1
|
Wang X, Zheng W, Zhao H, Li J, Chen S, Xu F. Robust and High-Wettability Cellulose Separators with Molecule-Reassembled Nano-Cracked Structures for High-Performance Supercapacitors. NANO-MICRO LETTERS 2025; 17:153. [PMID: 39969701 PMCID: PMC11839970 DOI: 10.1007/s40820-025-01650-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/27/2024] [Indexed: 02/20/2025]
Abstract
Separators in supercapacitors (SCs) frequently suffer from high resistance and the risk of short circuits due to inadequate electrolyte wettability, depressed mechanical properties, and insufficient thermal stability. Here, we develop a high-performance regenerated cellulose separator with nano-cracked structures for SCs via a binary solvent of superbase-derived ionic liquid and dimethylsulfoxide (DMSO). The unique nano-cracks with an average width of 7.45 nm arise from the acceleration of cellulose molecular reassembly by DMSO-regulated hydrogen bonding, which endows the separator with high porosity (70.2%) and excellent electrolyte retention (329%). The outstanding thermal stability (273 °C) and mechanical strength (70 MPa) enable the separator to maintain its structural integrity under high temperatures and external forces. With these benefits, the SC utilizing the cellulose separator enables a high specific capacitance of 93.6 F g-1 at 1.0 A g-1 and a remarkable capacitance retention of 99.5% after 10,000 cycles compared with the commercial NKK-MPF30AC and NKK-TF4030. The robust and high-wettability cellulose separator holds promise as a superior alternative to commercial separators for advanced SCs with enhanced performance and improved safety.
Collapse
Affiliation(s)
- Xiaoyu Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Wenqiu Zheng
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Hui Zhao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Junying Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Sheng Chen
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Feng Xu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
2
|
Ji X, Bian Y, Zhang C, Zhong Z, Wang Y. Making Accessible and Attractive Porosities in Block Copolymer Nanofibers for Highly Permeable and Durable Air Filtration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410692. [PMID: 39723691 DOI: 10.1002/smll.202410692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Submicron particulate matter (PM) can penetrate deeply into human tissue, posing a serious threat to human health. However, the electrostatic charge of commercial respirators is easily dissipated, making it difficult to maintain long-term filtration. Herein, a hierarchically porous filter based on nanofibers with accessible porosity and particulate-attractive surfaces, achieving significant filtration performance is developed through polarity-driven interactions. This is achieved by selective swelling of electrospun nanofibers of the block copolymer of polysulfone and poly(ethylene glycol) (PSF-b-PEG), in which the originally solid nanofibers are 3D perforated with the PEG chains lined along the pore walls. Thus-produces nanofiber filters exhibit a long-term continuous filtration with an efficiency of over 95% for PM0.3 and a low pressure drop of only 40 Pa. In particular, it maintains superior filtration performance even under high particle concentrations and high humidity conditions. Additionally, the filter exhibits high air permeability (10814 m3 m-2 h-1 kPa-1) and water vapor transmission rate (3707 g m-2 d-1). This work provides new strategies and understandings on the development of porous structures simultaneously exhibiting high gas permeability and efficient particulate rejection.
Collapse
Affiliation(s)
- Xuzheng Ji
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Ye Bian
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Chencheng Zhang
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Zhaoxiang Zhong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China
| | - Yong Wang
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| |
Collapse
|
3
|
Wang X, Cui X, He B, Zhao Q, Wang Y, Xiao D, Meng Y, Gao T, Li K. A high-safety lithium-ion battery electrospun separator with Si 3N 4-assisted sulfonated poly(ether ether ketone) for regulating lithium flux. J Colloid Interface Sci 2025; 678:460-471. [PMID: 39303564 DOI: 10.1016/j.jcis.2024.09.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
The uncontrolled lithium (Li) dendrite growth significantly impacts the safety performance of polymer separators. To mitigate this growth, this study introduces Si3N4 into sulfonated poly(ether Ether Ketone) (SPEEK) and prepares Si3N4/SPEEK composite separators via electrospinning. At the interface between the Si3N4/SPEEK separator and the Li anode, the Si nanowires that form impede Li dendrite growth, thereby enhancing the electrochemical performance of lithium-ion batteries (LIBs). The Li deposition test of the 10 % Si3N4/SPEEK separator can operate for 1000 h without short-circuiting. Additionally, the LiFePO4||Li cell with the 10 % Si3N4/SPEEK separator shows improved initial discharge capacity (157.8 mAh g-1 at 1C) and superior rate performance (125 mAh g-1 at 10C). Moreover, the nano-scale Si3N4 endows the separator with robust thermal and mechanical properties. The FLIR observations reveal that the 10 % Si3N4/SPEEK separator maintains uniform thermal distribution and structural integrity even at 300 °C, ensuring safe battery operation at high temperatures. The additional load of the 10 % Si3N4/SPEEK separator can reach 10.2 mN, which enhances the puncture resistance of the separator. This work provides a solid approach for the application of SPEEK as a high-safety and high-rate LIB separator.
Collapse
Affiliation(s)
- Xilong Wang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, PR China
| | - Xiaogang Cui
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, PR China
| | - Bin He
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, PR China
| | - Qian Zhao
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, PR China; Institute for Advanced Study, Chengdu University, Chengdu 610106, PR China.
| | - Yujue Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, PR China
| | - Dan Xiao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, PR China; Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, PR China
| | - Yan Meng
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, PR China
| | - Taotao Gao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, PR China.
| | - Kui Li
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, PR China.
| |
Collapse
|
4
|
Fan X, Zhou Y, Wang M, Lai J, Shan W, Xing Z, Tang H, Dai G, Zhang G, Tan L. Effects of H 2O on Improving the Performance of a Solid Composite Electrolyte Fabricated via an Air-Processable Technique. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17587-17597. [PMID: 38547461 DOI: 10.1021/acsami.4c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Inert atmosphere is normally necessary for fabrication of solid composite electrolytes (SCEs) as a crucial part of solid-state Li-metal batteries in order to avoid undesirable reactions induced by ambient moisture. Herein, we developed an air-processable technique to fabricate SCEs by employing LiCF3SO3 (LiOTf) as the Li salt, which was combined with Li6.4La3Zr1.4Ta0.6O12 (LLZTO) as the fast Li-conductor and polyvinylidene difluoroethylene/polyvinyl acetate (PVDF/PVAC) as the polymer matrix. With the assistance of trace H2O dissolved in electrolyte solution, the room-temperature Li+ conductivity of the obtained aSCE reached as high as 5.09 × 10-4 S cm-1, which was over 3 orders of magnitude higher than that of the one (iSCE, 1.93 × 10-7 S cm-1) cast by the electrolyte solution prepared in an inert atmosphere. The theoretical calculation results reveal that the oxygen atom of H2O exhibits a high propensity to interact with the Li atom in LiOTf (Li···O), thereby establishing a hydrogen bond with the oxygen atom (H···O) in N,N-dimethylformamide (solvent). Such interactions promoted the dissociation of LiOTf and led to the formation of uniform Li+ transportation channels. Simultaneously, the composition distribution was also altered, resulting in a smoother surface of aSCE and lowered crystallinity of PVDF. On this basis, the LiOTf/LLZTO/PVDF/PVAC solution at 60 °C was directly coated onto the surface of the LiFePO4 (LFP) cathode to fabricate the LFP-aSCE film after drying in an oven. The assembled LFP-aSCE/Li battery wetted by trace sulfolane exhibited an initial Coulombic efficiency of 94.7% and a capacity retention rate of up to 96% at 0.2 C (137 mAh g-1) after 180 cycles and a high capacity of 143.7 mAh g-1 at 0.5 C (150 cycles). Overall, this work could pave the way for the facile fabrication of solid electrolytes.
Collapse
Affiliation(s)
- Xine Fan
- School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Yanmin Zhou
- School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Mingda Wang
- Institute for Advanced Study, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Junbao Lai
- School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Wenzhe Shan
- Institute for Advanced Study, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Zhen Xing
- School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Hao Tang
- School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Guiping Dai
- Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Gaixia Zhang
- Department of Electrical Engineering, École de Technologie Supérieure (ÉTS), Montréal, Québec H3C 1K3, Canada
| | - Long Tan
- School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| |
Collapse
|
5
|
Zhou K, Wang Y, Mei J, Zhang X, Xue T, Fan W, Zhang L, Liu T, Xie Y. Scalable Preparation of Polyimide Sandwiched Separator for Durable High-Rate Lithium-Metal Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305596. [PMID: 37775944 DOI: 10.1002/smll.202305596] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/07/2023] [Indexed: 10/01/2023]
Abstract
The ever-growing demands for efficient energy storage accelerate the development of high-rate lithium-metal battery (LMB) with desirable energy density, power density, and cycling stability. Nevertheless, the practical application of LMB is critically impeded by internal temperature rise and lithium dendrite growth, especially at high charge/discharge rates. It is highly desired but remains challenging to develop high-performance thermotolerant separators that can provide favorable channels to enable fast Li+ transport for high-rate operation and simultaneously homogenize the lithium deposition for dendrite inhibition. Polyimide-based separators with superior thermal properties are promising candidate alternatives to the commercial polyolefin-based separators, but previous strategies of designing either nanoporous or microporous channels in polyimide-based separators often meet a dilemma. Here, a facile and scalable approach is reported to develop a polyimide fiber/aerogel (denoted as PIFA) separator with the microporous polyimide fiber membrane sandwiched between two nanoporous polyimide aerogel layers, which can enable LMBs with remarkable capacity retention of 97.2% after 1500 cycles at 10 C. The experimental and theoretical studies unravel that the sandwiched structure of PIFA can appreciably enhance the electrolyte adsorption and ionic conductivity; while, the aerogel coating can effectively inhibit dendrite growth to realize durable high-rate LMBs.
Collapse
Affiliation(s)
- Kangjie Zhou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yang Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jiabing Mei
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xu Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Tiantian Xue
- College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wei Fan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Longsheng Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yi Xie
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
6
|
Hoehn BD, Kellstedt EA, Hillmyer MA. Tough polycyclooctene nanoporous membranes from etchable block copolymers. SOFT MATTER 2024; 20:437-448. [PMID: 38112234 DOI: 10.1039/d3sm01498c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Porous materials with pore dimensions of the nanometer length scale are useful as nanoporous membranes. ABA triblock copolymers are convenient precursors to such nanoporous materials if the end blocks are easily degradable (e.g., polylactide or PLA), leaving nanoporous polymeric membranes (NPMs) if in thin film form. The membrane properties are dependent on midblock monomer structure, triblock copolymer composition, overall molar mass, and polymer processing conditions. Polycyclooctene (PCOE) NPMs were prepared using this method, with tunable pore sizes on the order of tens of nanometers. Solvent casting was shown to eliminate film defects and allowed achievement of superior mechanical properties over melt processing techniques, and PCOE NPMs were found to be very tough, a major advance over previously reported NPMs. Oxygen plasma etching was used to remove the surface skin layer to obtain membranes with higher surface porosity, membrane hydrophilicity, and flux of both air and water. This is a straightforward method to reliably produce highly tough NPMs with high levels of porosity and hydrophilic surface properties.
Collapse
Affiliation(s)
- Brenden D Hoehn
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0431, USA
| | | | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455-0431, USA.
| |
Collapse
|
7
|
Hu X, Li Y, Chen Z, Sun Y, Duan C, Li C, Yan J, Wu X, Kawi S. Facile fabrication of PMIA composite separator with bi-functional sodium-alginate coating layer for synergistically increasing performance of lithium-ion batteries. J Colloid Interface Sci 2023; 648:951-962. [PMID: 37329606 DOI: 10.1016/j.jcis.2023.06.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
Lack of safety and unenough electrochemical performance have been known as a fundamental obstacle limiting the extensive application of lithium-ion batteries (LIBs). It is really preferable but challenging to fabricate thermal-response separator with shutdown function for high-performance LIBs. Herein, a thermal-response sodium-alginate modified PMIA (Na-Alg/PMIA) composite separator with shutdown function was designed and prepared by non-solvent phase induced separation (NIPs). PMIA and Na-Alg are combined by hydrogen bonding. While Na-Alg increases polar groups and makes Li+ easy to be transported, a small amount of Na+ can provide Li+ active sites, accelerate Li+ deposition coating and effectively inhibit the formation of Li dendrites. The as-prepared Na-Alg/PMIA composite separators can close pores at 200 °C and maintain dimensional integrity without obvious thermal shrinkage. In addition, the Na-Alg/PMIA composite separators has excellent wettability and ionic conductivity, resulting in high specific capacity and retention during the charge-discharge cycles. After 50 cycles, the capacity retention of cells with the Na-Alg/PMIA-20 composite separator is 84.3 %. At 2 C, cells with the Na-Alg/PMIA-20 composite separators still held 101.1 mAh g-1. This facile yet effective method improves the electrochemical performance while ensuring the safety of the LIBs, which provides ideas for the commercial application of PMIA separators.
Collapse
Affiliation(s)
- Xue Hu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300400, PR China
| | - Yinhui Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300400, PR China; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore, Singapore.
| | - Zan Chen
- Key Laboratory of Membrane and Membrane Process, China National Offshore Oil Corporation Tianjin Chemical Research & Design Institute, Tianjin 300131, PR China.
| | - Yingxue Sun
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300400, PR China
| | - Cuijia Duan
- Key Laboratory of Membrane and Membrane Process, China National Offshore Oil Corporation Tianjin Chemical Research & Design Institute, Tianjin 300131, PR China
| | - Claudia Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore, Singapore
| | - Jiayi Yan
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300400, PR China
| | - Xiaoqian Wu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300400, PR China
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore, Singapore.
| |
Collapse
|
8
|
Kim DH, Kwon HG, Choi HK. Dewetting-Induced Hierarchical Self-Assembly of Block Copolymers Templated by Colloidal Crystals. Polymers (Basel) 2023; 15:polym15040897. [PMID: 36850181 PMCID: PMC9961777 DOI: 10.3390/polym15040897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Recent advances in high-performance flexible electronic devices have increased the demand for more diverse and complex nanofabrication methods; high-resolution, high-efficiency, and low-cost patterning strategies for next-generation devices are therefore required. In this study, we demonstrate the formation of dewetting-induced hierarchical patterns using two self-assembled materials: block copolymers (BCPs) and colloidal crystals. The combination of the two self-assembly methods successfully generates multiscale hierarchical patterns because the length scales of the periodic colloidal crystal structures are suitable for templating the BCP patterns. Various concentric ring patterns were observed on the templated BCP films, and a free energy model of the polymer chain was applied to explain the formation of these patterns relative to the template width. Frequently occurring spiral-defective features were also examined and found to be promoted by Y-junction defects.
Collapse
|
9
|
Zhou S, Hu Y, Xin W, Fu L, Lin X, Yang L, Hou S, Kong XY, Jiang L, Wen L. Surfactant-Assisted Sulfonated Covalent Organic Nanosheets: Extrinsic Charge for Improved Ion Transport and Salinity-Gradient Energy Harvesting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208640. [PMID: 36457170 DOI: 10.1002/adma.202208640] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Charge-governed ion transport is the vital property of nanofluidic channels for salinity-gradient energy harvesting and other electrochemical energy conversion technologies. 2D nanofluidic channels constructed by nanosheets exhibit great superiority in ion selectivity, but a high ion transport rate remains challenging due to the insufficiency of intrinsic surface charge density in nanoconfinement. Herein, extrinsic surface charge into nanofluidic channels composed of surfactant-assisted sulfonated covalent organic nanosheets (SCONs), which enable tunable ion transport behaviors, is demonstrated. The polar moiety of surfactant is embedded in SCONs to adjust in-plane surface charges, and the aggregation of nonpolar moiety results in the sol-to-gel transformation of SCON solution for membrane fabrication. The combination endows SCON/surfactant membranes with considerable water-resistance, and the designable extrinsic charges promise fast ion transport and high ion selectivity. Additionally, the SCON/surfactant membrane, serving as a power generator, exhibits huge potential in harvesting salinity-gradient energy where corresponding output power density can reach up to 9.08 W m-2 under a 50-fold salinity gradient (0.5 m NaCl|0.01 m NaCl). The approach to extrinsic surface charge provides new and promising insight into regulating ion transport behaviors.
Collapse
Affiliation(s)
- Shengyang Zhou
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuhao Hu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Weiwen Xin
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lin Fu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangbin Lin
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Linsen Yang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuhua Hou
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiang-Yu Kong
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lei Jiang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wen
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Synthesis of reverse-selective nanoporous ultrafiltration membranes using dual phase separations of ionic liquid and Poly(ethylene glycol) from the gelating urea-linked covalent network. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Ma S, Hou Y, Hao J, Lin C, Zhao J, Sui X. Well-Defined Nanostructures by Block Copolymers and Mass Transport Applications in Energy Conversion. Polymers (Basel) 2022; 14:polym14214568. [PMID: 36365562 PMCID: PMC9655174 DOI: 10.3390/polym14214568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/27/2022] Open
Abstract
With the speedy progress in the research of nanomaterials, self-assembly technology has captured the high-profile interest of researchers because of its simplicity and ease of spontaneous formation of a stable ordered aggregation system. The self-assembly of block copolymers can be precisely regulated at the nanoscale to overcome the physical limits of conventional processing techniques. This bottom-up assembly strategy is simple, easy to control, and associated with high density and high order, which is of great significance for mass transportation through membrane materials. In this review, to investigate the regulation of block copolymer self-assembly structures, we systematically explored the factors that affect the self-assembly nanostructure. After discussing the formation of nanostructures of diverse block copolymers, this review highlights block copolymer-based mass transport membranes, which play the role of “energy enhancers” in concentration cells, fuel cells, and rechargeable batteries. We firmly believe that the introduction of block copolymers can facilitate the novel energy conversion to an entirely new plateau, and the research can inform a new generation of block copolymers for more promotion and improvement in new energy applications.
Collapse
|
12
|
Li LX, Li R, Huang ZH, Yang H, Liu MQ, Xiang J, Hussain S, Shen XQ, Jing MX. A Multifunctional Gradient Solid Electrolyte Remarkably Improving Interface Compatibility and Ion Transport in Solid-State Lithium Battery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30786-30795. [PMID: 35776855 DOI: 10.1021/acsami.2c05578] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solid electrolytes with both interface compatibility and efficient ion transport have been an urgent technical requirement for the practical application of solid-state lithium batteries. Herein, a multifuctional poly(1,3-dioxolane) (PDOL) electrolyte combining the gradient structure from the solid state to the gel state with the Li6.4La3Zr1.4Ta0.6O12 (LLZTO) interfacial modification layer was designed, in which the "solid-to-gel" gradient structure greatly improved the electrode/electrolyte interface compatibility and ion transport, while the solid PDOL and LLZTO layers effectively improved the interface stability of the electrolyte/lithium anode and the inhibition of the lithium dendrites via their high mechanical strength and forming a stable interfacial SEI composite film. This gradient PDOL/LLZTO composite electrolyte possesses a high ionic conductivity of 2.9 × 10-4 S/cm with a wide electrochemical window up to 4.9 V vs Li/Li+. Compared with the pristine PDOL electrolyte and PDOL solid electrolyte membrane coated with a layer of LLZTO, the gradient PDOL/LLZTO composite electrolyte shows better electrode/electrolyte interfacial compatibility, lower interface impedance, and smaller polarization, resulting in enhanced rate and cycle performances. The NCM622/PDOL-LLZTO/Li battery can be stably cycled 200 times at 0.3C and 25 °C. This multifunctional gradient structure design will promote the development of high-performance solid electrolytes and is expected to be widely used in solid-state lithium batteries.
Collapse
Affiliation(s)
- Lin-Xin Li
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rui Li
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhen-Hao Huang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hua Yang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ming-Quan Liu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jun Xiang
- School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Shahid Hussain
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiang-Qian Shen
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mao-Xiang Jing
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
13
|
Yuan B, Liu J, Dong L, Chen D, Zhong S, Liang Y, Liu Y, Ji Y, Wu X, Kong Q, Han J, He W. A Single-Layer Composite Separator with 3D-Reinforced Microstructure for Practical High-Temperature Lithium Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107664. [PMID: 35527335 DOI: 10.1002/smll.202107664] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Incorporation of ceramic materials into separators has been frequently applied in both research and industry to improve the overall high-temperature performances of lithium ion batteries. However, inorganic ceramic particles tend to form aggregation in separators and even fall off in the separator matrix due to the inferior combination between ceramic particles and polymer matrix, giving rise to a decrease in separator porosity and thus the degradation of battery performances. Herein, a single-layer core-shell architecture is designed to reinforce the polymer matrix through encircling Al2 O3 particles by poly(vinylidene fluoride) with strong inter-molecular interaction. The 3D-reinforced microstructure effectively improves pore distribution and thermal stability to resist the dimensional deformation at high temperatures, thus giving rise to a high Coulombic efficiency of 99.16% and 87.5% capacity retention after 500 cycles at 80 °C for LiFePO4 /Li batteries. In particular, the excellent performances of the proposed separator microstructure are confirmed with a thickness value of commercial separators. This work provides a promising strategy to fabricate a core-shell structural composite separator for stable lithium ion batteries at high temperatures.
Collapse
Affiliation(s)
- Botao Yuan
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, and, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China
| | - Jipeng Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Liwei Dong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Dongjiang Chen
- Chongqing Research Institute, Harbin Institute of Technology, Chongqing, 401151, China
| | - Shijie Zhong
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, and, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China
| | - Yifang Liang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yuanpeng Liu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, and, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China
| | - Yuanpeng Ji
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, Chongqing, 401151, China
| | - Xiaoqiang Wu
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
| | - Qingquan Kong
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
| | - Jiecai Han
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, and, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China
| | - Weidong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, and, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China
- Chongqing Research Institute, Harbin Institute of Technology, Chongqing, 401151, China
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
14
|
Yao X, Song X, Zhang F, Ma J, Jiang H, Wang L, Liu Y, Ang EH, Xiang H. Enhancing Cellulose‐Based Separator with Polyethyleneimine and Polyvinylidene Fluoride‐Hexafluoropropylene Interpenetrated 3D Network for Lithium Metal Batteries. ChemElectroChem 2022. [DOI: 10.1002/celc.202200390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xin Yao
- Hefei University of Technology Materials science and engineering CHINA
| | - Xiaohui Song
- Hefei University of Technology Materials science and engineering CHINA
| | - Fan Zhang
- Hefei University of Technology Materials science and engineering CHINA
| | - Jian Ma
- Hefei University of Technology Materials science and engineering CHINA
| | - Hao Jiang
- Hefei University of Technology Materials science and engineering CHINA
| | - Lulu Wang
- Hefei University of Technology Materials science and engineering CHINA
| | - Yongchao Liu
- Hefei University of Technology Materials science and engineering CHINA
| | - Edison Huixiang Ang
- Nanyang Technological University Natural Sciences and Science Education CHINA
| | - Hongfa Xiang
- Hefei University of Technology School of Materials Science and Engineering 193 Tunxi Road 230009 Hefei CHINA
| |
Collapse
|
15
|
Pan X, Sarhan RM, Kochovski Z, Chen G, Taubert A, Mei S, Lu Y. Template synthesis of dual-functional porous MoS 2 nanoparticles with photothermal conversion and catalytic properties. NANOSCALE 2022; 14:6888-6901. [PMID: 35446331 DOI: 10.1039/d2nr01040b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Advanced catalysis triggered by photothermal conversion effects has aroused increasing interest due to its huge potential in environmental purification. In this work, we developed a novel approach to the fast degradation of 4-nitrophenol (4-Nip) using porous MoS2 nanoparticles as catalysts, which integrate the intrinsic catalytic property of MoS2 with its photothermal conversion capability. Using assembled polystyrene-b-poly(2-vinylpyridine) block copolymers as soft templates, various MoS2 particles were prepared, which exhibited tailored morphologies (e.g., pomegranate-like, hollow, and open porous structures). The photothermal conversion performance of these featured particles was compared under near-infrared (NIR) light irradiation. Intriguingly, when these porous MoS2 particles were further employed as catalysts for the reduction of 4-Nip, the reaction rate constant was increased by a factor of 1.5 under NIR illumination. We attribute this catalytic enhancement to the open porous architecture and light-to-heat conversion performance of the MoS2 particles. This contribution offers new opportunities for efficient photothermal-assisted catalysis.
Collapse
Affiliation(s)
- Xuefeng Pan
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, Berlin 14109, Germany.
- Institute of Chemistry, University of Potsdam, Potsdam 14476, Germany
| | - Radwan M Sarhan
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, Berlin 14109, Germany.
| | - Zdravko Kochovski
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, Berlin 14109, Germany.
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Andreas Taubert
- Institute of Chemistry, University of Potsdam, Potsdam 14476, Germany
| | - Shilin Mei
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, Berlin 14109, Germany.
| | - Yan Lu
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, Berlin 14109, Germany.
- Institute of Chemistry, University of Potsdam, Potsdam 14476, Germany
| |
Collapse
|
16
|
Huang C, Wilson MD, Suzuki K, Liotti E, Connolley T, Magdysyuk OV, Collins S, Van Assche F, Boone MN, Veale MC, Lui A, Wheater R, Leung CLA. 3D Correlative Imaging of Lithium Ion Concentration in a Vertically Oriented Electrode Microstructure with a Density Gradient. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105723. [PMID: 35404540 PMCID: PMC9165496 DOI: 10.1002/advs.202105723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The performance of Li+ ion batteries (LIBs) is hindered by steep Li+ ion concentration gradients in the electrodes. Although thick electrodes (≥300 µm) have the potential for reducing the proportion of inactive components inside LIBs and increasing battery energy density, the Li+ ion concentration gradient problem is exacerbated. Most understanding of Li+ ion diffusion in the electrodes is based on computational modeling because of the low atomic number (Z) of Li. There are few experimental methods to visualize Li+ ion concentration distribution of the electrode within a battery of typical configurations, for example, coin cells with stainless steel casing. Here, for the first time, an interrupted in situ correlative imaging technique is developed, combining novel, full-field X-ray Compton scattering imaging with X-ray computed tomography that allows 3D pixel-by-pixel mapping of both Li+ stoichiometry and electrode microstructure of a LiNi0.8 Mn0.1 Co0.1 O2 cathode to correlate the chemical and physical properties of the electrode inside a working coin cell battery. An electrode microstructure containing vertically oriented pore arrays and a density gradient is fabricated. It is shown how the designed electrode microstructure improves Li+ ion diffusivity, homogenizes Li+ ion concentration through the ultra-thick electrode (1 mm), and improves utilization of electrode active materials.
Collapse
Affiliation(s)
- Chun Huang
- Department of MaterialsImperial College LondonLondonSW7 2AZUK
- The Faraday InstitutionQuad One, Becquerel Ave, Harwell CampusDidcotOX11 0RAUK
- Department of MaterialsUniversity of OxfordOxfordOX1 3PHUK
- Research Complex at HarwellRutherford Appleton LaboratoryDidcotOxfordshireOX11 0FAUK
- Department of EngineeringKing's College LondonLondonWC2R 2LSUK
| | - Matthew D. Wilson
- STFC‐UKRIRutherford Appleton LaboratoryHarwell CampusDidcotOxfordshireOX11 0QXUK
| | - Kosuke Suzuki
- Faculty of Science and TechnologyGunma University1‐5‐1 Tenjin‐cho, KiryuGunma376‐8515Japan
| | - Enzo Liotti
- Department of MaterialsUniversity of OxfordOxfordOX1 3PHUK
| | - Thomas Connolley
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0QXUK
| | - Oxana V. Magdysyuk
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0QXUK
| | - Stephen Collins
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0QXUK
| | - Frederic Van Assche
- Radiation PhysicsDepartment of Physics and AstronomyFaculty of SciencesGhent UniversityProeftuinstraat 86/N12Gent9000Belgium
| | - Matthieu N. Boone
- Radiation PhysicsDepartment of Physics and AstronomyFaculty of SciencesGhent UniversityProeftuinstraat 86/N12Gent9000Belgium
| | - Matthew C. Veale
- STFC‐UKRIRutherford Appleton LaboratoryHarwell CampusDidcotOxfordshireOX11 0QXUK
| | - Andrew Lui
- Department of MaterialsUniversity of OxfordOxfordOX1 3PHUK
| | - Rhian‐Mair Wheater
- STFC‐UKRIRutherford Appleton LaboratoryHarwell CampusDidcotOxfordshireOX11 0QXUK
| | - Chu Lun Alex Leung
- Research Complex at HarwellRutherford Appleton LaboratoryDidcotOxfordshireOX11 0FAUK
- Department of Mechanical EngineeringUniversity College LondonLondonWC1E 7JEUK
| |
Collapse
|
17
|
Zhang S, Luo J, Du M, Hui H, Sun Z. Safety and cycling stability enhancement of cellulose paper-based lithium-ion battery separator by aramid nanofibers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Yu W, Zhang K, Zhang J, Liang X, Ge X, Ge Z, Wei C, Song W, Xu T, Wu L. Efficient lamellar two‐dimensional proton channels derived from dipole interactions in a polyelectrolyte membrane. AIChE J 2022. [DOI: 10.1002/aic.17731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Weisheng Yu
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science University of Science and Technology of China Hefei China
| | - Kaiyu Zhang
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science University of Science and Technology of China Hefei China
| | - Jianjun Zhang
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science University of Science and Technology of China Hefei China
| | - Xian Liang
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science University of Science and Technology of China Hefei China
| | - Xiaolin Ge
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science University of Science and Technology of China Hefei China
| | - Zijuan Ge
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science University of Science and Technology of China Hefei China
| | - Chengpeng Wei
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science University of Science and Technology of China Hefei China
| | - Wanjie Song
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science University of Science and Technology of China Hefei China
| | - Tongwen Xu
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science University of Science and Technology of China Hefei China
| | - Liang Wu
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science University of Science and Technology of China Hefei China
| |
Collapse
|