1
|
Bousquet E, Fava M, Romestan Z, Gómez-Ortiz F, McCabe EE, Romero AH. Structural chirality and related properties in periodic inorganic solids: review and perspectives. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:163004. [PMID: 39951890 DOI: 10.1088/1361-648x/adb674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 02/14/2025] [Indexed: 02/17/2025]
Abstract
Chirality refers to the asymmetry of objects that cannot be superimposed on their mirror image. It is a concept that exists in various scientific fields and has profound consequences. Although these are perhaps most widely recognized within biology, chemistry, and pharmacology, recent advances in chiral phonons, topological systems, crystal enantiomorphic materials, and magneto-chiral materials have brought this topic to the forefront of condensed matter physics research. Our review discusses the symmetry requirements and the features associated with structural chirality in inorganic materials. This allows us to explore the nature of phase transitions in these systems, the coupling between order parameters, and their impact on the material's physical properties. We highlight essential contributions to the field, particularly recent progress in the study of chiral phonons, altermagnetism, magnetochirality between others. Despite the rarity of naturally occurring inorganic chiral crystals, this review also highlights a significant knowledge gap, presenting challenges and opportunities for structural chirality mostly at the fundamental level, e.g. chiral displacive phase transitions, possibilities of tuning and switching structural chirality by external means (electric, magnetic, or strain fields), whether chirality could be an independent order parameter, and whether structural chirality could be quantified, etc. Beyond simply summarizing this field of research, this review aims to inspire further research in materials science by addressing future challenges, encouraging the exploration of chirality beyond traditional boundaries, and seeking the development of innovative materials with superior or new properties.
Collapse
Affiliation(s)
- Eric Bousquet
- Physique Théorique des Matériaux, Q-MAT, Université de Liège, Sart-Tilman B-4000, Belgium
| | - Mauro Fava
- Physique Théorique des Matériaux, Q-MAT, Université de Liège, Sart-Tilman B-4000, Belgium
| | - Zachary Romestan
- Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26505-6315, United States of America
| | - Fernando Gómez-Ortiz
- Physique Théorique des Matériaux, Q-MAT, Université de Liège, Sart-Tilman B-4000, Belgium
| | - Emma E McCabe
- Department of Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Aldo H Romero
- Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26505-6315, United States of America
| |
Collapse
|
2
|
Jung W, Lee D, Kim H, Son B, Oh S, Gong JE, Kim D, Yoon J, Yeom J. Universal Chiral Nanopaint for Metal Oxide Biomaterials. ACS NANO 2025; 19:8632-8645. [PMID: 40025726 DOI: 10.1021/acsnano.4c14460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Chirality is widespread in nature and governs the properties of various materials including inorganic nanomaterials. However, previously reported chiral inorganic materials have been limited to a handful of compositions owing to the physicochemical restrictions that impart chirality. Herein, chiral nanopaint applicable to diverse inorganic materials is presented. Various metal oxide nanoparticles (NPs) show chiroptical properties after coating with our chiral nanopaint, while maintaining their properties, such as magnetic properties. The combination of magnetism and chirality brings biomedical functionalities to chiral NPs, such as anticancer hyperthermia treatment. In vitro, d-nanopainted iron oxide NPs showed more than 50% higher cellular uptake compared to l-nanopainted iron oxide NPs, and this was due to the enantiospecific interaction between the cellular receptors on the cell surface and the chiral NPs. In vivo, d-nanopainted iron oxide NPs showed 4-fold superior anticancer efficiency by magnetic hyperthermia compared to l-nanopainted iron oxide NPs owing to improved adsorption to tumors. These chiral nanoparticles may provide potential synthesis strategies for chiral inorganic biomaterials, which exhibit elaborate combinations of intrinsic physical properties and extrinsic enantioselective properties for a variety of applications.
Collapse
Affiliation(s)
- Wookjin Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dongkyu Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hohyeon Kim
- School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Boyoung Son
- School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Seungjun Oh
- School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jeong Eun Gong
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu Goyang 10408, Republic of Korea
| | - Daehong Kim
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu Goyang 10408, Republic of Korea
| | - Jungwon Yoon
- School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jihyeon Yeom
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- NanoCentury Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Ge L, Li X, Zhu G, Niu B, Chen Q, Zhong D, Sun X. Recent developments and applications of solid membrane in chiral separation. J Chromatogr A 2025; 1743:465652. [PMID: 39827785 DOI: 10.1016/j.chroma.2025.465652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/09/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
Chirality is a fundamental property in nature, and chiral molecules are closely related to human health and the origin of life. Therefore, the exploration and preparation of optically active compounds of paramount importance. Membrane separation is a large-scale and continuous separation technique that has been developing quickly in recent years. It has many potential applications, particularly in chiral membrane separation technology, which is currently a hotspot for study. Depending on the types of membranes, chiral membranes can be divided into two categories: chiral solid membranes and chiral liquid membranes. Solid membranes outperform the others in terms of better mechanical performance and separation efficiency. This review presents in-depth summaries of chiral solid membranes made of different materials, and their applications in drug separation. It also providing insights into the potential for the future development of chiral solid membranes.
Collapse
Affiliation(s)
- Li Ge
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xinyu Li
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai 200444, China
| | - Gege Zhu
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai 200444, China
| | - Bing Niu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qin Chen
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Dan Zhong
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Xiaodong Sun
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
4
|
Kaur N, Sahoo J, De M. Development of Nanomaterials-Based Agents for Selective Antibacterial Activity. Chembiochem 2025; 26:e202400693. [PMID: 39632741 DOI: 10.1002/cbic.202400693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/26/2024] [Indexed: 12/07/2024]
Abstract
Bacterial infections continue to threaten public health due to limitations in rapid and accurate diagnostic techniques. While broad-spectrum antibiotics offer empirical treatment, their overuse has fuelled the emergence of antimicrobial resistance (AMR) pathogens, posing a critical global public health challenge. In this critical scenario, nanomaterial-based antibacterial agents emerge as a promising solution to combat bacteria and inhibit their proliferation. However, selective elimination of pathogenic bacteria is paramount. This review highlights recent advancements in developing nanomaterials for selective antibacterial activity. We categorize these agents based on their mode of action, exploring how they selectively interact with bacteria and their potential antibacterial mechanisms. This review offers crucial insights for researchers exploring the potential of nanotechnology to address the growing threat of AMR.
Collapse
Affiliation(s)
- Navjot Kaur
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Jagabandhu Sahoo
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
5
|
Niu X, Liu Y, Zhao R, Yuan M, Zhao H, Li H, Yang X, Wang K. Mechanisms for translating chiral enantiomers separation research into macroscopic visualization. Adv Colloid Interface Sci 2025; 335:103342. [PMID: 39561657 DOI: 10.1016/j.cis.2024.103342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/19/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024]
Abstract
Chirality is a common phenomenon in nature, including the dominance preference of small biomolecules, the special spatial conformation of biomolecules, and the biological and physiological processes triggered by chirality. The selective chiral recognition of molecules in nature from up-bottom or bottom-up is of great significance for living organisms. Such as the transcription of DNA, the recognition of membrane proteins, and the catalysis of enzymes all involve chiral recognition processes. The selective recognition between these macromolecules is mainly achieved through non covalent interactions such as hydrophobic interactions, ammonia bonding, electrostatic interactions, metal coordination, van der Waals forces, and π-π stacking. Researchers have been committed to studying how to convert this weak non covalent interaction into macroscopic visualization, which has further understood of the interactions between chiral molecules and is of great significance for simulating the interactions between molecules in living organisms. This article reviews several models of chiral recognition mechanisms, the interaction forces involved in the chiral recognition process, and the research progress of chiral recognition mechanisms. The outlook in this review points out that studying chiral recognition interactions provides an important bridge between chiral materials and the life sciences, providing an ideal platform for studying chiral phenomena in biological systems.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China.
| | - Yongqi Liu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Mei Yuan
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Hongfang Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Xing Yang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China.
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China.
| |
Collapse
|
6
|
Chen J, Chen X, Murakami RI, Li H, Yu X, Feng W, Yang Y, Wang P, Zheng G, Tang Z, Wu X. Chiral Inorganic Nanomaterials Characterized by Advanced TEM: A Qualitative and Quantitative Study. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410676. [PMID: 39402913 DOI: 10.1002/adma.202410676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/15/2024] [Indexed: 12/06/2024]
Abstract
Chiral inorganic nanomaterials (CINMs) have garnered significant interest due to their exceptional optical, electronic, and catalytic properties, offering promising advancements in energy conversion, data storage, catalysis, and biomedicine. While traditional optical spectrophotometers reveal the chiroptical performance of CINMs on an ensemble level, the direct structural visualization for the qualitative and quantitative discernment of their chiral features has become increasingly distinct with the advancements of transmission electron microscopy (TEM) techniques. The need for reasonable and high-standard discrimination requirements of CINMs has driven the progress of chirality-based TEM technologies. Therefore, this review in the good season takes the initiative to summarize the current advancements in TEM technologies for CINMs characterization, emphasizing a qualitative analysis of chiral atomic-level features, 0D, 1D, and 2D nanocrystals, and assembled nanomaterials. Then, the quantitative methods for determining chirality is also highlighted, such as 3D electron tomography, and further address the evolution of chiral structures monitored by the Ex-situ and In-situ TEM technologies. By providing a roadmap for the current challenges and proposing future advancements in TEM technologies for the qualitative, quantitative, and real-time analysis of CINMs, it can drive innovations in the field of chiral nanomaterials as well as the development of TEM technologies.
Collapse
Affiliation(s)
- Jiaqi Chen
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
- Sichuan Province Engineering Research Center for Powder Metallurgy, Chengdu University, Chengdu, 610106, China
| | - Xuegang Chen
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
- Sichuan Province Engineering Research Center for Powder Metallurgy, Chengdu University, Chengdu, 610106, China
| | - Ri-Ichi Murakami
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
- Sichuan Province Engineering Research Center for Powder Metallurgy, Chengdu University, Chengdu, 610106, China
| | - Hanbo Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Yu
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
- Sichuan Province Engineering Research Center for Powder Metallurgy, Chengdu University, Chengdu, 610106, China
| | - Wei Feng
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
- Sichuan Province Engineering Research Center for Powder Metallurgy, Chengdu University, Chengdu, 610106, China
| | - Yuxin Yang
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
- Sichuan Province Engineering Research Center for Powder Metallurgy, Chengdu University, Chengdu, 610106, China
| | - Pan Wang
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
- Sichuan Province Engineering Research Center for Powder Metallurgy, Chengdu University, Chengdu, 610106, China
| | - Guangchao Zheng
- Colloidal Physics Group, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou, 450046, P. R. China
| | - Zhiyong Tang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xiaochun Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Gao Z, Yan X, Jia Q, Zhang J, Guo G, Li H, Li H, Xie G, Tao Y, Chen R. Stimulating Chiral Selective Expression of Room Temperature Phosphorescence for Chirality Recognition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410671. [PMID: 39377218 PMCID: PMC11600253 DOI: 10.1002/advs.202410671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Indexed: 10/09/2024]
Abstract
Chiral recognition is crucial for applications in chiral purity assessment and biomedical fields. However, achieving chiral recognition through visible room temperature phosphorescence remains challenging. Here, two chiral molecules, designated as host and guest are synthesized, which possess similar structural configurations. A viable strategy involving a chiral configuration-dependent energy transfer process to enable selective phosphorescence expression is proposed, thereby enabling chiral recognition in a host-guest doping system. The chiral and structural similarity between host and guest facilitates efficient Dexter energy transfer due to the reduced spatial distance between the molecules. This mechanism significantly enhances the intensity of red phosphorescence from the guest molecule, characterized by an emission peak at 612 nm and a prolonged lifetime of 32.7 ms. This work elucidates the mechanism of chiral-dependent energy transfer, demonstrating its potential for selectively expressing phosphorescence in chiral recognition.
Collapse
Affiliation(s)
- Zhisheng Gao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| | - Xin Yan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| | - Qi Jia
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| | - Jingru Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| | - Guangyao Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| | - Huanhuan Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| | - Hui Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| | - Gaozhan Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| | - Ye Tao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| |
Collapse
|
8
|
Niu X, Liu Y, Zhao R, Yuan M, Wang Y, Zhang J, Li H, Yang X, Wang K. Regulating Catalytic Oxidation Enantiomers Behavior by Imparting Chiral Microenvironment in Zr-Based Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404554. [PMID: 38966908 DOI: 10.1002/smll.202404554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/23/2024] [Indexed: 07/06/2024]
Abstract
Chiral inversions of enantiomers have significantly different biological activities, so it is important to develop simple and effective methods to efficiently identify optically pure compounds. Inspired by enzyme catalysis, the construction of chiral microenvironments resembling enzyme pockets in the pore space structure of metal-organic frameworks (MOFs) to achieve asymmetric enantioselective recognition and catalysis has become a new research hotspot. Here, a super-stable porphyrin-containing material PCN-224 is constructed by solvothermal method and a chiral microenvironment around the existing catalytic site of the material is created by post-synthesis modifications of the histidine (His) enantiomers. Experimental and theoretical calculations results show that the modulation of chiral ligands around Zr oxide clusters produces different spatial site resistances, which can greatly affect the adsorption and catalytic level of the enantiomeric molecules of tryptophan guests, resulting in a good enantioselective property of the material. It provides new ideas and possibilities for future chiral recognition and asymmetric catalysis.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Yongqi Liu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Mei Yuan
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Yuewei Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Jianying Zhang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xing Yang
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730050, China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| |
Collapse
|
9
|
Sinha A, So H. Synthesis of chiral graphene structures and their comprehensive applications: a critical review. NANOSCALE HORIZONS 2024; 9:1855-1895. [PMID: 39171372 DOI: 10.1039/d4nh00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
From a molecular viewpoint, chirality is a crucial factor in biological processes. Enantiomers of a molecule have identical chemical and physical properties, but chiral molecules found in species exist in one enantiomer form throughout life, growth, and evolution. Chiral graphene materials have considerable potential for application in various domains because of their unique structural framework, properties, and controlled synthesis, including chiral creation, segregation, and transmission. This review article provides an in-depth analysis of the synthesis of chiral graphene materials reported over the past decade, including chiral nanoribbons, chiral tunneling, chiral dichroism, chiral recognition, and chiral transfer. The second segment focuses on the diverse applications of chiral graphene in biological engineering, electrochemical sensors, and photodetectors. Finally, we discuss research challenges and potential future uses, along with probable outcomes.
Collapse
Affiliation(s)
- Animesh Sinha
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, South Korea.
| | - Hongyun So
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, South Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, South Korea
| |
Collapse
|
10
|
Li F, Luo Y, Ren J, Yuan Q, Yan D, Zhang W. Iridium-Catalyzed Asymmetric Hydroarylation of Unactivated Alkenes with Heterobiaryls: Simultaneous Construction of Axial and Central Chirality. Org Lett 2024; 26:6835-6840. [PMID: 39110942 DOI: 10.1021/acs.orglett.4c02282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
There are only a few examples being reported for the simultaneous control of central chirality and axial chirality because it is more challenging. Herein, we report an iridium-catalyzed asymmetric hydroarylation of unactivated alkenes with heterobiaryls to simultaneously construct axial and central chirality. The reaction showed a broad substrate scope and delivered the products with satisfactory results. The results of the control experiments demonstrated that the FerroLANE ligand promotes the reaction to proceed along a specific modified Chalk-Harrod mechanism.
Collapse
Affiliation(s)
- Fei Li
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yicong Luo
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jinbao Ren
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Qianjia Yuan
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Deyue Yan
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
11
|
Zhao LX, Chen LL, Cheng D, Wu TY, Fan YG, Wang ZY. Potential Application Prospects of Biomolecule-Modified Two-Dimensional Chiral Nanomaterials in Biomedicine. ACS Biomater Sci Eng 2024; 10:2022-2040. [PMID: 38506625 DOI: 10.1021/acsbiomaterials.3c01871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Chirality, one of the most fundamental properties of natural molecules, plays a significant role in biochemical reactions. Nanomaterials with chiral characteristics have superior properties, such as catalytic properties, optoelectronic properties, and photothermal properties, which have significant potential for specific applications in nanomedicine. Biomolecular modifications such as nucleic acids, peptides, proteins, and polysaccharides are sources of chirality for nanomaterials with great potential for application in addition to intrinsic chirality, artificial macromolecules, and metals. Two-dimensional (2D) nanomaterials, as opposed to other dimensions, due to proper surface area, extensive modification sites, drug loading potential, and simplicity of preparation, are prepared and utilized in diagnostic applications, drug delivery research, and tumor therapy. Current advanced studies on 2D chiral nanomaterials for biomedicine are focused on novel chiral development, structural control, and materials sustainability applications. However, despite the advances in biomedical research, chiral 2D nanomaterials still confront challenges such as the difficulty of synthesis, quality control, batch preparation, chiral stability, and chiral recognition and selectivity. This review aims to provide a comprehensive overview of the origins, synthesis, applications, and challenges of 2D chiral nanomaterials with biomolecules as cargo and chiral modifications and highlight their potential roles in biomedicine.
Collapse
Affiliation(s)
- Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Li-Lin Chen
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Di Cheng
- Dalian Gentalker Biological Technology Co., Ltd., Dalian 116699, China
| | - Ting-Yao Wu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| |
Collapse
|
12
|
Pranav, Ghali ENHK, Chauhan N, Tiwari R, Cabrera M, Chauhan SC, Yallapu MM. One-step simultaneous liquid phase exfoliation-induced chirality in graphene and their chirality-mediated microRNA delivery. MATERIALS ADVANCES 2023; 4:6199-6212. [PMID: 38021466 PMCID: PMC10680132 DOI: 10.1039/d3ma00611e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023]
Abstract
Graphene (G) has established itself as an exciting prospect for a broad range of applications owing to its remarkable properties. Recent innovations in chiral nanosystems have led to sensors, drug delivery, catalysis, etc. owing to the stereospecific interactions between various nanosystems and enantiomers. As the molecular structure of G itself is achiral introducing chirality in G by simple attachment of a functional group (a chiral ligand) on the G nanosheet may result in more diverse applications. Herein, we demonstrate direct liquid phase exfoliation and chiral induction in G nanosheets abbreviated as l-graphene and d-graphene in the presence of chiral l-tyrosine and d-tyrosine and by applying high-temperature sonication. The obtained exfoliated nanosheets demonstrated stable chirality confirmed by circular dichroism. Fourier transform infrared (FTIR) spectra, Raman spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and differential scanning calorimetry (DSC) showed functional, structural, morphological, surface, and thermal characteristics of l-graphene and d-graphene. The hemo-compatibility of these chiral graphenes was evaluated for the very first time utilizing human red blood cells. Lastly, for the very first time, an attempt was made to explore enantiomeric binding between chiral l-graphene and d-graphene with microRNA (miR-205) and their possibility towards chirality-mediated gene delivery in prostate cancerous cells.
Collapse
Affiliation(s)
- Pranav
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA +1 956-296-1734
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA
| | - Eswara N H K Ghali
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA +1 956-296-1734
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA
| | - Neeraj Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA +1 956-296-1734
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA
| | - Rahul Tiwari
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA +1 956-296-1734
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA
| | - Marco Cabrera
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA +1 956-296-1734
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA +1 956-296-1734
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA +1 956-296-1734
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA
| |
Collapse
|
13
|
Firouzeh S, Illescas-Lopez S, Hossain MA, Cuerva JM, Álvarez de Cienfuegos L, Pramanik S. Chirality-Induced Spin Selectivity in Supramolecular Chirally Functionalized Graphene. ACS NANO 2023; 17:20424-20433. [PMID: 37668559 PMCID: PMC10604086 DOI: 10.1021/acsnano.3c06903] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
Chiral graphene hybrid materials have attracted significant attention in recent years due to their various applications in the areas of chiral catalysis, chiral separation and recognition, enantioselective sensing, etc. On the other hand, chiral materials are also known to exhibit chirality-dependent spin transmission, commonly dubbed "chirality induced spin selectivity" or CISS. However, CISS properties of chiral graphene materials are largely unexplored. As such, it is not clear whether graphene is even a promising material for the CISS effect given its weak spin-orbit interaction. Here, we report the CISS effect in chiral graphene sheets, in which a graphene derivative (reduced graphene oxide or rGO) is noncovalently functionalized with chiral Fmoc-FF (Fmoc-diphenylalanine) supramolecular fibers. The graphene flakes acquire a "conformational chirality" postfunctionalization, which, combined with other factors, is presumably responsible for the CISS signal. The CISS signal correlates with the supramolecular chirality of the medium, which depends on the thickness of graphene used. Quite interestingly, the noncovalent supramolecular chiral functionalization of conductive materials offers a simple and straightforward methodology to induce chirality and CISS properties in a multitude of easily accessible advanced conductive materials.
Collapse
Affiliation(s)
- Seyedamin Firouzeh
- Department
of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Sara Illescas-Lopez
- Universidad
de Granada, Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina
y Medioambiente, C. U.
Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
| | - Md Anik Hossain
- Department
of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Juan Manuel Cuerva
- Universidad
de Granada, Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina
y Medioambiente, C. U.
Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
| | - Luis Álvarez de Cienfuegos
- Universidad
de Granada, Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina
y Medioambiente, C. U.
Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs., Avda. De Madrid, 15, E-18016 Granada, Spain
| | - Sandipan Pramanik
- Department
of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
14
|
Jeon H, Zhu R, Kim G, Wang Y. Chirality-enhanced transport and drug delivery of graphene nanocarriers to tumor-like cellular spheroid. Front Chem 2023; 11:1207579. [PMID: 37601907 PMCID: PMC10433752 DOI: 10.3389/fchem.2023.1207579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Chirality, defined as "a mirror image," is a universal geometry of biological and nonbiological forms of matter. This geometry of molecules determines how they interact during their assembly and transport. With the development of nanotechnology, many nanoparticles with chiral geometry or chiroptical activity have emerged for biomedical research. The mechanisms by which chirality originates and the corresponding synthesis methods have been discussed and developed in the past decade. Inspired by the chiral selectivity in life, a comprehensive and in-depth study of interactions between chiral nanomaterials and biological systems has far-reaching significance in biomedicine. Here, we investigated the effect of the chirality of nanoscale drug carriers, graphene quantum dots (GQDs), on their transport in tumor-like cellular spheroids. Chirality of GQDs (L/D-GQDs) was achieved by the surface modification of GQDs with L/D-cysteines. As an in-vitro tissue model for drug testing, cellular spheroids were derived from a human hepatoma cell line (i.e., HepG2 cells) using the Hanging-drop method. Our results reveal that the L-GQDs had a 1.7-fold higher apparent diffusion coefficient than the D-GQDs, indicating that the L-GQDs can enhance their transport into tumor-like cellular spheroids. Moreover, when loaded with a common chemotherapy drug, Doxorubicin (DOX), via π-π stacking, L-GQDs are more effective as nanocarriers for drug delivery into solid tumor-like tissue, resulting in 25% higher efficacy for cancerous cellular spheroids than free DOX. Overall, our studies indicated that the chirality of nanocarriers is essential for the design of drug delivery vehicles to enhance the transport of drugs in a cancerous tumor.
Collapse
Affiliation(s)
| | | | | | - Yichun Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
15
|
Bettini S, Ottolini M, Valli D, Pagano R, Ingrosso C, Roeffaers M, Hofkens J, Valli L, Giancane G. Synthesis and Characterization of Gold Chiral Nanoparticles Functionalized by a Chiral Drug. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091526. [PMID: 37177071 PMCID: PMC10180680 DOI: 10.3390/nano13091526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Inorganic chiral nanoparticles are attracting more and more attention due to their peculiar optical properties and potential biological applications, such as bioimaging, therapeutics, and diagnostics. Among inorganic chiral nanoparticles, gold chiral nanostructures were demonstrated to be very interesting in this context, with good physical chemical stability and also the possibility to decorate the surface, improving biomedical application as the interaction with the bio-systems. Gold (Au) nanostructures were synthesized according to a seed-mediated procedure which envisages the use of cetyltrimethylammonium bromide (CTAB) as the capping agent and L- and D-cysteine to promote chirality. Au nanostructures have been demonstrated to have opposite circular dichroism signals depending on the amino acid enantiomer used during the synthesis. Then, a procedure to decorate the Au surface with penicillamine, a drug used for the treatment of Wilson's disease, was developed. The composite material of gold nanoparticles/penicillamine was characterized using electron microscopy, and the penicillamine functionalization was monitored by means of UV-Visible, Raman, and infrared spectroscopy, highlighting the formation of the Au-S bond. Furthermore, electron circular dichroism was used to monitor the chirality of the synthesized nanostructures and it was demonstrated that both penicillamine enantiomers can be successfully bonded with both the enantiomers of the gold nanostructures without affecting gold nanoparticles' chirality. The effective modification of nanostructures' surfaces via penicillamine introduction allowed us to address the important issue of controlling chirality and surface properties in the chiral nano-system.
Collapse
Affiliation(s)
- Simona Bettini
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Michela Ottolini
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Donato Valli
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Rosanna Pagano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Chiara Ingrosso
- CNR-IPCF SS Bari, c/o Dipartimento di Chimica dell'Università degli Studi di Bari, Via Orabona 4, 70126 Bari, Italy
| | | | - Johan Hofkens
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Ludovico Valli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Gabriele Giancane
- Department of Cultural Heritage, University of Salento, Via D. Birago 84, 73100 Lecce, Italy
| |
Collapse
|
16
|
Stefanelli M, Magna G, Di Natale C, Paolesse R, Monti D. Stereospecific Self-Assembly Processes of Porphyrin-Proline Conjugates: From the Effect of Structural Features and Bulk Solvent Properties to the Application in Stereoselective Sensor Systems. Int J Mol Sci 2022; 23:15587. [PMID: 36555226 PMCID: PMC9779260 DOI: 10.3390/ijms232415587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Conjugating the porphyrin ring with an amino acid via amide linkage represents a straightforward way for conferring both amphiphilicity and chirality to the macrocycle. Proline residue is a good choice in this context since its conformational rigidity allows for porphyrin assembling where molecular chirality is efficiently transferred and amplified using properly honed aqueous environments. Herein, we describe the evolution of the studies carried out by our group to achieve chiral systems from some porphyrin-proline derivatives, both in solution and in the solid state. The discussion focuses on some fundamental aspects reflecting on the final molecular architectures obtained, which are related to the nature of the appended group (stereochemistry and charge), the presence of a metal ion coordinated to the porphyrin core and the bulk solvent properties. Indeed, fine-tuning the mentioned parameters enables the achievement of stereospecific structures with distinctive chiroptical and morphological features. Solid films based on these chiral systems were also obtained and their recognition abilities in gaseous and liquid phase are here described.
Collapse
Affiliation(s)
- Manuela Stefanelli
- Department of Chemical Science and Technologies, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Gabriele Magna
- Department of Chemical Science and Technologies, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Corrado Di Natale
- Department of Electronic Engineering, Università di Roma Tor Vergata, Viale del Politecnico 1, 00133 Rome, Italy
| | - Roberto Paolesse
- Department of Chemical Science and Technologies, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Donato Monti
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
17
|
Yu H, Wang L, Liu S, Zhao B, Xiao K, Yang B, Duan H, Zhao H, Deng J. Using cellulose, starch and β-cyclodextrin poly/oligosaccharides as chiral inducers for preparing chiral particles. Carbohydr Polym 2022; 296:119944. [DOI: 10.1016/j.carbpol.2022.119944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/02/2022]
|
18
|
Primary amine–thiourea grafted graphene–based heterogeneous chiral catalysts for highly enantioselective Michael additions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
A visual chiroptical system with chiral assembly graphene quantum dots for D-phenylalanine detection. Anal Bioanal Chem 2022; 414:4885-4896. [PMID: 35562570 DOI: 10.1007/s00216-022-04113-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/09/2022] [Accepted: 05/02/2022] [Indexed: 11/01/2022]
Abstract
Chirality is a fundamental phenomenon of nature, and the enantioselective recognition of amino acids isomers is especially important for life science. In this study, chiroptical system based on chiral assembly graphene quantum dots (GQDs) was developed for visual testing of D-phenylalanine (D-Phe). Here, GQDs were used as the fluorescent element, and chiral functional moieties of 1,3,5-triformylphloroglucinol-functionalized chiral ( +)-diacetyl-L-tartaric anhydride (TPTA) were used as the chiral recognition elements. Based on the formed chiral microenvironment, the fluorescence intensity of TPTA-assembled GQDs had a good linear relationship with D-Phe in the concentration range of 0.1-5 μM, and the detection limit was 0.023 μM. According to the variation in luminance of TPTA-assembled GQDs, visual testing to D-Phe was realized using a smartphone-assisted chiroptical system with a detection limit of 0.050 μM. The spiked recoveries of both chiroptical sensing methods based on TPTA-assembled GQDs from the food matrix ranged from 86.20 to 110.0%. Furthermore, TPTA-assembled GQDs were successfully applied to intracellular chiroptical imaging in response to D-Phe in vitro. The developed chiral nanomaterial TPTA-assembled GQDs with excellent photochemical stability, optical properties, and bioimaging capabilities provide a promising technique for the visual detection of amino acid isomers in the field of smart devices.
Collapse
|
20
|
Graphene-Based Functional Hybrid Membranes for Antimicrobial Applications: A Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104834] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Graphene-based nanomaterials have shown wide applications in antimicrobial fields due to their accelerated rate of pathogen resistance and good antimicrobial properties. To apply graphene materials in the antimicrobial test, the graphene materials are usually fabricated as two-dimensional (2D) membranes. In addition, to improve the antimicrobial efficiency, graphene membranes are modified with various functional nanomaterials, such as nanoparticles, biomolecules, polymers, etc. In this review, we present recent advances in the fabrication, functional tailoring, and antimicrobial applications of graphene-based membranes. To implement this goal, we first introduce the synthesis of graphene materials and then the fabrication of 2D graphene-based membranes with potential techniques such as chemical vapor deposition, vacuum filtration, spin-coating, casting, and layer-by-layer self-assembly. Then, we present the functional tailoring of graphene membranes by adding metal and metal oxide nanoparticles, polymers, biopolymers, metal–organic frameworks, etc., with graphene. Finally, we focus on the antimicrobial mechanisms of graphene membranes, and demonstrate typical studies on the use of graphene membranes for antibacterial, antiviral, and antifungal applications. It is expected that this work will help readers to understand the antimicrobial mechanism of various graphene-based membranes and, further, to inspire the design and fabrication of functional graphene membranes/films for biomedical applications.
Collapse
|
21
|
Zhou J, Li T, Li Q, Zheng P, Yang S, Chai J, Zhu M. Insight into the Effects of Chiral Diphosphine Ligands on the Structure and Optical Properties of the Au 24Cd 2 Nanocluster. Inorg Chem 2022; 61:6493-6499. [PMID: 35436089 DOI: 10.1021/acs.inorgchem.2c00246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Introduction of chiral ligands has been regarded as an effective strategy to obtain nanoclusters with optical purity. However, how the chiral ligands work is still unclear due to the lack of structural comparison between racemic nanoclusters and the corresponding optically active ones. In this work, three structurally related Au24Cd2 nanoclusters, including one racemic and two homochiral nanoclusters, were synthesized, and their crystal structures were characterized using single-crystal X-ray crystallography (SC-XRD). Based on their crystal structures, the origin of the chirality in Au24Cd2 was found to be the twist of the kernel and the chiral arrangement of the metal-ligand surface. Au24Cd2 protected with chiral ligands exhibits a more twisted kernel than the racemic one. Therefore, the chirality of chiral diphosphine was found to transfer from the ligands to the metal-ligand interface and then to the metal core, inducing its distortion to produce enhanced chirality. In addition, the optical properties including optical absorption and circular dichroism of these structurally related Au24Cd2 nanoclusters were compared.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Tianrong Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Qinzhen Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Peisen Zheng
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Sha Yang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
22
|
Zhou Z, Fernández‐García JM, Zhu Y, Evans PJ, Rodríguez R, Crassous J, Wei Z, Fernández I, Petrukhina MA, Martín N. Site‐Specific Reduction‐Induced Hydrogenation of a Helical Bilayer Nanographene with K and Rb Metals: Electron Multiaddition and Selective Rb
+
Complexation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zheng Zhou
- Department of Chemistry University at Albany State University of New York Albany NY 12222 USA
- School of Materials Science and Engineering Tongji University 4800 Cao'an Road Shanghai 201804 China
| | - Jesús M. Fernández‐García
- Departamento de Química Orgánica I Facultad de Ciencias Químicas Universidad Complutense de Madrid Ciudad Universitaria s/n 28040 Madrid Spain
| | - Yikun Zhu
- Department of Chemistry University at Albany State University of New York Albany NY 12222 USA
| | - Paul J. Evans
- Departamento de Química Orgánica I Facultad de Ciencias Químicas Universidad Complutense de Madrid Ciudad Universitaria s/n 28040 Madrid Spain
| | - Rafael Rodríguez
- Institut des Sciences Chimiques de Rennes UMR 6226 CNRS—Univ. Rennes Campus de Beaulieu 35042 Rennes Cedex France
| | - Jeanne Crassous
- Institut des Sciences Chimiques de Rennes UMR 6226 CNRS—Univ. Rennes Campus de Beaulieu 35042 Rennes Cedex France
| | - Zheng Wei
- Department of Chemistry University at Albany State University of New York Albany NY 12222 USA
| | - Israel Fernández
- Departamento de Química Orgánica I Facultad de Ciencias Químicas Universidad Complutense de Madrid Ciudad Universitaria s/n 28040 Madrid Spain
| | - Marina A. Petrukhina
- Department of Chemistry University at Albany State University of New York Albany NY 12222 USA
| | - Nazario Martín
- Departamento de Química Orgánica I Facultad de Ciencias Químicas Universidad Complutense de Madrid Ciudad Universitaria s/n 28040 Madrid Spain
- IMDEA-Nanociencia Campus de la Universidad Autónoma de Madrid C/Faraday, 9 28049 Madrid Spain
| |
Collapse
|
23
|
Zhou Z, Fernández‐García JM, Zhu Y, Evans PJ, Rodríguez R, Crassous J, Wei Z, Fernández I, Petrukhina MA, Martín N. Site-Specific Reduction-Induced Hydrogenation of a Helical Bilayer Nanographene with K and Rb Metals: Electron Multiaddition and Selective Rb + Complexation. Angew Chem Int Ed Engl 2022; 61:e202115747. [PMID: 34875130 PMCID: PMC9300088 DOI: 10.1002/anie.202115747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Indexed: 01/01/2023]
Abstract
The chemical reduction of π-conjugated bilayer nanographene 1 (C138 H120 ) with K and Rb in the presence of 18-crown-6 affords [K+ (18-crown-6)(THF)2 ][{K+ (18-crown-6)}2 (THF)0.5 ][C138 H122 3- ] (2) and [Rb+ (18-crown-6)2 ][{Rb+ (18-crown-6)}2 (C138 H122 3- )] (3). Whereas K+ cations are fully solvent-separated from the trianionic core thus affording a "naked" 1.3 - anion, Rb+ cations are coordinated to the negatively charged layers of 1.3 - . According to DFT calculations, the localization of the first two electrons in the helicene moiety leads to an unprecedented site-specific hydrogenation process at the carbon atoms located on the edge of the helicene backbone. This uncommon reduction-induced site-specific hydrogenation provokes dramatic changes in the (electronic) structure of 1 as the helicene backbone becomes more compressed and twisted upon chemical reduction, which results in a clear slippage of the bilayers.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of ChemistryUniversity at AlbanyState University of New YorkAlbanyNY 12222USA
- School of Materials Science and EngineeringTongji University4800 Cao'an RoadShanghai201804China
| | - Jesús M. Fernández‐García
- Departamento de Química Orgánica IFacultad de Ciencias QuímicasUniversidad Complutense de MadridCiudad Universitaria s/n28040MadridSpain
| | - Yikun Zhu
- Department of ChemistryUniversity at AlbanyState University of New YorkAlbanyNY 12222USA
| | - Paul J. Evans
- Departamento de Química Orgánica IFacultad de Ciencias QuímicasUniversidad Complutense de MadridCiudad Universitaria s/n28040MadridSpain
| | - Rafael Rodríguez
- Institut des Sciences Chimiques de RennesUMR 6226 CNRS—Univ. RennesCampus de Beaulieu35042Rennes CedexFrance
| | - Jeanne Crassous
- Institut des Sciences Chimiques de RennesUMR 6226 CNRS—Univ. RennesCampus de Beaulieu35042Rennes CedexFrance
| | - Zheng Wei
- Department of ChemistryUniversity at AlbanyState University of New YorkAlbanyNY 12222USA
| | - Israel Fernández
- Departamento de Química Orgánica IFacultad de Ciencias QuímicasUniversidad Complutense de MadridCiudad Universitaria s/n28040MadridSpain
| | - Marina A. Petrukhina
- Department of ChemistryUniversity at AlbanyState University of New YorkAlbanyNY 12222USA
| | - Nazario Martín
- Departamento de Química Orgánica IFacultad de Ciencias QuímicasUniversidad Complutense de MadridCiudad Universitaria s/n28040MadridSpain
- IMDEA-NanocienciaCampus de la Universidad Autónoma de MadridC/Faraday, 928049MadridSpain
| |
Collapse
|
24
|
Fan Y, Ou-Yang S, Zhou D, Wei J, Liao L. Biological applications of chiral inorganic nanomaterials. Chirality 2022; 34:760-781. [PMID: 35191098 DOI: 10.1002/chir.23428] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/29/2021] [Accepted: 02/06/2022] [Indexed: 12/16/2022]
Abstract
Chirality is common in nature and plays the essential role in maintaining physiological process. Chiral inorganic nanomaterials with intense optical activity have attracted more attention due to amazing properties in recent years. Over the past decades, many efforts have been paid to the preparation and chirality origin of chiral nanomaterials; furthermore, emerging biological applications have been investigated widely. This review mainly summarizes recent advances in chiral nanomaterials. The top-down and bottom-up preparation methods and chirality origin of chiral nanomaterials are introduced; besides, the biological applications, such as sensing, therapy, and catalysis, will be introduced comprehensively. Finally, we also provide a perspective on the biomedical applications of chiral nanomaterials.
Collapse
Affiliation(s)
- Yuan Fan
- The School of Stomatological Hospital, Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
| | - Shaobo Ou-Yang
- The School of Stomatological Hospital, Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China.,Jiangxi Province Clinical Research Center for Oral Disease, Nanchang, China
| | - Dong Zhou
- College of Chemistry, Nanchang University, Nanchang, China
| | - Junchao Wei
- The School of Stomatological Hospital, Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China.,College of Chemistry, Nanchang University, Nanchang, China.,Jiangxi Province Clinical Research Center for Oral Disease, Nanchang, China
| | - Lan Liao
- The School of Stomatological Hospital, Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China.,Jiangxi Province Clinical Research Center for Oral Disease, Nanchang, China
| |
Collapse
|
25
|
Baruah MJ, Bora TJ, Gogoi G, Hoque N, Gour NK, Bhargava SK, Guha AK, Nath JK, Das B, Bania KK. Chirally modified cobalt-vanadate grafted on battery waste derived layered reduced graphene oxide for enantioselective photooxidation of 2-naphthol: Asymmetric induction through non-covalent interaction. J Colloid Interface Sci 2022; 608:1526-1542. [PMID: 34742071 DOI: 10.1016/j.jcis.2021.10.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 12/26/2022]
Abstract
The cobalt oxide-vanadium oxide (Co3O4-V2O5) combined with reduced graphene oxide (rGO) having band gap of ∼ 3.3 eV appeared as a suitable photocatalyst for selective oxidation of 2-naphthol to BINOL. C2-symmetric BINOL was achieved with good yield using hydrogen peroxide as the oxidant under UV-light irradiation. The same catalyst was chirally modified with cinchonidine and a newly synthesized chiral Schiff base ligand having a sigma-hole center. The strong interaction of the chiral modifiers with the cobalt-vanadium oxide was truly evident from various spectroscopic studies and DFT calculations. The chirally modified mixed metal oxide transformed the oxidative CC coupling reaction with high enantioselectivity. High enantiomeric excess upto 92 % of R-BINOL was obtained in acetonitrile solvent and hydrogen peroxide as the oxidant. A significant achievement was the formation of S-BINOL in the case of the cinchonidine modified catalyst and R-BINOL with the Schiff base ligand anchored chiral catalyst. The UV-light induced catalytic reaction was found to involve hydroxyl radical as the active reactive species. The spin trapping ESR and fluorescence experiment provided relevant evidence for the formation of such species through photodecomposition of hydrogen peroxide on the catalyst surface. The chiral induction to the resultant product was found to induce through supramolecular interaction like OH…π, H…Br interaction. The presence of sigma hole center was believed to play significant role in naphtholate ion recognition during the catalytic cycle.
Collapse
Affiliation(s)
- Manash J Baruah
- Department of Chemical Sciences, Tezpur University, Assam 784028, India
| | - Tonmoy J Bora
- Department of Chemical Sciences, Tezpur University, Assam 784028, India
| | - Gautam Gogoi
- Department of Chemical Sciences, Tezpur University, Assam 784028, India
| | - Nazimul Hoque
- Department of Chemical Sciences, Tezpur University, Assam 784028, India
| | - Nand K Gour
- Department of Chemical Sciences, Tezpur University, Assam 784028, India
| | - Suresh K Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne 3001, Australia
| | - Ankur K Guha
- Cotton University, Panbazar, Guwahati, Assam 781001, India
| | - Jayanta K Nath
- Department of Chemistry, S. B. Deorah College, Bora Service, Ulubari, Guwahati 781007, Assam, India
| | - Biraj Das
- Department of Chemistry, Dakha Devi Rasiwasia College, Dibrugarh, Assam 786184, India
| | - Kusum K Bania
- Department of Chemical Sciences, Tezpur University, Assam 784028, India.
| |
Collapse
|
26
|
One-step fabrication of hydrophilic lignosulfonate-decorated reduced graphene oxide to enhance the pervaporation performance of calcium alginate membranes. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
27
|
Niu X, Yan S, Wang L, Chen J, Zhao R, Li H, Liu J, Wang K. Induction of chiral polymers from metal-organic framework for stereoselective recognition. Anal Chim Acta 2022; 1196:339546. [DOI: 10.1016/j.aca.2022.339546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/23/2021] [Accepted: 01/21/2022] [Indexed: 11/01/2022]
|
28
|
Zvaigzne M, Samokhvalov P, Gun'ko YK, Nabiev I. Anisotropic nanomaterials for asymmetric synthesis. NANOSCALE 2021; 13:20354-20373. [PMID: 34874394 DOI: 10.1039/d1nr05977g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The production of enantiopure chemicals is an essential part of modern chemical industry. Hence, the emergence of asymmetric catalysis led to dramatic changes in the procedures of chemical synthesis, and now it provides the most advantageous and economically executable solution for large-scale production of chiral chemicals. In recent years, nanostructures have emerged as potential materials for asymmetric synthesis. Indeed, on the one hand, nanomaterials offer great opportunities as catalysts in asymmetric catalysis, due to their tunable absorption, chirality, and unique energy transfer properties; on the other hand, the advantages of the larger surface area, increased number of unsaturated coordination centres, and more accessible active sites open prospects for catalyst encapsulation, partial or complete, in a nanoscale cavity, pore, pocket, or channel leading to alteration of the chemical reactivity through spatial confinement. This review focuses on anisotropic nanomaterials and considers the state-of-the-art progress in asymmetric synthesis catalysed by 1D, 2D and 3D nanostructures. The discussion comprises three main sections according to the nanostructure dimensionality. We analyze recent advances in materials and structure development, discuss the functional role of the nanomaterials in asymmetric synthesis, chirality, confinement effects, and reported enantioselectivity. Finally, the new opportunities and challenges of anisotropic 1D, 2D, and 3D nanomaterials in asymmetric synthesis, as well as the future prospects and current trends of the design and applications of these materials are analyzed in the Conclusions and outlook section.
Collapse
Affiliation(s)
- Mariya Zvaigzne
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Pavel Samokhvalov
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Yurii K Gun'ko
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
- School of Chemistry, Trinity College, the University of Dublin, Dublin 2, Ireland.
| | - Igor Nabiev
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, 51 rue Cognacq Jay, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Str., 119991 Moscow, Russia
| |
Collapse
|
29
|
Zhang N, Guo S, Gong B. Preparation of a novel bridged bis(β-cyclodextrin) chiral stationary phase by thiol-ene click chemistry for enhanced enantioseparation in HPLC. RSC Adv 2021; 11:35754-35764. [PMID: 35492805 PMCID: PMC9043236 DOI: 10.1039/d1ra04697g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
A bridged bis(β-cyclodextrin) ligand was firstly synthesized via a thiol–ene click chemistry reaction between allyl-ureido-β-cyclodextrin and 4-4′-thiobisthiophenol, which was then bonded onto a 5 μm spherical silica gel to obtain a novel bridged bis(β-cyclodextrin) chiral stationary phase (HTCDP). The structures of HTCDP and the bridged bis(β-cyclodextrin) ligand were characterized by the 1H nuclear magnetic resonance (1H NMR), solid state 13C nuclear magnetic resonance (13C NMR) spectra spectrum, scanning electron microscope, elemental analysis, mass spectrometry, infrared spectrometry and thermogravimetric analysis. The performance of HTCDP in enantioseparation was systematically examined by separating 21 chiral compounds, including 8 flavanones, 8 triazole pesticides and 5 other common chiral drugs (benzoin, praziquantel, 1-1′-bi-2-naphthol, Tröger's base and bicalutamide) in the reversed-phase chromatographic mode. By optimizing the chromatographic conditions such as formic acid content, mobile phase composition, pH values and column temperature, 19 analytes were completely separated with high resolution (1.50–4.48), in which the enantiomeric resolution of silymarin, 4-hydroxyflavanone, 2-hydroxyflavanone and flavanone were up to 4.34, 4.48, 3.89 and 3.06 within 35 min, respectively. Compared to the native β-CD chiral stationary phase (CDCSP), HTCDP had superior enantiomer separation and chiral recognition abilities. For example, HTCDP completely separated 5 other common chiral drugs, 2 flavanones and 3 triazole pesticides that CDCSP failed to separate. Unlike CDCSP, which has a small cavity (0.65 nm), the two cavities in HTCDP joined by the aryl connector could synergistically accommodate relatively bulky chiral analytes. Thus, HTCDP may have a broader prospect in enantiomeric separation, analysis and detection. Separation of chiral compounds on HTCDP.![]()
Collapse
Affiliation(s)
- Ning Zhang
- School of Chemistry and Chemical Engineering, North Minzu University No. 204 Wenchang North Street, Xixia District Yinchuan 750021 China
| | - Siyu Guo
- School of Chemistry and Chemical Engineering, North Minzu University No. 204 Wenchang North Street, Xixia District Yinchuan 750021 China
| | - Bolin Gong
- School of Chemistry and Chemical Engineering, North Minzu University No. 204 Wenchang North Street, Xixia District Yinchuan 750021 China
| |
Collapse
|
30
|
Liu J, Yuan W, Li C, Cheng M, Su Y, Xu L, Chu T, Hou S. l-Cysteine-Modified Graphene Oxide-Based Membrane for Chiral Selective Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49215-49223. [PMID: 34628847 DOI: 10.1021/acsami.1c14900] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A novel chiral separation membrane was fabricated by assembling l-cysteine (l-Cys)-modified graphene oxide sheets. l-Cys modification leads to an enantiomer separation membrane with an accessible interlayer spacing of 8 Å, which allows high solvent permeability. In the racemate separation experiments under isobaric conditions, the enantiomeric excess (ee) values of alanine (Ala), threonine (Thr), tyrosine (Tyr), and penicillamine (Pen) racemates in the permeation solution were 43.60, 44.11, 27.43, and 46.44%, respectively. In the racemate separation experiments under negative pressure, the separation performances of Ala, Thr, and Tyr were still maintained, and the enantiomeric excess (ee) values of the filtrate after separation were 56.80, 54.57, and 32.34%, respectively. These results indicate that the as-prepared GO-Cys membrane has a great practical value in the field of enantiomer separation.
Collapse
Affiliation(s)
- Jinglei Liu
- School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, PR China
| | - Wenbo Yuan
- School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, PR China
| | - Caifeng Li
- School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, PR China
| | - Mengmeng Cheng
- School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, PR China
| | - Yan Su
- School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, PR China
| | - Lijian Xu
- School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, PR China
| | - Tianfei Chu
- School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, PR China
| | - Shifeng Hou
- School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, PR China
- National Engineering Research Center for Colloidal Materials, Shandong University, Jinan, Shandong 250100, PR China
| |
Collapse
|
31
|
Zhong H, Deng J. Preparation and Chiral Applications of Optically Active Polyamides. Macromol Rapid Commun 2021; 42:e2100341. [PMID: 34347330 DOI: 10.1002/marc.202100341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/05/2021] [Indexed: 12/24/2022]
Abstract
Chirality is omnipresent in nature and plays vital roles in living organism, and has become a hot research topic across multidisciplinary fields including chemistry, biology, physics, and material science. Meanwhile, polyamides constitute an important class of polymers and have received significant attention owing to their outstanding properties and wide-ranging applications in many areas. Judiciously introducing chirality into polyamides will undoubtedly obtain attractive chiral polymers, namely, optically active polyamides. This review describes the preparation methods of chiral polyamides, including solution polycondensation, interfacial polycondensation, ring-open polymerization, and others; the newly emerging categories of chiral polyamides, i.e., helical polyamides, chiral polyamide-imides, are also presented. The applications of optically active polyamides in chiral research fields including asymmetric catalysis, membrane separation, and enantioselective crystallization are also summarized. In addition, current challenges in chiral polyamides are further presented and future perspectives in the field are proposed.
Collapse
Affiliation(s)
- Hai Zhong
- State Key Laboratory of Chemical Resource Engineering and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
32
|
Chen Z, Chi Z, Sun Y, Lv Z. Chirality in peptide-based materials: From chirality effects to potential applications. Chirality 2021; 33:618-642. [PMID: 34342057 DOI: 10.1002/chir.23344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/24/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022]
Abstract
Chirality is ubiquitous in nature with primary cellular functions that include construction of right-/left-handed helix and selective communications among diverse biomolecules. Of particularly intriguing are the chiral peptide-based materials that can be deliberately designed to change physicochemistry properties via tuning peptide sequences. Critically, understanding their chiral effects are fundamental for the development of novel materials in chemistry and biomedicine fields. Here, we review recent researches on chirality in peptide-based materials, summarizing relevant typical chiral effects towards recognition, amplification, and induction. Driven forces for the chiral discrimination in affinity interaction as well as the handedness preferences in supramolecular structure formation at both the macroscale and microscale are illustrated. The implementation of such chirality effects of artificial copolymers, assembled aggregates and their composites in the fields of bioseparation and bioenrichment, cell incubation, protein aggregation inhibitors, chiral smart gels, and bionic electro devices are also presented. At last, the challenges in these areas and possible directions are pointed out. The diversity of chiral roles in the origin of life and chirality design in different organic or composite systems as well as their applications in drug development and chirality detection in environmental protection are discussed.
Collapse
Affiliation(s)
- Zhonghui Chen
- Guangdong Engineering Technology Research Center for High performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, China
| | - Zhenguo Chi
- Guangdong Engineering Technology Research Center for High performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Yifeng Sun
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, China
| | - Ziyu Lv
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| |
Collapse
|
33
|
Wang C, Lin C, Ming R, Li X, Jonkheijm P, Cheng M, Shi F. Macroscopic Supramolecular Assembly Strategy to Construct 3D Biocompatible Microenvironments with Site-Selective Cell Adhesion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28774-28781. [PMID: 34114469 DOI: 10.1021/acsami.1c05181] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Three-dimensional (3D) scaffolds with chemical diversity are significant to direct cell adhesion onto targeted surfaces, which provides solutions to further control over cell fates and even tissue formation. However, the site-specific modification of specific biomolecules to realize selective cell adhesion has been a challenge with the current methods when building 3D scaffolds. Conventional methods of immersing as-prepared structures in solutions of biomolecules lead to nonselective adsorption; recent printing methods have to address the problem of switching multiple nozzles containing different biomolecules. The recently developed concept of macroscopic supramolecular assembly (MSA) based on the idea of "modular assembly" is promising to fabricate such 3D scaffolds with advantages of flexible design and combination of diverse modules with different surface chemistry. Herein we report an MSA method to fabricate 3D ordered structures with internal chemical diversity for site-selective cell adhesion. The 3D structure is prepared via 3D alignment of polydimethylsiloxane (PDMS) building blocks with magnetic pick-and-place operation and subsequent interfacial bindings between PDMS based on host/guest molecular recognition. The site-specific cell affinity is realized by distributing targeted building blocks that are modified with polylysine molecules of opposite chiralities: PDMS modified with films containing poly-l-lysine (PLL) show higher cell density than those with poly-d-lysine (PDL). This principle of selective cell adhesion directed simply by spatial distribution of chiral molecules has been proven effective for five different cell lines. This facile MSA strategy holds promise to build complex 3D microenvironment with on-demand chemical/biological diversities, which is meaningful to study cell/material interactions and even tissue formation.
Collapse
Affiliation(s)
- Changyu Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Cuiling Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Rui Ming
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiangxin Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Pascal Jonkheijm
- Department of Molecules and Materials, Faculty of Science and Technology, MESA+ Institute for Nanotechnology and TechMed Centre, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Mengjiao Cheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Feng Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
34
|
Zada S, Lu H, Yang F, Zhang Y, Cheng Y, Tang S, Wei W, Qiao Y, Fu P, Dong H, Zhang X. V 2C Nanosheets as Dual-Functional Antibacterial Agents. ACS APPLIED BIO MATERIALS 2021; 4:4215-4223. [PMID: 35006834 DOI: 10.1021/acsabm.1c00008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Antibiotic-resistant bacterial strains have been continuously increasing and becoming a supreme threat to public health globally. The nanoparticle-based photothermal treatment has emerged as a powerful tool to combat toxic bacteria. Photothermal agents (PTAs) with cost-effective and high photothermal conversion efficiency are highly desirable. Herein, we unite the green process for delamination of V2AlC to produce a high yield mass of two-dimensional (2D) V2C nanosheets (NSs) by using algae extracts and demonstrate their high antibacterial efficiency. The resultant V2C NSs present decent structural reliability and intrinsic antibacterial ability. Powerful near-infrared (NIR) absorption and extraordinary photothermal conversion proficiency make it a good PTA for the photothermal treatment of bacteria. The antibacterial efficiency evaluation indicated that V2C NSs could effectively kill both Gram-positive S. aureus and Gram-negative E. coli. About 99.5% of both types of bacteria could be killed with low-dose of V2C NSs suspension (40 μg/mL) with 5 min NIR irradiation due to the intrinsic antibacterial ability and photothermal effect of V2C NSs, which is much higher than previous reports on Ta4C3, Ti3C2, MoSe2, and Nb2C. This work expands the application of MXene V2C NSs for rapid bacteria-killing and would gain promising attention for applications in the sterilization industry.
Collapse
Affiliation(s)
- Shah Zada
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Huiting Lu
- School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Fan Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Yiyi Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Yaru Cheng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Songsong Tang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Wei Wei
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Yuchun Qiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University 58 Renmin Avenue, Meilan District Haikou, Hainan 570228, China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
- Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
- Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|