1
|
Kodakkat S, Mirihana KA, Penman R, Kariuki R, Valliant PHA, Christofferson AJ, Bryant G, Bryant SJ, Walia S, Elbourne A. Insight into black phosphorus interactions with supported lipid bilayers. J Colloid Interface Sci 2025; 694:137686. [PMID: 40318290 DOI: 10.1016/j.jcis.2025.137686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/31/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
HYPOTHESIS Nanomaterials have gained significant attention due to their unique properties and potential applications in various biomedical fields, including immediate or targeted drug delivery for wound treatment, cancers, and microbial infections, as well as advancements in diagnostic techniques and tissue engineering. They can also penetrate biological barriers, such as lipid bilayers, offering potential for enhanced drug delivery systems. However, understanding nanomaterial-biomembrane interactions is critical to optimize their design for efficient and safe therapeutic applications. We hypothesize that liquid exfoliated black phosphorus (BP) disrupts lipid bilayers, leading to altered membrane integrity and dynamics, which could influence its potential as an antimicrobial agent or drug delivery vehicle. EXPERIMENTS To test this hypothesis, we investigated the interaction between BP flakes and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid bilayers using atomic force microscopy (AFM), force spectroscopy, and molecular dynamics (MD) simulations. AFM provided topographical and force measurements, while MD simulations offered atomistic insights into the interaction mechanisms. FINDINGS AFM imaging and force measurements revealed significant destabilization of the lipid bilayer, with a reduction in rupture force by more than half upon interaction with BP flakes. MD simulations corroborated these results, showing penetration and disruption of the lipid bilayer by BP. These findings enhance our understanding of nanomaterial-membrane interactions and demonstrate BP's potential for developing advanced nanomaterial-based drug delivery systems and antimicrobial therapies.
Collapse
Affiliation(s)
| | | | - Rowan Penman
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Rashad Kariuki
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | | | | | - Gary Bryant
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Saffron J Bryant
- School of Science, RMIT University, Melbourne, VIC 3000, Australia.
| | - Sumeet Walia
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.
| | - Aaron Elbourne
- School of Science, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
2
|
Li T, Huang L, Guo C, Ren J, Chen X, Ke Y, Xun Z, Hu W, Qi Y, Wang H, Gong Z, Liang X, Xue X. Massage-Mimicking Nanosheets Mechanically Reorganize Inter-organelle Contacts to Restore Mitochondrial Functions in Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413376. [PMID: 40223359 PMCID: PMC12120710 DOI: 10.1002/advs.202413376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/11/2025] [Indexed: 04/15/2025]
Abstract
Parkinson's disease (PD) is exacerbated by dysfunction of inter-organelle contact, which depends on cellular responses to the mechanical microenvironment and can be regulated by external mechanical forces. Delivering dynamic mechanical forces to neural cells proves challenging due to the skull. Inspired by the effects of massage; here PEGylated black phosphorus nanosheets (PEG-BPNS), known for their excellent biocompatibility, biodegradability, specific surface area, mechanical strength, and flexibility, are introduced, which are capable of adhering to neural cell membrane and generating mechanical stimulation with their lateral size of 200 nm, exhibiting therapeutic potential in a 1-methyl-4-phenyl-1,2,3,6-te-trahydropyridine-induced PD mouse model by regulating inter-organelle contacts. Specifically, it is found that 200 nm PEG-BPNS, acting as "NanoMassage," significantly increase plasma membrane tension, as evidenced by fluorescent lipid tension reporter fluorescence lifetime analysis. This mechanical force modulates actin reorganization, subsequently regulating the contacts between actin, mitochondria, and endoplasmic reticulum, further controlling mitochondrial fission and mitigating mitochondrial dysfunction in PD, exhibiting therapeutic efficacy via intranasal administration. These findings provide a noninvasive strategy for applying mechanical stimulation to deep brain areas and elucidate the mechanism of NanoMassage mediating inter-organelle contacts, suggesting the rational design of "NanoMassage" to remodel inter-organelle communications in neurodegenerative disease treatment.
Collapse
Affiliation(s)
- Tianqi Li
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300350P. R. China
| | - Liwen Huang
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300350P. R. China
- Present address:
Department of ChemistryShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsState Key Laboratory of Molecular Engineering of Polymers and iChemFudan UniversityShanghai200438P. R. China
| | - Chenxiao Guo
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300350P. R. China
| | - Jing Ren
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300350P. R. China
| | - Xi Chen
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300350P. R. China
| | - Yachu Ke
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300350P. R. China
| | - Zengyu Xun
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300350P. R. China
| | - Wenzhuo Hu
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300350P. R. China
| | - Yilin Qi
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300350P. R. China
| | - Heping Wang
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300350P. R. China
- Present address:
State Key Laboratory of Advanced Medical Materials and DevicesTianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineKey Laboratory of Radiopharmacokinetics for Innovative DrugsTianjin Institutes of Health ScienceInstitute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| | - Zhongying Gong
- Department of NeurologyTianjin First Central HospitalSchool of MedicineNankai UniversityTianjin300192P. R. China
| | - Xing‐Jie Liang
- Laboratory of Controllable NanopharmaceuticalsChinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and TechnologyBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing101408P. R. China
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300350P. R. China
| |
Collapse
|
3
|
Ling K, Bu J, Huang W, Kang W, Yuan Q, Zeng B, Liao C, Zheng Q, Zhang G, Zheng X, Chen Z, Jiang X, Li R, Zhai T, Jiang H. Robust Cu 2+-Modified Black Phosphorus Nanoplatform for Enhanced Drug Delivery and Synergistic Multimodal Tumor Therapy via Metal Ion-Assisted π-π Interactions. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19382-19400. [PMID: 40105864 DOI: 10.1021/acsami.4c22168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The application of 2D nanomaterials for drug delivery via π-π interactions has been extensively investigated. However, these interactions often lack robustness in the presence of blood proteins due to the competitive binding of blood proteins, which results from strong π-π-stacking interactions with aromatic protein residues. This can lead to premature drug release and diminished therapeutic efficacy. To address this challenge, we developed a robust 2D delivery/therapeutic biomimetic nanoplatform that enhances the adsorption affinity and targeted delivery efficiency of the chemotherapeutic drug doxorubicin (DOX) by utilizing Cu2+-modified black phosphorus nanosheets (BP@Cu2+) through metal ion-assisted π-π interactions. The synergistic interactions between the π-electrons of BP and DOX, mediated by Cu2+ coordination, form a stable sandwiched π-cation-π stacking complex (BP@Cu2+/DOX). This metal-ion-bridged architecture significantly enhances the DOX loading capacity and minimizes premature release in serum. In the acidic tumor microenvironment, this interaction is disrupted, enabling controlled release of both DOX and Cu2+ ions. Furthermore, the encapsulation of the complex within tumor cell membranes significantly enhances the efficiency of tumor targeting, resulting in a biomimetic nanoplatform (BP@Cu2+/DOX-CMs). Combined with near-infrared laser irradiation, this nanoplatform achieves synergistic multimodal therapy by integrating phototherapy, chemotherapy, chemodynamic therapy, and cuproptosis to enhance antitumor efficacy. The study highlights the potential of metal ion-assisted π-π stacking interactions in the development of advanced 2D nanoplatforms, thereby paving the way for innovative biomedical applications utilizing conventional 2D nanomaterials.
Collapse
Affiliation(s)
- Kai Ling
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Jianlan Bu
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Weijie Huang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Wenyue Kang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Qingpeng Yuan
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Bingchun Zeng
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Chuanghong Liao
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Qiunuan Zheng
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Guangrong Zhang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Xuanjun Zheng
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Zeyang Chen
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Xiaohong Jiang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Rui Li
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Tiantian Zhai
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Hongyan Jiang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
4
|
Sen S, Kumar N, Ranjan OP. Emerging nanocarriers as advanced delivery tools for the treatment of leukemia. Nanomedicine (Lond) 2025; 20:725-735. [PMID: 39981566 PMCID: PMC11970774 DOI: 10.1080/17435889.2025.2466409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
The most common type of blood cancer, leukemia, presents global therapeutic challenges like heterogeneity regarding age, sex, race, and a multiple pool of oncogenes and their complex network. In the last few years, nanotechnology has become the potential solution in leukemic resistance, chemotherapeutic failure, and disease-remission risk. Interestingly, the nanocarriers alone sometimes cannot overcome leukemia's obstacles, which demands a more advanced flagship in the nanocarrier segment like modification of the nanocarrier system, external stimuli for synergistic antileukemic effect, etc. This review has highlighted the need for emerging nanocarriers like exosome-like vesicles, nanodiamonds, nanoflower, etc. and biomimetic nanocarriers that reach the bone marrow niche. Notably, the role of nanoparticle-based vaccines in a disease-remission-free life and novel technology for nanocarrier delivery (microfluidics and plasmonic nanobubbles) have been discussed. This review also focuses on the clinical transition barriers of nanocarriers from the research laboratory. The continual research on novel nanocarriers and integration of new technologies to deliver the nanocarriers in the right way is paving the path for enhanced selectivity and efficacy in leukemia. The promising results in precise drug delivery and leukemic cell destruction are showing its great clinical prospects.
Collapse
Affiliation(s)
- Srijita Sen
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Guwahati, India
| | - Nitesh Kumar
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
| | - Om Prakash Ranjan
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Guwahati, India
| |
Collapse
|
5
|
Hu X, Xu W, Chen X, Zhao X, Xu X, Peng J, Song Q, Zhang B, Zhang M, Xuan H. Black phosphorus enabled non-invasive protein detection with electromagnetic induction well terahertz biosensor chips. BIOMEDICAL OPTICS EXPRESS 2025; 16:1546-1556. [PMID: 40322016 PMCID: PMC12047730 DOI: 10.1364/boe.554409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/18/2025] [Accepted: 03/09/2025] [Indexed: 05/08/2025]
Abstract
Terahertz biosensors are employed to detect proteins in cancer cells to facilitate early diagnosis and monitoring of cancer treatments. By optimizing the design and functionality of black phosphorus-based sensors, it is possible to enhance their sensitivity and specificity for specific cancer biomarkers, leading to more accurate diagnostic outcomes. The application of the externally applied magnetic field and the 455 nm continuous-wave laser further augments the sensitivity of cellular responses to THz waves, with magnetic influences typically surpassing those of light fields by 10%-80%. Our results examine the photonic properties of black phosphorus, improve its interaction with terahertz waves, and create prototypes that can selectively identify proteins associated with cancer cells. Additionally, the stability and reproducibility of these sensors have been greatly improved, boosting their potential for widespread use in clinical environments.
Collapse
Affiliation(s)
- Xin Hu
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252059, China
| | - Wenhao Xu
- School of Physics Science and Information Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xin Chen
- Shenzhen Academy of Inspection and Quarantine, Shenzhen 518038, China
| | - Xiaojie Zhao
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252059, China
| | - Xiaoguang Xu
- Shenzhen Academy of Inspection and Quarantine, Shenzhen 518038, China
| | - Jing Peng
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252059, China
| | - Qi Song
- School of Physics Science and Information Engineering, Liaocheng University, Liaocheng 252059, China
| | - Bingyuan Zhang
- School of Physics Science and Information Engineering, Liaocheng University, Liaocheng 252059, China
| | - Min Zhang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hongzhuan Xuan
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
6
|
Mamidi N, Franco De Silva F, Orash Mahmoudsalehi A. Advanced disease therapeutics using engineered living drug delivery systems. NANOSCALE 2025; 17:7673-7696. [PMID: 40040419 DOI: 10.1039/d4nr05298f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Biological barriers significantly impede the delivery of nanotherapeutics to diseased tissues, diminishing therapeutic efficacy across pathologies such as cancer and inflammatory disorders. Although conventional strategies integrate multifunctional designs and molecular components into nanomaterials (NMs), many approaches remain insufficient to overcome these barriers. Key challenges, including inadequate drug accumulation at target sites and nonspecific biodistribution, persist in nanotherapeutic development. NMs, which harness the ability to precisely modulate drug delivery spatiotemporally and control release kinetics, represent a transformative platform for targeted cancer therapy. In this review, we highlight the biological obstacles limiting effective cancer treatment and evaluate how stimuli-responsive NMs address these constraints. By leveraging exogenous and endogenous stimuli, such NMs improve therapeutic specificity, reduce off-target effects, and amplify drug activity within pathological microenvironments. We systematically analyze the rational design and synthesis of stimuli-responsive NMs, driven by advances in oncology, biomaterials science, and nanoscale engineering. Furthermore, we highlight advances across NM classes-including polymeric, lipid-based, inorganic, and hybrid systems and explore functionalization approaches using targeting ligands, antibodies, and biomimetic coatings. Diverse delivery strategies are evaluated, such as small-molecule prodrug activation, peptide- and protein-based targeting, nucleic acid payloads, and engineered cell-mediated transport. Despite the promise of stimuli-responsive NMs, challenges such as biocompatibility, scalable fabrication, and clinical translation barriers must be addressed. By elucidating structure-function relationships and refining stimulus-triggered mechanisms, these NMs pave the way for transformative precision oncology strategies, enabling patient-specific therapies with enhanced efficacy and safety. This synthesis of interdisciplinary insights aims to catalyze innovation in next-generation nanomedicine for cancer treatment.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Wisconsin Center for Nanobiosystems, School of Pharmacy, University of Wisconsin-Madison, Wisconsin-53705, USA.
| | - Fátima Franco De Silva
- Department of Food Engineering, Tecnologico de Monterrey, Monterrey, Nuevo Leon-64849, Mexico
| | - Amin Orash Mahmoudsalehi
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon-64849, Mexico
| |
Collapse
|
7
|
Wu A, Su J, Zhang Y, Zhang D, Chen Y. Prospects of black phosphorus nanosheets in the treatment of peri-implantitis. Biomed Mater 2025; 20:022007. [PMID: 39951892 DOI: 10.1088/1748-605x/adb66e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/14/2025] [Indexed: 02/17/2025]
Abstract
Peri-implantitis represents an inflammatory condition characterized by the presence of plaque-related soft and hard tissue damage surrounding dental implants, often resulting in progressive alveolar bone loss and, ultimately, implant failure. Black phosphorus (BP), a novel two-dimensional (2D) material that has recently emerged in the biomedical field, has attracted increasing attention due to its unique osteogenic properties and exceptional antibacterial and antioxidant characteristics. Additionally, its outstanding biomedical attributes enhance angiogenesis and nerve regeneration. Compared to other biomaterials, its high specific surface area, high photothermal conversion efficiency, and complete biodegradability make BP a promising candidate for treating infection-related bone defects. This article reviews the biological properties of BP nanosheets (BPNSs) and discusses their potential applications in the context of peri-implantitis, aiming to provide fresh insights for future research and applications of BPNS.
Collapse
Affiliation(s)
- Ailin Wu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, People's Republic of China
| | - Jun Su
- The Fourth People's Hospital of Jinan, The Teaching Hospital of Shandong First Medical University, Jinan, People's Republic of China
| | - Yongzhi Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, People's Republic of China
| | - Dongjiao Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, People's Republic of China
| | - Yanhua Chen
- Jinan Stomatological hospital, Jinan, People's Republic of China
| |
Collapse
|
8
|
He W, Dong S, Zeng Q. Functional Nucleic Acid Nanostructures for Mitochondrial Targeting: The Basis of Customized Treatment Strategies. Molecules 2025; 30:1025. [PMID: 40076250 PMCID: PMC11902231 DOI: 10.3390/molecules30051025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/09/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Mitochondria, as vital organelles, play a central role in subcellular research and biomedical innovation. Although functional nucleic acid (FNA) nanostructures have witnessed remarkable progress across numerous biological applications, strategies specifically tailored to target mitochondria for molecular imaging and therapeutic interventions remain scarce. This review delves into the latest advancements in leveraging FNA nanostructures for mitochondria-specific imaging and cancer therapy. Initially, we explore the creation of FNA-based biosensors localized to mitochondria, enabling the real-time detection and visualization of critical molecules essential for mitochondrial function. Subsequently, we examine developments in FNA nanostructures aimed at mitochondrial-targeted cancer treatments, including modular FNA nanodevices for the precise delivery of therapeutic agents and programmable FNA nanostructures for disrupting mitochondrial processes. Emphasis is placed on elucidating the chemical principles underlying the design of mitochondrial-specific FNA nanotechnology for diverse biomedical uses. Lastly, we address the unresolved challenges and outline prospective directions, with the goal of advancing the field and encouraging the creation of sophisticated FNA tools for both academic inquiry and clinical applications centered on mitochondria.
Collapse
Affiliation(s)
- Wanchong He
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China
| | | | - Qinghua Zeng
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
9
|
Bigham A, Serrano-Ruiz M, Caporali M, Fasolino I, Peruzzini M, Ambrosio L, Raucci MG. Black phosphorus-based nanoplatforms for cancer therapy: chemistry, design, biological and therapeutic behaviors. Chem Soc Rev 2025; 54:827-897. [PMID: 39618201 DOI: 10.1039/d4cs00007b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Cancer, a significant threat to human lives, has been the target of research for several decades. Although conventional therapies have drawbacks, such as side effects, low efficacy, and weak targeting, they have been applied extensively due to a lack of effective alternatives. The emergence of nanotechnology in medicine has opened up new possibilities and offered promising solutions for cancer therapy. In recent years, 2D nanomaterials have attracted enormous attention in nanomedicine due to their large surface-to-volume ratio, photo-responsivity, excellent electrical conductivity, etc. Among them, black phosphorus (BP) is a 2D nanomaterial consisting of multiple layers weakly bonded together through van der Waals forces. Its distinct structure makes BP suitable for biomedical applications, such as drug/gene carriers, PTT/PDT, and imaging agents. BP has demonstrated remarkable potential since its introduction in cancer therapy in 2015, particularly due to its selective anticancer activity even without the aid of near-infrared (NIR) or anticancer drugs. The present review makes efforts to cover and discuss studies published on the anticancer activity of BP. Based on the type of cancer, the subcategories are organized to shed light on the potential of BP nanosheets and BP quantum dots (BPQDs) against breast, brain, skin, prostate, and bone cancers, and a section is devoted to other cancer types. Since extensive attention has been paid to breast cancer cells and in vivo models, various subsections, including mono-, dual, and triple therapeutic approaches are established for this cancer type. Furthermore, the review outlines various synthesis approaches employed to produce BP nanomaterials, providing insights into key synthesis parameters. This review provides an up-to-date platform for the potential reader to understand what has been done about BP cancer therapy based on each disease, and the conclusions and outlook cover the directions in which this approach is going to proceed in the future.
Collapse
Affiliation(s)
- Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy.
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Manuel Serrano-Ruiz
- Institute for Chemistry of OrganoMetallic Compounds, National Research Council of Italy (ICCOM-CNR), Via Madonna del Piano 10, 5019 Sesto Fiorentino, Italy
| | - Maria Caporali
- Institute for Chemistry of OrganoMetallic Compounds, National Research Council of Italy (ICCOM-CNR), Via Madonna del Piano 10, 5019 Sesto Fiorentino, Italy
| | - Ines Fasolino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy.
| | - Maurizio Peruzzini
- Institute for Chemistry of OrganoMetallic Compounds, National Research Council of Italy (ICCOM-CNR), Via Madonna del Piano 10, 5019 Sesto Fiorentino, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy.
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy.
| |
Collapse
|
10
|
Golshirazi A, Mohammadzadeh M, Labbaf S. The Synergistic Potential of Hydrogel Microneedles and Nanomaterials: Breaking Barriers in Transdermal Therapy. Macromol Biosci 2025; 25:e2400228. [PMID: 39195571 DOI: 10.1002/mabi.202400228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/29/2024] [Indexed: 08/29/2024]
Abstract
The stratum corneum, which acts as a strong barrier against external agents, presents a significant challenge to transdermal drug delivery. In this regard, microneedle (MN) patches, designed as modern systems for drug delivery via permeation through the skin with the ability to pass through the stratum corneum, are known to be convenient, painless, and effective. In fact, MN have shown significant breakthroughs in transdermal drug delivery, and among the various types, hydrogel MN (HMNs) have demonstrated desirable inherent properties. Despite advancements, issues such as limited loading capacity, uncontrolled drug release rates, and non-uniform therapeutic approaches persist. Conversely, nanomaterials (NMs) have shown significant promise in medical applications, however, their efficacy and applicability are constrained by challenges including poor stability, low bioavailability, limited payload capacity, and rapid clearance by the immune system. Incorporation of NMs within HMNs offers new prospects to address the challenges associated with HMNs and NMs. This combination can provide a promising field of research for improved and effective delivery of therapeutic agents and mitigate certain adverse effects, addressing current clinical concerns. The current review highlights the use of NMs in HMNs for various therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Atefeh Golshirazi
- Department of materials engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mahsa Mohammadzadeh
- Department of materials engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Sheyda Labbaf
- Department of materials engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
11
|
Cao J, Song Z, Du T, Du X. Antimicrobial materials based on photothermal action and their application in wound treatment. BURNS & TRAUMA 2024; 12:tkae046. [PMID: 39659560 PMCID: PMC11630079 DOI: 10.1093/burnst/tkae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 12/12/2024]
Abstract
Considering the increasing abundance of antibiotic-resistant bacteria, novel antimicrobial approaches need to be investigated. Photothermal therapy (PTT), an innovative noninvasive therapeutic technique, has demonstrated significant potential in addressing drug-resistant bacteria and bacterial biofilms. However, when used in isolation, PTT requires higher-temperature conditions to effectively eradicate bacteria, thereby potentially harming healthy tissues and inducing new inflammation. This study aims to present a comprehensive review of nanomaterials with intrinsic antimicrobial properties, antimicrobial materials relying on photothermal action, and nanomaterials using drug delivery antimicrobial action, along with their applications in antimicrobials. Additionally, the synergistic mechanisms of these antimicrobial approaches are elucidated. The review provides a reference for developing multifunctional photothermal nanoplatforms for treating bacterially infected wounds.
Collapse
Affiliation(s)
- Jiangli Cao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No.29, Thirteenth Street, Binhai New Area, Tianjin 300457, PR China
| | - Zhiyong Song
- College of Sicence, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, PR China
| | - Ting Du
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No.29, Thirteenth Street, Binhai New Area, Tianjin 300457, PR China
| | - Xinjun Du
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No.29, Thirteenth Street, Binhai New Area, Tianjin 300457, PR China
| |
Collapse
|
12
|
Smith LS, Haidari H, Amsalu A, Howarth GS, Bryant SJ, Walia S, Elbourne A, Kopecki Z. Black Phosphorus Nanoflakes: An Emerging Nanomaterial for Clinical Wound Management and Biomedical Applications. Int J Mol Sci 2024; 25:12824. [PMID: 39684534 PMCID: PMC11641609 DOI: 10.3390/ijms252312824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Black phosphorus (BP), a two-dimensional material, has gathered significant attention over the last decade, primarily due to its unique physiochemical properties and potential role in various biomedical applications. This review provides an in-depth overview of the synthesis, nanomaterial properties, interactions, and biomedical uses of BP, with a particular focus on wound management. The structure, synthesis methods, and stability of BP are discussed, highlighting the high degree of nanomaterial biocompatibility and cytotoxicity. The antimicrobial properties of BP, including mechanisms of action and preclinical studies to date, are examined, emphasizing the effectiveness of BP against various clinical pathogens relevant to wound management. Additionally, the versatility of BP in biomedical implementations is highlighted through utilization in drug delivery, imaging, and photothermal therapy, with a focus on scalability and reproducibility with outlined future perspectives. Despite identified challenges for translation in clinical uses, BP nanomaterial has significant potential as a versatile platform in biomedical applications, especially in wound management.
Collapse
Affiliation(s)
- Luke S. Smith
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia; (L.S.S.); (G.S.H.)
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; (H.H.); (A.A.)
| | - Hanif Haidari
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; (H.H.); (A.A.)
| | - Anteneh Amsalu
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; (H.H.); (A.A.)
| | - Gordon S. Howarth
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia; (L.S.S.); (G.S.H.)
- Gastroenterology Department, Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
| | - Saffron J. Bryant
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; (S.J.B.); (A.E.)
| | - Sumeet Walia
- Centre for Opto-Electronic Materials and Sensors, School of Engineering, RMIT University, Melbourne, VIC 3001, Australia;
| | - Aaron Elbourne
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; (S.J.B.); (A.E.)
| | - Zlatko Kopecki
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia; (L.S.S.); (G.S.H.)
| |
Collapse
|
13
|
Jeong YG, Park JH, Khang D. Sonodynamic and Acoustically Responsive Nanodrug Delivery System: Cancer Application. Int J Nanomedicine 2024; 19:11767-11788. [PMID: 39553460 PMCID: PMC11566213 DOI: 10.2147/ijn.s496028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/31/2024] [Indexed: 11/19/2024] Open
Abstract
The advent of acoustically responsive nanodrugs that are specifically optimized for sonodynamic therapy (SDT) is a novel approach for clinical applications. Examining the therapeutic applications of sono-responsive drug delivery systems, understanding their dynamic response to acoustic stimuli, and their crucial role in enhancing targeted drug delivery are intriguing issues for current cancer treatment. Specifically, the suggested review covers SDT, a modality that enhances the cytotoxic activity of specific compounds (sonosensitizers) using ultrasound (US). Notably, SDT offers significant advantages in cancer treatment by utilizing US energy to precisely target and activate sonosensitizers toward deep-seated malignant sites. The potential mechanisms underlying SDT involve the generation of radicals from sonosensitizers, physical disruption of cell membranes, and enhanced drug transport into cells via US-assisted sonoporation. In particular, SDT is emerging as a promising modality for noninvasive, site-directed elimination of solid tumors. Given the complexity and diversity of tumors, many studies have explored the integration of SDT with other treatments to enhance the overall efficacy. This trend has paved the way for SDT-based multimodal synergistic cancer therapies, including sonophototherapy, sonoimmunotherapy, and sonochemotherapy. Representative studies of these multimodal approaches are comprehensively presented, with a detailed discussion of their underlying mechanisms. Additionally, the application of audible sound waves in biological systems is explored, highlighting their potential to influence cellular processes and enhance therapeutic outcomes. Audible sound waves can modulate enzyme activities and affect cell behavior, providing novel avenues for the use of sound-based techniques in medical applications. This review highlights the current challenges and prospects in the development of SDT-based nanomedicines in this rapidly evolving research field. The anticipated growth of this SDT-based therapeutic approach promises to significantly improve the precision of cancer treatment.
Collapse
Affiliation(s)
- Yong-Gyu Jeong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
| | - Joo-Hwan Park
- Division of Medical Oncology, Department of Internal Medicine, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon, 21565, South Korea
| | - Dongwoo Khang
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
- Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, South Korea
| |
Collapse
|
14
|
Chen Y, Liu F, Pal S, Hu Q. Proteolysis-targeting drug delivery system (ProDDS): integrating targeted protein degradation concepts into formulation design. Chem Soc Rev 2024; 53:9582-9608. [PMID: 39171633 DOI: 10.1039/d4cs00411f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Targeted protein degradation (TPD) has emerged as a revolutionary paradigm in drug discovery and development, offering a promising avenue to tackle challenging therapeutic targets. Unlike traditional drug discovery approaches that focus on inhibiting protein function, TPD aims to eliminate proteins of interest (POIs) using modular chimeric structures. This is achieved through the utilization of proteolysis-targeting chimeras (PROTACs), which redirect POIs to E3 ubiquitin ligases, rendering them for degradation by the cellular ubiquitin-proteasome system (UPS). Additionally, other TPD technologies such as lysosome-targeting chimeras (LYTACs) and autophagy-based protein degraders facilitate the transportation of proteins to endo-lysosomal or autophagy-lysosomal pathways for degradation, respectively. Despite significant growth in preclinical TPD research, many chimeras fail to progress beyond this stage in the drug development. Various factors contribute to the limited success of TPD agents, including a significant hurdle of inadequate delivery to the target site. Integrating TPD into delivery platforms could surmount the challenges of in vivo applications of TPD strategies by reshaping their pharmacokinetics and pharmacodynamic profiles. These proteolysis-targeting drug delivery systems (ProDDSs) exhibit superior delivery performance, enhanced targetability, and reduced off-tissue side effects. In this review, we will survey the latest progress in TPD-inspired drug delivery systems, highlight the importance of introducing delivery ideas or technologies to the development of protein degraders, outline design principles of protein degrader-inspired delivery systems, discuss the current challenges, and provide an outlook on future opportunities in this field.
Collapse
Affiliation(s)
- Yu Chen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Fengyuan Liu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Samira Pal
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
15
|
Huang W, Yang Y, Zhang H. Surface Engineering of Two-Dimensional Black Phosphorus for Advanced Nanophotonics. Acc Chem Res 2024; 57:2464-2475. [PMID: 38991156 DOI: 10.1021/acs.accounts.4c00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Everything in the world has two sides. We should correctly understand its two sides to pursue the positive side and get rid of the negative side. Recently, two-dimensional (2D) black phosphorus (BP) has received a tremendous amount of attention and has been applied for broad applications in optoelectronics, transistors, logic devices, and biomedicines due to its intrinsic properties, e.g., thickness-dependent bandgap, high mobility, highly anisotropic charge transport, and excellent biodegradability and biocompatibility. On one hand, rapid degradation of 2D BP under ambient conditions becomes a vital bottleneck that largely hampers its practical applications in optical and optoelectronic devices and photocatalysis. On the other hand, just because of its ambient instability, 2D BP as a novel kind of nanomedicine in a cancer drug delivery system can not only satisfy effective cancer therapy but also enable its safe biodegradation in vivo. Until now, a variety of surface functionality types and approaches have been employed to rationally modify 2D BP to meet the growing requirements of advanced nanophotonics. In this Account, we describe our research on surface engineering of 2D BP in two opposite ways: (i) stabilizing 2D BP by various approaches for advanced nanophotonic devices with both remarkable photoresponse behavior and environmentally structural stability and (ii) making full use of biodegradation, biocompatibility, and biological activity (e.g., photothermal therapy, photodynamic therapy, and bioimaging) of 2D BP for the construction of high-performance delivery nanoplatforms for biophotonic applications. We highlight the targeted aims of the surface-engineered 2D BP for advanced nanophotonics, including photonic devices (optics, optoelectronics, and photocatalysis) and photoinduced cancer therapy, by means of various surface functionalities, such as heteroatom incorporation, polymer functionalization, coating, heterostructure design, etc. From the viewpoint of potential applications, the fundamental properties of surface-engineered 2D BP and recent advances in surface-engineered 2D BP-based nanophotonic devices are briefly discussed. For the photonic devices, surface-engineered 2D BP can not only effectively improve environmentally structural stability but also simultaneously maintain photoresponse performance, enabling 2D BP-based devices for a wide range of practical applications. In terms of the photoinduced cancer therapy, surface-engineered 2D BP is more appropriate for the treatment of cancer due to negligible toxicity and excellent biodegradation and biocompatibility. We also provide our perspectives on future opportunities and challenges in this important and fast-growing field. It is envisioned that this Account can attract more attention in this area and inspire more scientists in a variety of research communities to accelerate the development of 2D BP for more widespread high-performance nanophotonic applications.
Collapse
Affiliation(s)
- Weichun Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Yuming Yang
- Key Laboratory of Neuroregeneration Ministry of Education and Jiangsu Province Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong 226001, P. R. China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
16
|
Wang Y, Yuan Y, Wang R, Wang T, Guo F, Bian Y, Wang T, Ma Q, Yuan H, Du Y, Jin J, Jiang H, Han F, Jiang J, Pan Y, Wang L, Wu F. Injectable Thermosensitive Gel CH-BPNs-NBP for Effective Periodontitis Treatment through ROS-Scavenging and Jaw Vascular Unit Protection. Adv Healthc Mater 2024; 13:e2400533. [PMID: 38722018 DOI: 10.1002/adhm.202400533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/29/2024] [Indexed: 05/16/2024]
Abstract
Periodontitis, a prevalent inflammatory condition in the oral cavity, is closely associated with oxidative stress-induced tissue damage mediated by excessive reactive oxygen species (ROS) production. The jaw vascular unit (JVU), encompassing both vascular and lymphatic vessels, plays a crucial role in maintaining tissue fluid homeostasis and contributes to the pathological process in inflammatory diseases of the jaw. This study presents a novel approach for treating periodontitis through the development of an injectable thermosensitive gel (CH-BPNs-NBP). The gel formulation incorporates black phosphorus nanosheets (BPNs), which are notable for their ROS-scavenging properties, and dl-3-n-butylphthalide (NBP), a vasodilator that promotes lymphatic vessel function within the JVU. These results demonstrate that the designed thermosensitive gel serve as a controlled release system, delivering BPNs and NBP to the site of inflammation. CH-BPNs-NBP not only protects macrophages and human lymphatic endothelial cells from ROS attack but also promotes M2 polarization and lymphatic function. In in vivo studies, this work observes a significant reduction in inflammation and tissue damage, accompanied by a notable promotion of alveolar bone regeneration. This research introduces a promising therapeutic strategy for periodontitis, leveraging the unique properties of BPNs and NBP within an injectable thermosensitive gel.
Collapse
Affiliation(s)
- Yuli Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yuqing Yuan
- Department of Orthodontic, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Ruyu Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Tianxiao Wang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Fanyi Guo
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yifeng Bian
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Tianyao Wang
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Qian Ma
- Department of General Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Jianliang Jin
- Department of Human Anatomy, Research Centre for Bone and Stem Cells, School of Basic Medical Sciences, Key Laboratory for Aging & Disease, School of Biomedical Engineering and informatics, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Huijun Jiang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Jiandong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yongchu Pan
- Department of Orthodontic, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Lulu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Fan Wu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
17
|
Tang H, Zhang X, Bao Y, Shen H, Fan M, Wang Y, Xiang S, Ran X. Nucleic acid-functionalized gold nanoparticles as intelligent photothermal therapy agents for precise cancer treatment. NANOTECHNOLOGY 2024; 35:465101. [PMID: 39146957 DOI: 10.1088/1361-6528/ad6fa7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
We present an intelligent photothermal therapy agents by functionalizing gold nanoparticles with specific nucleic acid sequences. Hairpin nucleic acids are modified to the nanoparticles, forming AuNPs-1 and AuNPs-2. Upon infiltrating cancer cells, these nanoparticles undergo catalytic hairpin assembly in the presence of target miRNA, leading to aggregation and subsequent photothermal conversion. Under near-infrared laser irradiation, aggregated gold nanoparticles exhibit efficient photothermal conversion, selectively damaging cancer cells. This approach offers heightened selectivity, as nanoparticles only aggregate in environments with cancer biomarkers present, sparing normal cells. Cytotoxicity assays confirm minimal toxicity to normal cells. In vivo studies on mice bearing solid tumors validate the system's efficacy in tumor regression. Overall, this study highlights the potential of nucleic acid-functionalized gold nanoparticles in intelligent and selective cancer photothermal therapy, offering insights for targeted diagnosis and treatment development.
Collapse
Affiliation(s)
- Hongmei Tang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Xuetao Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Yuyan Bao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Huazhen Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Minglan Fan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Yangchen Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Siyun Xiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Xiang Ran
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| |
Collapse
|
18
|
Liu J, Deng R, Liang X, Zhou M, Zheng P, Chi YR. Carbene-Catalyzed and Pnictogen Bond-Assisted Access to P III-Stereogenic Compounds. Angew Chem Int Ed Engl 2024; 63:e202404477. [PMID: 38669345 DOI: 10.1002/anie.202404477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 04/28/2024]
Abstract
Intermolecular pnictogen bonding (PnB) catalysis has received increased interest in non-covalent organocatalysis. It has been demonstrated that organic electron-deficient pnictogen atoms can act as prospective Lewis acids. Here, we present a catalytic approach for the asymmetric synthesis of chiral PIII compounds by combining intramolecular PnB interactions and carbene catalysis. Our design features a pre-chiral phosphorus molecule bearing two electron-withdrawing benzoyl groups, resulting in the formation of a σ-hole at the P atom. X-ray and non-covalent interaction (NCI) analysis indicate that the model substrates exhibit intrinsic PnB interaction between the oxygen atom of the formyl group and the phosphorus atom. This induces a conformational locking effect, leading to the crystallization of the phosphorus substrate in a preferred conformation (P212121 chiral group). Under the catalysis of N-heterocyclic carbene, the aldehyde moiety activated by the pnictogen bond selectively reacts with an alcohol to yield the corresponding chiral monoester/phosphorus product with excellent enantioselectivity. This Lewis acidic phosphorus center, aroused by the non-polarized intramolecular pnictogen bond interaction, assists in conformational and selective regulations, providing unique opportunities for catalysis and beyond.
Collapse
Affiliation(s)
- Jianjian Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China
| | - Rui Deng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China
| | - Xuyang Liang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China
| | - Mali Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China
| | - Pengcheng Zheng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China
- School of chemistry, chemical engineering, and biotechnology, Nanyang Technological University, 637371, Singapore, Singapore
| |
Collapse
|
19
|
He M, Zhang X, Ran X, Zhang Y, Nie X, Xiao B, Lei L, Zhai S, Zhu J, Zhang J, Li R, Liu Z, Zhu Y, Dai Z, He Z, Feng J, Zhang C. Black Phosphorus Nanosheets Protect Neurons by Degrading Aggregative α-syn and Clearing ROS in Parkinson's Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404576. [PMID: 38696266 DOI: 10.1002/adma.202404576] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/27/2024] [Indexed: 05/04/2024]
Abstract
Although evidence indicates that the abnormal accumulation of α-synuclein (α-syn) in dopamine neurons of the substantia nigra is the main pathological feature of Parkinson's disease (PD), no compounds that have both α-syn antiaggregation and α-syn degradation functions have been successful in treating the disease in the clinic. Here, it is shown that black phosphorus nanosheets (BPNSs) interact directly with α-syn fibrils to trigger their disaggregation for PD treatment. Moreover, BPNSs have a specific affinity for α-syn through van der Waals forces. And BPNSs are found to activate autophagy to maintain α-syn homeostasis, improve mitochondrial dysfunction, reduce reactive oxygen species levels, and rescue neuronal death and synaptic loss in PC12 cells. It is also observed that BPNSs penetrate the blood-brain barrier and protect against dopamine neuron loss, alleviating behavioral disorders in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced mouse model and hA53T α-syn transgenic mice. Together, the study reveals that BPNSs have the potential as a novel integrated nanomedicine for clinical diagnosis and treatment of neurological diseases.
Collapse
Affiliation(s)
- Meina He
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
- Department of Biology, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Xiangming Zhang
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
- Department of Biology, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Xia Ran
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Yan Zhang
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
- Department of Biology, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Xiaoran Nie
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
- Department of Biology, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Bo Xiao
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Li Lei
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Suzhen Zhai
- Department of Biology, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - JinMing Zhu
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Jingjing Zhang
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Rong Li
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Zuoji Liu
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Yuping Zhu
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
- Department of Biology, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Zhijun Dai
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
- Department of Biology, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Zhixu He
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Jian Feng
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Chunlin Zhang
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
- Department of Biology, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| |
Collapse
|
20
|
Huang J, Wu S, Wang Y, Shen J, Wang C, Zheng Y, Chu PK, Liu X. Dual elemental doping activated signaling pathway of angiogenesis and defective heterojunction engineering for effective therapy of MRSA-infected wounds. Bioact Mater 2024; 37:14-29. [PMID: 38515610 PMCID: PMC10951428 DOI: 10.1016/j.bioactmat.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Multi-drug resistant bacterial infections pose a significant threat to human health. Thus, the development of effective bactericidal strategies is a pressing concern. In this study, a ternary heterostructure (Zn-CN/P-GO/BiS) comprised of Zn-doped graphite phase carbon nitride (g-C3N4), phosphorous-doped graphene oxide (GO) and bismuth sulphide (Bi2S3) is constructed for efficiently treating methicillin-resistant Staphylococcus aureus (MRSA)-infected wound. Zn doping-induced defect sites in g-C3N4 results in a reduced band gap (ΔE) and a smaller energy gap (ΔEST) between the singlet state S1 and triplet state T1, which favours two-photon excitation and accelerates electron transfer. Furthermore, the formation of an internal electric field at the ternary heterogeneous interface optimizes the charge transfer pathway, inhibits the recombination of electron-hole pairs, improves the photodynamic effect of g-C3N4, and enhances its catalytic performance. Therefore, the Zn-CN/P-GO/BiS significantly augments the production of reactive oxygen species and heat under 808 nm NIR (0.67 W cm-2) irradiation, leading to the elimination of 99.60% ± 0.07% MRSA within 20 min. Additionally, the release of essential trace elements (Zn and P) promotes wound healing by activating hypoxia-inducible factor-1 (HIF-1) and peroxisome proliferator-activated receptors (PPAR) signaling pathways. This work provides unique insight into the rapid antibacterial applications of trace element doping and two-photon excitation.
Collapse
Affiliation(s)
- Jin Huang
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Shuilin Wu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Yi Wang
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Chaofeng Wang
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Paul K. Chu
- Department of Physics and Department of Materials Science and Engineering, City University of Hong Kong, 999077, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
21
|
Kumar A, Kim JH, Chang DW. Flexible and Ultra Low Weight Energy Harvesters Based on 2D Phosphorene or Black phosphorus (BP): Current and Futuristic Prospects. CHEMSUSCHEM 2024; 17:e202301718. [PMID: 38318655 DOI: 10.1002/cssc.202301718] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Phosphorene, or two-dimensional (2D) black phosphorus, has recently emerged as a competitor of graphene as it offers several advantages, including a tunable band gap, higher on/off current ratio, piezoelectric nature, and biocompatibility. Researchers have succeeded in obtaining several forms of phosphorene, such as nanosheets, nanorods, nanoribbons, and quantum dots, with satisfactory yields. Nanostructures with various controlled properties have been fabricated in multiple devices for energy production. These phosphorene-based devices are lightweight, flexible, and efficient, demonstrating great potential for energy-harvesting applications in sensors and nanogenerators. While ongoing exploration and advancements continue for these lightweight energy harvesters, it is essential to review the current progress in order to develop a future roadmap for the potential use of these phosphorene-based energy harvesters in space programs. They could be employed in applications such as wearable devices for astronauts, where ultralow weight is a vital component of any integrated device. This review also anticipates the growing significance of phosphorene in various emerging applications such as robots, information storage devices, and artificial intelligence.
Collapse
Affiliation(s)
- Avneesh Kumar
- Department of Industrial Chemistry and CECS Core Research Institute, Pukyong National University, Busan, 48513, Republic of Korea
| | - Joo Hyun Kim
- Department of Polymer Engineering and CECS Core Research Institute, Pukyong National University, Busan, 48513, Republic of Korea
| | - Dong Wook Chang
- Department of Industrial Chemistry and CECS Core Research Institute, Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
22
|
Rahmani Khalili N, Banitalebi Dehkordi A, Amiri A, Mohammadi Ziarani G, Badiei A, Cool P. Tailored Covalent Organic Framework Platform: From Multistimuli, Targeted Dual Drug Delivery by Architecturally Engineering to Enhance Photothermal Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28245-28262. [PMID: 38770930 DOI: 10.1021/acsami.4c05989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Engineering bulk covalent organic frameworks (COFs) to access specific morphological structures holds paramount significance in boosting their functions in cancer treatment; nevertheless, scant effort has been dedicated to exploring this realm. Herein, silica core-shell templates and multifunctional COF-based reticulated hollow nanospheres (HCOFs) are novelly designed as a versatile nanoplatform to investigate the simultaneous effect of dual-drug chemotherapy and photothermal ablation. Taking advantage of the distinct structural properties of the template, the resulting two-dimensional (2D) HCOF, featuring large internal voids and a peripheral interconnected mesoporous shell, presents intriguing benefits over its bulk counterparts for cancer treatment, including a well-defined morphology, an outstanding drug loading capability (99.6%) attributed to its ultrahigh surface area (2087 m2/g), great crystallinity, improved tumor accumulation, and an adjustable drug release profile. After being loaded with hydrophilic doxorubicin with a remarkable loading capacity, the obtained drug-loaded HCOFs were coated with gold nanoparticles (Au NPs) to confer them with three properties, including pore entrance blockage, active-targeting capability, and improved biocompatibility via secondary modification, besides high near infrared (NIR) absorption for efficient photothermal hyperthermia cancer suppression. The resultant structure was functionalized with mono-6-thio-β-cyclodextrin (β-CD) as a second pocket to load docetaxel as the hydrophobic anticancer agent (combination index = 0.33). The dual-drug-loaded HCOF displayed both pH- and near-infrared-responsive on-demand drug release. In vitro and in vivo evaluations unveiled the prominent synergistic performance of coloaded HCOF in cancer elimination upon NIR light irradiation. This work opens up a new avenue for exciting applications of structurally engineered HCOFs as hydrophobic/hydrophilic drug carriers as well as multimodal treatment agents.
Collapse
Affiliation(s)
| | - Ali Banitalebi Dehkordi
- Laboratory of Adsorption and Catalysis, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Ahmad Amiri
- School of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Ghodsi Mohammadi Ziarani
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran 19938-93973, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Pegie Cool
- Laboratory of Adsorption and Catalysis, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| |
Collapse
|
23
|
Xu Y, Qi J, Ma C, He Q. Wet-Chemical Synthesis of Elemental 2D Materials. Chem Asian J 2024; 19:e202301152. [PMID: 38469659 DOI: 10.1002/asia.202301152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Wet-chemical synthesis refers to the bottom-up chemical synthesis in solution, which is among the most popular synthetic approaches towards functional two-dimensional (2D) materials. It offers several advantages, including cost-effectiveness, high yields,, precious control over the production process. As an emerging family of 2D materials, elemental 2D materials (Xenes) have shown great potential in various applications such as electronics, catalysts, biochemistry,, sensing technologies due to their exceptional/exotic properties such as large surface area, tunable band gap,, high carrier mobility. In this review, we provide a comprehensive overview of the current state-of-the-art in wet-chemical synthesis of Xenes including tellurene, bismuthene, antimonene, phosphorene,, arsenene. The current solvent compositions, process parameters utilized in wet-chemical synthesis, their effects on the thickness, stability of the resulting Xenes are also presented. Key factors considered involves ligands, precursors, surfactants, reaction time, temperature. Finally, we highlight recent advances, existing challenges in the current application of wet-chemical synthesis for Xenes production, provide perspectives on future improvement.
Collapse
Affiliation(s)
- Yue Xu
- Department of Materials Science, Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Junlei Qi
- Department of Materials Science, Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Cong Ma
- Department of Materials Science, Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Qiyuan He
- Department of Materials Science, Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
24
|
Alunni Cardinali M, Ceccarini MR, Chiesa I, Bittolo Bon S, Rondini T, Serrano-Ruiz M, Caporali M, Tacchi S, Verdini A, Petrillo C, De Maria C, Beccari T, Sassi P, Valentini L. Mechanical Transfer of Black Phosphorus on a Silk Fibroin Substrate: A Viable Method for Photoresponsive and Printable Biomaterials. ACS OMEGA 2024; 9:17977-17988. [PMID: 38680339 PMCID: PMC11044148 DOI: 10.1021/acsomega.3c09461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
Despite the technological importance of semiconductor black phosphorus (BP) in materials science, maintaining the stability of BP crystals in organic media and protecting them from environmental oxidation remains challenging. In this study, we present the synthesis of bulk BP and the exploitation of the viscoelastic properties of a regenerated silk fibroin (SF) film as a biocompatible substrate to transfer BP flakes, thereby preventing oxidation. A model based on the flow of polymers revealed that the applied flow-induced stresses exceed the yield stress of the BP aggregate. Raman spectroscopy was used to investigate the exfoliation efficiency as well as the environmental stability of BP transferred on the SF substrate. Notably, BP flakes transferred to the SF substrate demonstrated improved stability when SF was dissolved in a phosphate-buffered saline medium, and in vitro cancer cell viability experiments demonstrate the tumor ablation efficiency under visible to near-infrared (Vis-nIR) radiation. Moreover, the SF and BP-enriched SF (SF/BP) solution was shown to be processable via extrusion-based three-dimensional (3D) printing. Therefore, this work paves the way for a general method for the transferring of BP on natural biodegradable polymers and processing them via 3D printing toward novel functionalities and complex shapes for biomedical purposes.
Collapse
Affiliation(s)
- Martina Alunni Cardinali
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | | | - Irene Chiesa
- Department
of Ingegneria dell’Informazione and Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, Pisa 56122, Italy
| | - Silvia Bittolo Bon
- Dipartimento
di Fisica e Geologia, Università
degli Studi di Perugia, Via A. Pascoli, 06123 Perugia, Italy
| | - Tommaso Rondini
- Department
of Pharmaceutical Science, University of
Perugia, 06123 Perugia, Italy
| | - Manuel Serrano-Ruiz
- Institute
of Chemistry of OrganoMetallic Compounds-ICCOM, National Research
Council-CNR, Via Madonna del Piano10, 50019 Sesto Fiorentino, Italy
| | - Maria Caporali
- Institute
of Chemistry of OrganoMetallic Compounds-ICCOM, National Research
Council-CNR, Via Madonna del Piano10, 50019 Sesto Fiorentino, Italy
| | - Silvia Tacchi
- CNR-IOM
−
Istituto Officina dei Materiali, National
Research Council of Italy, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Alberto Verdini
- CNR-IOM
−
Istituto Officina dei Materiali, National
Research Council of Italy, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Caterina Petrillo
- Dipartimento
di Fisica e Geologia, Università
degli Studi di Perugia, Via A. Pascoli, 06123 Perugia, Italy
| | - Carmelo De Maria
- Department
of Ingegneria dell’Informazione and Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, Pisa 56122, Italy
| | - Tommaso Beccari
- Department
of Pharmaceutical Science, University of
Perugia, 06123 Perugia, Italy
| | - Paola Sassi
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Luca Valentini
- Civil
and Environmental Engineering Department and INSTM Research Unit, University of Perugia, Strada di Pentima 8, 05100 Terni, Italy
| |
Collapse
|
25
|
Gunathilaka TM, Shimomura M. Nanoscale Evaluation of the Degradation Stability of Black Phosphorus Nanosheets Functionalized with PEG and Glutathione-Stabilized Doxorubicin Drug-Loaded Gold Nanoparticles in Real Functionalized System. Molecules 2024; 29:1746. [PMID: 38675567 PMCID: PMC11051985 DOI: 10.3390/molecules29081746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Two-dimensional black phosphorus (2D BP) has attracted significant research interest in the field of biomedical applications due to its unique characteristics, including high biocompatibility, impressive drug-loading efficiency, phototherapeutic ability, and minimal side effects. However, its puckered honeycomb lattice structure with lone-pair electrons of BP leads to higher sensitivity and chemical reactivity towards H2O and O2 molecules, resulting in the degradation of the structure with physical and chemical changes. In our study, we synthesize polyethylene glycol (PEG) and glutathione-stabilized doxorubicin drug-assembled Au nanoparticle (Au-GSH-DOX)-functionalized BP nanosheets (BP-PEG@Au-GSH-DOX) with improved degradation stability, biocompatibility, and tumor-targeting ability. Transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy indicate the nanoscale degradation behavior of synthesized nanoconjugates in three different environmental exposure conditions, and the results demonstrate the remarkable nanoscale stability of BP-PEG@Au-GSH-DOX against the degradation of BP, which provides significant interest in employing 2D BP-based nanotherapeutic agents for tumor-targeted cancer phototherapy.
Collapse
Affiliation(s)
| | - Masaru Shimomura
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Chuo-ku, Hamamatsu 432-8011, Shizuoka, Japan;
| |
Collapse
|
26
|
Wang J, Liu M, Yang C, Pan Y, Ji S, Han N, Sun G. Biomaterials for bone defect repair: Types, mechanisms and effects. Int J Artif Organs 2024; 47:75-84. [PMID: 38166512 DOI: 10.1177/03913988231218884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Bone defects or bone discontinuities caused by trauma, infection, tumours and other diseases have led to an increasing demand for bone grafts and biomaterials. Autologous bone grafts, bone grafts with vascular tips, anastomosed vascular bone grafts and autologous bone marrow components are all commonly used in clinical practice, while oversized bone defects require the use of bone tissue engineering-related biomaterials to repair bone defects and promote bone regeneration. Currently, inorganic components such as polysaccharides and bioceramics, as well as a variety of bioactive proteins, metal ions and stem cells can be loaded into hydrogels or 3D printed scaffold materials to achieve better therapeutic results. In this review, we provide an overview of the types of materials, applications, potential mechanisms and current developments in the repair of bone defects.
Collapse
Affiliation(s)
- Jiaming Wang
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mingchong Liu
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chensong Yang
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yutao Pan
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shengchao Ji
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ning Han
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guixin Sun
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
27
|
Ding X, Yu Y, Fan L, Li W, Bian F, Wang J, Zhao Y. Sprayable Multifunctional Black Phosphorus Hydrogel with On-Demand Removability for Joint Skin Wound Healing. Adv Healthc Mater 2024; 13:e2302588. [PMID: 37948613 DOI: 10.1002/adhm.202302588] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Wound healing remains a critical challenge in regenerative engineering. Great efforts are devoted to develop functional patches for wound healing. Herein, a novel sprayable black phosphorus (BP)-based multifunctional hydrogel with on-demand removability is presented as a joints' skin wound dressing. The hydrogel is facilely prepared by mixing dopamine-modified oxidized hyaluronic acid, cyanoacetategroup-functionalized dextran containing black phosphorus, and the catalyst histidine. The catechol-containing dopamine can not only enhance tissue adhesiveness, but also endow the hydrogel with antioxidant capacity. In addition, benefiting from the photothermal conversion ability of the BP and thermally reversible performance of the formed C═C double bonds between aldehyde groups and cyanoacetate groups, the resulting hydrogel displays excellent antibacterial performance and on-demand dissolving ability under NIR irradiation. Moreover, by loading vascular endothelial growth factor into the hydrogel, the promoted migration and angiogenesis effects of endothelial cells can also be achieved. Based on these features, it is demonstrated that such sprayable BP hydrogels can effectively facilitate joint wounds healing by accelerating angiogenesis, alleviating inflammation, and improving wound microenvironment. Thus, it is believed that this NIR-responsive removable BP hydrogel dressing will put forward an innovative concept in designing wound dressings.
Collapse
Affiliation(s)
- Xiaoya Ding
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Yunru Yu
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Lu Fan
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Wenzhao Li
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Feika Bian
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jinglin Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
- Shenzhen Research Institute, Southeast University, Shenzhen, 518038, China
| |
Collapse
|
28
|
Zhang L, Wang Z, Zhang R, Yang H, Wang WJ, Zhao Y, He W, Qiu Z, Wang D, Xiong Y, Zhao Z, Tang BZ. Multi-Stimuli-Responsive and Cell Membrane Camouflaged Aggregation-Induced Emission Nanogels for Precise Chemo-photothermal Synergistic Therapy of Tumors. ACS NANO 2023; 17:25205-25221. [PMID: 38091262 DOI: 10.1021/acsnano.3c08409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Targeted and controllable drug release at lesion sites with the aid of visual navigation in real-time is of great significance for precise theranostics of cancers. Benefiting from the marvelous features (e.g., bright emission and phototheranostic effects in aggregates) of aggregation-induced emission (AIE) materials, constructing AIE-based multifunctional nanocarriers that act as all-arounders to integrate multimodalities for precise theranostics is highly desirable. Here, an intelligent nanoplatform (P-TN-Dox@CM) with homologous targeting, controllable drug release, and in vivo dual-modal imaging for precise chemo-photothermal synergistic therapy is proposed. AIE photothermic agent (TN) and anticancer drug (Dox) are encapsulated in thermo-/pH-responsive nanogels (PNA), and the tumor cell membranes are camouflaged onto the surface of nanogels. Active targeting can be realized through homologous effects derived from source tumor cell membranes, which advantageously elevates the specific drug delivery to tumor sites. After being engulfed into tumor cells, the nanogels exhibit a burst drug release at low pH. The near-infrared (NIR) photoinduced local hyperthermia can activate severe cytotoxicity and further accelerate drug release, thus generating enhanced synergistic chemo-photothermal therapy to thoroughly eradicate tumors. Moreover, P-TN-Dox@CM nanogels could achieve NIR-fluorescence/photothermal dual-modal imaging to monitor the dynamic distribution of therapeutics in real-time. This work highlights the great potential of smart P-TN-Dox@CM nanogels as a versatile nanoplatform to integrate multimodalities for precise chemo-photothermal synergistic therapy in combating cancers.
Collapse
Affiliation(s)
- Liping Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China
| | - Zaiyu Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Rongyuan Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China
| | - Han Yang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China
| | - Wen-Jin Wang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China
| | - Yun Zhao
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China
| | - Wei He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Zijie Qiu
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yu Xiong
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zheng Zhao
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China
- HKUST-Shenzhen Research Institute, South Area Hi-Tech Park, Nanshan, Shenzhen, Guangdong 518057, P. R. China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| |
Collapse
|
29
|
Chen X, Yang L, Wu Y, Wang L, Li H. Advances in the Application of Photothermal Composite Scaffolds for Osteosarcoma Ablation and Bone Regeneration. ACS OMEGA 2023; 8:46362-46375. [PMID: 38107965 PMCID: PMC10720008 DOI: 10.1021/acsomega.3c06944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/24/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Photothermal therapy is a promising approach to cancer treatment. The energy generated by the photothermal effect can effectively inhibit the growth of cancer cells without harming normal tissues, while the right amount of heat can also promote cell proliferation and accelerate tissue regeneration. Various nanomaterials have recently been used as photothermal agents (PTAs). The photothermal composite scaffolds can be obtained by introducing PTAs into bone tissue engineering (BTE) scaffolds, which produces a photothermal effect that can be used to ablate bone cancer with subsequent further use of the scaffold as a support to repair the bone defects created by ablation of osteosarcoma. Osteosarcoma is the most common among primary bone malignancies. However, a review of the efficacy of different types of photothermal composite scaffolds in osteosarcoma is lacking. This article first introduces the common PTAs, BTE materials, and preparation methods and then systematically summarizes the development of photothermal composite scaffolds. It would provide a useful reference for the combination of tumor therapy and tissue engineering in bone tumor-related diseases and complex diseases. It will also be valuable for advancing the clinical applications of photothermal composite scaffolds.
Collapse
Affiliation(s)
- Xiaohong Chen
- Department
of Pediatric Internal Medicine, Haining
Central Hospital, Jiaxing 314400, China
| | - Liqun Yang
- Department
of Nursing, Tongxiang Traditional Chinese
Medicine Hospital, Jiaxing 314500, China
| | - Yanfang Wu
- Department
of Hematology, The First People’s
Hospital of Fuyang Hangzhou, Hangzhou 311400, China
| | - Lina Wang
- Department
of Internal Medicine, The Second People’s
Hospital of Luqiao Taizhou, Taizhou 318058, China
| | - Huafeng Li
- Department
of General Surgery, Haining Central Hospital, Jiaxing 314400, China
| |
Collapse
|
30
|
Passaglia E, Sgarbossa A. Innovative Phosphorene Nanoplatform for Light Antimicrobial Therapy. Pharmaceutics 2023; 15:2748. [PMID: 38140089 PMCID: PMC10747032 DOI: 10.3390/pharmaceutics15122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Over the past few years, antibiotic resistance has reached global dimensions as a major threat to public health. Consequently, there is a pressing need to find effective alternative therapies and therapeutic agents to combat drug-resistant pathogens. Photodynamic therapy (PDT), largely employed as a clinical treatment for several malignant pathologies, has also gained importance as a promising antimicrobial approach. Antimicrobial PDT (aPDT) relies on the application of a photosensitizer able to produce singlet oxygen (1O2) or other cytotoxic reactive oxygen species (ROS) upon exposure to appropriate light, which leads to cell death after the induced photodamage. Among different types of 2D nanomaterials with antimicrobial properties, phosphorene, the exfoliated form of black phosphorus (bP), has the unique property intrinsic photoactivity exploitable for photothermal therapy (PTT) as well as for PDT against pathogenic bacteria.
Collapse
Affiliation(s)
- Elisa Passaglia
- National Research Council-Institute of Chemistry of OrganoMetallic Compounds (CNR-ICCOM), SS Pisa, Via Moruzzi 1, 56124 Pisa, Italy;
| | - Antonella Sgarbossa
- National Research Council-Nanoscience Institute (CNR-NANO) and NEST-Scuola Normale Superiore, Piazza S. Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
31
|
Wang R, Huang Z, Xiao Y, Huang T, Ming J. Photothermal therapy of copper incorporated nanomaterials for biomedicine. Biomater Res 2023; 27:121. [PMID: 38001505 PMCID: PMC10675977 DOI: 10.1186/s40824-023-00461-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Studies have reported on the significance of copper incorporated nanomaterials (CINMs) in cancer theranostics and tissue regeneration. Given their unique physicochemical properties and tunable nanostructures, CINMs are used in photothermal therapy (PTT) and photothermal-derived combination therapies. They have the potential to overcome the challenges of unsatisfactory efficacy of conventional therapies in an efficient and non-invasive manner. This review summarizes the recent advances in CINMs-based PTT in biomedicine. First, the classification and structure of CINMs are introduced. CINMs-based PTT combination therapy in tumors and PTT guided by multiple imaging modalities are then reviewed. Various representative designs of CINMs-based PTT in bone, skin and other organs are presented. Furthermore, the biosafety of CINMs is discussed. Finally, this analysis delves into the current challenges that researchers face and offers an optimistic outlook on the prospects of clinical translational research in this field. This review aims at elucidating on the applications of CINMs-based PTT and derived combination therapies in biomedicine to encourage future design and clinical translation.
Collapse
Affiliation(s)
| | | | | | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
32
|
Wang F, Wang B, Xu X, Wang X, Jiang P, Hu Z, Wang X, Lei J. Photothermal-Responsive Intelligent Hybrid of Hierarchical Carbon Nanocages Encapsulated by Metal-Organic Hydrogels for Sensitized Photothermal Therapy. Adv Healthc Mater 2023; 12:e2300834. [PMID: 37062751 DOI: 10.1002/adhm.202300834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Indexed: 04/18/2023]
Abstract
Hierarchical carbon nanocages as emerging nanomaterials have a great potential for photothermal therapy due to their unique porous structure, high specific surface area, and excellent photothermal property. Herein, a hierarchical nitrogen-doped carbon nanocage (hNCNC) is introduced as a second near-infrared photothermal agent, and then functionalizes it with metal-organic hydrogel (MOG) to form a thermal-responsive switch for sensitized photothermal therapy. Upon 1064 nm light irradiation, the hNCNCs exhibit a remarkable photothermal conversion efficiency of 65.9% owing to a high near-infrared extinction coefficient. Meanwhile, due to the hierarchical structure, hNCNCs show 60.2% (wt./wt.) loading efficiency of quercetin, a heat shock protein (Hsp70) inhibitor. Through thermal-driven dry-gel transformation, the coating MOGs intelligently release the encapsulated quercetin for sensitizing cancer cells to heat. Based on the synergistic effect of hyperthermia elevation and thermal-driven drug release, the dual thermal utilization platform achieves effective photothermal tumor ablation in vivo under low concentration of hNCNCs and mild irradiation, which provides a new diagram of intelligent responsive photothermal agents for enhanced photothermal therapy.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Institute of Clinical Pharmacy, Jining No. 1 People's Hospital, Jining Medical University, Jining, 272000, China
| | - Baoxing Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiang Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiaoliang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Pei Jiang
- Institute of Clinical Pharmacy, Jining No. 1 People's Hospital, Jining Medical University, Jining, 272000, China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xizhang Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
33
|
Long J, Yao Z, Zhang W, Liu B, Chen K, Li L, Teng B, Du X, Li C, Yu X, Qin L, Lai Y. Regulation of Osteoimmune Microenvironment and Osteogenesis by 3D-Printed PLAG/black Phosphorus Scaffolds for Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302539. [PMID: 37616380 PMCID: PMC10558667 DOI: 10.1002/advs.202302539] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/07/2023] [Indexed: 08/26/2023]
Abstract
The treatment of bone defects remains a significant challenge to be solved clinically. Immunomodulatory properties of orthopedic biomaterials have significance in regulating osteoimmune microenvironment for osteogenesis. A lactic acid-co-glycolic acid (PLGA) scaffold incorporates black phosphorus (BP) fabricated by 3D printing technology to investigate the effect of BP on osteoimmunomodulation and osteogenesis in site. The PLGA/BP scaffold exhibits suitable biocompatibility, biodegradability, and mechanical properties as an excellent microenvironment to support new bone formation. The studies' result also demonstrate that the PLGA/BP scaffolds are able to recruit and stimulate macrophages M2 polarization, inhibit inflammation, and promote human bone marrow mesenchymal stem cells (hBMSCs) proliferation and differentiation, which in turn promotes bone regeneration in the distal femoral defect region of steroid-associated osteonecrosis (SAON) rat model. Moreover, it is screened and demonstrated that PLGA/BP scaffolds can promote osteogenic differentiation by transcriptomic analysis, and PLGA/BP scaffolds promote osteogenic differentiation and mineralization by activating PI3K-AKT signaling pathway in hBMSC cells. In this study, it is shown that the innovative PLGA/BP scaffolds are extremely effective in stimulating bone regeneration by regulating macrophage M2 polarization and a new strategy for the development of biomaterials that can be used to repair bone defects is offered.
Collapse
Affiliation(s)
- Jing Long
- Centre for Translational Medicine Research & DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Zhenyu Yao
- Centre for Translational Medicine Research & DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Wei Zhang
- Centre for Translational Medicine Research & DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Ben Liu
- Centre for Translational Medicine Research & DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Kaiming Chen
- Centre for Translational Medicine Research & DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Long Li
- Centre for Translational Medicine Research & DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Bin Teng
- Center for Energy Metabolism and ReproductionShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Xiang‐Fu Du
- Centre for Translational Medicine Research & DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Cairong Li
- Centre for Translational Medicine Research & DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Xue‐Feng Yu
- Materials and Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Ling Qin
- Centre for Translational Medicine Research & DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
- Musculoskeletal Research LaboratoryDepartment of Orthopaedics & TraumatologyThe Chinese University of Hong KongHKHong Kong SAR999077P. R. China
- CAS‐HK Joint Lab of BiomaterialsShenzhen518055P. R. China
| | - Yuxiao Lai
- Centre for Translational Medicine Research & DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
- CAS‐HK Joint Lab of BiomaterialsShenzhen518055P. R. China
- Guangdong Engineering Laboratory of Biomaterials Additive ManufacturingShenzhen518055P. R. China
- Orthopaedics/Department of Spine Surgerythe First Affiliated Hospital, Shenzhen University, Shenzhen Second People’s HospitalShenzhen518035P. R. China
| |
Collapse
|
34
|
Chen Z, Zeng S, Qian L. Quantitative Analysis of Mitochondrial RNA in Living Cells with a Dual-Color Imaging System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301132. [PMID: 37127881 DOI: 10.1002/smll.202301132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Accurate quantification and dynamic expression profiling of mitochondrial RNA (mtRNA for short) are critical for illustrating their cellular functions. However, there lack methods for precise detection of mtRNA in situ due to the delivery restrictions and complicated cellular interferences. Herein, a dual-color imaging system featured with signal amplification and normalization capability for quantitative analysis of specific mtRNA is established. As a proof-of-concept example, an enzyme-free hairpin DNA cascade amplifier fine-tailored to specifically recognize mtRNA encoding NADH dehydrogenase subunit 6 (ND6) is employed as the signal output module and integrated into the biodegradable mitochondria-targeting black phosphorus nanosheet (BP-PEI-TPP) to monitor spatial-temporal dynamics of ND6 mtRNA. An internal reference module targeting β-actin mRNA is sent to the cytoplasm via BP-PEI for signal normalization, facilitating mtRNA quantification inside living cells with a degree of specificity and sensitivity as high as reverse transcription-quantitative polymerase chain reaction (RT-qPCR). With negligible cytotoxicity, this noninvasive "RT-qPCR mimic" can accurately indicate target mtRNA levels across different cells, providing a new strategy for precise analysis of subcellular RNAs in living systems.
Collapse
Affiliation(s)
- Zhiyan Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
35
|
Dong X, Wu W, Pan P, Zhang XZ. Engineered Living Materials for Advanced Diseases Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2304963. [PMID: 37436776 DOI: 10.1002/adma.202304963] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
Natural living materials serving as biotherapeutics exhibit great potential for treating various diseases owing to their immunoactivity, tissue targeting, and other biological activities. In this review, the recent developments in engineered living materials, including mammalian cells, bacteria, viruses, fungi, microalgae, plants, and their active derivatives that are used for treating various diseases are summarized. Further, the future perspectives and challenges of such engineered living material-based biotherapeutics are discussed to provide considerations for future advances in biomedical applications.
Collapse
Affiliation(s)
- Xue Dong
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, P. R. China
| | - Wei Wu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, P. R. China
| | - Pei Pan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
36
|
Ye Y, Ren K, Dong Y, Yang L, Zhang D, Yuan Z, Ma N, Song Y, Huang X, Qiao H. Mitochondria-Targeting Pyroptosis Amplifier of Lonidamine-Modified Black Phosphorus Nanosheets for Glioblastoma Treatments. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37220137 DOI: 10.1021/acsami.3c01559] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Pyroptosis is accompanied by immunogenic mediators' release and serves as an innovative strategy to reprogram tumor microenvironments. However, damaged mitochondria, the origin of pyroptosis, are frequently eliminated by mitophagy, which will severely impair pyroptosis-elicited immune activation. Herein, black phosphorus nanosheets (BP) are employed as a pyroptosis inducer delivery and mitophagy flux blocking system since the degradation of BP could impair lysosomal function by altering the pH within lysosomes. The pyroptosis inducer of lonidamine (LND) was precoupled with the mitochondrial target moiety of triphenylphosphonium to facilitate the occurrence of pyroptosis. The mitochondria-targeting LND-modified BP (BPTLD) were further encapsulated into the macrophage membrane to endow the BPTLD with blood-brain barrier penetration and tumor-targeting capability. The antitumor activities of membrane-encapsulated BPTLD (M@BPTLD) were investigated using a murine orthotopic glioblastoma model. The results demonstrated that the engineered nanosystem of M@BPTLD could target the mitochondria, and induce as well as reinforce pyroptosis via mitophagy flux blocking, thereby boosting the release of immune-activated factors to promote the maturation of dendritic cells. Furthermore, upon near-infrared (NIR) irradiation, M@BPTLD induced stronger mitochondrial oxidative stress, which further advanced robust immunogenic pyroptosis in glioblastoma cells. Thus, this study utilized the autophagy flux inhibition and phototherapy performance of BP to amplify LND-mediated pyroptosis, which might greatly contribute to the development of pyroptosis nanomodulators.
Collapse
Affiliation(s)
- Youqing Ye
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Ke Ren
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu 610500, China
| | - Yuqin Dong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Lixin Yang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Dexin Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Ziyang Yuan
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Ningyi Ma
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Xin Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Haishi Qiao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
37
|
Dong H, Wen Y, Lin J, Zhuang X, Xian R, Li P, Li S. Cytotoxicity Induced by Black Phosphorus Nanosheets in Vascular Endothelial Cells via Oxidative Stress and Apoptosis Activation. J Funct Biomater 2023; 14:jfb14050284. [PMID: 37233394 DOI: 10.3390/jfb14050284] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/25/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Black phosphorus (BP), an emerging two-dimensional material with unique optical, thermoelectric, and mechanical properties, has been proposed as bioactive material for tissue engineering. However, its toxic effects on physiological systems remain obscure. The present study investigated the cytotoxicity of BP to vascular endothelial cells. BP nanosheets (BPNSs) with a diameter of 230 nm were fabricated via a classical liquid-phase exfoliation method. Human umbilical vein endothelial cells (HUVECs) were used to determine the cytotoxicity induced by BPNSs (0.31-80 μg/mL). When the concentrations were over 2.5 μg/mL, BPNSs adversely affected the cytoskeleton and cell migration. Furthermore, BPNSs caused mitochondrial dysfunction and generated excessive intercellular reactive oxygen species (ROS) at tested concentrations after 24 h. BPNSs could influence the expression of apoptosis-related genes, including the P53 and BCL-2 family, resulting in the apoptosis of HUVECs. Therefore, the viability and function of HUVECs were adversely influenced by the concentration of BPNSs over 2.5 μg/mL. These findings provide significant information for the potential applications of BP in tissue engineering.
Collapse
Affiliation(s)
- Hao Dong
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Yin Wen
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Jiating Lin
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Xianxian Zhuang
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Ruoting Xian
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Ping Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Shaobing Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
- First Clinical Medical College, Xinjiang Medical University, Urumqi 830011, China
- The First People's Hospital of Kashgar Region, Kashgar 844000, China
| |
Collapse
|
38
|
Xiong Z, Zhang X, White JC, Liu L, Sun W, Zhang S, Zeng J, Deng S, Liu D, Zhao X, Wu F, Zhao Q, Xing B. Transcriptome Analysis Reveals the Growth Promotion Mechanism of Enteropathogenic Escherichia coli Induced by Black Phosphorus Nanosheets. ACS NANO 2023; 17:3574-3586. [PMID: 36602915 DOI: 10.1021/acsnano.2c09964] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
With the extensive production and application of black phosphorus (BP) nanosheets, release to the environment is inevitable, which raises concerns about the fate and effects of this two-dimensional (2D) material on sensitive receptors such as environmental microbes. Although the bacterial toxicity of BP nanosheets has been demonstrated, whether the biological response differs in pathogenic and nonpathogenic strains of a microorganism is unknown. Here, enteropathogenic Escherichia coli (EPEC) and nonpathogenic Escherichia coli DH5α (E. coli DH5α), Escherichia coli k12 (E. coli k12), and Bacillus tropicus (B. tropicus) are used to comparatively study the microbial toxicity of BP nanosheets. Upon exposure to BP nanosheets across a range of doses from 10 to 100 μg mL-1 for 12 h, EPEC experienced enhanced growth and E. coli DH5α and E. coli k12 were not affected, whereas B. tropicus exhibited clear toxicity. By combining transcriptome sequencing, proteome analysis, and other sensitive biological techniques, the mechanism of BP-induced growth promotion for EPEC was uncovered. Briefly, BP nanosheets activate the antioxidation system to resist oxidative stress, promote protein synthesis and secretion to attenuate membrane damage, enhance the energy supply, and activate growth-related pathways. None of these impacts were evident with nonpathogenic strains. By describing the mechanism of strain-dependent microbial effects, this study not only highlights the potential risks of BP nanosheets to the environment and to human health but also calls attention to the importance of model strain selection when evaluating the hazard and toxicity of emerging nanomaterials.
Collapse
Affiliation(s)
- Zhiqiang Xiong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejiao Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Liwei Liu
- Li Dak Sum Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jin Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuo Deng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daxu Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qing Zhao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
39
|
Kumar A, Chang DW. Towards the Future of Polymeric Hybrids of Two-Dimensional Black Phosphorus or Phosphorene: From Energy to Biological Applications. Polymers (Basel) 2023; 15:polym15040947. [PMID: 36850230 PMCID: PMC9962990 DOI: 10.3390/polym15040947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
With the advent of a new 2D nanomaterial, namely, black phosphorus (BP) or phosphorene, the scientific community is now dedicated to focusing on and exploring this 2D material offering elusive properties such as a higher carrier mobility, biocompatibility, thickness-dependent band gap, and optoelectronic characteristics that can be harnessed for multiple applications, e.g., nanofillers, energy storage devices, field effect transistors, in water disinfection, and in biomedical sciences. The hexagonal ring of phosphorus atoms in phosphorene is twisted slightly, unlike how it is in graphene. Its unique characteristics, such as a high carrier mobility, anisotropic nature, and biocompatibility, have attracted much attention and generated further scientific curiosity. However, despite these interesting features, the phosphorene or BP poses challenges and causes frustrations when it comes to its stability under ambient conditions and processability, and thus in order to overcome these hurdles, it must be conjugated or linked with the suitable and functional organic counter macromolecule in such a way that its properties are not compromised while providing a protection from air/water that can otherwise degrade it to oxides and acid. The resulting composites/hybrid system of phosphorene and a macromolecule, e.g., a polymer, can outperform and be exploited for the aforementioned applications. These assemblies of a polymer and phosphorene have the potential for shifting the paradigm from exhaustively used graphene to new commercialized products offering multiple applications.
Collapse
|
40
|
Zhang X, Donskyi IS, Tang W, Deng S, Liu D, Zhang S, Zhao Q, Xing B. Biological Effects of Black Phosphorus Nanomaterials on Mammalian Cells and Animals. Angew Chem Int Ed Engl 2023; 62:e202213336. [PMID: 36218046 PMCID: PMC10107789 DOI: 10.1002/anie.202213336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 12/14/2022]
Abstract
The remarkable progress of applied black phosphorus nanomaterials (BPNMs) is attributed to BP's outstanding properties. Due to its potential for applications, environmental release and subsequent human exposure are virtually inevitable. Therefore, how BPNMs impact biological systems and human health needs to be considered. In this comprehensive Minireview, the most recent advancements in understanding the mechanisms and regulation factors of BPNMs' endogenous toxicity to mammalian systems are presented. These achievements lay the groundwork for an understanding of its biological effects, aimed towards establishing regulatory principles to minimize the adverse health impacts.
Collapse
Affiliation(s)
- Xuejiao Zhang
- National–Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South ChinaGuangdong Key Laboratory of Integrated Agro-environmental Pollution Control and ManagementInstitute of Eco-environmental and Soil SciencesGuangdong Academy of SciencesGuangzhou510650China
- Key Laboratory of Pollution Ecology and Environmental EngineeringInstitute of Applied EcologyChinese Academy of SciencesShenyang110016China
| | - Ievgen S. Donskyi
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Weihao Tang
- National–Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South ChinaGuangdong Key Laboratory of Integrated Agro-environmental Pollution Control and ManagementInstitute of Eco-environmental and Soil SciencesGuangdong Academy of SciencesGuangzhou510650China
| | - Shuo Deng
- Key Laboratory of Pollution Ecology and Environmental EngineeringInstitute of Applied EcologyChinese Academy of SciencesShenyang110016China
- University of Chinese Academy of SciencesBeijing100049China
| | - Daxu Liu
- Key Laboratory of Pollution Ecology and Environmental EngineeringInstitute of Applied EcologyChinese Academy of SciencesShenyang110016China
- University of Chinese Academy of SciencesBeijing100049China
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental EngineeringInstitute of Applied EcologyChinese Academy of SciencesShenyang110016China
| | - Qing Zhao
- National–Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South ChinaGuangdong Key Laboratory of Integrated Agro-environmental Pollution Control and ManagementInstitute of Eco-environmental and Soil SciencesGuangdong Academy of SciencesGuangzhou510650China
- Key Laboratory of Pollution Ecology and Environmental EngineeringInstitute of Applied EcologyChinese Academy of SciencesShenyang110016China
| | - Baoshan Xing
- Stockbridge School of AgricultureUniversity of MassachusettsAmherstMA 01003USA
| |
Collapse
|
41
|
Gao Y, Wang K, Zhang J, Duan X, Sun Q, Men K. Multifunctional nanoparticle for cancer therapy. MedComm (Beijing) 2023; 4:e187. [PMID: 36654533 PMCID: PMC9834710 DOI: 10.1002/mco2.187] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 01/14/2023] Open
Abstract
Cancer is a complex disease associated with a combination of abnormal physiological process and exhibiting dysfunctions in multiple systems. To provide effective treatment and diagnosis for cancer, current treatment strategies simultaneously focus on various tumor targets. Based on the rapid development of nanotechnology, nanocarriers have been shown to exhibit excellent potential for cancer therapy. Compared with nanoparticles with single functions, multifunctional nanoparticles are believed to be more aggressive and potent in the context of tumor targeting. However, the development of multifunctional nanoparticles is not simply an upgraded version of the original function, but involves a sophisticated system with a proper backbone, optimized modification sites, simple preparation method, and efficient function integration. Despite this, many well-designed multifunctional nanoparticles with promising therapeutic potential have emerged recently. Here, to give a detailed understanding and analyzation of the currently developed multifunctional nanoparticles, their platform structures with organic or inorganic backbones were systemically generalized. We emphasized on the functionalization and modification strategies, which provide additional functions to the nanoparticle. We also discussed the application combination strategies that were involved in the development of nanoformulations with functional crosstalk. This review thus provides an overview of the construction strategies and application advances of multifunctional nanoparticles.
Collapse
Affiliation(s)
- Yan Gao
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Kaiyu Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Xingmei Duan
- Department of PharmacyPersonalized Drug Therapy Key Laboratory of Sichuan ProvinceSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuan ProvinceChina
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
42
|
Wang D, Peng Y, Li Y, Kpegah JKSK, Chen S. Multifunctional inorganic biomaterials: New weapons targeting osteosarcoma. Front Mol Biosci 2023; 9:1105540. [PMID: 36660426 PMCID: PMC9846365 DOI: 10.3389/fmolb.2022.1105540] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Osteosarcoma is the malignant tumor with the highest incidence rate among primary bone tumors and with a high mortality rate. The anti-osteosarcoma materials are the cross field between material science and medicine, having a wide range of application prospects. Among them, biological materials, such as compounds from black phosphorous, magnesium, zinc, copper, silver, etc., becoming highly valued in the biological materials field as well as in orthopedics due to their good biocompatibility, similar mechanical properties with biological bones, good biodegradation effect, and active antibacterial and anti-tumor effects. This article gives a comprehensive review of the research progress of anti-osteosarcoma biomaterials.
Collapse
Affiliation(s)
- Dong Wang
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,*Correspondence: Shijie Chen,
| | - Yi Peng
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,*Correspondence: Shijie Chen,
| | - Yuezhan Li
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland,*Correspondence: Shijie Chen,
| | | | - Shijie Chen
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China,*Correspondence: Shijie Chen,
| |
Collapse
|
43
|
Akbar MU, Akbar A, Saddozai UAK, Khan MIU, Zaheer M, Badar M. A multivariate metal–organic framework based pH-responsive dual-drug delivery system for chemotherapy and chemodynamic therapy. MATERIALS ADVANCES 2023; 4:5653-5667. [DOI: 10.1039/d3ma00389b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
By combining two different ligands and metals, MOFs can be fine-tuned for effective encapsulation and delivery of two anticancer drugs.
Collapse
Affiliation(s)
- Muhammad Usman Akbar
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, 29050, Pakistan
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, 54792, Pakistan
| | - Arslan Akbar
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, 54792, Pakistan
| | - Umair Ali Khan Saddozai
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Malik Ihsan Ullah Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54000, Pakistan
| | - Muhammad Zaheer
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, 54792, Pakistan
| | - Muhammad Badar
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, 29050, Pakistan
| |
Collapse
|
44
|
Wolfram A, Fuentes-Soriano P, Herold-Mende C, Romero-Nieto C. Boron- and phosphorus-containing molecular/nano platforms: exploiting pathological redox imbalance to fight cancer. NANOSCALE 2022; 14:17500-17513. [PMID: 36326151 DOI: 10.1039/d2nr03126d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cancer is currently the second leading cause of death globally. Despite multidisciplinary efforts, therapies to fight various types of cancer still remain inefficient. Reducing high recurrence rates and mortality is thus a major challenge to tackle. In this context, redox imbalance is an undervalued characteristic of cancer. However, it may be targeted by boron- and phosphorus-containing materials to selectively or systemically fight cancer. In particular, boron and phosphorus derivatives are attractive building blocks for rational drug discovery due to their unique and wide regioselective chemistry, high degree of tuneability and chemical stability. Thus, they can be meticulously employed to access tunable molecular platforms to selectively exploit the redox imbalance of cancer cells towards necrosis/apoptosis. This field of research holds a remarkable potential; nevertheless, it is still in its infancy. In this mini-review, we underline recent advances in the development of boron- or phosphorus-derivatives as molecular/nano platforms for rational anticancer drug design. Our goal is to provide comprehensive information on different methodologies that bear an outstanding potential to further develop this very promising field of research.
Collapse
Affiliation(s)
- Anna Wolfram
- Faculty of Pharmacy, University of Castilla-La Mancha Calle Almansa 14 - Edif. Bioincubadora, 02008, Albacete, Spain.
| | - Pablo Fuentes-Soriano
- Faculty of Pharmacy, University of Castilla-La Mancha Calle Almansa 14 - Edif. Bioincubadora, 02008, Albacete, Spain.
| | - Christel Herold-Mende
- Division of Neurosurgical Research, Department of Neurosurgery, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | - Carlos Romero-Nieto
- Faculty of Pharmacy, University of Castilla-La Mancha Calle Almansa 14 - Edif. Bioincubadora, 02008, Albacete, Spain.
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
45
|
Deng X, Zhao R, Song Q, Zhang Y, Zhao H, Hu H, Zhang Z, Liu W, Lin W, Wang G. Synthesis of dual-stimuli responsive metal organic framework-coated iridium oxide nanocomposite functionalized with tumor targeting albumin-folate for synergistic photodynamic/photothermal cancer therapy. Drug Deliv 2022; 29:3142-3154. [PMID: 36164704 PMCID: PMC9542428 DOI: 10.1080/10717544.2022.2127973] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The synergistic effects of photothermal therapy (PTT) and photodynamic therapy (PDT) has attracted considerable attention in the field of cancer therapy because of its excellent anti-tumor effect. This work provides a novel pH/NIR responsive therapeutic nanoplatform, IrO2@ZIF-8/BSA-FA (Ce6), producing a synergistic effect of PTT-PDT in the treatment of osteosarcoma. Iridium dioxide nanoparticles (IrO2 NPs) with exceptional catalase-like activity and PTT effects were synthesized by a hydrolysis method and decorated with zeolitic imidazolate framework-8 (ZIF-8) shell layer to promote the physical absorption of Chlorin e6 (Ce6), and further functionalized with bovine serum albumin-folate acid (BSA-FA) for targeting tumor cells. The IrO2@ZIF-8/BSA-FA nanocomposite indicated an outstanding photothermal heating conversion efficiency of 62.1% upon laser irradiation. In addition, the Ce6 loading endows nanoplatform with the capability to induce cell apoptosis under 660 nm near-infrared (NIR) laser irradiation through a reactive oxygen species (ROS)-mediated mechanism. It was further testified that IrO2@ZIF-8/BSA-FA can function as a catalase and convert the endogenous hydrogen peroxide (H2O2) into oxygen (O2) to improve the local oxygen pressure under the acidic tumor microenvironment (TME), which could subsequently amplified PDT-mediated ROS cell-killing performance via relieving hypoxia microenvironment of tumor. Both in vitro and in vivo experimental results indicated that the nanomaterials were good biocompatibility, and could remarkably achieve tumor-specific and enhanced combination therapy outcomes as compared with the corresponding PTT or PDT monotherapy. Taken together, this work holds great potential to design an intelligent multifunctional therapeutic nanoplatform for cancer therapy.
Collapse
Affiliation(s)
- Xiangtian Deng
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu, China.,Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Renliang Zhao
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu, China.,Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Qingcheng Song
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijazhuang, China
| | - Yiran Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Haiyue Zhao
- School of Medicine, Nankai University, Tianjin, China
| | - Hongzhi Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Zhang
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu, China.,Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Weijian Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Lin
- Department of Gynecology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Guanglin Wang
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu, China.,Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Kong X, Feng M, Wu L, He Y, Mao H, Gu Z. Biodegradable gemcitabine-loaded microdevice with sustained local drug delivery and improved tumor recurrence inhibition abilities for postoperative pancreatic tumor treatment. Drug Deliv 2022; 29:1595-1607. [PMID: 35612309 PMCID: PMC9176693 DOI: 10.1080/10717544.2022.2075984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 11/05/2022] Open
Abstract
At present, the 10-year survival rate of patients with pancreatic cancer is still less than 4%, mainly due to the high cancer recurrence rate caused by incomplete surgery and lack of effective postoperative adjuvant treatment. Systemic chemotherapy remains the only choice for patients after surgery; however, it is accompanied by off-target effects and server systemic toxicity. Herein, we proposed a biodegradable microdevice for local sustained drug delivery and postoperative pancreatic cancer treatment as an alternative and safe option. Biodegradable poly(l-lactic-co-glycolic acid) (P(L)LGA) was developed as the matrix material, gemcitabine hydrochloride (GEM·HCl) was chosen as the therapeutic drug and polyethylene glycol (PEG) was employed as the drug release-controlled regulator. Through adjusting the amount and molecular weight of PEG, the controllable degradation of matrix and the sustained release of GEM·HCl were obtained, thus overcoming the unstable drug release properties of traditional microdevices. The drug release mechanism of microdevice and the regulating action of PEG were studied in detail. More importantly, in the treatment of the postoperative recurrence model of subcutaneous pancreatic tumor in mice, the microdevice showed effective inhibition of postoperative in situ recurrences of pancreatic tumors with excellent biosafety and minimum systemic toxicity. The microdevice developed in this study provides an option for postoperative adjuvant pancreatic treatment, and greatly broadens the application prospects of traditional chemotherapy drugs.
Collapse
Affiliation(s)
- Xiangming Kong
- College of Materials Science and Engineering, Research Institute for Biomaterials, Tech Institute for Advanced Materials, Nanjing Tech University, Nanjing, PR China
| | - Miao Feng
- College of Materials Science and Engineering, Research Institute for Biomaterials, Tech Institute for Advanced Materials, Nanjing Tech University, Nanjing, PR China
| | - Lihuang Wu
- College of Materials Science and Engineering, Research Institute for Biomaterials, Tech Institute for Advanced Materials, Nanjing Tech University, Nanjing, PR China
| | - Yiyan He
- College of Materials Science and Engineering, Research Institute for Biomaterials, Tech Institute for Advanced Materials, Nanjing Tech University, Nanjing, PR China
- NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing, PR China
- Suqian Advanced Materials Industry Technology Innovation Center of Nanjing Tech University, Nanjing, PR China
| | - Hongli Mao
- College of Materials Science and Engineering, Research Institute for Biomaterials, Tech Institute for Advanced Materials, Nanjing Tech University, Nanjing, PR China
- NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing, PR China
- Suqian Advanced Materials Industry Technology Innovation Center of Nanjing Tech University, Nanjing, PR China
| | - Zhongwei Gu
- College of Materials Science and Engineering, Research Institute for Biomaterials, Tech Institute for Advanced Materials, Nanjing Tech University, Nanjing, PR China
- NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing, PR China
- Suqian Advanced Materials Industry Technology Innovation Center of Nanjing Tech University, Nanjing, PR China
| |
Collapse
|
47
|
Allemailem KS, Alsahli MA, Almatroudi A, Alrumaihi F, Alkhaleefah FK, Rahmani AH, Khan AA. Current updates of CRISPR/Cas9-mediated genome editing and targeting within tumor cells: an innovative strategy of cancer management. Cancer Commun (Lond) 2022; 42:1257-1287. [PMID: 36209487 PMCID: PMC9759771 DOI: 10.1002/cac2.12366] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/19/2022] [Accepted: 09/21/2022] [Indexed: 01/25/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats-associated protein (CRISPR/Cas9), an adaptive microbial immune system, has been exploited as a robust, accurate, efficient and programmable method for genome targeting and editing. This innovative and revolutionary technique can play a significant role in animal modeling, in vivo genome therapy, engineered cell therapy, cancer diagnosis and treatment. The CRISPR/Cas9 endonuclease system targets a specific genomic locus by single guide RNA (sgRNA), forming a heteroduplex with target DNA. The Streptococcus pyogenes Cas9/sgRNA:DNA complex reveals a bilobed architecture with target recognition and nuclease lobes. CRISPR/Cas9 assembly can be hijacked, and its nanoformulation can be engineered as a delivery system for different clinical utilizations. However, the efficient and safe delivery of the CRISPR/Cas9 system to target tissues and cancer cells is very challenging, limiting its clinical utilization. Viral delivery strategies of this system may have many advantages, but disadvantages such as immune system stimulation, tumor promotion risk and small insertion size outweigh these advantages. Thus, there is a desperate need to develop an efficient non-viral physical delivery system based on simple nanoformulations. The delivery strategies of CRISPR/Cas9 by a nanoparticle-based system have shown tremendous potential, such as easy and large-scale production, combination therapy, large insertion size and efficient in vivo applications. This review aims to provide in-depth updates on Streptococcus pyogenic CRISPR/Cas9 structure and its mechanistic understanding. In addition, the advances in its nanoformulation-based delivery systems, including lipid-based, polymeric structures and rigid NPs coupled to special ligands such as aptamers, TAT peptides and cell-penetrating peptides, are discussed. Furthermore, the clinical applications in different cancers, clinical trials and future prospects of CRISPR/Cas9 delivery and genome targeting are also discussed.
Collapse
Affiliation(s)
- Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | | | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health SciencesCollege of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| |
Collapse
|
48
|
Soman S, Kulkarni S, Pandey A, Dhas N, Subramanian S, Mukherjee A, Mutalik S. 2D Hetero-Nanoconstructs of Black Phosphorus for Breast Cancer Theragnosis: Technological Advancements. BIOSENSORS 2022; 12:1009. [PMID: 36421127 PMCID: PMC9688887 DOI: 10.3390/bios12111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
As per global cancer statistics of 2020, female breast cancer is the most commonly diagnosed cancer and also the foremost cause of cancer death in women. Traditional treatments include a number of negative effects, making it necessary to investigate novel smart drug delivery methods and identify new therapeutic approaches. Efforts for developing novel strategies for breast cancer therapy are being devised worldwide by various research groups. Currently, two-dimensional black phosphorus nanosheets (BPNSs) have attracted considerable attention and are best suited for theranostic nanomedicine. Particularly, their characteristics, including drug loading efficacy, biocompatibility, optical, thermal, electrical, and phototherapeutic characteristics, support their growing demand as a potential substitute for graphene-based nanomaterials in biomedical applications. In this review, we have explained different platforms of BP nanomaterials for breast cancer management, their structures, functionalization approaches, and general methods of synthesis. Various characteristics of BP nanomaterials that make them suitable for cancer therapy and diagnosis, such as large surface area, nontoxicity, solubility, biodegradability, and excellent near-infrared (NIR) absorption capability, are discussed in the later sections. Next, we summarize targeting approaches using various strategies for effective therapy with BP nanoplatforms. Then, we describe applications of BP nanomaterials for breast cancer treatment, which include drug delivery, codelivery of drugs, photodynamic therapy, photothermal therapy, combined therapy, gene therapy, immunotherapy, and multidrug resistance reversal strategy. Finally, the present challenges and future aspects of BP nanomaterials are discussed.
Collapse
Affiliation(s)
- Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Suresh Subramanian
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Archana Mukherjee
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
49
|
Chen Z, Wang WT, Wang W, Huang J, Liao JY, Zeng S, Qian L. Sensitive Imaging of Cellular RNA via Cascaded Proximity-Induced Fluorogenic Reactions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44054-44064. [PMID: 36153979 DOI: 10.1021/acsami.2c10355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Owing to its important biological functions, RNA has become a promising molecular biomarker of various diseases. With a dynamic change in its expression level and a relatively low amount within the complicated biological matrix, signal amplification detection based on DNA probes has been put forward, which is helpful for early diagnosis and prognostic prediction. However, conventional methods are confined to cell lysates or dead cells and are not only time-consuming in sample preparation but also inaccessible to the spatial-temporal information of target RNAs. To achieve live-cell imaging of specific RNAs, both the detection sensitivity and intracellular delivery issues should be addressed. Herein, a new cascaded fluorogenic system based on the combination of hybridization chain reactions (HCRs) and proximity-induced bioorthogonal chemistry is developed, in which a bioorthogonal reaction pair (a tetrazine-quenched dye and its complementary dienophile) is brought into spatial proximity upon target RNA triggering the HCR to turn on and amplify the fluorescence in one step, sensitively indicating the cellular distribution of RNA with minimal false positive results caused by unspecific degradation. Facilitated by a biodegradable carrier based on black phosphorus with high loading capacity and excellent biocompatibility, the resulting imaging platform allows wash-free tracking of target RNAs inside living cells.
Collapse
Affiliation(s)
- Zhiyan Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Wen-Tao Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Wenchao Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jinsong Huang
- Department of Liver Disease, Hangzhou Xixi Hospital, Hangzhou 310023, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
50
|
Jafarpour M, Nüesch F, Heier J, Abdolhosseinzadeh S. Functional Ink Formulation for Printing and Coating of Graphene and Other 2D Materials: Challenges and Solutions. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Mohammad Jafarpour
- Laboratory for Functional Polymers Swiss Federal Laboratories for Materials Science and Technology (Empa) 8600 Dübendorf Switzerland
- Institute of Materials Science and Engineering Swiss Federal Institute of Technology Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Frank Nüesch
- Laboratory for Functional Polymers Swiss Federal Laboratories for Materials Science and Technology (Empa) 8600 Dübendorf Switzerland
- Institute of Materials Science and Engineering Swiss Federal Institute of Technology Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Jakob Heier
- Laboratory for Functional Polymers Swiss Federal Laboratories for Materials Science and Technology (Empa) 8600 Dübendorf Switzerland
| | - Sina Abdolhosseinzadeh
- Laboratory for Functional Polymers Swiss Federal Laboratories for Materials Science and Technology (Empa) 8600 Dübendorf Switzerland
| |
Collapse
|