1
|
Gul O, Song M, Gu CY, Ahn J, Lee K, Ahn J, Kim HJ, Kim TS, Park I. Bioinspired interfacial engineering for highly stretchable electronics. Nat Commun 2025; 16:1337. [PMID: 39905014 PMCID: PMC11794851 DOI: 10.1038/s41467-025-56502-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/17/2025] [Indexed: 02/06/2025] Open
Abstract
The seamless integration of rigid/flexible electronic components into stretchable substrates is imperative for the realization of reliable stretchable electronics. However, the transition from flexible-to-stretchable substrates presents inherent challenges in interfacial behavior, predominantly arising from disparities in elastic moduli, thereby rendering their integration arduous for practical deployment. Here, we introduce a bioinspired interface-engineered flexible island (BIEFI), which effectively facilitates the creation of highly stretchable electronics by optimizing the interface with flexible mechanical interlocking mechanisms, resilient to physical deformations. Various electronic components, such as light-emitting diodes (LEDs) and solar cells, are affixed onto the flexible island, showcasing its versatility as a robust platform for rigid components while ensuring the entire substrate maintains high stretchability. Additionally, a smart workout monitoring system is demonstrated by integrating a resistance band with a flexible-to-stretchable platform. This approach seamlessly integrates a wide range of rigid, flexible, and stretchable components, ensuring durability under diverse physical deformations.
Collapse
Affiliation(s)
- Osman Gul
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, Republic of Korea
- Intelligent Components and Sensors Research Section, Electronics and Telecommunication Research Institute (ETRI), Yuseong-gu, Daejeon, Republic of Korea
| | - Myoung Song
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, Republic of Korea
| | - Chang-Yeon Gu
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, Republic of Korea
| | - Jihyeon Ahn
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, Republic of Korea
| | - Kichul Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, Republic of Korea
| | - Junseong Ahn
- Department of Control and Instrumentation Engineering, Korea University, Sejong, Republic of Korea
| | - Hye Jin Kim
- Intelligent Components and Sensors Research Section, Electronics and Telecommunication Research Institute (ETRI), Yuseong-gu, Daejeon, Republic of Korea.
- Department of Advanced Device Technology, University of Science and Technology, Daejeon, Republic of Korea.
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, Republic of Korea.
| | - Inkyu Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Gul O, Song M, Gu CY, Ahn J, Lee K, Kim TS, Ahn J, Kim HJ, Park I. Bioinspired Omnidirectional Interface Engineered Flexible Island for Highly Stretchable Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2410247. [PMID: 39891029 DOI: 10.1002/smll.202410247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/05/2025] [Indexed: 02/03/2025]
Abstract
With the advancement of electronics, there is a growing need to effectively combine rigid, flexible, and stretchable materials to build hybrid electronics. However, the interfacial transition between rigid/flexible and stretchable substrates presents considerable challenges, mainly due to differences in elastic moduli, complicating their integration for practical usage. Here, bioinspired omnidirectional interfacial-engineered flexible islands (BOIEFI) are introduced for a robust transition from flexible to stretchable substrates. These BOIEFIs enable the creation of highly stretchable and durable hybrid substrates capable of withstanding diverse physical deformations such as stretching, twisting, and even poking. Inspired by plant roots, BOIEFIs are designed with primary and secondary root structures that provide flexible mechanical interlocking between substrates with different elastic moduli. Through experimental and computational methods, optimized BOIEFIs exhibit significantly enhanced stretchability and improved fatigue life. To demonstrate the broad applicability, light-emitting diodes (LEDs) are integrated into BOIEFIs to establish a stretchable display. In addition, a human-machine interface device with soft pressure sensors and an LED array is fabricated for the implementation of hybrid electronics. This approach facilitates the harmonious integration of rigid, flexible, and stretchable substrates, leading to the creation of soft, highly stretchable, and durable hybrid electronics.
Collapse
Affiliation(s)
- Osman Gul
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, Yuseong-gu, 34141, Republic of Korea
- Intelligent Components and Sensors Research Section, Electronics and Telecommunication Research Institute (ETRI), 218 Gajeong-ro, Daejeon, Yuseong-gu, 34129, Republic of Korea
| | - Myoung Song
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, Yuseong-gu, 34141, Republic of Korea
| | - Chang-Yeon Gu
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, Yuseong-gu, 34141, Republic of Korea
| | - Jihyeon Ahn
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, Yuseong-gu, 34141, Republic of Korea
| | - Kichul Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, Yuseong-gu, 34141, Republic of Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, Yuseong-gu, 34141, Republic of Korea
| | - Junseong Ahn
- Department of Control and Instrumentation Engineering, Korea University, Sejong, 30019, Republic of Korea
| | - Hye Jin Kim
- Intelligent Components and Sensors Research Section, Electronics and Telecommunication Research Institute (ETRI), 218 Gajeong-ro, Daejeon, Yuseong-gu, 34129, Republic of Korea
- Department of Advanced Device Technology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Inkyu Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, Yuseong-gu, 34141, Republic of Korea
| |
Collapse
|
3
|
Wen S, Zhang R, Zhao Y, Xu X, Ji S. Patterning Adhesive Layers for Array Electrodes via Electrochemically Grafted Polymers. ACS OMEGA 2025; 10:3190-3198. [PMID: 39895730 PMCID: PMC11780560 DOI: 10.1021/acsomega.4c10830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/27/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025]
Abstract
Electrophysiological sensors (electrodes) are used to collect complex electrophysiological signals, providing extensive information about the body's condition. Reliable signal acquisition necessitates stable skin-electrode interfaces to prevent adverse effects arising from interface variations. Although the incorporation of conductive adhesive layers can improve the stability of these interfaces, in array electrodes, the layer may also cause short circuits and signal crosstalk. Here, we propose a general strategy for patterning the adhesive layer of array electrodes based on electrochemically grafted adhesive polymers (EGAPs). Utilizing the conductivity differences between the sensing sites and the substrate material of flexible electrodes, spatial selective loading of adhesive and ionically conductive polymers can be achieved through in situ electrochemical reactions, thus realizing spontaneous patterning. This EGAP-based method allows for a rapid and selective electrode surface modification in just two steps. Furthermore, array electrodes with EGAP acquired stable electrophysiological signals while improving the stability of the skin-electrode interface and the quality of signal collected and effectively avoided signal crosstalk between arrayed sensing sites.
Collapse
Affiliation(s)
- Shuai Wen
- Institute
of Functional Nano & Soft Materials (FUNSOM), College of Nano
Science and Technology (CNST), Jiangsu Key Laboratory for Carbon-Based
Functional Materials & Devices, Soochow
University, Suzhou 215123, China
| | - Ruipeng Zhang
- Institute
of Functional Nano & Soft Materials (FUNSOM), College of Nano
Science and Technology (CNST), Jiangsu Key Laboratory for Carbon-Based
Functional Materials & Devices, Soochow
University, Suzhou 215123, China
| | - Yahui Zhao
- Institute
of Functional Nano & Soft Materials (FUNSOM), College of Nano
Science and Technology (CNST), Jiangsu Key Laboratory for Carbon-Based
Functional Materials & Devices, Soochow
University, Suzhou 215123, China
| | - Xinyue Xu
- Department
of Polymer Science and Engineering, College of Chemistry, Chemical
Engineering and Materials Science, Soochow
University, Suzhou 215123, China
| | - Shaobo Ji
- Institute
of Functional Nano & Soft Materials (FUNSOM), College of Nano
Science and Technology (CNST), Jiangsu Key Laboratory for Carbon-Based
Functional Materials & Devices, Soochow
University, Suzhou 215123, China
| |
Collapse
|
4
|
Kim M, Hong S, Khan R, Park JJ, In JB, Ko SH. Recent Advances in Nanomaterial-Based Biosignal Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405301. [PMID: 39610205 DOI: 10.1002/smll.202405301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/26/2024] [Indexed: 11/30/2024]
Abstract
Recent research for medical fields, robotics, and wearable electronics aims to utilize biosignal sensors to gather bio-originated information and generate new values such as evaluating user well-being, predicting behavioral patterns, and supporting disease diagnosis and prevention. Notably, most biosignal sensors are designed for body placement to directly acquire signals, and the incorporation of nanomaterials such as metal-based nanoparticles or nanowires, carbon-based or polymer-based nanomaterials-offering stretchability, high surface-to-volume ratio, and tunability for various properties-enhances their adaptability for such applications. This review categorizes nanomaterial-based biosignal sensors into three types and analyzes them: 1) biophysical sensors that detect deformation such as folding, stretching, and even pulse, 2) bioelectric sensors that capture electric signal originating from human body such as heart and nerves, and 3) biochemical sensors that catch signals from bio-originated fluids such as sweat, saliva and blood. Then, limitations and improvements to nanomaterial-based biosignal sensors is depicted. Lastly, it is highlighted on deep learning-based signal processing and human-machine interface applications, which can enhance the potential of biosignal sensors. Through this paper, it is aim to provide an understanding of nanomaterial-based biosignal sensors, outline the current state of the technology, discuss the challenges that be addressed, and suggest directions for development.
Collapse
Affiliation(s)
- Minwoo Kim
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangwoo Hong
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Rizwan Khan
- Soft Energy Systems and Laser Applications Laboratory, School of Mechanical Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jung Jae Park
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung Bin In
- Soft Energy Systems and Laser Applications Laboratory, School of Mechanical Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
- Department of Intelligent Energy and Industry, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research / Institute of Advanced Machines and Design, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
5
|
Janczak D, Wójkowska K, Raczyński T, Zych M, Lepak-Kuc S, Szałapak J, Nelo M, Kądziela A, Wróblewski G, Jantunen H, Jakubowska M. Development of Highly Stretchable Ag-MWCNT Composite for Screen-Printed Textile Electronics with Improved Mechanical and Electrical Properties. Nanotechnol Sci Appl 2024; 17:289-302. [PMID: 39723410 PMCID: PMC11669482 DOI: 10.2147/nsa.s493579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction The rapid growth of flexible and wearable electronics has created a need for materials that offer both mechanical durability and high conductivity. Textile electronics, which integrate electronic pathways into fabrics, are pivotal in this field but face challenges in maintaining stable electrical performance under mechanical strain. This study develops highly stretchable silver multi-walled carbon nanotube (Ag-MWCNT) composites, tailored for screen printing and heat-transfer methods, to address these challenges. Methods Silver flakes dispersed in a thermoplastic polyurethane (TPU) matrix formed the base composite, which was initially evaluated under tensile and cyclic stretching conditions. Resistance drift observed in these tests prompted the incorporation of multi-walled carbon nanotubes (MWCNTs). Leveraging their high aspect ratio and conductivity, MWCNTs were homogenized into the composite at varying concentrations. The resulting Ag-MWCNT composites were assessed through cyclic stretching and thermal shock tests to evaluate electrical and mechanical performance. Results Incorporating MWCNTs improved composite performance, reducing resistance change amplitude by 40% and stabilizing resistance within 2-8 Ohms under mechanical stress. These materials demonstrated superior electrical stability and durability, maintaining consistent performance over extended use compared to Ag/TPU alone. Discussion This study highlights the critical role of MWCNTs in enhancing the reliability of conductive composites for textile electronics. By addressing resistance drift and stabilizing electrical properties, these advancements enable more robust and long-lasting wearable technologies. The demonstrated feasibility of combining screen-printing and heat-transfer techniques provides a scalable approach for manufacturing flexible electronics, paving the way for further innovation in industrial applications.
Collapse
Affiliation(s)
- Daniel Janczak
- Institute of Mechanics and Printing, Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Warsaw, Poland
- The Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland
| | - Katarzyna Wójkowska
- Institute of Mechanics and Printing, Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Tomasz Raczyński
- Institute of Mechanics and Printing, Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Warsaw, Poland
- The Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland
| | - Marcin Zych
- The Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland
| | - Sandra Lepak-Kuc
- Institute of Mechanics and Printing, Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Warsaw, Poland
- The Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland
| | - Jerzy Szałapak
- Institute of Mechanics and Printing, Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Warsaw, Poland
- The Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland
| | - Mikko Nelo
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland
| | - Aleksandra Kądziela
- Institute of Mechanics and Printing, Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Grzegorz Wróblewski
- The Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland
| | - Heli Jantunen
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland
| | - Małgorzata Jakubowska
- Institute of Mechanics and Printing, Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Warsaw, Poland
- The Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
6
|
Dong J, Hou J, Peng Y, Zhang Y, Liu H, Long J, Park S, Liu T, Huang Y. Breathable and Stretchable Epidermal Electronics for Health Management: Recent Advances and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409071. [PMID: 39420650 DOI: 10.1002/adma.202409071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/07/2024] [Indexed: 10/19/2024]
Abstract
Advanced epidermal electronic devices, capable of real-time monitoring of physical, physiological, and biochemical signals and administering appropriate therapeutics, are revolutionizing personalized healthcare technology. However, conventional portable electronic devices are predominantly constructed from impermeable and rigid materials, which thus leads to the mechanical and biochemical disparities between the devices and human tissues, resulting in skin irritation, tissue damage, compromised signal-to-noise ratio (SNR), and limited operational lifespans. To address these limitations, a new generation of wearable on-skin electronics built on stretchable and porous substrates has emerged. These substrates offer significant advantages including breathability, conformability, biocompatibility, and mechanical robustness, thus providing solutions for the aforementioned challenges. However, given their diverse nature and varying application scenarios, the careful selection and engineering of suitable substrates is paramount when developing high-performance on-skin electronics tailored to specific applications. This comprehensive review begins with an overview of various stretchable porous substrates, specifically focusing on their fundamental design principles, fabrication processes, and practical applications. Subsequently, a concise comparison of various methods is offered to fabricate epidermal electronics by applying these porous substrates. Following these, the latest advancements and applications of these electronics are highlighted. Finally, the current challenges are summarized and potential future directions in this dynamic field are explored.
Collapse
Affiliation(s)
- Jiancheng Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jiayu Hou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yidong Peng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yuxi Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Haoran Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jiayan Long
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yunpeng Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
7
|
Li W, Ma S, Liu Y, Lin H, Lv H, Shi W, Ao J. Environmental therapy: interface design strategies for color graphics to assist navigational tasks in patients with visuospatial disorders through an analytic hierarchy process based on CIE color perception. Front Psychol 2024; 15:1348023. [PMID: 39529723 PMCID: PMC11551028 DOI: 10.3389/fpsyg.2024.1348023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Environmental therapy theory has been applied in the research of disease prevention, and the effectiveness of using color and graphic designs to assist patients with spatial orientation has been confirmed. Visual-spatial impairments are common symptoms associated with cognitive decline. However, the interaction and driving factors between these impairments and spatial color and graphic designs remain unclear. Methods This paper first discusses the correlation between the characteristics of visual-spatial impairments and environmental factors and then investigates the color preferences of such patients based on the CIE 1976 color system and the Analytic Hierarchy Process (AHP). Subsequently, the paper explores spatial design strategies conducive to spatial orientation from the perspective of adaptability to pathological characteristics, utilizing case study analysis. Results (1) Pathological characteristics of visual-spatial impairments (such as difficulties in spatial orientation and spatial neglect) are related to environmental factors; (2) Emotional attachment factors play a key role in patients' perception of satisfaction with environmental colors; (3) Color associations have the potential to strengthen spatial memory. Additionally, interface designs with high luminance, low saturation, and clear color differentiation facilitate patients' recognition of space. Discussion This paper posits that spatial interface design is a feasible approach to assist with spatial orientation, and it achieves this through a mediating process that progresses from influencing visual stimuli to cognitive memory and then to behavioral orientation. The article provides insights into the operational feasibility of this method.
Collapse
Affiliation(s)
- Weicong Li
- Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Shangbing Ma
- Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Yueling Liu
- School of Creativity and Design, Guangzhou Huashang College, Guangzhou, China
| | - Haopai Lin
- School of Art and Design, Guangdong University of Finance and Economics, Guangzhou, China
| | - Huabin Lv
- School of Creativity and Design, Guangzhou Huashang College, Guangzhou, China
| | - Wenwen Shi
- School of Culture Communication & Design, Zhejiang University of Finance and Economics Dongfang College, Haining, China
| | - Jinghui Ao
- School of Art and Design, Guangdong University of Finance and Economics, Guangzhou, China
| |
Collapse
|
8
|
Shim C, Lee S, Kong M, Kim I, Kwak J, Jang W, Jeong S, Kim DW, Soon A, Jeong U. Corrosion-Resistant Ultrathin Cu Film Deposited on N-Doped Amorphous Carbon Film Substrate and Its Use for Crumpleable Circuit Board. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403587. [PMID: 39206711 PMCID: PMC11516104 DOI: 10.1002/advs.202403587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/04/2024] [Indexed: 09/04/2024]
Abstract
Copper (Cu) is widely used as an industrial electrode due to its high electrical conductivity, mechanical properties, and cost-effectiveness. However, Cu is susceptible to corrosion, which degrades device performance over time. Although various methods (alloying, physical passivation, surface treatment, etc.) are introduced to address the corrosion issue, they can cause decreased conductivity or vertical insulation. Here, using the nitrogen-doped amorphous carbon (a-C:N) thin film is proposed as a substrate on which Cu is directly deposited. This simple method significantly inhibits corrosion of ultrathin Cu (<20 nm) films in humid conditions, enabling the fabrication of ultrathin electronic circuit boards without corrosion under ambient conditions. This study investigates the origin of corrosion resistance through comprehensive microscopic/spectroscopic characterizations and density-functional theory (DFT) calculations: i) diffusion of Cu atoms into the a-C:N driven by stable C-Cu-N bond formation, ii) diffusion of N atoms from the a-C:N to the Cu layer heading the top surface, which is the thermodynamically preferred location for N, and iii) the doped N atoms in Cu layer suppress the inclusion of O into the Cu lattice. By leveraging the ultrathinness and deformability of the circuit board, a transparent electrode and a crumpleable LED lighting device are demonstrated.
Collapse
Affiliation(s)
- Chae‐Eun Shim
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Sangseob Lee
- Department of Materials Science and Engineering and Center for Artificial Synesthesia MaterialsYonsei UniversitySeoul03722Republic of Korea
| | - Minsik Kong
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Ik‐Soo Kim
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Jaeik Kwak
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Woosun Jang
- Department of Integrated Science and Engineering DivisionUnderwood International CollegeYonsei UniversityIncheon21983Republic of Korea
| | - Se‐Young Jeong
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Dong Wook Kim
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Aloysius Soon
- Department of Materials Science and Engineering and Center for Artificial Synesthesia MaterialsYonsei UniversitySeoul03722Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| |
Collapse
|
9
|
Kim J, Roh H, Moon S, Jeon C, Baek S, Cho W, Sim JY, Jeong U. Wireless breathable face mask sensor for spatiotemporal 2D respiration profiling and respiratory diagnosis. Biomaterials 2024; 309:122579. [PMID: 38670033 DOI: 10.1016/j.biomaterials.2024.122579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
Owing to air pollution and the pandemic outbreak, the need for quantitative pulmonary monitoring has greatly increased. The COVID-19 outbreak has aroused attention for comfortable wireless monitoring of respiratory profiles and more real-time diagnosis of respiratory diseases. Although respiration sensors have been investigated extensively with single-pixel sensors, 2D respiration profiling with a pixelated array sensor has not been demonstrated for both exhaling and inhaling. Since the pixelated array sensor allowed for simultaneous profiling of the nasal breathing and oral breathing, it provides essential respiratory information such as breathing patterns, respiration habit, breathing disorders. In this study, we introduced an air-permeable, stretchable, and a pixelated pressure sensor that can be integrated into a commercial face mask. The mask sensor showed a strain-independent pressure-sensing performance, providing 2D pressure profiles for exhalation and inhalation. Real-time 2D respiration profiles could monitor various respiratory behaviors, such as oral/nasal breathing, clogged nose, out-of-breath, and coughing. Furthermore, they could detect respiratory diseases, such as rhinitis, sleep apnea, and pneumonia. The 2D respiratory profiling mask sensor is expected to be employed for remote respiration monitoring and timely patient treatment.
Collapse
Affiliation(s)
- Jaehyun Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| | - Heesung Roh
- Department of Convergence IT Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| | - Sungmin Moon
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| | - Cheonhoo Jeon
- School of Electronics and Electrical Engineering, Dankook University, Yongin, Gyeonggi, 16890, South Korea
| | - Seunggoo Baek
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| | - Woosung Cho
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| | - Jae-Yoon Sim
- Department of Electrical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea.
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea.
| |
Collapse
|
10
|
Lee DH, Yea J, Ha J, Kim D, Kim S, Lee J, Park JU, Park T, Jang KI. Rugged Island-Bridge Inorganic Electronics Mounted on Locally Strain-Isolated Substrates. ACS NANO 2024; 18:13061-13072. [PMID: 38721824 DOI: 10.1021/acsnano.4c01759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Various strain isolation strategies that combine rigid and stretchable regions for stretchable electronics were recently proposed, but the vulnerability of inorganic materials to mechanical stress has emerged as a major impediment to their performance. We report a strain-isolation system that combines heteropolymers with different elastic moduli (i.e., hybrid stretchable polymers) and utilize it to construct a rugged island-bridge inorganic electronics system. Two types of prepolymers were simultaneously cross-linked to form an interpenetrating polymer network at the rigid-stretchable interface, resulting in a hybrid stretchable polymer that exhibited efficient strain isolation and mechanical stability. The system, including stretchable micro-LEDs and microheaters, demonstrated consistent operation under external strain, suggesting that the rugged island-bridge inorganic electronics mounted on a locally strain-isolated substrate offer a promising solution for replacing conventional stretchable electronics, enabling devices with a variety of form factors.
Collapse
Affiliation(s)
- Dae Hwan Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Junwoo Yea
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Jeongdae Ha
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Dohyun Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sungryong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Junwoo Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Taiho Park
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Kyung-In Jang
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
- ENSIDE Corporation, Daegu 42988, Republic of Korea
| |
Collapse
|
11
|
Hou S, Chen C, Bai L, Yu J, Cheng Y, Huang W. Stretchable Electronics with Strain-Resistive Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306749. [PMID: 38078789 DOI: 10.1002/smll.202306749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/15/2023] [Indexed: 03/16/2024]
Abstract
Stretchable electronics have attracted tremendous attention amongst academic and industrial communities due to their prospective applications in personal healthcare, human-activity monitoring, artificial skins, wearable displays, human-machine interfaces, etc. Other than mechanical robustness, stable performances under complex strains in these devices that are not for strain sensing are equally important for practical applications. Here, a comprehensive summarization of recent advances in stretchable electronics with strain-resistive performance is presented. First, detailed overviews of intrinsically strain-resistive stretchable materials, including conductors, semiconductors, and insulators, are given. Then, systematic representations of advanced structures, including helical, serpentine, meshy, wrinkled, and kirigami-based structures, for strain-resistive performance are summarized. Next, stretchable arrays and circuits with strain-resistive performance, that integrate multiple functionalities and enable complex behaviors, are introduced. This review presents a detailed overview of recent progress in stretchable electronics with strain-resistive performances and provides a guideline for the future development of stretchable electronics.
Collapse
Affiliation(s)
- Sihui Hou
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Cong Chen
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Libing Bai
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Junsheng Yu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yuhua Cheng
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Wei Huang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
12
|
Chang S, Koo JH, Yoo J, Kim MS, Choi MK, Kim DH, Song YM. Flexible and Stretchable Light-Emitting Diodes and Photodetectors for Human-Centric Optoelectronics. Chem Rev 2024; 124:768-859. [PMID: 38241488 DOI: 10.1021/acs.chemrev.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Optoelectronic devices with unconventional form factors, such as flexible and stretchable light-emitting or photoresponsive devices, are core elements for the next-generation human-centric optoelectronics. For instance, these deformable devices can be utilized as closely fitted wearable sensors to acquire precise biosignals that are subsequently uploaded to the cloud for immediate examination and diagnosis, and also can be used for vision systems for human-interactive robotics. Their inception was propelled by breakthroughs in novel optoelectronic material technologies and device blueprinting methodologies, endowing flexibility and mechanical resilience to conventional rigid optoelectronic devices. This paper reviews the advancements in such soft optoelectronic device technologies, honing in on various materials, manufacturing techniques, and device design strategies. We will first highlight the general approaches for flexible and stretchable device fabrication, including the appropriate material selection for the substrate, electrodes, and insulation layers. We will then focus on the materials for flexible and stretchable light-emitting diodes, their device integration strategies, and representative application examples. Next, we will move on to the materials for flexible and stretchable photodetectors, highlighting the state-of-the-art materials and device fabrication methods, followed by their representative application examples. At the end, a brief summary will be given, and the potential challenges for further development of functional devices will be discussed as a conclusion.
Collapse
Affiliation(s)
- Sehui Chang
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Ja Hoon Koo
- Department of Semiconductor Systems Engineering, Sejong University, Seoul 05006, Republic of Korea
- Institute of Semiconductor and System IC, Sejong University, Seoul 05006, Republic of Korea
| | - Jisu Yoo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min Seok Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Moon Kee Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), UNIST, Ulsan 44919, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, SNU, Seoul 08826, Republic of Korea
- Interdisciplinary Program for Bioengineering, SNU, Seoul 08826, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Artificial Intelligence (AI) Graduate School, GIST, Gwangju 61005, Republic of Korea
| |
Collapse
|
13
|
Ai L, Lin W, Cao C, Li P, Wang X, Lv D, Li X, Yang Z, Yao X. Tough soldering for stretchable electronics by small-molecule modulated interfacial assemblies. Nat Commun 2023; 14:7723. [PMID: 38001116 PMCID: PMC10673831 DOI: 10.1038/s41467-023-43574-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
The rapid-developing soft robots and wearable devices require flexible conductive materials to maintain electric functions over a large range of deformations. Considerable efforts are made to develop stretchable conductive materials; little attention is paid to the frequent failures of integrated circuits caused by the interface mismatch of soft substrates and rigid silicon-based microelectronics. Here, we present a stretchable solder with good weldability that can strongly bond with electronic components, benefiting from the hierarchical assemblies of liquid metal particles, small-molecule modulators, and non-covalently crosslinked polymer matrix. Our self-solder shows high conductivity (>2×105 S m-1), extreme stretchability (~1000%, and >600% with chip-integrated), and high toughness (~20 MJ m-3). Additionally, the dynamic interactions within our solder's surface and interior enable a range of unique features, including ease of integration, component substitution, and circuit recyclability. With all these features, we demonstrated an application as thermoforming technology for three-dimensional (3D) conformable electronics, showing potential in reducing the complexity of microchip interfacing, as well as scalable fabrication of chip-integrated stretchable circuits and 3D electronics.
Collapse
Affiliation(s)
- Liqing Ai
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Weikang Lin
- Department of Mechanical & Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Chunyan Cao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Pengyu Li
- Department of Mechanical & Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Xuejiao Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Dong Lv
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Xin Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Zhengbao Yang
- Department of Mechanical & Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, 999077, China.
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China.
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518000, China.
| |
Collapse
|
14
|
Song S, Hong H, Kim KY, Kim KK, Kim J, Won D, Yun S, Choi J, Ryu YI, Lee K, Park J, Kang J, Bang J, Seo H, Kim YC, Lee D, Lee H, Lee J, Hwang SW, Ko SH, Jeon H, Lee W. Photothermal Lithography for Realizing a Stretchable Multilayer Electronic Circuit Using a Laser. ACS NANO 2023; 17:21443-21454. [PMID: 37857269 DOI: 10.1021/acsnano.3c06207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Photolithography is a well-established fabrication method for realizing multilayer electronic circuits. However, it is challenging to adopt photolithography to fabricate intrinsically stretchable multilayer electronic circuits fully composed of an elastomeric matrix, due to the opacity of thick stretchable nanocomposite conductors. Here, we present photothermal lithography that can pattern elastomeric conductors and via holes using pulsed lasers. The photothermal-patterned stretchable nanocomposite conductor exhibits 3 times higher conductivity (5940 S cm-1) and 5 orders of magnitude lower resistance change (R/R0 = 40) under a 30% strained 5000th cyclic stretch, compared to those of a screen-printed conductor, based on the percolation network formed by spatial heating of the laser. In addition, a 50 μm sized stretchable via holes can be patterned on the passivation without material ablation and electrical degradation of the bottom conductor. By repeatedly patterning the conductor and via holes, highly conductive and durable multilayer circuits can be stacked with layer-by-layer material integration. Finally, a stretchable wireless pressure sensor and passive matrix LED array are demonstrated, thus showing the potential for a stretchable multilayer electronic circuit with durability, high density, and multifunctionality.
Collapse
Affiliation(s)
- Sangmin Song
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyejun Hong
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kyung Yeun Kim
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kyun Kyu Kim
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jaewoo Kim
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Daeyeon Won
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Soyoung Yun
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Joonhwa Choi
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Young-In Ryu
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kyungwoo Lee
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jaeho Park
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Joohyuk Kang
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Junhyuk Bang
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyunseon Seo
- School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yu-Chan Kim
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Daeho Lee
- Department of Mechanical Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Haechang Lee
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jinwoo Lee
- Department of Mechanical, Robotics, and Energy Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Seung Hwan Ko
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hojeong Jeon
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Wonryung Lee
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science & Technology (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
15
|
Kim TY, Hong SH, Jeong SH, Bae H, Cheong S, Choi H, Hahn SK. Multifunctional Intelligent Wearable Devices Using Logical Circuits of Monolithic Gold Nanowires. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303401. [PMID: 37499253 DOI: 10.1002/adma.202303401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/25/2023] [Indexed: 07/29/2023]
Abstract
Although multifunctional wearable devices have been widely investigated for healthcare systems, augmented/virtual realities, and telemedicines, there are few reports on multiple signal monitoring and logical signal processing by using one single nanomaterial without additional algorithms or rigid application-specific integrated circuit chips. Here, multifunctional intelligent wearable devices are developed using monolithically patterned gold nanowires for both signal monitoring and processing. Gold bulk and hollow nanowires show distinctive electrical properties with high chemical stability and high stretchability. In accordance, the monolithically patterned gold nanowires can be used to fabricate the robust interfaces, programmable sensors, on-demand heating systems, and strain-gated logical circuits. The stretchable sensors show high sensitivity for strain and temperature changes on the skin. Furthermore, the micro-wrinkle structures of gold nanowires exhibit the negative gauge factor, which can be used for strain-gated logical circuits. Taken together, this multifunctional intelligent wearable device would be harnessed as a promising platform for futuristic electronic and biomedical applications.
Collapse
Affiliation(s)
- Tae Yeon Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Sang Hoon Hong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Sang Hoon Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Hanseo Bae
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Sunah Cheong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Hyunsik Choi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona, 08028, Spain
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| |
Collapse
|
16
|
de Sousa RR, Heinze DA, Sacramento JB, Lanfredi AJC, Carastan DJ. Electrical Conductivity and In Situ SAXS Probing of Block Copolymer Nanocomposites Under Mechanical Stretching. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37235644 DOI: 10.1021/acsami.3c03573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Elastomers based on block copolymers can self-organize into ordered nanoscale structures, making them attractive for use as flexible conductive nanocomposites. Understanding how ordered structures impact electrical properties is essential for practical applications. This study investigated the morphological evolution of flexible conductive elastomers based on polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) block copolymers with aligned single- or multi-wall carbon nanotubes (SWCNTs or MWCNTs) and their electrical conductivity under large deformations. Oriented nanocomposites were obtained through injection molding and characterized using two different setups: tensile testing monitored by in situ small-angle X-ray scattering (SAXS) and tensile testing with simultaneous electrical conductivity measurements. Our findings demonstrate that structural orientation significantly influences electrical conductivity, with higher conductivity in the longitudinal direction due to the preferred orientation of carbon nanotubes. Tensile testing demonstrated that carbon nanotubes accelerate the process of realignment of the ordered structure. As a consequence, higher deformations reduced the conductivity of samples with longitudinal alignment due to the disruption of percolation contacts between nanotubes, while in samples with a transverse alignment the process promoted the formation of a new conductive network, increasing electrical conductivity.
Collapse
Affiliation(s)
- Rogerio R de Sousa
- Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC (UFABC), Av. Dos Estados, 5001, Santo André, São Paulo 09210-580, Brazil
| | - Daniel A Heinze
- Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC (UFABC), Av. Dos Estados, 5001, Santo André, São Paulo 09210-580, Brazil
| | - Joana B Sacramento
- Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC (UFABC), Av. Dos Estados, 5001, Santo André, São Paulo 09210-580, Brazil
| | - Alexandre J C Lanfredi
- Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC (UFABC), Av. Dos Estados, 5001, Santo André, São Paulo 09210-580, Brazil
| | - Danilo J Carastan
- Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC (UFABC), Av. Dos Estados, 5001, Santo André, São Paulo 09210-580, Brazil
| |
Collapse
|
17
|
Yuan Y, Zhu H, Wang X, Zhang G, Qiu L. Enhancing the Elasticity of Conjugated Polymers through Precise Control of the Spacing between the Backbone and Siloxane Side-Chains. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22341-22350. [PMID: 37102202 DOI: 10.1021/acsami.3c02841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Intrinsically stretchable conjugated polymers (CPs) have extensively been studied for the development of novel flexible electronic devices. In this work, a method to control the elastic properties of CPs has been proposed via regulation of spacer length between the siloxane side-chain and the backbone. The target polymers were CP films with the structure P(mC-Si) for four different numbers of the spacer methylene groups, namely, m = 5, 6, 7, and 8. The effect of spacer length on the aggregation state as well as on electrical and elastic properties of the prepared films was then investigated. An adjustable lamellar spacing (dL-L), in addition to improved elastic properties, was achieved as the spacer length was changed in the prepared polymer films. Moreover, P(7C-Si) has a sufficient dL-L value of 35.77 Å, which provides enough space for inter-chain sliding to dissipate stress. This facilitated the dissipation of stress during the straining process. At a strain value of 100% in the vertical direction, the mobility of the P(7C-Si) film was 0.79 cm2 V-1 s-1 and reduced to 84.0% of the initial value without any applied strain. The study provides clear evidence that tuning the spacer length between the silicone endgroup and backbone is an effective way to improve the intrinsic stretchability of CPs with siloxane side chains.
Collapse
Affiliation(s)
- Ye Yuan
- National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Haoran Zhu
- National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Xiaohong Wang
- National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Guobing Zhang
- National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Longzhen Qiu
- National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
18
|
Kim DW, Kim SW, Lee G, Yoon J, Kim S, Hong JH, Jo SC, Jeong U. Fabrication of practical deformable displays: advances and challenges. LIGHT, SCIENCE & APPLICATIONS 2023; 12:61. [PMID: 36869021 PMCID: PMC9984414 DOI: 10.1038/s41377-023-01089-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/16/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Display form factors such as size and shape have been conventionally determined in consideration of usability and portability. The recent trends requiring wearability and convergence of various smart devices demand innovations in display form factors to realize deformability and large screens. Expandable displays that are foldable, multi-foldable, slidable, or rollable have been commercialized or on the edge of product launches. Beyond such two-dimensional (2D) expansion of displays, efforts have been made to develop three dimensional (3D) free-form displays that can be stretched and crumpled for use in realistic tactile sensation, artificial skin for robots, and on-skin or implantable displays. This review article analyzes the current state of the 2D and 3D deformable displays and discusses the technological challenges to be achieved for industrial commercialization.
Collapse
Affiliation(s)
- Dong Wook Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, 37673, Pohang, Gyeongbuk, Republic of Korea
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Hisenbergstr. 3, 70569, Stuttgart, Germany
| | - Seong Won Kim
- Advanced Research Team, Samsung Display Corporation, 1 Samsung-ro, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Gyujeong Lee
- Advanced Research Team, Samsung Display Corporation, 1 Samsung-ro, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Jangyeol Yoon
- Advanced Research Team, Samsung Display Corporation, 1 Samsung-ro, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Sangwoo Kim
- Advanced Research Team, Samsung Display Corporation, 1 Samsung-ro, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Jong-Ho Hong
- Advanced Research Team, Samsung Display Corporation, 1 Samsung-ro, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Sung-Chan Jo
- Advanced Research Team, Samsung Display Corporation, 1 Samsung-ro, Yongin-si, Gyeonggi-do, Republic of Korea.
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, 37673, Pohang, Gyeongbuk, Republic of Korea.
| |
Collapse
|
19
|
Liu J, Guo H, Liu H, Lu T. Designing Hierarchical Soft Network Materials with Developable Lattice Nodes for High Stretchability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206099. [PMID: 36698297 PMCID: PMC10015852 DOI: 10.1002/advs.202206099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Soft network materials (SNMs) represent one of the best candidates for the substrates and the encapsulation layers of stretchable inorganic electronics, because they are capable of precisely customizing the J-shaped stress-strain curves of biological tissues. Although a variety of microstructures and topologies have been exploited to adjust the nonlinear stress-strain responses of SNMs, the stretchability of most SNMs is hard to exceed 100%. Designing novel high-strength SNMs with much larger stretchability (e.g., >200%) than existing SNMs and conventional elastomers remains a challenge. This paper develops a class of hierarchical soft network materials (HSNMs) with developable lattice nodes, which can significantly improve the stretchability of SNMs without any loss of strength. The effects of geometric parameters, lattice topologies, and loading directions on the mechanical properties of HSNMs are systematically discussed by experiments and numerical simulations. The proposed node design strategy for SNMs is also proved to be widely applicable to different constituent materials, including polymers and metals.
Collapse
Affiliation(s)
- Jianxing Liu
- State Key Lab for Strength and Vibration of Mechanical StructuresSoft Machines LabDepartment of Engineering MechanicsXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Haoyu Guo
- State Key Lab for Strength and Vibration of Mechanical StructuresSoft Machines LabDepartment of Engineering MechanicsXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Haiyang Liu
- State Key Lab for Strength and Vibration of Mechanical StructuresSoft Machines LabDepartment of Engineering MechanicsXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Tongqing Lu
- State Key Lab for Strength and Vibration of Mechanical StructuresSoft Machines LabDepartment of Engineering MechanicsXi'an Jiaotong UniversityXi'an710049P. R. China
| |
Collapse
|
20
|
Yang J, Zhang Z, Zhou P, Zhang Y, Liu Y, Xu Y, Gu Y, Qin S, Haick H, Wang Y. Toward a new generation of permeable skin electronics. NANOSCALE 2023; 15:3051-3078. [PMID: 36723108 DOI: 10.1039/d2nr06236d] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Skin-mountable electronics are considered to be the future of the next generation of portable electronics, due to their softness and seamless integration with human skin. However, impermeable materials limit device comfort and reliability for long-term, continuous usage. The recent emergence of permeable skin-mountable electronics has attracted tremendous attention in the soft electronics field. Herein, we provide a comprehensive and systematic review of permeable skin-mountable electronics. Typical porous materials and structures are first highlighted, followed by discussion of important device properties. Then, we review the latest representative applications of breathable skin-mountable electronics, such as bioelectrical sensors, temperature sensors, humidity and hydration sensors, strain and pressure sensors, and energy harvesting and storage devices. Finally, a conclusion and future directions for permeable skin electronics are provided.
Collapse
Affiliation(s)
- Jiawei Yang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
| | - Zongman Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Pengcheng Zhou
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Yujie Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
| | - Yi Liu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
| | - Yumiao Xu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Yuheng Gu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Shenglin Qin
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong 515063, China
| |
Collapse
|
21
|
Chen S, Fan S, Qi J, Xiong Z, Qiao Z, Wu Z, Yeo JC, Lim CT. Ultrahigh Strain-Insensitive Integrated Hybrid Electronics Using Highly Stretchable Bilayer Liquid Metal Based Conductor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208569. [PMID: 36353902 DOI: 10.1002/adma.202208569] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Human-interfaced electronic systems require strain-resilient circuits. However, present integrated stretchable electronics easily suffer from electrical deterioration and face challenges in forming robust multilayered soft-rigid hybrid configurations. Here, a bilayer liquid-solid conductor (b-LSC) with amphiphilic properties is introduced to reliably interface with both rigid electronics and elastomeric substrates. The top liquid metal can self-solder its interface with rigid electronics at a resistance 30% lower than the traditional tin-soldered rigid interface. The bottom polar composite comprising liquid metal particles and polymers can not only reliably interface with elastomers but also help the b-LSC heal after breakage. The b-LSC can be scalably fabricated by printing and subsequent peeling strategies, showing ultra-high strain-insensitive conductivity (maximum 22 532 S cm-1 ), extreme stretchability (2260%), and negligible resistance change under ultra-high strain (0.34 times increase under 1000% strain). It can act as stretchable vertical interconnect access for connecting multilayered layouts and can be scalably and universally fabricated on various substrates with a resolution of ≈200 µm. It is demonstrated that it can construct stretchable sensor arrays, multi-layered stretchable displays, highly integrated haptic user-interactive optoelectric E-skins, visualized heaters, robot touch sensing systems, and wireless powering for wearable electronics.
Collapse
Affiliation(s)
- Shuwen Chen
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, 119276, Singapore
| | - Shicheng Fan
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Jiaming Qi
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Ze Xiong
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, 119276, Singapore
| | - Zheng Qiao
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Zixiong Wu
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Joo Chuan Yeo
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, 119276, Singapore
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, 119276, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
| |
Collapse
|
22
|
Bioinspired Strategies for Stretchable Conductors. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2236-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Yi P, Zou H, Yu Y, Li X, Li Z, Deng G, Chen C, Fang M, He J, Sun X, Liu X, Shui J, Yu R. MXene-Reinforced Liquid Metal/Polymer Fibers via Interface Engineering for Wearable Multifunctional Textiles. ACS NANO 2022; 16:14490-14502. [PMID: 36094895 DOI: 10.1021/acsnano.2c04863] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Stretchable conductive fibers are an important component of wearable electronic textiles, but often suffer from a decrease in conductivity upon stretching. The use of liquid metal (LM) droplets as conductive fillers in elastic fibers is a promising solution. However, there is an urgent need to develop effective strategies to achieve high adhesion of LM droplets to substrates and establish efficient electron transport paths between droplets. Here, we use large-sized MXene two-dimensional conductive materials to modify magnetic LM droplets and prepare MXene/magnetic LM/poly(styrene-butadiene-styrene) composite fibers (MLMS fibers). The MXene sheets decorated on the surface of magnetic LM droplets not only enhance the droplet adhesion to substrate but also bridge adjacent droplets to establish efficient conductive paths. MLMS fibers show several-fold improvements in tensile strength and elongation and a 30-fold increase in conductivity compared with pure LM-filled fibers. These conductive fibers can be easily woven into multifunctional textiles, which exhibit strong electromagnetic interference shielding and stable Joule heating performances even under large tensile deformation. In addition, other advantages of MLMS textiles, such as high gas/liquid permeability, strong chemical resistance (acid and alkaline conditions), high/low-temperature tolerance (-40-150 °C) and water washability, make them particularly suitable for wearable applications.
Collapse
Affiliation(s)
- Peng Yi
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, PR China
| | - Haihan Zou
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, PR China
| | - Yuanhang Yu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, PR China
| | - Xufeng Li
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, PR China
| | - Zhenyang Li
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, PR China
| | - Gao Deng
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, PR China
| | - Chunyan Chen
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, PR China
| | - Ming Fang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, PR China
| | - Junzhe He
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, PR China
- Science and Technology on Electromagnetic Scattering Laboratory, Beijing Institute of Environmental Features, Beijing 100854, PR China
| | - Xin Sun
- Science and Technology on Electromagnetic Scattering Laboratory, Beijing Institute of Environmental Features, Beijing 100854, PR China
| | - Xiaofang Liu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, PR China
| | - Jianglan Shui
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, PR China
| | - Ronghai Yu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, PR China
| |
Collapse
|
24
|
Jeon KH, Park JW. Light-Emitting Polymer Blended with Elastomers for Stretchable Polymer Light-Emitting Diodes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kun-Hoo Jeon
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea
| | - Jin-Woo Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
25
|
Ji S, Chen X. Enhancing the interfacial binding strength between modular stretchable electronic components. Natl Sci Rev 2022; 10:nwac172. [PMID: 36684519 PMCID: PMC9843131 DOI: 10.1093/nsr/nwac172] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/14/2022] [Accepted: 08/19/2022] [Indexed: 01/25/2023] Open
Abstract
Stretchable electronics are emerging for personalized and decentralized clinics, wearable devices and human-machine interactions. Nowadays, separated stretchable functional parts have been well developed and are approaching practical usage. However, the production of whole stretchable devices with full functions still faces a huge challenge: the integration of different components, which was hindered by the mechanical mismatch and stress/strain concentration at the connection interfaces. To avoid connection failure in stretchable devices, a new research focus is to improve the interfacial binding strength between different components. In this review, recent developments to enhance interfacial strength in wearable/implantable electronics are introduced and catalogued into three major strategies: (i) covalent bonding between different device parts, (ii) molecular interpenetration or mechanical interlocking at the interfaces and (iii) covalent connection between the human body and devices. Besides reviewing current methods, we also discuss the existing challenges and possible improvements for stretchable devices from the aspect of interfacial connections.
Collapse
Affiliation(s)
- Shaobo Ji
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University,Singapore 639798, Singapore
| | | |
Collapse
|
26
|
Veerapandian S, Kim W, Kim J, Jo Y, Jung S, Jeong U. Printable inks and deformable electronic array devices. NANOSCALE HORIZONS 2022; 7:663-681. [PMID: 35660837 DOI: 10.1039/d2nh00089j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Deformable printed electronic array devices are expected to revolutionize next-generation electronics. However, although remarkable technological advances in printable inks and deformable electronic array devices have recently been achieved, technical challenges remain to commercialize these technologies. In this review article a brief introduction to printing methods highlighting significant research studies on ink formation for conductors, semiconductors, and insulators is provided, and the structural design and successful printing strategies of deformable electronic array devices are described. Successful device demonstrations are presented in the applications of passive- and active-matrix array devices. Finally, perspectives and technological challenges to be achieved are pointed out to print practically available deformable devices.
Collapse
Affiliation(s)
- Selvaraj Veerapandian
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea.
| | - Woojo Kim
- Department of Convergence IT Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Jaehyun Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea.
| | - Youngmin Jo
- Department of Convergence IT Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Sungjune Jung
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea.
- Department of Convergence IT Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea.
| |
Collapse
|
27
|
Yin H, Zhu Y, Youssef K, Yu Z, Pei Q. Structures and Materials in Stretchable Electroluminescent Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106184. [PMID: 34647640 DOI: 10.1002/adma.202106184] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Stretchable electroluminescent (EL) devices are obtained by partitioning a large emission area into areas specifically for stretching and light-emission (island-bridge structure). Buckled and textile structures are also shown effective to combine the conventional light emitting diode fabrication with elastic substrates for structure-enabled stretchable EL devices. Meanwhile, intrinsically stretchable EL devices which are characterized with uniform stretchability down to microscopic scale are relatively less developed but promise simpler device structure and higher impact resistance. The challenges in fabricating intrinsically stretchable EL devices with high and robust performance are in many facets, including stretchable conductors, emissive materials, and compatible processes. For the stretchable transparent electrode, ionically conductive gel, conductive polymer coating, and conductor network in surface of elastomer are all proven useful. The stretchable EL materials are currently limited to conjugated polymers, conjugated polymers with surfactants and ionic conductors added to boost stretchability, and phosphor particles embedded in elastomer matrices. These emissive materials operate under different mechanisms, require different electrode materials and fabrication processes, and the corresponding EL devices face distinctive challenges. This review aims to provide a basic understanding of the materials meeting both the mechanical and electronic requirements and important techniques to fabricate the stretchable EL devices.
Collapse
Affiliation(s)
- Hexing Yin
- Soft Materials Research Laboratory, Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, 90015, USA
| | - Yuan Zhu
- Soft Materials Research Laboratory, Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, 90015, USA
| | - Kareem Youssef
- Soft Materials Research Laboratory, Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, 90015, USA
| | - Zhibin Yu
- Department of Industrial and Manufacturing Engineering, High-Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| | - Qibing Pei
- Soft Materials Research Laboratory, Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, 90015, USA
| |
Collapse
|
28
|
Hamasha K, Hamasha MM, Hamasha S. Effect of Thermal Aging on the Mechanical Properties of SAC305. MATERIALS 2022; 15:ma15082816. [PMID: 35454509 PMCID: PMC9028414 DOI: 10.3390/ma15082816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/24/2022]
Abstract
Many electronic products are subjected to heat for long periods, depending on their operations. Thus, it is expected that the physical and mechanical properties of electronic elements, including the soldering joints, will be affected. In this study, the impact of thermal aging time and temperature on the microstructure and mechanical properties of 96.5Sn–3.0Ag–0.5Cu (SAC305) was investigated. The samples used were SAC305 solder balls attached to copper pads. The research began by examining the microstructure of the aged samples at 150 °C for 100 and 1000 h. Then, this was compared to the microstructure of the same samples without thermal aging. Then, five groups of 10 samples were prepared from a shear stress–shear stain experiment. The first group was as produced, the second group was aged for 2 h, the third group was aged for 10 h, the fourth group was aged for 100 h, and the fifth group was aged for 1000 h. All groups were aged at a temperature of 150 °C. An Instron testing machine was used to plot a shear stress–shear stain curve until the ball was completely sheared off the pad. The mechanical properties, including the ultimate shear strength, the ultimate energy used to shear the ball, and the total energy used to shear the ball at all thermal aging times were then estimated. The results of this study indicated the formation of a layer of Cu6Sn5 over the copper pad, which thickened with thermal aging time. Furthermore, the ultimate and total shear strengths decreased with thermal aging time. The same procedure was repeated to assess the ultimate shear strength at 100 °C. The decrease in ultimate shear strength was more severe with increasing thermal aging temperature.
Collapse
Affiliation(s)
- Khozima Hamasha
- Department of Basic Scientific Sciences, Al-Huson University College, Al-Balqa Applied University, Al-Salt 19117, Jordan;
| | - Mohammad M. Hamasha
- Department of Industrial Engineering, Faculty of Engineering, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
- Correspondence:
| | - Sa’d Hamasha
- Department of Industrial and Systems Engineering, Auburn University, Auburn, AL 36849, USA;
| |
Collapse
|
29
|
Kim DW, Hyun C, Shin TJ, Jeong U. Precise Tuning of Multiple Perovskite Photoluminescence by Volume-Controlled Printing of Perovskite Precursor Solution on Cellulose Paper. ACS NANO 2022; 16:2521-2534. [PMID: 35044152 DOI: 10.1021/acsnano.1c09140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal halide perovskite nanocrystals (PeNCs) with a controlled quantum size effect have received intense interest for potential applications in optoelectronics and photonics. Here, we present a simple and innovative strategy to precisely tune the photoluminescence color of PeNCs by simply printing perovskite precursor solutions on cellulose papers. Depending on the volume of the printed precursor solutions, the PeNCs are autonomously grown into three discrete sizes, and their relative size population is controlled; accordingly, not only the number of multiple PL peaks but also their relative intensities can be precisely tuned. This autonomous size control is obtained through the efflorescence, which is advection of salt ions toward the surface of a porous medium during solvent evaporation and also through the confined crystal growth in the hierarchical structure of cellulose fibers. The infiltrated PeNCs are environmentally stable against moisture (for 3 months in air at 70% relative humidity) and strong light exposure by hydrophobic surface treatment. This study also demonstrates invisible encryption and highly secured unclonable anticounterfeiting patterns on deformable cellulose substrates and banknotes.
Collapse
Affiliation(s)
- Dong Wook Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, 37673 Pohang, Gyeongbuk, Republic of Korea
| | - Chohee Hyun
- UNIST Central Research Facilities, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, 44919 Ulsan, Republic of Korea
| | - Tae Joo Shin
- UNIST Central Research Facilities, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, 44919 Ulsan, Republic of Korea
- Gradute School of Semiconductor Material and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, 44919 Ulsan, Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, 37673 Pohang, Gyeongbuk, Republic of Korea
| |
Collapse
|
30
|
Hsieh GW, Shih LC, Chen PY. Porous Polydimethylsiloxane Elastomer Hybrid with Zinc Oxide Nanowire for Wearable, Wide-Range, and Low Detection Limit Capacitive Pressure Sensor. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:256. [PMID: 35055273 PMCID: PMC8779111 DOI: 10.3390/nano12020256] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023]
Abstract
We propose a flexible capacitive pressure sensor that utilizes porous polydimethylsiloxane elastomer with zinc oxide nanowire as nanocomposite dielectric layer via a simple porogen-assisted process. With the incorporation of nanowires into the porous elastomer, our capacitive pressure sensor is not only highly responsive to subtle stimuli but vigorously so to gentle touch and verbal stimulation from 0 to 50 kPa. The fabricated zinc oxide nanowire-porous polydimethylsiloxane sensor exhibits superior sensitivity of 0.717 kPa-1, 0.360 kPa-1, and 0.200 kPa-1 at the pressure regimes of 0-50 Pa, 50-1000 Pa, and 1000-3000 Pa, respectively, presenting an approximate enhancement by 21-100 times when compared to that of a flat polydimethylsiloxane device. The nanocomposite dielectric layer also reveals an ultralow detection limit of 1.0 Pa, good stability, and durability after 4000 loading-unloading cycles, making it capable of perception of various human motions, such as finger bending, calligraphy writing, throat vibration, and airflow blowing. A proof-of-concept trial in hydrostatic water pressure sensing has been demonstrated with the proposed sensors, which can detect tiny changes in water pressure and may be helpful for underwater sensing research. This work brings out the efficacy of constructing wearable capacitive pressure sensors based on a porous dielectric hybrid with stress-sensitive nanostructures, providing wide prospective applications in wearable electronics, health monitoring, and smart artificial robotics/prosthetics.
Collapse
Affiliation(s)
- Gen-Wen Hsieh
- Institute of Lighting and Energy Photonics, College of Photonics, National Yang Ming Chiao Tung University, 301, Section 2, Gaofa 3rd Road, Guiren District, Tainan 71150, Taiwan
| | - Liang-Cheng Shih
- Institute of Photonic System, College of Photonics, National Yang Ming Chiao Tung University, 301, Gaofa 3rd Road, Section 2, Guiren District, Tainan 71150, Taiwan; (L.-C.S.); (P.-Y.C.)
| | - Pei-Yuan Chen
- Institute of Photonic System, College of Photonics, National Yang Ming Chiao Tung University, 301, Gaofa 3rd Road, Section 2, Guiren District, Tainan 71150, Taiwan; (L.-C.S.); (P.-Y.C.)
| |
Collapse
|
31
|
Kwon KY, Cheeseman S, Frias-De-Diego A, Hong H, Yang J, Jung W, Yin H, Murdoch BJ, Scholle F, Crook N, Crisci E, Dickey MD, Truong VK, Kim TI. A Liquid Metal Mediated Metallic Coating for Antimicrobial and Antiviral Fabrics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104298. [PMID: 34550628 DOI: 10.1002/adma.202104298] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/24/2021] [Indexed: 05/24/2023]
Abstract
Fabrics are widely used in hospitals and many other settings for bedding, clothing, and face masks; however, microbial pathogens can survive on surfaces for a long time, leading to microbial transmission. Coatings of metallic particles on fabrics have been widely used to eradicate pathogens. However, current metal particle coating technologies encounter numerous issues such as nonuniformity, processing complexity, and poor adhesion. To overcome these issues, an easy-to-control and straightforward method is reported to coat a wide range of fabrics by using gallium liquid metal (LM) particles to facilitate the deposition of liquid metal copper alloy (LMCu) particles. Gallium particles coated on the fabric provide nucleation sites for forming LMCu particles at room temperature via galvanic replacement of Cu2+ ions. The LM helps promote strong adhesion of the particles to the fabric. The presence of the LMCu particles can eradicate over 99% of pathogens (including bacteria, fungi, and viruses) within 5 min, which is significantly more effective than control samples coated with only Cu. The coating remains effective over multiple usages and against contaminated droplets and aerosols, such as those encountered in facemasks. This facile coating method is promising for generating robust antibacterial, antifungal, and antiviral fabrics and surfaces.
Collapse
Affiliation(s)
- Ki Yoon Kwon
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Samuel Cheeseman
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Alba Frias-De-Diego
- College of Veterinary Medicine, Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Haeleen Hong
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jiayi Yang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Woojin Jung
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hong Yin
- Advanced Manufacturing and Fabrication, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Billy J Murdoch
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Frank Scholle
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Elisa Crisci
- College of Veterinary Medicine, Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Vi Khanh Truong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
32
|
Kwon JH, Kim YM, Moon HC. Porous Ion Gel: A Versatile Ionotronic Sensory Platform for High-Performance, Wearable Ionoskins with Electrical and Optical Dual Output. ACS NANO 2021; 15:15132-15141. [PMID: 34427425 DOI: 10.1021/acsnano.1c05570] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of elastic ionic conductors offers opportunities to fabricate key wearable ionic components such as ionoskins that can perceive mechanical deformation. However, there is still plenty of room to overcome the trade-off between sensitivity and detectable range of previous systems and impart additional functionality. Here, we propose porous ion gels for high-performance, functional ionic sensory platforms. The porous ion gels can be effectively deformed by closing pores even with a small pressure, and a large change in the contact area of the gel and the electrode is induced, leading to a significant difference in electrical double-layer capacitance. The porous ion gels are applied to ionoskins after optimizing mechanical characteristics by adjusting gel parameters. The device indicates a high sensitivity of ∼152.8 kPa-1, a broad sensory pressure range (up to 400 kPa), and excellent durability (>6000 cycles). Successful monitoring of various human motions that induce different magnitudes of pressure is demonstrated with high precision. More interestingly, the functionality of the porous ion gel is extended to include electrochemiluminescence (ECL), resulting in the production of emissive ECL ionoskins. The ECL intensity from the emissive ionoskin is linearly correlated with the applied pressure, which can even be inferred even by the naked eye. The porous ion gel-based functional ionoskins are expected to be key components in future sensory ionotronics.
Collapse
Affiliation(s)
- Jin Han Kwon
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Yong Min Kim
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Hong Chul Moon
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea
| |
Collapse
|
33
|
Kong M, You I, Lee G, Park G, Kim J, Park D, Jeong U. Transparent Omni-Directional Stretchable Circuit Lines Made by a Junction-Free Grid of Expandable Au Lines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100299. [PMID: 34155682 DOI: 10.1002/adma.202100299] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/21/2021] [Indexed: 06/13/2023]
Abstract
Although various stretchable optoelectronic devices have been reported, omni-directionally stretchable transparent circuit lines have been a great challenge. Cracks are engineered and fabricated to be highly conductive patterned metal circuit lines in which gold (Au) grids are embedded. Au is deposited selectively in the cracks to form a grid without any junction between the grid lines. Since each grid line is expandable under stretching, the circuit lines are stretchable in all the directions. This study shows that a thin coating of aluminum on the oxide surface enables precise control of the cracks (crack density, crack depth) in the oxide layer. High optical transparency and high stretchability can be achieved simultaneously by controlling the grid density in the circuit line. Light-emitting diodes are integrated directly on the circuit lines and stable operation is demonstrated under 100% stretching.
Collapse
Affiliation(s)
- Minsik Kong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam, Pohang, 37673, Republic of Korea
| | - Insang You
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam, Pohang, 37673, Republic of Korea
| | - Gilwoon Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam, Pohang, 37673, Republic of Korea
| | - Gyeongbae Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam, Pohang, 37673, Republic of Korea
| | - Jaehyun Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam, Pohang, 37673, Republic of Korea
| | - Doowon Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam, Pohang, 37673, Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam, Pohang, 37673, Republic of Korea
| |
Collapse
|
34
|
Kim DW, Kwon J, Kim HS, Jeong U. Printed Stretchable Single-Nanofiber Interconnections for Individually-Addressable Highly-Integrated Transparent Stretchable Field Effect Transistor Array. NANO LETTERS 2021; 21:5819-5827. [PMID: 34189918 DOI: 10.1021/acs.nanolett.1c01744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stretchable electronics have been spotlighted as promising next-generation electronics. In order to drive a specific unit device in an integrated stretchable device, the interconnection of the device should be placed in a desired position and addressed individually. In addition, practical stretchable interconnection requires reliable stretchability, high conductivity, optical transparency, high resolution, and fast and large-scale production. This study proposes an approach to meet these requirements. We print the single wavy polymer nanofibers (NFs) in a desired position and convert them into metal NF interconnections. The nanoscale diameter and the wavy cylindrical shape of the metal NFs are the main reasons for the reliable stretchability and the excellent transparency. Using the stretchable metal NFs and the stretchable organic semiconductor NFs, an array of all-stretchable transparent NF-field effect transistors (NF-FETs) is demonstrated. The highly integrated NF-FET array (10 FETs/mm2) shows uniform performance and good stability under repeated severe mechanical deformations.
Collapse
Affiliation(s)
- Dong Wook Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jihye Kwon
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hyoung Seop Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|