize the design strategies of five most popular SSTNs (such as size-, charge-, hydrophilicity-, stiffness-, and morphology-self-transforming nano-systems), and then delve into their biomedical applications in enhancing circulation time, tissue penetration, and cellular uptake. Finally, we discuss the opportunities and challenges that SSTNs face in the future for cancer treatment and diagnosis.
Collapse
Affiliation(s)
- Jun Tao
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China
| | - Weiqing Ning
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China
| | - Wei Lu
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China
| | - Rui Wang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China
| | - Hui Zhou
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China
| | - Hongru Zhang
- Key Laboratory of Agricultural Product Processing and Quality Control, Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, PR China
| | - Jiayi Xu
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China
| | - Shouju Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 211166, PR China.
| | - Zhaogang Teng
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China.
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China.
| |
Collapse
|
6
|
Ge D, Ma S, Sun T, Li Y, Wei J, Wang C, Chen X, Liao Y. Pulmonary delivery of dual-targeted nanoparticles improves tumor accumulation and cancer cell targeting by restricting macrophage interception in orthotopic lung tumors. Biomaterials 2025; 315:122955. [PMID: 39547139 DOI: 10.1016/j.biomaterials.2024.122955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Despite the recognized potential of inhaled nanomedicines to enhance and sustain local drug concentrations for lung cancer treatment, the influence of macrophage uptake on targeted nanoparticle delivery to and within tumors remains unclear. Here, we developed three ligand-coated nanoparticles for pulmonary delivery in lung cancer therapy: phenylboronic acid-modified nanoparticles (PBA-NPs), PBA combined with folic acid (FA-PBA-NPs), and PBA with mannose (MAN-PBA-NPs). In vitro, MAN-PBA-NPs were preferentially internalized by macrophages, whereas FA-PBA-NPs exhibited superior uptake by cancer cells compared to macrophages. Following intratracheal instillation into mice with orthotopic Lewis lung carcinoma tumors, all three nanoparticles showed similar lung retention. However, MAN-PBA-NPs were more prone to interception by lung macrophages, which limited their accumulation in tumor tissues. In contrast, both PBA-NPs and FA-PBA-NPs achieved comparable high tumor accumulation (∼11.3% of the dose). Furthermore, FA-PBA-NPs were internalized by ∼30% of cancer cells, significantly more than the 10-18% seen with PBA-NPs or MAN-PBA-NPs. Additionally, FA-PBA-NPs loaded with icaritin effectively inhibited the Wnt/β-catenin pathway, resulting in superior anti-tumor efficacy through targeted cancer cell delivery. Overall, FA-PBA-NPs demonstrated advantageous competitive uptake kinetics by cancer cells compared to macrophages, enhancing tumor targeting and therapeutic outcomes.
Collapse
Affiliation(s)
- Di Ge
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China; Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Siqi Ma
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Tingting Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China; College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yunfei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiaxing Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Chenao Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore; Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore; Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore, 138667, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore; Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Lower Kent Ridge Road, 4 Science Drive 2, Singapore, 117544, Singapore.
| | - Yonghong Liao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
7
|
Zhang H, Yang M, Wu Q, Xue J, Liu H. Engineering Two-Dimensional Nanomaterials for Photothermal Therapy. Angew Chem Int Ed Engl 2025; 64:e202424768. [PMID: 39936912 DOI: 10.1002/anie.202424768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/13/2025]
Abstract
Two-dimensional (2D) nanomaterials offer a transformative platform for photothermal therapy (PTT) due to their unique physicochemical properties and exceptional photothermal conversion efficiencies. This Minireview summarizes the photothermal mechanisms of common 2D nanomaterials and details their synthesis, surface modification, and optimization strategies. Recent advances leveraging 2D nanomaterials for enhanced PTT are highlighted, with particular emphasis on synergistic therapeutic modalities. Despite the significant potential of 2D nanomaterials in PTT, challenges persist, including scalable and reproducible manufacturing, precise targeted delivery, understanding of the underlying biological interactions, and comprehensive assessment of long-term biocompatibility and toxicity. Looking forward, emerging technologies such as machine learning are expected to play a crucial role in accelerating the design and optimization of 2D nanomaterials for PTT, enabling the prediction of optimal structures, properties, and therapeutic efficacy, and ultimately paving the way for personalized nanomedicine.
Collapse
Affiliation(s)
- Haoyuan Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, No. 15, East of North Third Ring Road, Chaoyang District, Beijing, 100029, China
| | - Min Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, No. 15, East of North Third Ring Road, Chaoyang District, Beijing, 100029, China
| | - Qingyuan Wu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, No. 30, Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Jiajia Xue
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, No. 15, East of North Third Ring Road, Chaoyang District, Beijing, 100029, China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, No. 15, East of North Third Ring Road, Chaoyang District, Beijing, 100029, China
| |
Collapse
|
8
|
Dave R, Pandey K, Khatri V, Patel R, Gour N, Bhatia D. Biological AIE Molecules: Innovations in Synthetic Design and AI-Driven Discovery. Adv Biol (Weinh) 2025:e2400792. [PMID: 40091623 DOI: 10.1002/adbi.202400792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/17/2025] [Indexed: 03/19/2025]
Abstract
Biological aggregation -induced emission (AIE) molecules offer significant advantages over synthetic organic fluorophores, particularly in biocompatibility, environmental sustainability, and emission properties in biological systems. Derived from biomolecules such as peptides, proteins, and nucleic acids, biological AIE molecules hold great promise for applications in biosensing, bioimaging, and target drug delivery. This review explores the design principles, mechanistic insights, and functional properties of biological AIE molecules whiles highlighting the role of artificial intelligence (AI) in accelerating their discovery and optimization. AI-driven approaches, including machine learning and computational modeling, are transforming the identification and synthesis of AIE molecules by enabling precise structural modifications and enhanced fluorescence efficiency. These advancements are paving the way for the integration of AIE molecules in next-generation smart biomedical devices, personalized medicine and sustainable technological applications. Emerging trends, including hybrid biomaterials, Ai-guided molecular engineering, and advanced imaging techniques, are expanding the scope of biological AIE molecules in healthcare and environmental monitoring. The synergy between AI and biological AIE molecules is unlocking new frontiers in biomedical technology, enabling transformative advancements in material science and healthcare applications, and shaping the future of fluorescence- based diagnostics and therapeutics.
Collapse
Affiliation(s)
- Raj Dave
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Kshipra Pandey
- Department of Biosciences, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Viral Khatri
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Ritu Patel
- Department of Biosciences, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Nidhi Gour
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Palaj, Gujarat, 382355, India
| |
Collapse
|
9
|
Gao M, Sun Q, Zhang R, Shan G, Zhang H, Peng R, Liu M, Sun G, Qiao L, Li Y, He X. Extracellular vesicles-hitchhiking boosts the deep penetration of drugs to amplify anti-tumor efficacy. Biomaterials 2025; 314:122829. [PMID: 39276410 DOI: 10.1016/j.biomaterials.2024.122829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Developing drug delivery systems capable of achieving deep tumor penetration is a challenging task, yet there is a significant demand for such systems in cancer treatment. Hitchhiking on tumor-derived extracellular vesicles (EVs) represents a promising strategy for enhancing drug penetration into tumors. However, the limited drug assembly on EVs restricts its further application. Here, we present a novel approach to efficiently attach antitumor drugs to EVs using an engineered cell membrane-based vector. This vector includes the AS1411 aptamer for tumor-specific targeting, the vesicular stomatitis virus glycoprotein (VSV-G) for tumor cell membrane fusion, and a photosensitizer as the therapeutic agent while ensuring optimal drug encapsulation and stability. Upon injection, photosensitizers are firstly transferred to the tumor cell membrane and subsequently piggybacked onto EVs with the inherent secretion process. By hitchhiking with EVs, photosensitizers can be transferred layer by layer deep into the solid tumors. The results suggest that this EVs-hitchhiking strategy enables photosensitizers to penetrate deeply into tumor tissue, thereby enhancing the efficacy of phototherapy. This study offers broad application prospects for delivering drugs deeply into tumor tissues.
Collapse
Affiliation(s)
- Min Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Qiuting Sun
- School of Life Sciences, Anhui Medical University, Hefei, 230032, PR China
| | - Ruijie Zhang
- School of Life Sciences, Anhui Medical University, Hefei, 230032, PR China
| | - Guisong Shan
- School of Life Sciences, Anhui Medical University, Hefei, 230032, PR China
| | - Huiru Zhang
- School of Life Sciences, Anhui Medical University, Hefei, 230032, PR China
| | - Rui Peng
- School of Life Sciences, Anhui Medical University, Hefei, 230032, PR China
| | - Mengyu Liu
- School of Life Sciences, Anhui Medical University, Hefei, 230032, PR China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Lei Qiao
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Yang Li
- School of Life Sciences, Anhui Medical University, Hefei, 230032, PR China.
| | - Xiaoyan He
- School of Life Sciences, Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|
10
|
Jiang L, Wu A, Zeng L, Zhou B, Zhao M, Fan M, Jin Z, He Q. A Slimming/Excavating Strategy for Enhanced Intratumoral Penetration of Acid-Disassemblable NO-Releasing Nanomedicines. Adv Healthc Mater 2025; 14:e2404085. [PMID: 39757461 DOI: 10.1002/adhm.202404085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/28/2024] [Indexed: 01/07/2025]
Abstract
Poor tumor penetration is the major predicament of nanomedicines that limits their anticancer efficacy. The dense extracellular matrix (ECM) in the tumor is one of the major barriers against the deep penetration of nanomedicines. In this work, a slimming/excavating strategy is proposed for enhanced intratumoral penetration based on an acid-disassemblable nanomicelles-assembled nanomedicine and the NO-mediated degradation of ECM. The nanomedicine is constructed by cross-linking nanomicelles, which are self-assembled with two kinds of dendrimers containing phenylboronic acid and lactobionic acid, through borate esterification. In the acidic tumor microenvironment, the pH-sensitive borate ester bonds among the nanomicelles are hydrolyzed, triggering the disassembly of nanomedicine (≈150 nm) into small nanomicelles (≈25 nm). In response to the intratumoral over-expressed glutathione (GSH), the NO donor loaded in the nanomicelles produces NO, which mediates the expression of matrix metalloproteinases for the degradation of ECM in the tumor. By collaboration of the disassembling behavior of nanomedicine with the NO-mediated degradation of ECM, the designed nanomedicine can penetrate a long distance in tumors. The proposed slimming/excavating strategy will provide inspiration for overcoming the challenge of nanomedicines in tumor penetration.
Collapse
Affiliation(s)
- Lingdong Jiang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Anbang Wu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, 518060, China
| | - Lingting Zeng
- Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Zhou
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, 518060, China
| | - Min Zhao
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, 518060, China
| | - Mingjian Fan
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, 518060, China
| | - Zhaokui Jin
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, 518060, China
| | - Qianjun He
- Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
11
|
Burčík D, Macko J, Podrojková N, Demeterová J, Stano M, Oriňak A. Role of Cell Adhesion in Cancer Metastasis Formation: A Review. ACS OMEGA 2025; 10:5193-5213. [PMID: 39989825 PMCID: PMC11840620 DOI: 10.1021/acsomega.4c08140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/10/2025] [Accepted: 01/22/2025] [Indexed: 02/25/2025]
Abstract
Intercellular adhesion is accompanied by several physical quantities and actions. In this review, we tried to collect information about the influence of surface energy and its impact on cell-cell adhesion. It still undergoes development for cancer treatment. Data on receptor-ligand interactions that occur on circulating tumor cells (CTCs) are described, and adhesion receptors as therapeutic targets are collected. Additionally, the impact of surface roughness on the interactions between CTC cells and the surface was monitored. The effects of different cell adhesion molecules (CAMs) on cell adhesion, growth, and proliferation were investigated. This review offers general principles of cell adhesion, through the blockade of adhesion with blocking drugs and inhibitors like computational models that describe the process of adhesion. Some theoretical models based on the minimum of the total free energy of interaction between CAMs and selected organic molecules have been presented. The final aim was to find information on how modulation of the surface of CTCs (by medicals or physically) inhibits cancer metastases formation.
Collapse
Affiliation(s)
- Denis Burčík
- University of P. J. Safarik
in Kosice, Faculty of Sciences,
Institute of Chemistry, Department of Physical Chemistry, Moyzesova 11, 041 01 Kosice, Slovakia
| | - Ján Macko
- University of P. J. Safarik
in Kosice, Faculty of Sciences,
Institute of Chemistry, Department of Physical Chemistry, Moyzesova 11, 041 01 Kosice, Slovakia
| | - Natália Podrojková
- University of P. J. Safarik
in Kosice, Faculty of Sciences,
Institute of Chemistry, Department of Physical Chemistry, Moyzesova 11, 041 01 Kosice, Slovakia
| | - Jana Demeterová
- University of P. J. Safarik
in Kosice, Faculty of Sciences,
Institute of Chemistry, Department of Physical Chemistry, Moyzesova 11, 041 01 Kosice, Slovakia
| | - Michal Stano
- University of P. J. Safarik
in Kosice, Faculty of Sciences,
Institute of Chemistry, Department of Physical Chemistry, Moyzesova 11, 041 01 Kosice, Slovakia
| | - Andrej Oriňak
- University of P. J. Safarik
in Kosice, Faculty of Sciences,
Institute of Chemistry, Department of Physical Chemistry, Moyzesova 11, 041 01 Kosice, Slovakia
| |
Collapse
|
12
|
Wang P, You J, Liu G, Wang Q, Zhang L, Lu X, Qin J, Dong Z, Yi B, Huang Q. The Combination of Aligned PDA-Fe@PLCL Conduit with Aligned GelMA Hydrogel Promotes Peripheral Nerve Regeneration. Adv Healthc Mater 2025; 14:e2403370. [PMID: 39718234 DOI: 10.1002/adhm.202403370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/01/2024] [Indexed: 12/25/2024]
Abstract
Biomaterial-assisted therapeutic strategies enable precise modulation to direct endogenous cellular responses and harness regenerative capabilities for nerve repair. However, achieving effective cellular engagement during nerve remodeling remains challenging. Herein, a novel composite nerve guidance conduit (NGC), the GelMA/PLys@PDA-Fe@PLCL conduit is developed by combining aligned poly(l-lactide-co-caprolactone) (PLCL) nanofibers modified with polydopamine (PDA), ferrous iron (Fe3⁺), and polylysine (PLys) with aligned methacrylate-anhydride gelatin (GelMA) hydrogel nanofibers. PDA films exhibit strong adhesion and metal coordination properties, allowing Fe3⁺ irons to chelate with phenolic hydroxyl groups of dopamine derivatives, forming a metal-phenolic network on PLCL. PLys molecules are then grafted onto PDA-Fe3⁺ coating via Schiff base and Michael addition reactions. This multifunctional coating enhances surface roughness and zeta potential of PLCL nanofibers, imparts superhydrophilicity with anisotropic wetting behavior, and maintains wet tensile properties of substrates. In vitro studies show that the PLys@PDA-Fe coating significantly promotes aligned distribution of Schwann cells, improves cell adhesion and differentiation, and demonstrates notable antioxidant and anti-inflammatory properties. When implanted into nerve defects in rats, the multifunctional coating conduit combined with aligned GelMA hydrogel effectively accelerates axonal regeneration, remyelination, and angiogenesis, leading to enhanced motor function recovery. Overall, the GelMA/PLys@PDA-Fe@PLCL conduit presents a promising strategy for advancing peripheral nerve repair.
Collapse
Affiliation(s)
- Penghui Wang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jiongming You
- Department of Orthopedic, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, WenZhou, Zhejiang, 325000, China
| | - Guang Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Qiming Wang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Linjie Zhang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Jinbao Qin
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Zhihui Dong
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Bingcheng Yi
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
- Department of Traditional Chinese Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266042, China
| | - Qun Huang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
13
|
Tang B, Huang R, Ma W. Advances in nanotechnology-based approaches for the treatment of head and neck squamous cell carcinoma. RSC Adv 2024; 14:38668-38688. [PMID: 39654926 PMCID: PMC11626385 DOI: 10.1039/d4ra07193j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), one of the most common types of cancers occurring in the head and neck region, is often associated with high mortality rates due to its invasiveness and morbidity. The mainstream treatment methods in clinical settings, including surgery, chemotherapy, and radiotherapy, may cause poor overall survival rate and prognosis, with issues such as drug resistance, damage to adjacent healthy tissues, and potential recurrences. Other treatment approaches such as immunotherapy, photodynamic therapy (PDT), and photothermal therapy (PPT) also suffer from inefficient tumor targeting and suboptimal therapeutic outcomes. Early detection is vital for HNSCC patients, but it is always limited by insensitivity and confusing clinical manifestations. Hence, it is highly desirable to develop optimized therapeutic and diagnostic strategies. With the boom in nanomaterials, nanotechnology-conducted HNSCC therapy has attracted widespread attention. Nanoparticles (NPs) are distinguished by their unique morphology and superior physicochemical property, and some can exhibit direct antitumor activity, while others serve as promising candidates for drug delivery. In addition, NPs offer the potential for structural modification for drug delivery and tumor targeting, enabling specific delivery to tumor cells through conjugation with biomarker ligands and improving cargo biocompatibility. This work reviews current therapies and diagnosis methods for HNSCC, highlights the characteristics of the major NPs, surveys their uses and advantages in the treatment of HNSCC, and discusses the obstacles and prospects in clinical applications, aiming to enlighten future research directions for nanotechnology-based therapy for HNSCC.
Collapse
Affiliation(s)
- Bicai Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials Chengdu Sichuan 610041 China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Rui Huang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials Chengdu Sichuan 610041 China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| |
Collapse
|
14
|
Nozdriukhin D, Cattaneo M, Klingler N, Lyu S, Li W, de Espinosa FM, Bonvin J, Supponen O, Razansky D, Deán‐Ben XL. Nanoporous Submicron Gold Particles Enable Nanoparticle-Based Localization Optoacoustic Tomography (nanoLOT). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404904. [PMID: 39394978 PMCID: PMC11657075 DOI: 10.1002/smll.202404904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/11/2024] [Indexed: 10/14/2024]
Abstract
Localization optoacoustic tomography (LOT) has recently emerged as a transformative super-resolution technique breaking through the acoustic diffraction limit in deep-tissue optoacoustic (OA) imaging via individual localization and tracking of particles in the bloodstream. However, strong light absorption in red blood cells has previously restricted per-particle OA detection to relatively large microparticles, ≈5 µm in diameter. Herein, it is demonstrated that submicron-sized porous gold nanoparticles, ≈600 nm in diameter, can be individually detected for noninvasive super-resolution imaging with LOT. Ultra-high-speed bright-field microscopy revealed that these nanoparticles generate microscopic plasmonic vapor bubbles, significantly enhancing opto-acoustic energy conversion through a nano-to-micro size transformation. Comprehensive in vitro and in vivo tests further demonstrated the biocompatibility and biosafety of the particles. By reducing the detectable particle size by an order of magnitude, nanoLOT enables microangiographic imaging with a significantly reduced risk of embolisms from particle aggregation and opens new avenues to visualize how nanoparticles reach vascular and potentially extravascular targets. The performance of nanoLOT for non-invasive imaging of microvascular networks in the murine brain anticipates new insights into neurovascular coupling mechanisms and longitudinal microcirculatory changes associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniil Nozdriukhin
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zurich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichRämistrasse 101Zurich8093Switzerland
| | - Marco Cattaneo
- Institute of Fluid Dynamics, Department of Mechanical and Process EngineeringETH ZürichSonneggstrasse 3Zurich8092Switzerland
| | - Norman Klingler
- Institute of Fluid Dynamics, Department of Mechanical and Process EngineeringETH ZürichSonneggstrasse 3Zurich8092Switzerland
| | - Shuxin Lyu
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zurich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichRämistrasse 101Zurich8093Switzerland
- Department of Medical ImagingShanxi Medical UniversityXinjiannan Road 56Shanxi030001China
| | - Weiye Li
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zurich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichRämistrasse 101Zurich8093Switzerland
| | | | - Jerome Bonvin
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zurich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichRämistrasse 101Zurich8093Switzerland
| | - Outi Supponen
- Institute of Fluid Dynamics, Department of Mechanical and Process EngineeringETH ZürichSonneggstrasse 3Zurich8092Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zurich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichRämistrasse 101Zurich8093Switzerland
| | - Xosé Luís Deán‐Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zurich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichRämistrasse 101Zurich8093Switzerland
| |
Collapse
|
15
|
Liao M, Zhang Q, Huang J, Huang X, Cheng C, Tu J, Zhang D, Lu Q, Ma L. Near-infrared and ultrasound triggered Pt/Pd-engineered cluster bombs for the treatment of solid tumors. J Control Release 2024; 375:331-345. [PMID: 39278358 DOI: 10.1016/j.jconrel.2024.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Owing to the dense extracellular matrix and high interstitial fluid pressure in the tumor microenvironment, methods which enhance the permeation and retention of nano drugs into liver tumors remain unsatisfactory for successful tumor treatment. We designed a near-infrared (NIR)- and ultrasound (US)-triggered Pt/Pd-engineered "cluster bomb" (Pt/Pd-CB) which actively penetrates liver cancer cell membranes and achieves photothermal and sonodynamic therapy (SDT). The physical forces generated by the fast expansion and collapse of perfluoropentane nanodroplets eject "sub bombs" (Pt/Pd nanoalloys) into liver cancer cells upon activation by NIR and US. Pt/Pd nanoalloys can then convert H2O2 into O2 to alleviate hypoxia and boost SDT efficiency while exhibiting a highly efficient photothermal response under NIR irradiation. Our findings might especially be promising for the treatment of solid tumors.
Collapse
Affiliation(s)
- Min Liao
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qi Zhang
- School of Physics, Nanjing University, Nanjing 210093, China
| | - Jianbo Huang
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaotong Huang
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Juan Tu
- School of Physics, Nanjing University, Nanjing 210093, China
| | - Dong Zhang
- School of Physics, Nanjing University, Nanjing 210093, China.
| | - Qiang Lu
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Lang Ma
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
16
|
Zhang W, Zhu J, Ren J, Qu X. Smart Bioorthogonal Nanozymes: From Rational Design to Appropriate Bioapplications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405318. [PMID: 39149782 DOI: 10.1002/adma.202405318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/18/2024] [Indexed: 08/17/2024]
Abstract
Bioorthogonal chemistry has provided an elaborate arsenal to manipulate native biological processes in living systems. As the great advancement of nanotechnology in recent years, bioorthogonal nanozymes are innovated to tackle the challenges that emerged in practical biomedical applications. Bioorthogonal nanozymes are uniquely positioned owing to their advantages of high customizability and tunability, as well as good adaptability to biological systems, which bring exciting opportunities for biomedical applications. More intriguingly, the great advancement in nanotechnology offers an exciting opportunity for innovating bioorthogonal catalytic materials. In this comprehensive review, the significant progresses of bioorthogonal nanozymes are discussed with both spatiotemporal controllability and high performance in living systems, and highlight their design principles and recent rapid applications. The remaining challenges and future perspectives are then outlined along this thriving field. It is expected that this review will inspire and promote the design of novel bioorthogonal nanozymes, and facilitate their clinical translation.
Collapse
Affiliation(s)
- Wenting Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jiawei Zhu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
17
|
Mi K, Chou WC, Chen Q, Yuan L, Kamineni VN, Kuchimanchi Y, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. Predicting tissue distribution and tumor delivery of nanoparticles in mice using machine learning models. J Control Release 2024; 374:219-229. [PMID: 39146980 PMCID: PMC11886896 DOI: 10.1016/j.jconrel.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/24/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
Nanoparticles (NPs) can be designed for targeted delivery in cancer nanomedicine, but the challenge is a low delivery efficiency (DE) to the tumor site. Understanding the impact of NPs' physicochemical properties on target tissue distribution and tumor DE can help improve the design of nanomedicines. Multiple machine learning and artificial intelligence models, including linear regression, support vector machine, random forest, gradient boosting, and deep neural networks (DNN), were trained and validated to predict tissue distribution and tumor delivery based on NPs' physicochemical properties and tumor therapeutic strategies with the dataset from Nano-Tumor Database. Compared to other machine learning models, the DNN model had superior predictions of DE to tumors and major tissues. The determination coefficients (R2) for the test datasets were 0.41, 0.42, 0.45, 0.79, 0.87, and 0.83 for DE in tumor, heart, liver, spleen, lung, and kidney, respectively. All the R2 and root mean squared error (RMSE) results of the test datasets were similar to the 5-fold cross validation results. Feature importance analysis showed that the core material of NPs played an important role in output predictions among all physicochemical properties. Furthermore, multiple NP formulations with greater DE to the tumor were determined by the DNN model. To facilitate model applications, the final model was converted to a web dashboard. This model could serve as a high-throughput pre-screening tool to support the design of new and efficient nanomedicines with greater tumor DE and serve as an alternative tool to reduce, refine, and partially replace animal experimentation in cancer nanomedicine research.
Collapse
Affiliation(s)
- Kun Mi
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32608, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32610, USA
| | - Wei-Chun Chou
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32608, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32610, USA; Department of Environmental Sciences, College of Natural & Agricultural Sciences, University of California, Riverside, CA 92521, USA
| | - Qiran Chen
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32608, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32610, USA
| | - Long Yuan
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32608, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32610, USA
| | - Venkata N Kamineni
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32608, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32610, USA
| | - Yashas Kuchimanchi
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32608, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32610, USA
| | - Chunla He
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32608, USA; Department of Biostatistics, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32608, USA
| | - Nancy A Monteiro-Riviere
- Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, KS 66506, USA; Center for Chemical Toxicology Research and Pharmacokinetics, North Carolina State University, Raleigh, NC 27606, USA
| | - Jim E Riviere
- Center for Chemical Toxicology Research and Pharmacokinetics, North Carolina State University, Raleigh, NC 27606, USA; 1Data Consortium, Kansas State University, Olathe, KS 66061, USA
| | - Zhoumeng Lin
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32608, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
18
|
Acet Ö, Kirsanov P, Önal Acet B, Halets-Bui I, Shcharbin D, Ceylan Cömert Ş, Odabaşı M. Synthesis, characterization and anticancer effect of doxorubicin-loaded dual stimuli-responsive smart nanopolymers. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1189-1196. [PMID: 39355301 PMCID: PMC11443663 DOI: 10.3762/bjnano.15.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/23/2024] [Indexed: 10/03/2024]
Abstract
Nanopolymers represent a significant group of delivery vehicles for hydrophobic drugs. In particular, dual stimuli-responsive smart polymer nanomaterials might be extremely useful for drug delivery and release. We analyzed the possibility to include the known antitumor drug doxorubicin (DOX), which has antimitotic and antiproliferative effects, in a nanopolymer complex. Thus, doxorubicin-loaded temperature- and pH-sensitive smart nanopolymers (DOX-SNPs) were produced. Characterizations of the synthesized nanostructures were carried out including zeta potential measurements, Fourier-transform infrared spectroscopy, and scanning electron microscopy. The loading capacity of the nanopolymers for DOX was investigated, and encapsulation and release studies were carried out. In a final step, the cytotoxicity of the DOX-nanopolymer complexes against the HeLa cancer cell line at different concentrations and incubation times was studied. The DOX release depended on temperature and pH value of the release medium, with the highest release at pH 6.0 and 41 °C. This effect was similar to that observed for the commercial liposomal formulation of doxorubicin Doxil. The obtained results demonstrated that smart nanopolymers can be efficiently used to create new types of doxorubicin-based drugs.
Collapse
Affiliation(s)
- Ömür Acet
- Vocational School of Health Science, Pharmacy Services Program, Tarsus University, Tarsus, Turkey
| | - Pavel Kirsanov
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Burcu Önal Acet
- Faculty of Arts and Science, Chemistry Department, Aksaray University, Aksaray, Turkey
| | - Inessa Halets-Bui
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Şeyda Ceylan Cömert
- Faculty of Arts and Science, Chemistry Department, Aksaray University, Aksaray, Turkey
| | - Mehmet Odabaşı
- Faculty of Arts and Science, Chemistry Department, Aksaray University, Aksaray, Turkey
| |
Collapse
|
19
|
Li X, Hu Y, Zhang X, Shi X, Parak WJ, Pich A. Transvascular transport of nanocarriers for tumor delivery. Nat Commun 2024; 15:8172. [PMID: 39289401 PMCID: PMC11408679 DOI: 10.1038/s41467-024-52416-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Nanocarriers (NCs) play a crucial role in delivering theranostic agents to tumors, making them a pivotal focus of research. However, the persistently low delivery efficiency of engineered NCs has been a significant challenge in the advancement of nanomedicine, stirring considerable debate. Transvascular transport is a critical pathway for NC delivery from vessels to tumors, yet a comprehensive understanding of the interactions between NCs and vascular systems remains elusive. In recent years, considerable efforts have been invested in elucidating the transvascular transport mechanisms of NCs, leading to promising advancements in tumor delivery and theranostics. In this context, we highlight various delivery mechanisms, including the enhanced permeability and retention effect, cooperative immune-driven effect, active transcytosis, and cell/bacteria-mediated delivery. Furthermore, we explore corresponding strategies aimed at enhancing transvascular transport of NCs for efficient tumor delivery. These approaches offer intriguing solutions spanning physicochemical, biological, and pharmacological domains to improve delivery and therapeutic outcomes. Additionally, we propose a forward-looking delivery framework that relies on advanced tumor/vessel models, high-throughput NC libraries, nano-bio interaction datasets, and artificial intelligence, which aims to guide the design of next-generation carriers and implementation strategies for optimized delivery.
Collapse
Affiliation(s)
- Xin Li
- DWI-Leibniz-Institute for Interactive Materials, Aachen, 52056, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, 52074, Germany
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Yong Hu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Xingcai Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA.
| | - Xiangyang Shi
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Wolfgang J Parak
- Center for Hybrid Nanostructures (CHyN), University of Hamburg, Hamburg, 20607, Germany.
| | - Andrij Pich
- DWI-Leibniz-Institute for Interactive Materials, Aachen, 52056, Germany.
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, 52074, Germany.
- Aachen Maastricht Institute for Biobased Materials, Maastricht University, RD Geleen, 6167, The Netherlands.
| |
Collapse
|
20
|
Ye Z, Liu J, Liu Y, Zhao Y, Li Z, Xu B, Chen D, Wang B, Wang Q, Shen Y. Hybrid nanopotentiators with dual cascade amplification for glioma combined interventional therapy. J Control Release 2024; 372:95-112. [PMID: 38851536 DOI: 10.1016/j.jconrel.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Glioma is an aggressive malignant brain tumor with a very poor prognosis for survival. The poor tumor targeting efficiency and tumor microenvironment penetration barrier also as troubles inhibited the effective glioma chemotherapy. Here, we design a core-shell structure cascade amplified hybrid catalytic nanopotentiators CFpAD with DM1 encapsulated to overcome the glioma therapeutic obstacles. NIR laser-based BBB penetrating enhances the tumor accumulation of CFpAD. When CFpAD, as the cascade amplified drug, is treated on the cancer cells, the bomb-like CFpAD releases gold nanoparticles as glucose oxidase (GOx) and ferric oxide nanoparticles (FNPs) as peroxides (POx) after blasting, producing ROS via a cascade amplification for tumor cell apoptosis. Gold nanoparticles can rest CAFs and reduce ECM secretion, achieving deep penetration of CFpAD. Moreover, CFpAD also cuts off the nutritional supply of the tumor, reduces the pH value, and releases free radicals to destroy the cancer. The glioma cell viability was significantly decreased through DNA damage and ROS aggregation due to the DM1-based chemotherapy synergistically combined with interventional photothermal therapy (IPTT) and radiotherapy (RT). This domino cascade amplified loop, combined with starvation therapy with IPTT and RT, has good tumor penetration and outstanding antitumor efficacy, and is a promising glioma treatment system.
Collapse
Affiliation(s)
- Zixuan Ye
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Ji Liu
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yanyan Liu
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yan Zhao
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Zhen Li
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Bohui Xu
- School of Pharmacy, Nantong University, No.19 Qixiu Road, Nantong 226001,China
| | - Daquan Chen
- School of Pharmacy, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Buhai Wang
- Cancer Institute of Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225000, China.
| | - Qiyue Wang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China.
| | - Yan Shen
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
21
|
Semwal N, Mahar D, Chatti M, Kumar R, Arya MC. Ni-Zn/CeO 2 nanocomposites for enhanced adsorptive removal of 4-chlorophenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51934-51953. [PMID: 39134794 DOI: 10.1007/s11356-024-34669-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Chlorophenols are one of the major organic pollutants responsible for the contamination of water bodies. This study explores the application of Ni-Zn/CeO2 nanocomposites, synthesized via the aqueous co-precipitation method, as effective adsorbents for the 4-chlorophenol removal from aqueous solutions. The nanocomposites' chemical and structural characteristics were assessed using different physical characterization methods, viz. X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, zeta potential, using a Box-Behnken design within response surface methodology, optimal conditions of pH 3, temperature 20 °C, contact time 120 min, adsorbent dosage 0.05 g, and 4-chlorophenol concentration 50 ppm are identified. Among the nanocomposites tested, NZC 20:10:70, with 20% Ni and 10% Zn, achieves enhanced performance, removing 99.1% of 4-chlorophenol within 2 h. Adsorption kinetics follow the pseudo-second-order model and equilibrium data fit the Freundlich isotherm. Thermodynamic analysis indicates an exothermic and spontaneous process. The adsorption capacity of NZC 20:10:70 shows significant enhancement, growing from 19.85 mg/g at 10 ppm to 96.33 mg/g at 50 ppm initial concentration. Physical characterization confirms NZC 20:10:70's superior properties, including a high surface area of 118.471 m2/g. Evaluating economic viability, NZC 20:10:70 demonstrates robust reusability, retaining 85% efficiency over eight regeneration cycles. These results highlight NZC 20:10:70 as a promising adsorbent for effective and sustainable chlorophenol removal in water treatment.
Collapse
Affiliation(s)
- Nitish Semwal
- Department of Chemistry, DSB Campus, Kumaun University, Nainital, Uttarakhand, 263002, India
| | - Divya Mahar
- Department of Chemistry, DSB Campus, Kumaun University, Nainital, Uttarakhand, 263002, India
| | - Manjunath Chatti
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Rajesh Kumar
- Department of Chemistry, SSJ Campus, SSJ University, Almora, Uttarakhand, India
| | - Mahesh Chandra Arya
- Department of Chemistry, DSB Campus, Kumaun University, Nainital, Uttarakhand, 263002, India.
| |
Collapse
|
22
|
Huang A, Li Q, Shi X, Gao J, Ma Y, Ding J, Hua S, Zhou W. An iron-containing nanomedicine for inducing deep tumor penetration and synergistic ferroptosis in enhanced pancreatic cancer therapy. Mater Today Bio 2024; 27:101132. [PMID: 38994471 PMCID: PMC11237974 DOI: 10.1016/j.mtbio.2024.101132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 07/13/2024] Open
Abstract
Pancreatic cancer is an aggressive and challenging malignancy with limited treatment options, largely attributed to the dense tumor stroma and intrinsic drug resistance. Here, we introduce a novel iron-containing nanoparticle formulation termed PTFE, loaded with the ferroptosis inducer Erastin, to overcome these obstacles and enhance pancreatic cancer therapy. The PTFE nanoparticles were prepared through a one-step assembly process, consisting of an Erastin-loaded PLGA core stabilized by a MOF shell formed by coordination between Fe3+ and tannic acid. PTFE demonstrated a unique capability to repolarize tumor-associated macrophages (TAMs) into the M1 phenotype, leading to the regulation of dense tumor stroma by modulating the activation of tumor-associated fibroblasts (TAFs) and reducing collagen deposition. This resulted in enhanced nanoparticle accumulation and deep penetration, as confirmed by in vitro multicellular tumor spheroids and in vivo mesenchymal-rich subcutaneous pancreatic tumor models. Moreover, PTFE effectively combated tumor resistance by synergistically employing the Fe3+-induced Fenton reaction and Erastin-induced ferroptosis, thereby disrupting the redox balance. As a result, significant tumor growth inhibition was achieved in mice-bearing tumor model. Comprehensive safety evaluations demonstrated PTFE's favorable biocompatibility, highlighting its potential as a promising therapeutic platform to effectively address the formidable challenges in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Aiping Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Qingnian Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Xinyi Shi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
- Department of Pharmacy, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine (Haikou People's Hospital), Haikou, Hainan, 570208, China
| | - Junyi Gao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yiran Ma
- Hunan Prize Life Science Research Institute Co., LTD, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Surong Hua
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
23
|
Ma Y, Li Z, Luo Y, Chen Y, Ma L, Liu X, Xiao J, Huang M, Li Y, Jiang H, Wang M, Wang X, Li J, Kong J, Shi P, Yu H, Jiang X, Guo Q. Biodegradable Microembolics with Nanografted Polyanions Enable High-Efficiency Drug Loading and Sustained Deep-Tumor Drug Penetration for Locoregional Chemoembolization Treatment. ACS NANO 2024; 18:18211-18229. [PMID: 38946122 DOI: 10.1021/acsnano.4c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Transarterial chemoembolization (TACE), the mainstay treatment of unresectable primary liver cancer that primarily employs nondegradable drug-loaded embolic agents to achieve synergistic vascular embolization and locoregional chemotherapy effects, suffers from an inferior drug burst behavior lacking long-term drug release controllability that severely limits the TACE efficacy. Here we developed gelatin-based drug-eluting microembolics grafted with nanosized poly(acrylic acid) serving as a biodegradable ion-exchange platform that leverages a counterion condensation effect to achieve high-efficiency electrostatic drug loading with electropositive drugs such as doxorubicin (i.e., drug loading capacity >34 mg/mL, encapsulation efficiency >98%, and loading time <10 min) and an enzymatic surface-erosion degradation pattern (∼2 months) to offer sustained locoregional pharmacokinetics with long-lasting deep-tumor retention capability for TACE treatment. The microembolics demonstrated facile microcatheter deliverability in a healthy porcine liver embolization model, superior tumor-killing capacity in a rabbit VX2 liver cancer embolization model, and stabilized extravascular drug penetration depth (>3 mm for 3 months) in a rabbit ear embolization model. Importantly, the microembolics finally exhibited vessel remodeling-induced permanent embolization with minimal inflammation responses after complete degradation. Such a biodegradable ion-exchange drug carrier provides an effective and versatile strategy for enhancing long-term therapeutic responses of various local chemotherapy treatments.
Collapse
Affiliation(s)
- Yutao Ma
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Zhihua Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yucheng Luo
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yao Chen
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Le Ma
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaoya Liu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jingyu Xiao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Man Huang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yingnan Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hongliang Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Meijuan Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaoqian Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiangtao Li
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Jian Kong
- Department of Interventional Radiology, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Guangdong 518057, China
| | - Hanry Yu
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
- Department of Physiology, Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, 117593 Singapore
- Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qiongyu Guo
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
24
|
Wang S, Cao H, Zhao CC, Wang Q, Wang D, Liu J, Yang L, Liu J. Engineering biomimetic nanosystem targeting multiple tumor radioresistance hallmarks for enhanced radiotherapy. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1398-1412. [PMID: 38602587 DOI: 10.1007/s11427-023-2528-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/11/2024] [Indexed: 04/12/2024]
Abstract
Tumor cells establish a robust self-defense system characterized by hypoxia, antioxidant overexpression, DNA damage repair, and so forth to resist radiotherapy. Targeting one of these features is insufficient to overcome radioresistance due to the feedback mechanisms initiated by tumor cells under radiotherapy. Therefore, we herein developed an engineering biomimetic nanosystem (M@HHPt) masked with tumor cell membranes and loaded with a hybridized protein-based nanoparticle carrying oxygens (O2) and cisplatin prodrugs (Pt(IV)) to target multiple tumor radioresistance hallmarks for enhanced radiotherapy. After administration, M@HHPt actively targeted and smoothly accumulated in tumor cells by virtue of its innate homing abilities to realize efficient co-delivery of O2 and Pt(IV). O2 introduction induced hypoxia alleviation cooperated with Pt(IV) reduction caused glutathione consumption greatly amplified radiotherapy-ignited cellular oxidative stress. Moreover, the released cisplatin effectively hindered DNA damage repair by crosslinking with radiotherapy-produced DNA fragments. Consequently, M@HHPt-sensitized radiotherapy significantly suppressed the proliferation of lung cancer H1975 cells with an extremely high sensitizer enhancement ratio of 1.91 and the progression of H1975 tumor models with an excellent tumor inhibition rate of 94.7%. Overall, this work provided a feasible strategy for tumor radiosensitization by overcoming multiple radioresistance mechanisms.
Collapse
Affiliation(s)
- Shuxiang Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Hongmei Cao
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Cui-Cui Zhao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy (Tianjin), Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Qian Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Dianyu Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Jinjian Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Lijun Yang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| | - Jianfeng Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
25
|
Sheng D, Liu T, Qian L, Chen J, Wei Y, Chen H, Chang C. Sonodynamic and sonomechanical effect on cellular stemness and extracellular physicochemical environment to potentiate chemotherapy. J Nanobiotechnology 2024; 22:358. [PMID: 38907270 PMCID: PMC11191306 DOI: 10.1186/s12951-024-02623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/05/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Hypoxia-activated prodrug (HAP) is a promising candidate for highly tumor-specific chemotherapy. However, the oxygenation heterogeneity and dense extracellular matrix (ECM) of tumor, as well as the potential resistance to chemotherapy, have severely impeded the resulting overall efficacy of HAP. RESULTS A HAP potentiating strategy is proposed based on ultrasound responsive nanodroplets (PTP@PLGA), which is composed of protoporphyrin (PpIX), perfluoropropane (PFP) and a typical HAP, tirapazamine (TPZ). The intense vaporization of PFP upon ultrasound irradiation can magnify the sonomechanical effect, which loosens the ECM to promote the penetration of TPZ into the deep hypoxic region. Meanwhile, the PpIX enabled sonodynamic effect can further reduce the oxygen level, thus activating the TPZ in the relatively normoxic region as well. Surprisingly, abovementioned ultrasound effect also results in the downregulation of the stemness of cancer cells, which is highly associated with drug-refractoriness. CONCLUSIONS This work manifests an ideal example of ultrasound-based nanotechnology for potentiating HAP and also reveals the potential acoustic effect of intervening cancer stem-like cells.
Collapse
Affiliation(s)
- Danli Sheng
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Tianzhi Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Lang Qian
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jufeng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
| | - Yi Wei
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
| | - Cai Chang
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
26
|
Wang P, Wang Y, Xia X, Wu J, Lin J, Huang W, Yan D. A convenient protonated strategy for constructing nanodrugs from hydrophobic drug-inhibitor conjugates to reverse tumor multidrug resistance. NANOSCALE 2024; 16:8434-8446. [PMID: 38592819 DOI: 10.1039/d3nr06293g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Combination therapy has proven effective in counteracting tumor multidrug resistance (MDR). However, the pharmacokinetic differences among various drugs and inherent water insolubility for most small molecule agents greatly hinder their synergistic effects, which makes the delivery of drugs for combination therapy in vivo a key problem. Herein, we propose a protonated strategy to transform a water-insoluble small molecule drug-inhibitor conjugate into an amphiphilic one, which then self-assembles into nanoparticles for co-delivery in vivo to overcome tumor MDR. Specifically, paclitaxel (PTX) is first coupled with a third-generation P-glycoprotein (P-gp) inhibitor zosuquidar (Zos) through a glutathione (GSH)-responsive disulfide bond to produce a hydrophobic drug-inhibitor conjugate (PTX-ss-Zos). Subsequently treated with hydrochloric acid ethanol solution (HCl/EtOH), PTX-ss-Zos is transformed into the amphiphilic protonated precursor and then forms nanoparticles (PTX-ss-Zos@HCl NPs) in water by molecular self-assembly. PTX-ss-Zos@HCl NPs can be administered intravenously and accumulated specifically at tumor sites. Once internalized by cancer cells, PTX-ss-Zos@HCl NPs can be degraded under the overexpressed GSH to release PTX and Zos simultaneously, which synergistically reverse tumor MDR and inhibit tumor growth. This offers a promising strategy to develop small molecule self-assembled nanoagents to reverse tumor MDR in combination therapy.
Collapse
Affiliation(s)
- Penghui Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yuling Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xuelin Xia
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jingchun Wu
- Zhejiang Hopeland Chemical Co., LTD, 26 Luyin Road, Quzhou Hi-Tech Industrial Park, Zhejiang 324100, China
| | - Jintang Lin
- Zhejiang Hopeland Chemical Co., LTD, 26 Luyin Road, Quzhou Hi-Tech Industrial Park, Zhejiang 324100, China
| | - Wei Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
27
|
Zhou Y, Li Q, Wu Y, Zhang W, Ding L, Ji C, Li P, Chen T, Feng L, Tang BZ, Huang X. Synergistic Brilliance: Engineered Bacteria and Nanomedicine Unite in Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313953. [PMID: 38400833 DOI: 10.1002/adma.202313953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Engineered bacteria are widely used in cancer treatment because live facultative/obligate anaerobes can selectively proliferate at tumor sites and reach hypoxic regions, thereby causing nutritional competition, enhancing immune responses, and producing anticancer microbial agents in situ to suppress tumor growth. Despite the unique advantages of bacteria-based cancer biotherapy, the insufficient treatment efficiency limits its application in the complete ablation of malignant tumors. The combination of nanomedicine and engineered bacteria has attracted increasing attention owing to their striking synergistic effects in cancer treatment. Engineered bacteria that function as natural vehicles can effectively deliver nanomedicines to tumor sites. Moreover, bacteria provide an opportunity to enhance nanomedicines by modulating the TME and producing substrates to support nanomedicine-mediated anticancer reactions. Nanomedicine exhibits excellent optical, magnetic, acoustic, and catalytic properties, and plays an important role in promoting bacteria-mediated biotherapies. The synergistic anticancer effects of engineered bacteria and nanomedicines in cancer therapy are comprehensively summarized in this review. Attention is paid not only to the fabrication of nanobiohybrid composites, but also to the interpromotion mechanism between engineered bacteria and nanomedicine in cancer therapy. Additionally, recent advances in engineered bacteria-synergized multimodal cancer therapies are highlighted.
Collapse
Affiliation(s)
- Yaofeng Zhou
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Qianying Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Yuhao Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Wan Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, P. R. China
| | - Lu Ding
- Department of Cardiology, Jiangxi Hypertension Research Institute, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, P. R. China
| | - Chenlin Ji
- School of Engineering, Westlake University, Hangzhou, 310030, P. R. China
| | - Ping Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330036, P. R. China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, P. R. China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| |
Collapse
|
28
|
Zhang HF, Yu H, Pan SX, Zhang C, Ma YH, Zhang YF, Zuo LL, Hao CY, Lin XY, Geng H, Wu D, Mu SQ, Yu WL, Shi NQ. Multibarrier-penetrating drug delivery systems for deep tumor therapy based on synergistic penetration strategy. Biomater Sci 2024; 12:2321-2330. [PMID: 38488841 DOI: 10.1039/d3bm01959d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Nanotherapies, valued for their high efficacy and low toxicity, frequently serve as antitumor treatments, but do not readily penetrate deep into tumor tissues and cells. Here we developed an improved tumor-penetrating peptide (TPP)-based drug delivery system. Briefly, the established TPP iNGR was modified to generate a linear NGR peptide capable of transporting nanotherapeutic drugs into tumors through a CendR pathway-dependent, neuropilin-1 receptor-mediated process. Although TPPs have been reported to reach intended tumor targets, they often fail to penetrate cell membranes to deliver tumoricidal drugs to intracellular targets. We addressed this issue by harnessing cell penetrating peptide technology to develop a liposome-based multibarrier-penetrating delivery system (mbPDS) with improved synergistic drug penetration into deep tumor tissues and cells. The system incorporated doxorubicin-loaded liposomes coated with nona-arginine (R9) CPP and cyclic iNGR (CRNGRGPDC) molecules, yielding Lip-mbPDS. Lip-mbPDS tumor-targeting, tumor cell/tissue-penetrating and antitumor capabilities were assessed using CD13-positive human fibrosarcoma-derived cell (HT1080)-based in vitro and in vivo tumor models. Lip-mbPDS evaluation included three-dimensional layer-by-layer confocal laser scanning microscopy, cell internalization/toxicity assays, three-dimensional tumor spheroid-based penetration assays and antitumor efficacy assays conducted in an animal model. Lip-mbPDS provided enhanced synergistic drug penetration of multiple biointerfaces for potentially deep tumor therapeutic outcomes.
Collapse
Affiliation(s)
| | - Huan Yu
- School of Pharmacy, Jilin Medical University, China.
| | | | - Chuang Zhang
- School of Pharmacy, Jilin Medical University, China.
| | - Ying-Hui Ma
- School of Pharmacy, Jilin Medical University, China.
| | - Yan-Fei Zhang
- School of Pharmacy, Jilin Medical University, China.
| | - Li-Li Zuo
- School of public health, Jilin Medical University, China
| | - Cheng-Yi Hao
- School of Pharmacy, Jilin Medical University, China.
| | - Xiao-Ying Lin
- School of Pharmacy, Jilin Medical University, China.
| | - Hao Geng
- School of Pharmacy, Jilin Medical University, China.
| | - Di Wu
- School of Pharmacy, Jilin Medical University, China.
| | | | - Wei-Lun Yu
- School of Bioengineering, Jilin Medical University, China
| | - Nian-Qiu Shi
- School of Pharmacy, Jilin Medical University, China.
- College of Pharmaceutical Sciences, Yanbian University, China
| |
Collapse
|
29
|
Yu B, Wang W, Zhang Y, Sun Y, Li C, Liu Q, Zhen X, Jiang X, Wu W. Enhancing the tumor penetration of multiarm polymers by collagenase modification. Biomater Sci 2024; 12:2302-2311. [PMID: 38497169 DOI: 10.1039/d3bm02123h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Tumor penetration is a critical determinant of the therapy efficacy of nanomedicines. However, the dense extracellular matrix (ECM) in tumors significantly hampers the deep penetration of nanomedicines, resulting in large drug-untouchable areas and unsatisfactory therapy efficacy. Herein, we synthesized a third-generation PAMAM-cored multiarm copolymer and modified the polymer with collagenase to enhance its tumor penetration. Each arm of the copolymer was a diblock copolymer of poly(glutamic acid)-b-poly(carboxybetaine), in which the polyglutamic acid block with abundant side groups was used to link the anticancer agent doxorubicin through the pH-sensitive acylhydrazone linkage, and the zwitterionic poly(carboxybetaine) block provided desired water solubility and anti-biofouling capability. The collagenase was conjugated to the ends of the arms via the thiol-maleimide reaction. We demonstrated that the polymer-bound collagenase could effectively catalyze the degradation of the collagen in the tumor ECM, and consequently augmented the tumor penetration and antitumor efficacy of the drug-loaded polymers.
Collapse
Affiliation(s)
- Bo Yu
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Weijie Wang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Yongmin Zhang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Ying Sun
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Cheng Li
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Wei Wu
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| |
Collapse
|
30
|
Tian Y, Cheng T, Sun F, Zhou Y, Yuan C, Guo Z, Wang Z. Effect of biophysical properties of tumor extracellular matrix on intratumoral fate of nanoparticles: Implications on the design of nanomedicine. Adv Colloid Interface Sci 2024; 326:103124. [PMID: 38461766 DOI: 10.1016/j.cis.2024.103124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/11/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Nanomedicine has a profound impact on various research domains including drug delivery, diagnostics, theranostics, and regenerative medicine. Nevertheless, the clinical translation of nanomedicines for solid cancer remains limited due to the abundant physiological and pathological barriers in tumor that hinder the intratumoral penetration and distribution of these nanomedicines. In this article, we review the dynamic remodeling of tumor extracellular matrix during the tumor progression, discuss the impact of biophysical obstacles within tumors on the penetration and distribution of nanomedicines within the solid tumor and collect innovative approaches to surmount these obstacles for improving the penetration and accumulation of nanomedicines in tumor. Furthermore, we dissect the challenges and opportunities of the respective approaches, and propose potential avenues for future investigations. The purpose of this review is to provide a perspective guideline on how to effectively enhance the penetration of nanomedicines within tumors using promising methods.
Collapse
Affiliation(s)
- Yachao Tian
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Guoru Biotechnology Co., Ltd., Xiangfang District, Harbin City 150030, China; School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Tianfu Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fuwei Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yaxin Zhou
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chao Yuan
- School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
31
|
Cheng Q, Shi X, Chen Y, Li Q, Wang J, Li H, Wang L, Wang Z. Tumor Microenvironment-Activatable Nanosystem Capable of Overcoming Multiple Therapeutic Obstacles for Augmenting Immuno/Metal-Ion Therapy. ACS NANO 2024; 18:8996-9010. [PMID: 38477219 DOI: 10.1021/acsnano.3c12745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Abnormal tumor microenvironment (TME) imposes barriers to nanomedicine penetration into tumors and evolves tumor-supportive nature to provide tumor cell protection, seriously weakening the action of antitumor nanomedicines and posing significant challenges to their development. Here, we engineer a TME-activatable size-switchable core-satellite nanosystem (Mn-TI-Ag@HA) capable of increasing the effective dose of therapeutic agents in deep-seated tumors while reversing tumor-supportive microenvironment for augmenting immuno/metal-ion therapy. When activated by TME, the nanosystem disintegrates, allowing ultrasmall-sized Ag nanoparticles to become unbound and penetrate deep into solid tumors. Simultaneously, the nanosystem produces O2 and releases TGF-β inhibitors in situ to drive macrophage M2-to-M1 polarization, increasing intratumoral H2O2 concentration, and ultimately augmenting metal-ion therapy by accelerating hypertoxic Ag+ production. The nanosystem can overcome multiple obstacles that aid in tumor resistance to nanomedicine, demonstrating effective tumor penetration, TME regulation, and tumor inhibition effects. It can provoke long-term immunological memory effects against tumor rechallenge when combined with immune checkpoint inhibitor anti-PD-1. This work provides a paradigm for designing efficient antitumor nanomedicines.
Collapse
Affiliation(s)
- Qian Cheng
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Xiaolei Shi
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Yuzhe Chen
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Qilin Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Jiawei Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Heli Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| |
Collapse
|
32
|
Meng F, Qiao X, Xin C, Ju X, He M. Recent progress of polymeric microneedle-assisted long-acting transdermal drug delivery. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:12434. [PMID: 38571937 PMCID: PMC10987780 DOI: 10.3389/jpps.2024.12434] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
Microneedle (MN)-assisted drug delivery technology has gained increasing attention over the past two decades. Its advantages of self-management and being minimally invasive could allow this technology to be an alternative to hypodermic needles. MNs can penetrate the stratum corneum and deliver active ingredients to the body through the dermal tissue in a controlled and sustained release. Long-acting polymeric MNs can reduce administration frequency to improve patient compliance and therapeutic outcomes, especially in the management of chronic diseases. In addition, long-acting MNs could avoid gastrointestinal reactions and reduce side effects, which has potential value for clinical application. In this paper, advances in design strategies and applications of long-acting polymeric MNs are reviewed. We also discuss the challenges in scale manufacture and regulations of polymeric MN systems. These two aspects will accelerate the effective clinical translation of MN products.
Collapse
Affiliation(s)
- Fanda Meng
- College of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xinyu Qiao
- College of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Chenglong Xin
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Xiaoli Ju
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong, China
| | - Meilin He
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong, China
| |
Collapse
|
33
|
Jin J, Li Y, Wang S, Xie J, Yan X. Organic nanomotors: emerging versatile nanobots. NANOSCALE 2024; 16:2789-2804. [PMID: 38231523 DOI: 10.1039/d3nr05995b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Artificial nanomotors are self-propelled nanometer-scaled machines that are capable of converting external energy into mechanical motion. A significant progress on artificial nanomotors over the last decades has unlocked the potential of carrying out manipulatable transport and cargo delivery missions with enhanced efficiencies owing to their stimulus-responsive autonomous movement in various complex environments, allowing for future advances in a large range of applications. Emergent kinetic systems with programmable energy-converting mechanisms that are capable of powering the nanomotors are attracting increasing attention. This review highlights the most-recent representative examples of synthetic organic nanomotors having self-propelled motion exclusively powered by organic molecule- or their aggregate-based kinetic systems. The stimulus-responsive propulsion mechanism, motion behaviors, and performance in antitumor therapy of organic nanomotors developed so far are illustrated. A future perspective on the development of organic nanomotors is also proposed. With continuous innovation, it is believed that the scope and possible achievements in practical applications of organic nanomotors with diversified organic kinetic systems will expand.
Collapse
Affiliation(s)
- Jingjun Jin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Yan Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Shuai Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Jianchun Xie
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China.
| | - Xibo Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
34
|
Dai Q, Du Z, Jing L, Zhang R, Tang W. Enzyme-Responsive Modular Peptides Enhance Tumor Penetration of Quantum Dots via Charge Reversal Strategy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6208-6220. [PMID: 38279946 DOI: 10.1021/acsami.3c11500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Quantum dots (QDs) are colloidal semiconductor nanoparticles acting as fluorescent probes for detection, disease diagnosis, and photothermal and photodynamic therapy. However, their performance in cancer treatment is limited by inadequate tumor accumulation and penetration due to the larger size of nanoparticles compared to small molecules. To address this challenge, charge reversal nanoparticles offer an effective strategy to prolong blood circulation time and achieve enhanced endocytosis and tumor penetration. In this study, we leveraged the overexpressed γ-glutamyl transpeptidase (GGT) in many human tumors and developed a library of modular peptides to serve as water-soluble surface ligands of QDs. We successfully transferred the QDs from the organic phase to the aqueous phase within 5 min. And through systematic tuning of the peptide sequence, we optimized the fluorescent stability of QDs and their charge reversal behavior in response to GGT. The resulting optimal peptide stabilized QDs in aqueous solution with a high fluorescent retention rate of 93% after three months and realized the surface charge reversal of QDs triggered by GGT in vitro. The binding between the peptide and QD surface was investigated by using saturation transfer differential nuclear magnetic resonance (STD NMR). Thanks to its charge reversal ability, the GGT-responsive QDs exhibited enhanced cellular uptake in GGT-expressing cancer cells and deeper penetration in the 3D multicellular spheroids. This enzyme-responsive modular peptide can lead to specific tumor targeting and deeper tumor penetration, holding great promise to enhance the treatment efficacy of QD-based theranostics.
Collapse
Affiliation(s)
- Qiuju Dai
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zhen Du
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Lihong Jing
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Wen Tang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
35
|
Gomte SS, Agnihotri TG, Khopade S, Jain A. Exploring the potential of pH-sensitive polymers in targeted drug delivery. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:228-268. [PMID: 37927045 DOI: 10.1080/09205063.2023.2279792] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
The pH-sensitive polymers have attained significant attention in the arena of targeted drug delivery (TDD) because of their exceptional capability to respond to alteration in pH in various physiological environments. This attribute aids pH-sensitive polymers to act as smart carriers for therapeutic agents, transporting them precisely to target locations while curtailing the release of drugs in off-targeted sites, thereby diminishing side effects. Many pH-responsive polymers in TDD have revealed promising results, with increased therapeutic efficacy and decreased toxic effects. Several pH-sensitive polymers, including, hydroxy-propyl-methyl cellulose, poly (methacrylic acid) (Eudragit series), poly (acrylic acid), and chitosan, have been broadly studied for their myriad applications in the management of various types of diseases. Additionally, the amalgamation of pH-sensitive polymers with, additive manufacturing techniques like 3D printing, has resulted in the progression of novel drug delivery systems that regulate drug release in a controlled manner. Herein, types of pH-sensitive polymers in TDD are systemically reviewed. We have briefly discussed the nanocarriers employed for the delivery of various pH-sensitive polymers in TDD. Finally, miscellaneous applications of pH-sensitive polymers are discussed thoroughly with special attention to the implication of 3D printing in pH-sensitive polymers.
Collapse
Affiliation(s)
- Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, Gujarat, India
| | - Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, Gujarat, India
| | - Shivani Khopade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, Gujarat, India
| |
Collapse
|
36
|
Ouyang X, Liu Y, Zheng K, Pang Z, Peng S. Recent advances in zwitterionic nanoscale drug delivery systems to overcome biological barriers. Asian J Pharm Sci 2024; 19:100883. [PMID: 38357524 PMCID: PMC10861844 DOI: 10.1016/j.ajps.2023.100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/28/2023] [Accepted: 12/22/2023] [Indexed: 02/16/2024] Open
Abstract
Nanoscale drug delivery systems (nDDS) have been employed widely in enhancing the therapeutic efficacy of drugs against diseases with reduced side effects. Although several nDDS have been successfully approved for clinical use up to now, biological barriers between the administration site and the target site hinder the wider clinical adoption of nDDS in disease treatment. Polyethylene glycol (PEG)-modification (or PEGylation) has been regarded as the gold standard for stabilising nDDS in complex biological environment. However, the accelerated blood clearance (ABC) of PEGylated nDDS after repeated injections becomes great challenges for their clinical applications. Zwitterionic polymer, a novel family of anti-fouling materials, have evolved as an alternative to PEG due to their super-hydrophilicity and biocompatibility. Zwitterionic nDDS could avoid the generation of ABC phenomenon and exhibit longer blood circulation time than the PEGylated analogues. More impressively, zwitterionic nDDS have recently been shown to overcome multiple biological barriers such as nonspecific organ distribution, pressure gradients, impermeable cell membranes and lysosomal degradation without the need of any complex chemical modifications. The realization of overcoming multiple biological barriers by zwitterionic nDDS may simplify the current overly complex design of nDDS, which could facilitate their better clinical translation. Herein, we summarise the recent progress of zwitterionic nDDS at overcoming various biological barriers and analyse their underlying mechanisms. Finally, prospects and challenges are introduced to guide the rational design of zwitterionic nDDS for disease treatment.
Collapse
Affiliation(s)
- Xumei Ouyang
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China
| | - Yu Liu
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China
| | - Ke Zheng
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Zhiqing Pang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shaojun Peng
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China
| |
Collapse
|
37
|
Shen X, Pan D, Gong Q, Gu Z, Luo K. Enhancing drug penetration in solid tumors via nanomedicine: Evaluation models, strategies and perspectives. Bioact Mater 2024; 32:445-472. [PMID: 37965242 PMCID: PMC10641097 DOI: 10.1016/j.bioactmat.2023.10.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Effective tumor treatment depends on optimizing drug penetration and accumulation in tumor tissue while minimizing systemic toxicity. Nanomedicine has emerged as a key solution that addresses the rapid clearance of free drugs, but achieving deep drug penetration into solid tumors remains elusive. This review discusses various strategies to enhance drug penetration, including manipulation of the tumor microenvironment, exploitation of both external and internal stimuli, pioneering nanocarrier surface engineering, and development of innovative tactics for active tumor penetration. One outstanding strategy is organelle-affinitive transfer, which exploits the unique properties of specific tumor cell organelles and heralds a potentially transformative approach to active transcellular transfer for deep tumor penetration. Rigorous models are essential to evaluate the efficacy of these strategies. The patient-derived xenograft (PDX) model is gaining traction as a bridge between laboratory discovery and clinical application. However, the journey from bench to bedside for nanomedicines is fraught with challenges. Future efforts should prioritize deepening our understanding of nanoparticle-tumor interactions, re-evaluating the EPR effect, and exploring novel nanoparticle transport mechanisms.
Collapse
Affiliation(s)
- Xiaoding Shen
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Dayi Pan
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361021, China
| | - Zhongwei Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
38
|
Wang H, Yuan Y, Qin L, Yue M, Xue J, Cui Z, Zhan X, Gai J, Zhang X, Guan J, Mao S. Tunable rigidity of PLGA shell-lipid core nanoparticles for enhanced pulmonary siRNA delivery in 2D and 3D lung cancer cell models. J Control Release 2024; 366:746-760. [PMID: 38237688 DOI: 10.1016/j.jconrel.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Faced with the threat of lung cancer-related deaths worldwide, small interfering RNA (siRNA) can silence tumor related messenger RNA (mRNA) to tackle the issue of drug resistance with enhanced anti-tumor effects. However, how to increase lung tumor targeting and penetration with enhanced gene silencing are the issues to be addressed. Thus, the objective of this study is to explore the feasibility of designing non-viral siRNA vectors for enhanced lung tumor therapy via inhalation. Here, shell-core based polymer-lipid hybrid nanoparticles (HNPs) were prepared via microfluidics by coating PLGA on siRNA-loaded cationic liposomes (Lipoplexes). Transmission electron microscopy and energy dispersive spectroscopy study demonstrated that HNP consists of a PLGA shell and a lipid core. Atomic force microscopy study indicated that the rigidity of HNPs could be well tuned by changing thickness of the PLGA shell. The designed HNPs were muco-inert with increased stability in mucus and BALF, good safety, enhanced mucus penetration and cellular uptake. Crucially, HNP1 with the thinnest PLGA shell exhibited superior transfection efficiency (84.83%) in A549 cells, which was comparable to that of lipoplexes and Lipofectamine 2000, and its tumor permeability was 1.88 times that of lipoplexes in A549-3T3 tumor spheroids. After internalization of the HNPs, not only endosomal escape but also lysosomal exocytosis was observed. The transfection efficiency of HNP1 (39.33%) was 2.26 times that of lipoplexes in A549-3T3 tumor spheroids. Moreover, HNPs exhibited excellent stability during nebulization via soft mist inhaler. In conclusion, our study reveals the great potential of HNP1 in siRNA delivery for lung cancer therapy via inhalation.
Collapse
Affiliation(s)
- Hezhi Wang
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ye Yuan
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lu Qin
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengmeng Yue
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingwen Xue
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhixiang Cui
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xuanguang Zhan
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiayi Gai
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Jian Guan
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
39
|
Liu Z, Ma Y, Ye J, Li G, Kang X, Xie W, Wang X. Drug delivery systems for enhanced tumour treatment by eliminating intra-tumoral bacteria. J Mater Chem B 2024; 12:1194-1207. [PMID: 38197141 DOI: 10.1039/d3tb02362a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Cancer remains one of the serious threats to human health. The relationship between bacteria and various tumours has been widely reported in recent years, and studies on intra-tumoral bacteria have become important as intra-tumoral bacteria directly affect the tumorigenesis, progression, immunity and metastatic processes. Therefore, eliminating these commensal intra-tumoral bacteria while treating tumour is expected to be a potential strategy to further enhance the clinical outcome of tumour therapy. Drug delivery systems (DDSs) are widely used to deliver antibiotics and chemotherapeutic drugs for antibacterial and anticancer applications, respectively. Thus, this review firstly provides a comprehensive summary of the association between intra-tumoral bacteria and a host of tumours, followed by a description of advanced DDSs for improving the therapeutic efficacy of cancer treatment through the elimination of intra-tumoral bacteria. It is hoped that this review will provide guidelines for the therapeutic and "synergistic antimicrobial and antitumour" drug delivery strategy.
Collapse
Affiliation(s)
- Ziyi Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
- School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yige Ma
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jinxin Ye
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaoxu Kang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Wensheng Xie
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
40
|
Veider F, Sanchez Armengol E, Bernkop-Schnürch A. Charge-Reversible Nanoparticles: Advanced Delivery Systems for Therapy and Diagnosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304713. [PMID: 37675812 DOI: 10.1002/smll.202304713] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/24/2023] [Indexed: 09/08/2023]
Abstract
The past two decades have witnessed a rapid progress in the development of surface charge-reversible nanoparticles (NPs) for drug delivery and diagnosis. These NPs are able to elegantly address the polycation dilemma. Converting their surface charge from negative/neutral to positive at the target site, they can substantially improve delivery of drugs and diagnostic agents. By specific stimuli like a shift in pH and redox potential, enzymes, or exogenous stimuli such as light or heat, charge reversal of NP surface can be achieved at the target site. The activated positive surface charge enhances the adhesion of NPs to target cells and facilitates cellular uptake, endosomal escape, and mitochondrial targeting. Because of these properties, the efficacy of incorporated drugs as well as the sensitivity of diagnostic agents can be essentially enhanced. Furthermore, charge-reversible NPs are shown to overcome the biofilm formed by pathogenic bacteria and to shuttle antibiotics directly to the cell membrane of these microorganisms. In this review, the up-to-date design of charge-reversible NPs and their emerging applications in drug delivery and diagnosis are highlighted.
Collapse
Affiliation(s)
- Florina Veider
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Eva Sanchez Armengol
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| |
Collapse
|
41
|
Li M, Yin S, Xu A, Kang L, Ma Z, Liu F, Yang T, Sun P, Tang Y. Synergistic Phototherapy-Molecular Targeted Therapy Combined with Tumor Exosome Nanoparticles for Oral Squamous Cell Carcinoma Treatment. Pharmaceutics 2023; 16:33. [PMID: 38258044 PMCID: PMC10821490 DOI: 10.3390/pharmaceutics16010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) contributes to more than 90% of all oral malignancies, yet the performance of traditional treatments is impeded by limited therapeutic effects and substantial side effects. In this work, we report a combinational treatment strategy based on tumor exosome-based nanoparticles co-formulating a photosensitizer (Indocyanine green) and a tyrosine kinase inhibitor (Gefitinib) (IG@EXOs) for boosting antitumor efficiency against OSCC through synergistic phototherapy-molecular targeted therapy. The IG@EXOs generate distinct photothermal/photodynamic effects through enhanced photothermal conversion efficiency and ROS generation, respectively. In vivo, the IG@EXOs efficiently accumulate in the tumor and penetrate deeply to the center of the tumor due to passive and homologous targeting. The phototherapy effects of IG@EXOs not only directly induce potent cancer cell damage but also promote the release and cytoplasmic translocation of Gefitinib for achieving significant inhibition of cell proliferation and tumor angiogenesis, eventually resulting in efficient tumor ablation and lymphatic metastasis inhibition through the synergistic phototherapy-molecular targeted therapy. We envision that the encouraging performances of IG@EXOs against cancer pave a new avenue for their future application in clinical OSCC treatment.
Collapse
Affiliation(s)
- Ming Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (M.L.); (A.X.); (L.K.); (Z.M.); (F.L.); (T.Y.)
| | - Shiyao Yin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (M.L.); (A.X.); (L.K.); (Z.M.); (F.L.); (T.Y.)
- Department of Otolaryngology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China;
| | - Anan Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (M.L.); (A.X.); (L.K.); (Z.M.); (F.L.); (T.Y.)
| | - Liyuan Kang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (M.L.); (A.X.); (L.K.); (Z.M.); (F.L.); (T.Y.)
| | - Ziqian Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (M.L.); (A.X.); (L.K.); (Z.M.); (F.L.); (T.Y.)
| | - Fan Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (M.L.); (A.X.); (L.K.); (Z.M.); (F.L.); (T.Y.)
| | - Tao Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (M.L.); (A.X.); (L.K.); (Z.M.); (F.L.); (T.Y.)
| | - Peng Sun
- Department of Otolaryngology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China;
| | - Yongan Tang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (M.L.); (A.X.); (L.K.); (Z.M.); (F.L.); (T.Y.)
| |
Collapse
|
42
|
Petrovic SM, Barbinta-Patrascu ME. Organic and Biogenic Nanocarriers as Bio-Friendly Systems for Bioactive Compounds' Delivery: State-of-the Art and Challenges. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7550. [PMID: 38138692 PMCID: PMC10744464 DOI: 10.3390/ma16247550] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
"Green" strategies to build up novel organic nanocarriers with bioperformance are modern trends in nanotechnology. In this way, the valorization of bio-wastes and the use of living systems to develop multifunctional organic and biogenic nanocarriers (OBNs) have revolutionized the nanotechnological and biomedical fields. This paper is a comprehensive review related to OBNs for bioactives' delivery, providing an overview of the reports on the past two decades. In the first part, several classes of bioactive compounds and their therapeutic role are briefly presented. A broad section is dedicated to the main categories of organic and biogenic nanocarriers. The major challenges regarding the eco-design and the fate of OBNs are suggested to overcome some toxicity-related drawbacks. Future directions and opportunities, and finding "green" solutions for solving the problems related to nanocarriers, are outlined in the final of this paper. We believe that through this review, we will capture the attention of the readers and will open new perspectives for new solutions/ideas for the discovery of more efficient and "green" ways in developing novel bioperformant nanocarriers for transporting bioactive agents.
Collapse
Affiliation(s)
- Sanja M. Petrovic
- Department of Chemical Technologies, Faculty of Technology, University of Nis, Bulevar Oslobodjenja 124, 1600 Leskovac, Serbia;
| | - Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Măgurele, Romania
| |
Collapse
|
43
|
Lee H, Park B, Lee J, Kang Y, Han M, Lee J, Kim C, Kim WJ. Transcytosis-Inducing Multifunctional Albumin Nanomedicines with Deep Penetration Ability for Image-Guided Solid Tumor Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303668. [PMID: 37612796 DOI: 10.1002/smll.202303668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/31/2023] [Indexed: 08/25/2023]
Abstract
Transcytosis is an active transcellular transportation pathway that has garnered interest for overcoming the limited deep penetration of nanomedicines in solid tumors. In this study, a charge-convertible nanomedicine that facilitates deep penetration into solid tumors via transcytosis is designed. It is an albumin-based calcium phosphate nanomedicine loaded with IR820 (mAlb-820@CaP) for high-resolution photoacoustic imaging and enhanced photothermal therapy. Biomineralization on the surface stabilizes the albumin-IR820 complex during circulation and provides calcium ions (Ca2+ ) for tissue penetration on degradation in an acidic environment. pH-triggered transcytosis of the nanomedicine enabled by caveolae-mediated endocytosis and calcium ion-induced exocytosis in 2D cellular, 3D spheroid, and in vivo tumor models is demonstrated. Notably, the extravasation and penetration ability of the nanomedicine is observed in vivo using a high-resolution photoacoustic system, and nanomedicine shows the most potent photothermal antitumor effect in vivo. Overall, the strategy provides a versatile theragnosis platform for both noninvasive photoacoustic imaging and high therapeutic efficiency resulting from deep penetration of nanomedicine.
Collapse
Affiliation(s)
- Hyori Lee
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Byullee Park
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and School of, Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jihye Lee
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yeoul Kang
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Moongyu Han
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and School of, Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junseok Lee
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chulhong Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and School of, Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
44
|
Di Y, Deng R, Liu Z, Mao Y, Gao Y, Zhao Q, Wang S. Optimized strategies of ROS-based nanodynamic therapies for tumor theranostics. Biomaterials 2023; 303:122391. [PMID: 37995457 DOI: 10.1016/j.biomaterials.2023.122391] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/29/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
Reactive oxygen species (ROS) play a crucial role in regulating the metabolism of tumor growth, metastasis, death and other biological processes. ROS-based nanodynamic therapies (NDTs) are becoming attractive due to non-invasive, low side effects and tumor-specific advantages. NDTs have rapidly developed into numerous branches, such as photodynamic therapy, chemodynamic therapy, sonodynamic therapy and so on. However, the complexity of the tumor microenvironment and the limitations of existing sensitizers have greatly restricted the therapeutic effects of NDTs, which heavily rely on ROS levels. To address the limitations of NDTs, various strategies have been developed to increase ROS yield, which is an urgent aspect for the positive development of NDTs. In this review, the nanodynamic potentiation strategies in terms of unique properties and universalities of NDTs are comprehensively outlined. We mainly summarize the current dilemmas faced by each NDT and the respective solutions. Meanwhile, the NDTs universalities-based potentiation strategies and NDTs-based combined treatments are elaborated. Finally, we conclude with a discussion of the key issues and challenges faced in the development and clinical transformation of NDTs.
Collapse
Affiliation(s)
- Yifan Di
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Ruizhu Deng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Zhu Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Yikun Gao
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China.
| |
Collapse
|
45
|
Li Z, Yang L, Zhang D, Wang W, Huang Q, Liu Q, Shi K, Yu Y, Gao N, Chen H, Jiang S, Xie Z, Zeng X. Mussel-inspired "plug-and-play" hydrogel glue for postoperative tumor recurrence and wound infection inhibition. J Colloid Interface Sci 2023; 650:1907-1917. [PMID: 37517190 DOI: 10.1016/j.jcis.2023.07.154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Currently, clinical tumor resection is faced with two options: open and minimally invasive surgery. Open surgery is easy to completely remove the lesion but is prone to infection, while minimally invasive surgery recovers faster but may cause tumor recurrence. To fill the shortcomings of the two surgical modes and make the choice for tumor resection more effortlessly, we developed a postoperative black phosphorus-Ag nanocomposites-loaded dopamine-modified hyaluronic acid-Pluronic® F127 (BP-Ag@HA-DA-Plu) hydrogel implantation system that can prevent tumor recurrence and wound infection simultaneously. Experiments have shown that the hydrogel system combined with 808 nm near-infrared (NIR) irradiation has excellent anti-tumor, antibacterial, and wound healing abilities. Additionally, unlike existing surgical hydrogel products that require inconvenient in-situ cross-linking, the BP-Ag@HA-DA-Plu hydrogel system offers "plug-and-play" functionality during surgery due to its thermo-responsiveness, injectability, and adhesion, thereby greatly improving the efficiency of surgery.
Collapse
Affiliation(s)
- Zimu Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Li Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Dan Zhang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Wenyan Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Qili Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Qingyun Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Kexin Shi
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yongkang Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Nansha Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China.
| | - Hongzhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Shaoyun Jiang
- Stomatological Center, Peking University Shenzhen Hospital, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen 518036, China
| | - Zhongjian Xie
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China.
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
46
|
Motsoene F, Abrahamse H, Dhilip Kumar SS. Multifunctional lipid-based nanoparticles for wound healing and antibacterial applications: A review. Adv Colloid Interface Sci 2023; 321:103002. [PMID: 37804662 DOI: 10.1016/j.cis.2023.103002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
Wound healing primarily involves preventing severe infections, accelerating healing, and reducing pain and scarring. Therefore, the multifunctional application of lipid-based nanoparticles (LBNs) has received considerable attention in drug discovery due to their solid or liquid lipid core, which increases their ability to provide prolonged drug release, reduce treatment costs, and improve patient compliance. LBNs have also been used in medical and cosmetic practices and formulated for various products based on skin type, disease conditions, administration product costs, efficiency, stability, and toxicity; therefore, understanding their interaction with biological systems is very important. Therefore, it is necessary to perform an in-depth analysis of the results from a comprehensive characterization process to produce lipid-based drug delivery systems with desired properties. This review will provide detailed information on the different types of LBNs, their formulation methods, characterisation, antimicrobial activity, and application in various wound models (both in vitro and in vivo studies). Also, the clinical and commercial applications of LBNs are summarized.
Collapse
Affiliation(s)
- Fezile Motsoene
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | | |
Collapse
|
47
|
Ma T, Wang CX, Ge XY, Zhang Y. Applications of Polydopamine in Implant Surface Modification. Macromol Biosci 2023; 23:e2300067. [PMID: 37229654 DOI: 10.1002/mabi.202300067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/22/2023] [Indexed: 05/27/2023]
Abstract
There is great clinical demand for orthopedic and dental implant surface modification methods to prevent osseointegration failure and improve implant biological functions. Notably, dopamine (DA) can be polymerized to form polydopamine (PDA), which is similar to the adhesive proteins secreted by mussels, to form a stable bond between the bone surface and implants. Therefore, PDA has the potential to be used as an implant surface modification material with good hydrophilicity, roughness, morphology, mechanical strength, biocompatibility, antibacterial activity, cellular adhesion, and osteogenesis. In addition, PDA degradation releases DA into the surrounding microenvironment, which is found to play an important role in regulating DA receptors on both osteoblasts and osteoclasts during the bone remodeling process. Furthermore, the adhesion properties of PDA suggest its use as an intermediate layer in assisting other functional bone remodeling materials, such as nanoparticles, growth factors, peptides, and hydrogels, to form "dual modifications." The purpose of this review is to summarize the recent progress in research on PDA and its derivatives as orthopedic and dental implant surface modification materials and to analyze the multiple functions of PDA.
Collapse
Affiliation(s)
- Ting Ma
- Department of Oral Implantology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| | - Chen-Xi Wang
- Department of Oral Implantology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| | - Xi-Yuan Ge
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| | - Yu Zhang
- Department of Oral Implantology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| |
Collapse
|
48
|
Zhang Y, Wu X, Xu X, Zhang M, Liu L, Wu J, Xie D, Song S. Nanosized Assemblies from Amphiphilic Solanesol Derivatives for Anticancer Drug Delivery. ACS APPLIED BIO MATERIALS 2023; 6:3875-3888. [PMID: 37622987 DOI: 10.1021/acsabm.3c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Unexpected functionalities of pharmaceutical excipients have been found in some cases. Preplanned introduction of excipients with therapeutic effects might not only reduce the risks of metabolism-related toxicity but also provide synergistic therapeutic effects. Herein, natural original solanesol (SOL), one of the isoprene compounds with some pharmacological activities, was selected to prepare a series of amphiphilic derivatives by chemical modification, and drug delivery systems for oncotherapy were established. Three derivatives, including solanesyl bromide (SOL-Br), monosolanesolsolanesyl succinate (MSS), and solanesylthiosalicylate (STS), were synthesized and formulated into nanosized self-assemblies for doxorubicin (DOX) encapsulation. Meanwhile, polyethylene glycol (PEG) derivatives were synthesized as the stabilizer of solanesol-based self-assemblies, among which hydrazine-poly(ethylene glycol)-hydrazine (PEG6000-DiHZ) was found to be more reliable. The optimized molar ratio between PEG6000-DiHZ and solanesol derivatives was found to be 2:1, considering the drug-loading capacity of self-assemblies. Consistent release profiles were found for the DOX-loaded self-assemblies, in which about 75-80% DOX was cumulatively released within 60 h at pH 5.0. The three DOX-loaded self-assemblies were found to be homogeneous spheres with average particle sizes in the range of 100-200 nm by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Blank self-assemblies were found to have an inhibiting ability toward MCF-7 and HepG-2 cancer cells, which might originate from the inherent nature of solanesol derivatives. In vivo pharmacodynamic experiments demonstrated that blank self-assemblies had certain inhibitory effect on tumor growth compared with the controls. Further enhanced effects were also found for the drug-loaded self-assemblies due to the synergistic anti-tumor effect existing between the drug and the carriers. This work has presented a simple and effective strategy to prepare a therapeutic carrier by direct assembling of the therapeutic compound without PEGylation steps, by which the therapeutic carrier materials could take their effect directly and synergistically along with the loaded drugs.
Collapse
Affiliation(s)
- Yanan Zhang
- State Key Laboratory of Antiviral Drugs, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Xiaohe Wu
- State Key Laboratory of Antiviral Drugs, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Xu Xu
- State Key Laboratory of Antiviral Drugs, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Mengke Zhang
- State Key Laboratory of Antiviral Drugs, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Lei Liu
- State Key Laboratory of Antiviral Drugs, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Jinhong Wu
- State Key Laboratory of Antiviral Drugs, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Dongshun Xie
- State Key Laboratory of Antiviral Drugs, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Shiyong Song
- State Key Laboratory of Antiviral Drugs, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
| |
Collapse
|
49
|
Chang Y, Ou Q, Zhou X, Nie K, Yan H, Liu J, Li J, Zhang S. Mapping the intellectual structure and landscape of nano-drug delivery systems in colorectal cancer. Front Pharmacol 2023; 14:1258937. [PMID: 37781707 PMCID: PMC10539472 DOI: 10.3389/fphar.2023.1258937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Background: Colorectal cancer (CRC) is a prevalent malignancy affecting the digestive tract, and its incidence has been steadily rising over the years. Surgery remains the primary treatment modality for advanced colorectal cancer, complemented by chemotherapy. The development of drug resistance to chemotherapy is a significant contributor to treatment failure in colorectal cancer. Nanodrug delivery systems (NDDS) can significantly improve the delivery and efficacy of antitumor drugs in multiple ways. However, there is a lack of visualization of NDDS research structures and research hotspots in the field of colorectal cancer, and the elaboration of potential research areas remains to be discovered. Objective: To comprehensively explore the current research status and development trend of NDDS in CRC research. Methods: Bibliometric analysis of articles and reviews on NDDS for CRC published between 2002 and 2022 using tools including CiteSpace, VOSviewer, R-bibliometrix, and Microsoft Excel was performed. Results: A total of 1866 publications authored by 9,870 individuals affiliated with 6,126 institutions across 293 countries/regions were included in the analysis. These publications appeared in 456 journals. Abnous Khalil has the highest number of publications in this field. The most published journals are the International Journal of Nanomedicine, International Journal of Pharmaceutics, and Biomaterials. Notably, the Journal of Controlled Release has the highest citation count and the third-highest H-index. Thematic analysis identified "inflammatory bowel disease"," "oral drug delivery," and "ulcerative colitis" as areas requiring further development. Keyword analysis revealed that "ulcerative colitis," "exosomes," and "as1411"have emerged as keywords within the last 2 years. These emerging keywords may become the focal points of future research. Conclusion: Our findings reveal the current research landscape and intellectual structure of NDDS in CRC research which helps researchers understand the research trends and hot spots in this field.
Collapse
Affiliation(s)
- Yonglong Chang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qinling Ou
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Xuhui Zhou
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, China
| | - Kechao Nie
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haixia Yan
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinhui Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Jing Li
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sifang Zhang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Metabolic Diseases, Changsha, China
| |
Collapse
|
50
|
Kang X, Zhang Y, Song J, Wang L, Li W, Qi J, Tang BZ. A photo-triggered self-accelerated nanoplatform for multifunctional image-guided combination cancer immunotherapy. Nat Commun 2023; 14:5216. [PMID: 37626073 PMCID: PMC10457322 DOI: 10.1038/s41467-023-40996-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Precise and efficient image-guided immunotherapy holds great promise for cancer treatment. Here, we report a self-accelerated nanoplatform combining an aggregation-induced emission luminogen (AIEgen) and a hypoxia-responsive prodrug for multifunctional image-guided combination immunotherapy. The near-infrared AIEgen with methoxy substitution simultaneously possesses boosted fluorescence and photoacoustic (PA) brightness for the strong light absorption ability, as well as amplified type I and type II photodynamic therapy (PDT) properties via enhanced intersystem crossing process. By formulating the high-performance AIEgen with a hypoxia-responsive paclitaxel (PTX) prodrug into nanoparticles, and further camouflaging with macrophage cell membrane, a tumor-targeting theranostic agent is built. The integration of fluorescence and PA imaging helps to delineate tumor site sensitively, providing accurate guidance for tumor treatment. The light-induced PDT effect could consume the local oxygen and lead to severer hypoxia, accelerating the release of PTX drug. As a result, the combination of PDT and PTX chemotherapy induces immunogenic cancer cell death, which could not only elicit strong antitumor immunity to suppress the primary tumor, but also inhibit the growth of distant tumor in 4T1 tumor-bearing female mice. Here, we report a strategy to develop theranostic agents via rational molecular design for boosting antitumor immunotherapy.
Collapse
Affiliation(s)
- Xiaoying Kang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jianwen Song
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lu Wang
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Wen Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China.
| |
Collapse
|