1
|
Kundu M, Dey A, Maji PK, Mandal M. Targeting friend leukemia integration 1: A promising approach for prevention and treatment of solid tumors. Int J Biol Macromol 2025; 309:143080. [PMID: 40228766 DOI: 10.1016/j.ijbiomac.2025.143080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Friend leukemia integration 1 (FLI1) is an ETS transcription factor first identified in erythroleukemia. This protein contributes to various cellular functions such as cell growth and proliferation, apoptosis, angiogenesis, etc. FLI1 is also known to be involved in tumorigenesis. The role of this transcription factor as a proto-oncogene, promoting cancer progression, especially Ewing sarcoma, is well reported. Recent research has found the connection of FLI1 with other solid cancers, including breast cancer, prostate cancer, glioma, and lung cancer. The role of this protein in solid cancers is also controversial. FLI1 is found to promote and suppress cancer growth and progression, particularly in Ewing sarcoma and breast cancer. This review article aims to provide a detailed perception of the FLI1-associated mechanisms in various solid cancers for preventive and therapeutic implications. The result of bioinformatic analysis using the cBioportal database (https://www.cbioportal.org/) is also presented in this article to understand the effect of this protein on solid cancers. Moreover, the current status of FLI1 targeting agents for preventing and treating solid cancers has been focused. Several studies established the efficacy of FLI1 inhibitors in solid tumor therapy. A few reports are also available on the effect of FLI1 agonists on solid tumors. This article discussed different FLI1 targeting agents to provide insight into the FLI1 targeting mechanisms required for discovering more potent FLI1 targeting agents and better therapeutic outcomes.
Collapse
Affiliation(s)
- Moumita Kundu
- Department of Pharmaceutical Technology, Brainware University, Barasat, India; Center for Multidisciplinary Research & Innovations, Brainware University, Barasat, India.
| | - Ankita Dey
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Pallab Kumar Maji
- Department of Pharmaceutical Technology, Brainware University, Barasat, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
2
|
Zhu Z, Chen H, Qiu X, Kaniskan HU, Xie L, Chen X, Jin J, Liu P. (GGAA) 3-Based TF-PROTACs Enable Targeted Degradation of ETV6 to Inhibit Ewing Sarcoma Growth. J Am Chem Soc 2025; 147:13396-13404. [PMID: 40215343 DOI: 10.1021/jacs.4c18484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Ewing sarcoma is a rare pediatric cancer primarily driven by the EWS::FLI1 oncofusion transcription factor. Despite being an ideal drug target, EWS::FLI1 has proven challenging to inhibit with conventional approaches. Recent studies identified ETV6 as a vulnerability in Ewing sarcoma, where it competes with EWS::FLI1 at short GGAA repeats to restrain EWS::FLI1 function. However, no therapies targeting ETV6 have been developed. In this study, we report the discovery of a unique (GGAA)3 DNA oligonucleotide that specifically binds to ETV6 but not EWS::FLI1. We developed (GGAA)3-based TF-PROTACs, termed d(GGAA)3s, by coupling (GGAA)3 with VHL ligands. d(GGAA)3s effectively degraded endogenous ETV6 but not EWS::FLI1 proteins in Ewing sarcoma cells, thus suppressing Ewing sarcoma growth. Mechanistically, d(GGAA)3s enhanced oncogenic EWS::FLI1 transcriptional activity, inducing cellular stress and cell death. Additionally, d(GGAA)3s sensitized Ewing sarcoma cells to standard chemotherapy, suggesting their potential use in combination therapies. Beyond Ewing sarcoma, d(GGAA)3s also targeted ETV6-fusion proteins found in breast cancer, broadening their potential clinical applications. In summary, d(GGAA)3s represent a nucleotide-based approach for degrading ETV6, inhibiting Ewing sarcoma growth and targeting ETV6-dependent cancers. This strategy offers a promising therapeutic avenue for Ewing sarcoma and other malignancies involving ETV6 fusions.
Collapse
Affiliation(s)
- Zhichuan Zhu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - He Chen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Xing Qiu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - H Umit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ling Xie
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Xian Chen
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
3
|
Eyster C, Matsuzaki S, Pranay A, Giorgione JR, Faakye A, Ahmed M, Humphries KM. Mechanistic studies of PFKFB2 reveals a novel inhibitor of its kinase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.25.630325. [PMID: 39763797 PMCID: PMC11703173 DOI: 10.1101/2024.12.25.630325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB) family of proteins are bifunctional enzymes that are of clinical relevance because of their roles in regulating glycolysis in insulin sensitive tissues and cancer. Here, we sought to express recombinant PFKFB2 and develop a robust protocol to measure its kinase activity. These studies resulted in the unexpected finding that bacterially expressed PFKFB2 is phosphorylated in situ on Ser483 but is not a result of autophosphorylation. Recombinant PFKFB2 was used to develop an enzymatic assay to test a library of molecules selected by the Atomwise AtomNet® AI platform. This resulted in the identification of a new inhibitor, B2, that inhibits PFKFB2 (IC50 3.29 μM) and PFKFB3 (IC50 11.89 μM). A-498 cells, which express both PFKFB2 and PFKFB3, were treated with B2. Seahorse XFe analysis revealed B2 inhibited cellular glycolysis and glycolytic capacity. Targeted LC/MS analysis showed B2 decreased fructose-1,6-bisphosphate and downstream glycolytic intermediates but increased fructose-6-phosphate levels, which is consistent with an inhibitory effect on PFK-1 activity. The LC/MS metabolic profile of A-498 cells treated under identical conditions with the known PFKFB3 inhibitor, PFK158, was distinct from that induced by B2. These results thus demonstrate the identification and validation of a new PFKFB kinase inhibitor.
Collapse
Affiliation(s)
- Craig Eyster
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Satoshi Matsuzaki
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Atul Pranay
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Jennifer R. Giorgione
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Anna Faakye
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Biochemistry and Molecular Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Mostafa Ahmed
- Atomwise Inc., 221 Main Street, Suite 1350, San Francisco, CA 94105
| | - Kenneth M. Humphries
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Biochemistry and Molecular Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
4
|
Lempicki C, Milosavljevic J, Laggner C, Tealdi S, Meyer C, Walz G, Lang K, Campa CC, Hermle T. Discovery of a Small Molecule with an Inhibitory Role for RAB11. Int J Mol Sci 2024; 25:13224. [PMID: 39684933 DOI: 10.3390/ijms252313224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
RAB11, a pivotal RabGTPase, regulates essential cellular processes such as endocytic recycling, exocytosis, and autophagy. The protein was implicated in various human diseases, including cancer, neurodegenerative disorders, viral infections, and podocytopathies. However, a small-molecular inhibitor is lacking. The complexity and workload associated with potential assays make conducting large-scale screening for RAB11 challenging. We employed a tiered approach for drug discovery, utilizing deep learning-based computational screening to preselect compounds targeting a specific pocket of RAB11 protein with experimental validation by an in vitro platform reflecting RAB11 activity through the exocytosis of GFP. Further validation included the exposure of Drosophila by drug feeding. In silico pre-screening identified 94 candidates, of which 9 were confirmed using our in vitro platform for Rab11 activity. Focusing on compounds with high potency, we assessed autophagy, which independently requires RAB11, and validated three of these compounds. We further analyzed the dose-response relationship, observing a biphasic, potentially hormetic effect. Two candidate compounds specifically caused a shift in Rab11 vesicles to the cell periphery, without significant impact on Rab5 or Rab7. Drosophila larvae exposed to another candidate compound with predicted oral bioavailability exhibited minimal toxicity, subcellular dispersal of endogenous Rab11, and a decrease in RAB11-dependent nephrocyte function, further supporting an inhibitory role. Taken together, the combination of computational screening and experimental validation allowed the identification of small molecules that modify the function of Rab11. This discovery may further open avenues for treating RAB11-associated disorders.
Collapse
Affiliation(s)
- Camille Lempicki
- Renal Division, Department of Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Julian Milosavljevic
- Renal Division, Department of Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | | | - Simone Tealdi
- Italian Institute for Genomic Medicine, Str. Prov. le 142, km 3.95, 10060 Candiolo, Turin, Italy
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Turin, Italy
| | - Charlotte Meyer
- Renal Division, Department of Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, 79104 Freiburg, Germany
| | - Konrad Lang
- Renal Division, Department of Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Carlo Cosimo Campa
- Italian Institute for Genomic Medicine, Str. Prov. le 142, km 3.95, 10060 Candiolo, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Turin, Italy
| | - Tobias Hermle
- Renal Division, Department of Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| |
Collapse
|
5
|
Gunasekharan V, Lin HK, Marczyk M, Rios-Hoyo A, Campos GE, Shan NL, Ahmed M, Umlauf S, Gareiss P, Raaisa R, Williams R, Cardone R, Siebel S, Kibbey R, Surovtseva YV, Pusztai L. Phosphoenolpyruvate carboxykinase-2 (PCK2) is a therapeutic target in triple-negative breast cancer. Breast Cancer Res Treat 2024; 208:657-671. [PMID: 39177932 DOI: 10.1007/s10549-024-07462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024]
Abstract
PURPOSE Metabolic rewiring in malignant transformation is often accompanied by altered expression of metabolic isozymes. Phosphoenolpyruvate carboxykinase-2 (PCK2) catalyzes the rate-limiting step of gluconeogenesis and is the dominant isoform in many cancers including triple-negative breast cancer (TNBC). Our goal was to identify small molecule inhibitors of PCK2 enzyme activity. METHODS We assessed the impact of PCK2 down regulation with shRNA on TNBC cell growth in vitro and used AtomNet® deep convolutional neural network software to identify potential small molecule inhibitors of PCK2-based structure. We iteratively tested candidate compounds in an in vitro PCK-2 enzyme assay. The impact of the top hit on metabolic flux and cell viability was also assessed. RESULTS PCK2 downregulation decreased growth of BT-549 and MDA-MB-231 cells and reduced metabolic flux through pyruvate carboxylase. The first AtomNet® in silico structural screen of 7 million compounds yielded 86 structures that were tested in PCK2 enzyme assay in vitro. The top hit (IC50 = 2.4 µM) was used to refine a second round of in silico screen that yielded 82 candidates to be tested in vitro, which resulted in 45 molecules with inhibition > 20%. In the second in vitro screen we also included 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate, previously suggested to be PCK2 inhibitor based on structure, which emerged as the top hit. The specificity of this compound was tested in PCK1 and PCK2 enzymatic assays and showed IC50 of 500 nM and 3.5-27 nM for PCK1 and PCK2, respectively. CONCLUSION 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate is a high affinity PCK2 enzyme inhibitor that also has significant growth inhibitory activity in breast cell lines in vitro and represents a potential therapeutic lead compound.
Collapse
Affiliation(s)
- Vignesh Gunasekharan
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA
| | - Hao-Kuen Lin
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA
| | - Michal Marczyk
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Alejandro Rios-Hoyo
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA
| | - Gerson Espinoza Campos
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA
| | - Naing Lin Shan
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA
| | | | - Sheila Umlauf
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, USA
| | - Peter Gareiss
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, USA
| | - Raaisa Raaisa
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA
| | - Richard Williams
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA
| | - Rebecca Cardone
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA
| | - Stephan Siebel
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA
| | - Richard Kibbey
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA
| | - Yulia V Surovtseva
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, USA
| | - Lajos Pusztai
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA.
| |
Collapse
|
6
|
Xian Y, Ye J, Tang Y, Zhang N, Peng C, Huang W, He G. Deubiquitinases as novel therapeutic targets for diseases. MedComm (Beijing) 2024; 5:e70036. [PMID: 39678489 PMCID: PMC11645450 DOI: 10.1002/mco2.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) regulate substrate ubiquitination by removing ubiquitin or cleaving within ubiquitin chains, thereby maintaining cellular homeostasis. Approximately 100 DUBs in humans counteract E3 ubiquitin ligases, finely balancing ubiquitination and deubiquitination processes to maintain cellular proteostasis and respond to various stimuli and stresses. Given their role in modulating ubiquitination levels of various substrates, DUBs are increasingly linked to human health and disease. Here, we review the DUB family, highlighting their distinctive structural characteristics and chain-type specificities. We show that DUB family members regulate key signaling pathways, such as NF-κB, PI3K/Akt/mTOR, and MAPK, and play crucial roles in tumorigenesis and other diseases (neurodegenerative disorders, cardiovascular diseases, inflammatory disorders, and developmental diseases), making them promising therapeutic targets Our review also discusses the challenges in developing DUB inhibitors and underscores the critical role of the DUBs in cellular signaling and cancer. This comprehensive analysis enhances our understanding of the complex biological functions of the DUBs and underscores their therapeutic potential.
Collapse
Affiliation(s)
- Yali Xian
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jing Ye
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yu Tang
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Gu He
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
7
|
Chadni SH, Young MA, Igorra P, Bhuiyan MAR, Kenyon V, Tse-Dinh YC. Small Molecule Inhibitors of Mycobacterium tuberculosis Topoisomerase I Identified by Machine Learning and In Vitro Assays. Int J Mol Sci 2024; 25:12265. [PMID: 39596331 PMCID: PMC11594364 DOI: 10.3390/ijms252212265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis is a leading infectious cause of death globally. The treatment of patients becomes much more difficult for the increasingly common multi-drug resistant TB. Topoisomerase I is essential for the viability of M. tuberculosis and has been validated as a new target for the discovery of novel treatment against TB resistant to the currently available drugs. Virtual high-throughput screening based on machine learning was used in this study to identify small molecules that target the binding site of divalent ion near the catalytic tyrosine of M. tuberculosis topoisomerase I. From the virtual screening of more than 2 million commercially available compounds, 96 compounds were selected for testing in topoisomerase I relaxation activity assay. The top hit that has IC50 of 7 µM was further investigated. Commercially available analogs of the top hit were purchased and tested with the in vitro enzyme assay to gain further insights into the molecular scaffold required for topoisomerase inhibition. Results from this project demonstrated that novel small molecule inhibitors of bacterial topoisomerase I can be identified starting with the machine-learning-based virtual screening approach.
Collapse
Affiliation(s)
- Somaia Haque Chadni
- Biochemistry PhD Program, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA;
| | | | - Pedro Igorra
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (P.I.); (M.A.R.B.)
| | - Md Anisur Rahman Bhuiyan
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (P.I.); (M.A.R.B.)
| | - Victor Kenyon
- Atomwise Inc., San Francisco, CA 94103, USA; (M.A.Y.); (V.K.)
| | - Yuk-Ching Tse-Dinh
- Biomolecular Sciences Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
8
|
Deng Y, Hahn Q, Yu L, Zhu Z, Boyer JA, Wang J, Kong D, Carey LM, Hepperla AJ, Simon JM, Temple B, Zhang Z, Zhang Y, Santos C, Frank JE, Herring LE, Wang X, Dokholyan NV, Campbell SL, Baldwin AS, Damania B, Zhang Q, Liu P. 2'3'-cGAMP interactome identifies 2'3'-cGAMP/Rab18/FosB signaling in cell migration control independent of innate immunity. SCIENCE ADVANCES 2024; 10:eado7024. [PMID: 39413198 PMCID: PMC11482326 DOI: 10.1126/sciadv.ado7024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/11/2024] [Indexed: 10/18/2024]
Abstract
c-di-GAMP was first identified in bacteria to promote colonization, while mammalian 2'3'-cGAMP is synthesized by cGAS to activate STING for innate immune stimulation. However, 2'3'-cGAMP function beyond innate immunity remains elusive. Here, we report that 2'3'-cGAMP promotes cell migration independent of innate immunity. 2'3'-cGAMP interactome analysis identifies the small GTPase Rab18 as a 2'3'-cGAMP binding partner and effector in cell migration control. Mechanistically, 2'3'-cGAMP binds Rab18 to facilitate GTP loading and subsequent Rab18 activation, which further promotes FosB transcription in facilitating cell migration. Induced synthesis of endogenous 2'3'-cGAMP by intrabreast tumor bacterium S. aureus infection or low-dose doxorubicin treatment facilitates cell migration depending on the cGAS/cGAMP/Rab18/FosB signaling. We find that lovastatin induces Rab18 deprenylation that abolishes 2'3'-cGAMP recognition therefore suppressing cell migration. Together, our study reveals a previously unidentified 2'3'-cGAMP function in cell migration control via the 2'3'-cGAMP/Rab18/FosB signaling that provides additional insights into clinical applications of 2'3'-cGAMP.
Collapse
Affiliation(s)
- Yu Deng
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Quentin Hahn
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhichuan Zhu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joshua A. Boyer
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jian Wang
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 17033, USA
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Deyu Kong
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leiah M. Carey
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Austin J. Hepperla
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeremy M. Simon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Data Science, Dana-Farber Cancer Institute Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Brenda Temple
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhigang Zhang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- University of North Carolina Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yanqiong Zhang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Charlene Santos
- UNC Animal Studies Core Facility, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan E. Frank
- UNC Small Animal Imaging Core Facility, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura E. Herring
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiaodong Wang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 17033, USA
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Sharon L. Campbell
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Albert S. Baldwin
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- University of North Carolina Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Qi Zhang
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
9
|
Fan Z, Dong S, Wang N, Khawar MB, Wang J, Sun H. Unlocking epigenetics for precision treatment of Ewing's sarcoma. Chin J Cancer Res 2024; 36:322-340. [PMID: 38988487 PMCID: PMC11230886 DOI: 10.21147/j.issn.1000-9604.2024.03.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/16/2024] [Indexed: 07/12/2024] Open
Abstract
Ewing's sarcoma (EWS) is a highly aggressive malignant bone tumor primarily affecting adolescents and young adults. Despite the efficacy of chemoradiotherapy in some cases, the cure rate for patients with metastatic and recurrent disease remains low. Therefore, there is an urgent need for innovative therapeutic approaches to address the challenges associated with EWS treatment. Epigenetic regulation, a crucial factor in physiological processes, plays a significant role in controlling cell proliferation, maintaining gene integrity, and regulating transcription. Recent studies highlight the importance of abnormal epigenetic regulation in the initiation and progression of EWS. A comprehensive understanding of the intricate interactions between EWS and aberrant epigenetic regulation is essential for advancing clinical drug development. This review aims to provide a comprehensive overview of both epigenetic targets implicated in EWS, integrating various therapeutic modalities to offer innovative perspectives for the clinical diagnosis and treatment of EWS.
Collapse
Affiliation(s)
- Zhehao Fan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou 225001, China
| | - Shuangshuang Dong
- Department of Pathology, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Ning Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou 225001, China
| | - Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou 225001, China
| | - Jingcheng Wang
- Department of Orthopedics, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou 225001, China
| |
Collapse
|
10
|
Yu L, Deng Y, Wang X, Santos C, Davis IJ, Earp HS, Liu P. Co-targeting JAK1/STAT6/GAS6/TAM signaling improves chemotherapy efficacy in Ewing sarcoma. Nat Commun 2024; 15:5292. [PMID: 38906855 PMCID: PMC11192891 DOI: 10.1038/s41467-024-49667-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
Ewing sarcoma is a pediatric bone and soft tissue tumor treated with chemotherapy, radiation, and surgery. Despite intensive multimodality therapy, ~50% patients eventually relapse and die of the disease due to chemoresistance. Here, using phospho-profiling, we find Ewing sarcoma cells treated with chemotherapeutic agents activate TAM (TYRO3, AXL, MERTK) kinases to augment Akt and ERK signaling facilitating chemoresistance. Mechanistically, chemotherapy-induced JAK1-SQ phosphorylation releases JAK1 pseudokinase domain inhibition allowing for JAK1 activation. This alternative JAK1 activation mechanism leads to STAT6 nuclear translocation triggering transcription and secretion of the TAM kinase ligand GAS6 with autocrine/paracrine consequences. Importantly, pharmacological inhibition of either JAK1 by filgotinib or TAM kinases by UNC2025 sensitizes Ewing sarcoma to chemotherapy in vitro and in vivo. Excitingly, the TAM kinase inhibitor MRX-2843 currently in human clinical trials to treat AML and advanced solid tumors, enhances chemotherapy efficacy to further suppress Ewing sarcoma tumor growth in vivo. Our findings reveal an Ewing sarcoma chemoresistance mechanism with an immediate translational value.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yu Deng
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xiaodong Wang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Charlene Santos
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ian J Davis
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - H Shelton Earp
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Medicine and Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
11
|
Abaffy T, Fu O, Harume-Nagai M, Goldenberg JM, Kenyon V, Kenakin T. Intracellular Allosteric Antagonist of the Olfactory Receptor OR51E2. Mol Pharmacol 2024; 106:21-32. [PMID: 38719475 PMCID: PMC11187688 DOI: 10.1124/molpharm.123.000843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/16/2024] [Indexed: 06/20/2024] Open
Abstract
Olfactory receptors are members of class A (rhodopsin-like) family of G protein-coupled receptors (GPCRs). Their expression and function have been increasingly studied in nonolfactory tissues, and many have been identified as potential therapeutic targets. In this manuscript, we focus on the discovery of novel ligands for the olfactory receptor family 51 subfamily E2 (OR51E2). We performed an artificial intelligence-based virtual drug screen of a ∼2.2 million small molecule library. Cell-based functional assay identified compound 80 (C80) as an antagonist and inverse agonist, and detailed pharmacological analysis revealed C80 acts as a negative allosteric modulator by significantly decreasing the agonist efficacy, while having a minimal effect on receptor affinity for agonist. C80 binds to an allosteric binding site formed by a network of nine residues localized in the intracellular parts of transmembrane domains 3, 5, 6, 7, and H8, which also partially overlaps with a G protein binding site. Mutational experiments of residues involved in C80 binding uncovered the significance of the C2406.37 position in blocking the activation-related conformational change and keeping the receptor in the inactive form. Our study provides a mechanistic understanding of the negative allosteric action of C80 on agonist-ctivated OR51E2. We believe the identification of the antagonist of OR51E2 will enable a multitude of studies aiming to determine the functional role of this receptor in specific biologic processes. SIGNIFICANCE STATEMENT: OR51E2 has been implicated in various biological processes, and its antagonists that can effectively modulate its activity have therapeutic potential. Here we report the discovery of a negative allosteric modulator of OR51E2 and provide a mechanistic understanding of its action. We demonstrate that this modulator has an inhibitory effect on the efficacy of the agonist for the receptor and reveal a network of nine residues that constitute its binding pocket, which also partially overlaps with the G protein binding site.
Collapse
Affiliation(s)
- Tatjana Abaffy
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| | - Olivia Fu
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| | - Maira Harume-Nagai
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| | - Josh M Goldenberg
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| | - Victor Kenyon
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| | - Terry Kenakin
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| |
Collapse
|
12
|
Wallach I, Bernard D, Nguyen K, Ho G, Morrison A, Stecula A, Rosnik A, O’Sullivan AM, Davtyan A, Samudio B, Thomas B, Worley B, Butler B, Laggner C, Thayer D, Moharreri E, Friedland G, Truong H, van den Bedem H, Ng HL, Stafford K, Sarangapani K, Giesler K, Ngo L, Mysinger M, Ahmed M, Anthis NJ, Henriksen N, Gniewek P, Eckert S, de Oliveira S, Suterwala S, PrasadPrasad SVK, Shek S, Contreras S, Hare S, Palazzo T, O’Brien TE, Van Grack T, Williams T, Chern TR, Kenyon V, Lee AH, Cann AB, Bergman B, Anderson BM, Cox BD, Warrington JM, Sorenson JM, Goldenberg JM, Young MA, DeHaan N, Pemberton RP, Schroedl S, Abramyan TM, Gupta T, Mysore V, Presser AG, Ferrando AA, Andricopulo AD, Ghosh A, Ayachi AG, Mushtaq A, Shaqra AM, Toh AKL, Smrcka AV, Ciccia A, de Oliveira AS, Sverzhinsky A, de Sousa AM, Agoulnik AI, Kushnir A, Freiberg AN, Statsyuk AV, Gingras AR, Degterev A, Tomilov A, Vrielink A, Garaeva AA, Bryant-Friedrich A, Caflisch A, Patel AK, Rangarajan AV, Matheeussen A, Battistoni A, Caporali A, Chini A, Ilari A, Mattevi A, Foote AT, Trabocchi A, Stahl A, Herr AB, Berti A, Freywald A, Reidenbach AG, Lam A, Cuddihy AR, White A, Taglialatela A, et alWallach I, Bernard D, Nguyen K, Ho G, Morrison A, Stecula A, Rosnik A, O’Sullivan AM, Davtyan A, Samudio B, Thomas B, Worley B, Butler B, Laggner C, Thayer D, Moharreri E, Friedland G, Truong H, van den Bedem H, Ng HL, Stafford K, Sarangapani K, Giesler K, Ngo L, Mysinger M, Ahmed M, Anthis NJ, Henriksen N, Gniewek P, Eckert S, de Oliveira S, Suterwala S, PrasadPrasad SVK, Shek S, Contreras S, Hare S, Palazzo T, O’Brien TE, Van Grack T, Williams T, Chern TR, Kenyon V, Lee AH, Cann AB, Bergman B, Anderson BM, Cox BD, Warrington JM, Sorenson JM, Goldenberg JM, Young MA, DeHaan N, Pemberton RP, Schroedl S, Abramyan TM, Gupta T, Mysore V, Presser AG, Ferrando AA, Andricopulo AD, Ghosh A, Ayachi AG, Mushtaq A, Shaqra AM, Toh AKL, Smrcka AV, Ciccia A, de Oliveira AS, Sverzhinsky A, de Sousa AM, Agoulnik AI, Kushnir A, Freiberg AN, Statsyuk AV, Gingras AR, Degterev A, Tomilov A, Vrielink A, Garaeva AA, Bryant-Friedrich A, Caflisch A, Patel AK, Rangarajan AV, Matheeussen A, Battistoni A, Caporali A, Chini A, Ilari A, Mattevi A, Foote AT, Trabocchi A, Stahl A, Herr AB, Berti A, Freywald A, Reidenbach AG, Lam A, Cuddihy AR, White A, Taglialatela A, Ojha AK, Cathcart AM, Motyl AAL, Borowska A, D’Antuono A, Hirsch AKH, Porcelli AM, Minakova A, Montanaro A, Müller A, Fiorillo A, Virtanen A, O’Donoghue AJ, Del Rio Flores A, Garmendia AE, Pineda-Lucena A, Panganiban AT, Samantha A, Chatterjee AK, Haas AL, Paparella AS, John ALS, Prince A, ElSheikh A, Apfel AM, Colomba A, O’Dea A, Diallo BN, Ribeiro BMRM, Bailey-Elkin BA, Edelman BL, Liou B, Perry B, Chua BSK, Kováts B, Englinger B, Balakrishnan B, Gong B, Agianian B, Pressly B, Salas BPM, Duggan BM, Geisbrecht BV, Dymock BW, Morten BC, Hammock BD, Mota BEF, Dickinson BC, Fraser C, Lempicki C, Novina CD, Torner C, Ballatore C, Bon C, Chapman CJ, Partch CL, Chaton CT, Huang C, Yang CY, Kahler CM, Karan C, Keller C, Dieck CL, Huimei C, Liu C, Peltier C, Mantri CK, Kemet CM, Müller CE, Weber C, Zeina CM, Muli CS, Morisseau C, Alkan C, Reglero C, Loy CA, Wilson CM, Myhr C, Arrigoni C, Paulino C, Santiago C, Luo D, Tumes DJ, Keedy DA, Lawrence DA, Chen D, Manor D, Trader DJ, Hildeman DA, Drewry DH, Dowling DJ, Hosfield DJ, Smith DM, Moreira D, Siderovski DP, Shum D, Krist DT, Riches DWH, Ferraris DM, Anderson DH, Coombe DR, Welsbie DS, Hu D, Ortiz D, Alramadhani D, Zhang D, Chaudhuri D, Slotboom DJ, Ronning DR, Lee D, Dirksen D, Shoue DA, Zochodne DW, Krishnamurthy D, Duncan D, Glubb DM, Gelardi ELM, Hsiao EC, Lynn EG, Silva EB, Aguilera E, Lenci E, Abraham ET, Lama E, Mameli E, Leung E, Giles E, Christensen EM, Mason ER, Petretto E, Trakhtenberg EF, Rubin EJ, Strauss E, Thompson EW, Cione E, Lisabeth EM, Fan E, Kroon EG, Jo E, García-Cuesta EM, Glukhov E, Gavathiotis E, Yu F, Xiang F, Leng F, Wang F, Ingoglia F, van den Akker F, Borriello F, Vizeacoumar FJ, Luh F, Buckner FS, Vizeacoumar FS, Bdira FB, Svensson F, Rodriguez GM, Bognár G, Lembo G, Zhang G, Dempsey G, Eitzen G, Mayer G, Greene GL, Garcia GA, Lukacs GL, Prikler G, Parico GCG, Colotti G, De Keulenaer G, Cortopassi G, Roti G, Girolimetti G, Fiermonte G, Gasparre G, Leuzzi G, Dahal G, Michlewski G, Conn GL, Stuchbury GD, Bowman GR, Popowicz GM, Veit G, de Souza GE, Akk G, Caljon G, Alvarez G, Rucinski G, Lee G, Cildir G, Li H, Breton HE, Jafar-Nejad H, Zhou H, Moore HP, Tilford H, Yuan H, Shim H, Wulff H, Hoppe H, Chaytow H, Tam HK, Van Remmen H, Xu H, Debonsi HM, Lieberman HB, Jung H, Fan HY, Feng H, Zhou H, Kim HJ, Greig IR, Caliandro I, Corvo I, Arozarena I, Mungrue IN, Verhamme IM, Qureshi IA, Lotsaris I, Cakir I, Perry JJP, Kwiatkowski J, Boorman J, Ferreira J, Fries J, Kratz JM, Miner J, Siqueira-Neto JL, Granneman JG, Ng J, Shorter J, Voss JH, Gebauer JM, Chuah J, Mousa JJ, Maynes JT, Evans JD, Dickhout J, MacKeigan JP, Jossart JN, Zhou J, Lin J, Xu J, Wang J, Zhu J, Liao J, Xu J, Zhao J, Lin J, Lee J, Reis J, Stetefeld J, Bruning JB, Bruning JB, Coles JG, Tanner JJ, Pascal JM, So J, Pederick JL, Costoya JA, Rayman JB, Maciag JJ, Nasburg JA, Gruber JJ, Finkelstein JM, Watkins J, Rodríguez-Frade JM, Arias JAS, Lasarte JJ, Oyarzabal J, Milosavljevic J, Cools J, Lescar J, Bogomolovas J, Wang J, Kee JM, Kee JM, Liao J, Sistla JC, Abrahão JS, Sishtla K, Francisco KR, Hansen KB, Molyneaux KA, Cunningham KA, Martin KR, Gadar K, Ojo KK, Wong KS, Wentworth KL, Lai K, Lobb KA, Hopkins KM, Parang K, Machaca K, Pham K, Ghilarducci K, Sugamori KS, McManus KJ, Musta K, Faller KME, Nagamori K, Mostert KJ, Korotkov KV, Liu K, Smith KS, Sarosiek K, Rohde KH, Kim KK, Lee KH, Pusztai L, Lehtiö L, Haupt LM, Cowen LE, Byrne LJ, Su L, Wert-Lamas L, Puchades-Carrasco L, Chen L, Malkas LH, Zhuo L, Hedstrom L, Hedstrom L, Walensky LD, Antonelli L, Iommarini L, Whitesell L, Randall LM, Fathallah MD, Nagai MH, Kilkenny ML, Ben-Johny M, Lussier MP, Windisch MP, Lolicato M, Lolli ML, Vleminckx M, Caroleo MC, Macias MJ, Valli M, Barghash MM, Mellado M, Tye MA, Wilson MA, Hannink M, Ashton MR, Cerna MVC, Giorgis M, Safo MK, Maurice MS, McDowell MA, Pasquali M, Mehedi M, Serafim MSM, Soellner MB, Alteen MG, Champion MM, Skorodinsky M, O’Mara ML, Bedi M, Rizzi M, Levin M, Mowat M, Jackson MR, Paige M, Al-Yozbaki M, Giardini MA, Maksimainen MM, De Luise M, Hussain MS, Christodoulides M, Stec N, Zelinskaya N, Van Pelt N, Merrill NM, Singh N, Kootstra NA, Singh N, Gandhi NS, Chan NL, Trinh NM, Schneider NO, Matovic N, Horstmann N, Longo N, Bharambe N, Rouzbeh N, Mahmoodi N, Gumede NJ, Anastasio NC, Khalaf NB, Rabal O, Kandror O, Escaffre O, Silvennoinen O, Bishop OT, Iglesias P, Sobrado P, Chuong P, O’Connell P, Martin-Malpartida P, Mellor P, Fish PV, Moreira POL, Zhou P, Liu P, Liu P, Wu P, Agogo-Mawuli P, Jones PL, Ngoi P, Toogood P, Ip P, von Hundelshausen P, Lee PH, Rowswell-Turner RB, Balaña-Fouce R, Rocha REO, Guido RVC, Ferreira RS, Agrawal RK, Harijan RK, Ramachandran R, Verma R, Singh RK, Tiwari RK, Mazitschek R, Koppisetti RK, Dame RT, Douville RN, Austin RC, Taylor RE, Moore RG, Ebright RH, Angell RM, Yan R, Kejriwal R, Batey RA, Blelloch R, Vandenberg RJ, Hickey RJ, Kelm RJ, Lake RJ, Bradley RK, Blumenthal RM, Solano R, Gierse RM, Viola RE, McCarthy RR, Reguera RM, Uribe RV, do Monte-Neto RL, Gorgoglione R, Cullinane RT, Katyal S, Hossain S, Phadke S, Shelburne SA, Geden SE, Johannsen S, Wazir S, Legare S, Landfear SM, Radhakrishnan SK, Ammendola S, Dzhumaev S, Seo SY, Li S, Zhou S, Chu S, Chauhan S, Maruta S, Ashkar SR, Shyng SL, Conticello SG, Buroni S, Garavaglia S, White SJ, Zhu S, Tsimbalyuk S, Chadni SH, Byun SY, Park S, Xu SQ, Banerjee S, Zahler S, Espinoza S, Gustincich S, Sainas S, Celano SL, Capuzzi SJ, Waggoner SN, Poirier S, Olson SH, Marx SO, Van Doren SR, Sarilla S, Brady-Kalnay SM, Dallman S, Azeem SM, Teramoto T, Mehlman T, Swart T, Abaffy T, Akopian T, Haikarainen T, Moreda TL, Ikegami T, Teixeira TR, Jayasinghe TD, Gillingwater TH, Kampourakis T, Richardson TI, Herdendorf TJ, Kotzé TJ, O’Meara TR, Corson TW, Hermle T, Ogunwa TH, Lan T, Su T, Banjo T, O’Mara TA, Chou T, Chou TF, Baumann U, Desai UR, Pai VP, Thai VC, Tandon V, Banerji V, Robinson VL, Gunasekharan V, Namasivayam V, Segers VFM, Maranda V, Dolce V, Maltarollo VG, Scoffone VC, Woods VA, Ronchi VP, Van Hung Le V, Clayton WB, Lowther WT, Houry WA, Li W, Tang W, Zhang W, Van Voorhis WC, Donaldson WA, Hahn WC, Kerr WG, Gerwick WH, Bradshaw WJ, Foong WE, Blanchet X, Wu X, Lu X, Qi X, Xu X, Yu X, Qin X, Wang X, Yuan X, Zhang X, Zhang YJ, Hu Y, Aldhamen YA, Chen Y, Li Y, Sun Y, Zhu Y, Gupta YK, Pérez-Pertejo Y, Li Y, Tang Y, He Y, Tse-Dinh YC, Sidorova YA, Yen Y, Li Y, Frangos ZJ, Chung Z, Su Z, Wang Z, Zhang Z, Liu Z, Inde Z, Artía Z, Heifets A. AI is a viable alternative to high throughput screening: a 318-target study. Sci Rep 2024; 14:7526. [PMID: 38565852 PMCID: PMC10987645 DOI: 10.1038/s41598-024-54655-z] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/15/2024] [Indexed: 04/04/2024] Open
Abstract
High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery.
Collapse
|
13
|
Sobhani N, Tardiel-Cyril DR, Chai D, Generali D, Li JR, Vazquez-Perez J, Lim JM, Morris R, Bullock ZN, Davtyan A, Cheng C, Decker WK, Li Y. Artificial intelligence-powered discovery of small molecules inhibiting CTLA-4 in cancer. BJC REPORTS 2024; 2:4. [PMID: 38312352 PMCID: PMC10838660 DOI: 10.1038/s44276-023-00035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/14/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND/OBJECTIVES Checkpoint inhibitors, which generate durable responses in many cancer patients, have revolutionized cancer immunotherapy. However, their therapeutic efficacy is limited, and immune-related adverse events are severe, especially for monoclonal antibody treatment directed against cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), which plays a pivotal role in preventing autoimmunity and fostering anticancer immunity by interacting with the B7 proteins CD80 and CD86. Small molecules impairing the CTLA-4/CD80 interaction have been developed; however, they directly target CD80, not CTLA-4. SUBJECTS/METHODS In this study, we performed artificial intelligence (AI)-powered virtual screening of approximately ten million compounds to identify those targeting CTLA-4. We validated the hits molecules with biochemical, biophysical, immunological, and experimental animal assays. RESULTS The primary hits obtained from the virtual screening were successfully validated in vitro and in vivo. We then optimized lead compounds and obtained inhibitors (inhibitory concentration, 1 micromole) that disrupted the CTLA-4/CD80 interaction without degrading CTLA-4. CONCLUSIONS Several compounds inhibited tumor development prophylactically and therapeutically in syngeneic and CTLA-4-humanized mice. Our findings support using AI-based frameworks to design small molecules targeting immune checkpoints for cancer therapy.
Collapse
Affiliation(s)
- Navid Sobhani
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | | | - Dafei Chai
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniele Generali
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34147 Trieste, Italy
| | - Jian-Rong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathan Vazquez-Perez
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jing Ming Lim
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rachel Morris
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Zaniqua N. Bullock
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aram Davtyan
- Atomwise Inc., 717 Market St, Suite 800, San Francisco, CA 94103, USA
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - William K. Decker
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
14
|
Alkan C, O’Brien T, Kenyon V, Ikegami T. Computer-Selected Antiviral Compounds: Assessing In Vitro Efficacies against Rift Valley Fever Virus. Viruses 2024; 16:88. [PMID: 38257788 PMCID: PMC10818293 DOI: 10.3390/v16010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Rift Valley fever is a zoonotic viral disease transmitted by mosquitoes, impacting both humans and livestock. Currently, there are no approved vaccines or antiviral treatments for humans. This study aimed to evaluate the in vitro efficacy of chemical compounds targeting the Gc fusion mechanism. These compounds were identified through virtual screening of millions of commercially available small molecules using a structure-based artificial intelligence bioactivity predictor. In our experiments, a pretreatment with small molecule compounds revealed that 3 out of 94 selected compounds effectively inhibited the replication of the Rift Valley fever virus MP-12 strain in Vero cells. As anticipated, these compounds did not impede viral RNA replication when administered three hours after infection. However, significant inhibition of viral RNA replication occurred upon viral entry when cells were pretreated with these small molecules. Furthermore, these compounds exhibited significant inhibition against Arumowot virus, another phlebovirus, while showing no antiviral effects on tick-borne bandaviruses. Our study validates AI-based virtual high throughput screening as a rational approach for identifying effective antiviral candidates for Rift Valley fever virus and other bunyaviruses.
Collapse
Affiliation(s)
- Cigdem Alkan
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
| | - Terrence O’Brien
- Discovery Chemistry, Genentech, Inc., South San Francisco, CA 94080, USA;
| | | | - Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
- Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
15
|
Parijat P, Attili S, Hoare Z, Shattock M, Kenyon V, Kampourakis T. Discovery of a novel cardiac-specific myosin modulator using artificial intelligence-based virtual screening. Nat Commun 2023; 14:7692. [PMID: 38001148 PMCID: PMC10673995 DOI: 10.1038/s41467-023-43538-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Direct modulation of cardiac myosin function has emerged as a therapeutic target for both heart disease and heart failure. However, the development of myosin-based therapeutics has been hampered by the lack of targeted in vitro screening assays. In this study we use Artificial Intelligence-based virtual high throughput screening (vHTS) to identify novel small molecule effectors of human β-cardiac myosin. We test the top scoring compounds from vHTS in biochemical counter-screens and identify a novel chemical scaffold called 'F10' as a cardiac-specific low-micromolar myosin inhibitor. Biochemical and biophysical characterization in both isolated proteins and muscle fibers show that F10 stabilizes both the biochemical (i.e. super-relaxed state) and structural (i.e. interacting heads motif) OFF state of cardiac myosin, and reduces force and left ventricular pressure development in isolated myofilaments and Langendorff-perfused hearts, respectively. F10 is a tunable scaffold for the further development of a novel class of myosin modulators.
Collapse
Affiliation(s)
- Priyanka Parijat
- Randall Centre for Cell and Molecular Biophysics; and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, United Kingdom
| | - Seetharamaiah Attili
- Randall Centre for Cell and Molecular Biophysics; and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, United Kingdom
| | - Zoe Hoare
- School of Cardiovascular and Metabolic Medicine and Sciences; Rayne Institute and British Heart Foundation Centre of Research Excellence, King's College London, London, SE5 9NU, United Kingdom
| | - Michael Shattock
- School of Cardiovascular and Metabolic Medicine and Sciences; Rayne Institute and British Heart Foundation Centre of Research Excellence, King's College London, London, SE5 9NU, United Kingdom
| | | | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics; and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, United Kingdom.
| |
Collapse
|
16
|
Mancarella C, Morrione A, Scotlandi K. PROTAC-Based Protein Degradation as a Promising Strategy for Targeted Therapy in Sarcomas. Int J Mol Sci 2023; 24:16346. [PMID: 38003535 PMCID: PMC10671294 DOI: 10.3390/ijms242216346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Sarcomas are heterogeneous bone and soft tissue cancers representing the second most common tumor type in children and adolescents. Histology and genetic profiling discovered more than 100 subtypes, which are characterized by peculiar molecular vulnerabilities. However, limited therapeutic options exist beyond standard therapy and clinical benefits from targeted therapies were observed only in a minority of patients with sarcomas. The rarity of these tumors, paucity of actionable mutations, and limitations in the chemical composition of current targeted therapies hindered the use of these approaches in sarcomas. Targeted protein degradation (TPD) is an innovative pharmacological modality to directly alter protein abundance with promising clinical potential in cancer, even for undruggable proteins. TPD is based on the use of small molecules called degraders or proteolysis-targeting chimeras (PROTACs), which trigger ubiquitin-dependent degradation of protein of interest. In this review, we will discuss major features of PROTAC and PROTAC-derived genetic systems for target validation and cancer treatment and focus on the potential of these approaches to overcome major issues connected to targeted therapies in sarcomas, including drug resistance, target specificity, and undruggable targets. A deeper understanding of these strategies might provide new fuel to drive molecular and personalized medicine to sarcomas.
Collapse
Affiliation(s)
- Caterina Mancarella
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
17
|
Molyneaux K, Laggner C, Brady‐Kalnay SM. A novel binding pocket in the D2 domain of protein tyrosine phosphatase mu (PTPmu) guides AI screen to identify small molecules that modulate tumour cell adhesion, growth and migration. J Cell Mol Med 2023; 27:3553-3564. [PMID: 37860940 PMCID: PMC10660673 DOI: 10.1111/jcmm.17973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/25/2023] [Accepted: 09/16/2023] [Indexed: 10/21/2023] Open
Abstract
Approximately 40% of people will get cancer in their lifetime in the US, and 20% are predicted to die from the condition when it is invasive and metastatic. Targeted screening for drugs that interact with proteins that drive cancer cell growth and migration can lead to new therapies. We screened molecular libraries with the AtomNet® AI-based drug design tool to identify compounds predicted to interact with the cytoplasmic domain of protein tyrosine phosphatase mu. Protein tyrosine phosphatase mu (PTPmu) is proteolytically downregulated in cancers such as glioblastoma generating fragments that stimulate cell survival and migration. Aberrant nuclear localization of PTPmu intracellular fragments drives cancer progression, so we targeted a predicted drug-binding site between the two cytoplasmic phosphatase domains we termed a D2 binding pocket. The function of the D2 domain is controversial with various proposed regulatory functions, making the D2 domain an attractive target for the development of allosteric drugs. Seventy-five of the best-scoring and chemically diverse computational hits predicted to interact with the D2 binding pocket were screened for effects on tumour cell motility and growth in 3D culture as well as in a direct assay for PTPmu-dependent adhesion. We identified two high-priority hits that inhibited the migration and glioma cell sphere formation of multiple glioma tumour cell lines as well as aggregation. We also identified one activator of PTPmu-dependent aggregation, which was able to stimulate cell migration. We propose that the PTPmu D2 binding pocket represents a novel regulatory site and that inhibitors targeting this region may have therapeutic potential for treating cancer.
Collapse
Affiliation(s)
- Kathleen Molyneaux
- Department of Molecular Biology & MicrobiologyCase Western Reserve UniversityClevelandOhioUSA
| | | | - Susann M. Brady‐Kalnay
- Department of Molecular Biology & MicrobiologyCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
18
|
Chen J, Zhang X, Tan X, Liu P. Somatic gain-of-function mutations in BUD13 promote oncogenesis by disrupting Fbw7 function. J Exp Med 2023; 220:e20222056. [PMID: 37382881 PMCID: PMC10309187 DOI: 10.1084/jem.20222056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/13/2023] [Accepted: 05/19/2023] [Indexed: 06/30/2023] Open
Abstract
Somatic mutations occurring on key enzymes are extensively studied and targeted therapies are developed with clinical promises. However, context-dependent enzyme function through distinct substrates complicated targeting a given enzyme. Here, we develop an algorithm to elucidate a new class of somatic mutations occurring on enzyme-recognizing motifs that cancer may hijack to facilitate tumorigenesis. We validate BUD13-R156C and -R230Q mutations evading RSK3-mediated phosphorylation with enhanced oncogenicity in promoting colon cancer growth. Further mechanistic studies reveal BUD13 as an endogenous Fbw7 inhibitor that stabilizes Fbw7 oncogenic substrates, while cancerous BUD13-R156C or -R230Q interferes with Fbw7Cul1 complex formation. We also find this BUD13 regulation plays a critical role in responding to mTOR inhibition, which can be used to guide therapy selections. We hope our studies reveal the landscape of enzyme-recognizing motif mutations with a publicly available resource and provide novel insights for somatic mutations cancer hijacks to promote tumorigenesis with the potential for patient stratification and cancer treatment.
Collapse
Affiliation(s)
- Jianfeng Chen
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xinyi Zhang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xianming Tan
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biostatistics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
19
|
Wang CW, Chuang HC, Tan TH. ACE2 in chronic disease and COVID-19: gene regulation and post-translational modification. J Biomed Sci 2023; 30:71. [PMID: 37608279 PMCID: PMC10464117 DOI: 10.1186/s12929-023-00965-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2), a counter regulator of the renin-angiotensin system, provides protection against several chronic diseases. Besides chronic diseases, ACE2 is the host receptor for SARS-CoV or SARS-CoV-2 virus, mediating the first step of virus infection. ACE2 levels are regulated by transcriptional, post-transcriptional, and post-translational regulation or modification. ACE2 transcription is enhanced by transcription factors including Ikaros, HNFs, GATA6, STAT3 or SIRT1, whereas ACE2 transcription is reduced by the transcription factor Brg1-FoxM1 complex or ERRα. ACE2 levels are also regulated by histone modification or miRNA-induced destabilization. The protein kinase AMPK, CK1α, or MAP4K3 phosphorylates ACE2 protein and induces ACE2 protein levels by decreasing its ubiquitination. The ubiquitination of ACE2 is induced by the E3 ubiquitin ligase MDM2 or UBR4 and decreased by the deubiquitinase UCHL1 or USP50. ACE2 protein levels are also increased by the E3 ligase PIAS4-mediated SUMOylation or the methyltransferase PRMT5-mediated ACE2 methylation, whereas ACE2 protein levels are decreased by AP2-mediated lysosomal degradation. ACE2 is downregulated in several human chronic diseases like diabetes, hypertension, or lung injury. In contrast, SARS-CoV-2 upregulates ACE2 levels, enhancing host cell susceptibility to virus infection. Moreover, soluble ACE2 protein and exosomal ACE2 protein facilitate SARS-CoV-2 infection into host cells. In this review, we summarize the gene regulation and post-translational modification of ACE2 in chronic disease and COVID-19. Understanding the regulation and modification of ACE2 may help to develop prevention or treatment strategies for ACE2-mediated diseases.
Collapse
Affiliation(s)
- Chia-Wen Wang
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan, 35053 Taiwan
| | - Huai-Chia Chuang
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan, 35053 Taiwan
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan, 35053 Taiwan
| |
Collapse
|
20
|
Gong H, Xue B, Ru J, Pei G, Li Y. Targeted Therapy for EWS-FLI1 in Ewing Sarcoma. Cancers (Basel) 2023; 15:4035. [PMID: 37627063 PMCID: PMC10452796 DOI: 10.3390/cancers15164035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/05/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Ewing sarcoma (EwS) is a rare and predominantly pediatric malignancy of bone and soft tissue in children and adolescents. Although international collaborations have greatly improved the prognosis of most EwS, the occurrence of macrometastases or relapse remains challenging. The prototypic oncogene EWS-FLI1 acts as an aberrant transcription factor that drives the cellular transformation of EwS. In addition to its involvement in RNA splicing and the DNA damage response, this chimeric protein directly binds to GGAA repeats, thereby modifying the transcriptional profile of EwS. Direct pharmacological targeting of EWS-FLI1 is difficult because of its intrinsically disordered structure. However, targeting the EWS-FLI1 protein complex or downstream pathways provides additional therapeutic options. This review describes the EWS-FLI1 protein partners and downstream pathways, as well as the related target therapies for the treatment of EwS.
Collapse
Affiliation(s)
- Helong Gong
- Department of Orthopaedic Surgery, Shengjing Hospital, China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, China;
| | - Busheng Xue
- Department of Hematology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
| | - Jinlong Ru
- Institute of Virology, Helmholtz Centre Munich, German Research Centre for Environmental Health, 85764 Neuherberg, Germany;
| | - Guoqing Pei
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi’an 710032, China;
| | - Yan Li
- Department of Orthopaedic Surgery, Shengjing Hospital, China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, China;
| |
Collapse
|
21
|
Zhou S, Chai D, Wang X, Neeli P, Yu X, Davtyan A, Young K, Li Y. AI-powered discovery of a novel p53-Y220C reactivator. Front Oncol 2023; 13:1229696. [PMID: 37593097 PMCID: PMC10430779 DOI: 10.3389/fonc.2023.1229696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023] Open
Abstract
INTRODUCTION The p53-Y220C mutation is one of the most common mutations that play a major role in cancer progression. METHODS In this study, we applied artificial intelligence (AI)-powered virtual screening to identify small-molecule compounds that specifically restore the wild-type p53 conformation from p53-Y220C. From 10 million compounds, the AI algorithm selected a chemically diverse set of 83 high-scoring hits, which were subjected to several experimental assays using cell lines with different p53 mutations. RESULTS We identified one compound, H3, that preferentially killed cells with the p53-Y220C mutation compared to cells with other p53 mutations. H3 increased the amount of folded mutant protein with wild-type p53 conformation, restored its transcriptional functions, and caused cell cycle arrest and apoptosis. Furthermore, H3 reduced tumorigenesis in a mouse xenograft model with p53-Y220C-positive cells. CONCLUSION AI enabled the discovery of the H3 compound that selectively reactivates the p53-Y220C mutant and inhibits tumor development in mice.
Collapse
Affiliation(s)
- Shan Zhou
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Dafei Chai
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Xu Wang
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Praveen Neeli
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Xinfang Yu
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | | | - Ken Young
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Yong Li
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
22
|
Molyneaux K, Laggner C, Vincent J, Brady-Kalnay S. Small molecule antagonists of PTPmu identified by artificial intelligence-based computational screening block glioma cell migration and growth. PLoS One 2023; 18:e0288980. [PMID: 37494327 PMCID: PMC10370706 DOI: 10.1371/journal.pone.0288980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 07/07/2023] [Indexed: 07/28/2023] Open
Abstract
PTPmu (PTPμ) is a member of the receptor protein tyrosine phosphatase IIb family that participates in both homophilic cell-cell adhesion and signaling. PTPmu is proteolytically downregulated in glioblastoma generating extracellular and intracellular fragments that have oncogenic activity. The intracellular fragments, in particular, are known to accumulate in the cytoplasm and nucleus where they interact with inappropriate binding partners/substrates generating signals required for glioma cell migration and growth. Thus, interfering with these fragments is an attractive therapeutic strategy. To develop agents that target these fragments, we used the AI-based AtomNetⓇ model, a drug design and discovery tool, to virtually screen molecular libraries for compounds able to target a binding pocket bordered by the wedge domain, a known regulatory motif located within the juxtamembrane portion of the protein. Seventy-four high-scoring and chemically diverse virtual hits were then screened in multiple cell-based assays for effects on glioma cell motility (scratch assays) and growth in 3D culture (sphere assays), and PTPmu-dependent adhesion (Sf9 aggregation). We identified three inhibitors (247678835, 247682206, 247678791) that affected the motility of multiple glioma cell lines (LN229, U87MG, and Gli36delta5), the growth of LN229 and Gli36 spheres, and PTPmu-dependent Sf9 aggregation. Compound 247678791 was further shown to suppress PTPmu enzymatic activity in an in vitro phosphatase assay, and 247678835 was able to inhibit the growth of human glioma tumors in mice. We propose that these three compounds are PTPmu-targeting agents with therapeutic potential for treating glioblastoma.
Collapse
Affiliation(s)
- Kathleen Molyneaux
- Department of Molecular Biology & Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | | | - Jason Vincent
- Department of Molecular Biology & Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Susann Brady-Kalnay
- Department of Molecular Biology & Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
23
|
Mucke HA. Patent highlights October-November 2022. Pharm Pat Anal 2023; 12:95-102. [PMID: 37477491 DOI: 10.4155/ppa-2023-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
A snapshot of recent noteworthy developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
24
|
Zhang X, Chen Y, Yang B, Shao X, Ying M. Driving the degradation of oncofusion proteins for targeted cancer therapy. Drug Discov Today 2023; 28:103584. [PMID: 37061213 DOI: 10.1016/j.drudis.2023.103584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/30/2022] [Accepted: 04/05/2023] [Indexed: 04/17/2023]
Abstract
Oncofusion proteins drive the development of about 16.5% of human cancers {AuQ: Edit OK?}, functioning as the unique pathogenic factor in some cancers. The targeting of oncofusion proteins is an attractive strategy to treat malignant tumors. Recently, triggering the degradation of oncofusion proteins has been shown to hold great promise as a therapeutic strategy. Here, we review the recent findings on the mechanisms that maintain the high stability of oncofusion proteins. Then, we summarize strategies to target the degradation of oncofusion proteins through the ubiquitin-proteasome pathway, the autophagy-lysosomal pathway, and the caspase-dependent pathway. By examining oncofusion protein degradation in cancer, we not only gain better insight into the carcinogenic mechanisms that involve oncofusion proteins, but also raise the possibility of treating oncofusion-driven cancer.
Collapse
Affiliation(s)
- Xingya Zhang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingqian Chen
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Xuejing Shao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Meidan Ying
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
25
|
Zhou L, Pan LZ, Fan YJ. DNMT3b affects colorectal cancer development by regulating FLI1 through DNA hypermethylation. Kaohsiung J Med Sci 2023; 39:364-376. [PMID: 36655868 DOI: 10.1002/kjm2.12647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 01/20/2023] Open
Abstract
Friend leukemia integration 1 (FLI1) is an ETS transcription factor family member. Here, we identified cg11017065 as the most hyper-methylated cytosine and guanine (CpG) in colorectal cancer (CRC), which belongs to the FLI1 gene. Moreover, integrated bioinformatics prediction and analysis of our cohort showed that FLI1 expression was downregulated and DNA methylation was elevated in CRC. Bioinformatics prediction also indicated that patients overexpressing FLI1 had higher survival rates than those with low FLI1 expression. CRC cells with ectopic expression of FLI1 had reduced invasion, migration, cloning ability and increased apoptosis. Furthermore, DNA-methyltransferase 3b (DNMT3b) was found to be significantly overexpressed in CRC, and low DNMT3b expression predicted a prolonged survival. DNMT3b bound to the FLI1 promoter. Inhibition of DNMT3b increased FLI1 expression and inhibited the malignant phenotype of CRC cells. Inhibition of FLI1 reversed the phenotypic modulation by DNMT3b depletion in vitro and in vivo. In conclusion, our data indicate that DNMT3b potentiates CRC cell proliferation, migration, and invasion through downregulating FLI1.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Gastroenterology, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, People's Republic of China
| | - Li-Zhen Pan
- Department of Gastroenterology, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, People's Republic of China
| | - Yue-Juan Fan
- Department of Gastroenterology, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
26
|
Yu L, Davis IJ, Liu P. Regulation of EWSR1-FLI1 Function by Post-Transcriptional and Post-Translational Modifications. Cancers (Basel) 2023; 15:382. [PMID: 36672331 PMCID: PMC9857208 DOI: 10.3390/cancers15020382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Ewing sarcoma is the second most common bone tumor in childhood and adolescence. Currently, first-line therapy includes multidrug chemotherapy with surgery and/or radiation. Although most patients initially respond to chemotherapy, recurrent tumors become treatment refractory. Pathologically, Ewing sarcoma consists of small round basophilic cells with prominent nuclei marked by expression of surface protein CD99. Genetically, Ewing sarcoma is driven by a fusion oncoprotein that results from one of a small number of chromosomal translocations composed of a FET gene and a gene encoding an ETS family transcription factor, with ~85% of tumors expressing the EWSR1::FLI1 fusion. EWSR1::FLI1 regulates transcription, splicing, genome instability and other cellular functions. Although a tumor-specific target, EWSR1::FLI1-targeted therapy has yet to be developed, largely due to insufficient understanding of EWSR1::FLI1 upstream and downstream signaling, and the challenges in targeting transcription factors with small molecules. In this review, we summarize the contemporary molecular understanding of Ewing sarcoma, and the post-transcriptional and post-translational regulatory mechanisms that control EWSR1::FLI1 function.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ian J. Davis
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
27
|
Zhu Z, Zhou X, Du H, Cloer EW, Zhang J, Mei L, Wang Y, Tan X, Hepperla AJ, Simon JM, Cook JG, Major MB, Dotti G, Liu P. STING Suppresses Mitochondrial VDAC2 to Govern RCC Growth Independent of Innate Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203718. [PMID: 36445063 PMCID: PMC9875608 DOI: 10.1002/advs.202203718] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/10/2022] [Indexed: 05/02/2023]
Abstract
STING is an innate immune sensor for immune surveillance of viral/bacterial infection and maintenance of an immune-friendly microenvironment to prevent tumorigenesis. However, if and how STING exerts innate immunity-independent function remains elusive. Here, the authors report that STING expression is increased in renal cell carcinoma (RCC) patients and governs tumor growth through non-canonical innate immune signaling involving mitochondrial ROS maintenance and calcium homeostasis. Mitochondrial voltage-dependent anion channel VDAC2 is identified as a new STING binding partner. STING depletion potentiates VDAC2/GRP75-mediated MERC (mitochondria-ER contact) formation to increase mitochondrial ROS/calcium levels, impairs mitochondria function, and suppresses mTORC1/S6K signaling leading to RCC growth retardation. STING interaction with VDAC2 occurs through STING-C88/C91 palmitoylation and inhibiting STING palmitoyl-transferases ZDHHCs by 2-BP significantly impedes RCC cell growth alone or in combination with sorafenib. Together, these studies reveal an innate immunity-independent function of STING in regulating mitochondrial function and growth in RCC, providing a rationale to target the STING/VDAC2 interaction in treating RCC.
Collapse
Affiliation(s)
- Zhichuan Zhu
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Xin Zhou
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Microbiology and ImmunologyThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Hongwei Du
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Microbiology and ImmunologyThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Erica W. Cloer
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Jiaming Zhang
- Department of Oral MedicineInfection and ImmunityHarvard School of Dental MedicineBostonMA02115USA
| | - Liu Mei
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Ying Wang
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Xianming Tan
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of BiostatisticsThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Austin J. Hepperla
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Carolina Institute for Developmental DisabilitiesThe University of North Carolina at Chapel HillChapel HillNC27599USA
- UNC Neuroscience CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Jeremy M. Simon
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Carolina Institute for Developmental DisabilitiesThe University of North Carolina at Chapel HillChapel HillNC27599USA
- UNC Neuroscience CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of GeneticsThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Jeanette Gowen Cook
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Michael B. Major
- Department of Cell Biology and PhysiologyDepartment of OtolaryngologyWashington University in St. LouisSt. LouisMO63130USA
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Microbiology and ImmunologyThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillNC27599USA
| |
Collapse
|
28
|
Wang S, Huo X, Yang Y, Mo Y, Kollipara RK, Kittler R. Ablation of EWS-FLI1 by USP9X inhibition suppresses cancer cell growth in Ewing sarcoma. Cancer Lett 2023; 552:215984. [PMID: 36330954 DOI: 10.1016/j.canlet.2022.215984] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 11/26/2022]
Abstract
The neomorphic transcription factor EWS-FLI1 is a key driver of Ewing sarcoma. Ablation of EWS-FLI1 may present a promising therapeutic strategy for this malignancy. Here we found that the deubiquitinase, ubiquitin specific peptidase 9 X-linked (USP9X) stabilizes EWS-FLI1 protein expression in Ewing sarcoma. We show that USP9X binds the ETS domain of EWS-FLI1 in Ewing sarcoma cells and deubiquitinates EWS-FLI1 and that USP9X and EWS-FLI1 protein expression is correlated in clinical Ewing sarcoma specimens. We found that treatment of Ewing sarcoma cells with the USP9X inhibitor WP1130 mediates rapid EWS-FLI1 degradation in vitro and in vivo which coincides with reduced growth of Ewing sarcoma cells and tumors. Our results suggest that USP9X might be a potential therapeutic target to mediate EWS-FLI1 depletion in Ewing sarcoma.
Collapse
Affiliation(s)
- Shan Wang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China; Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaofang Huo
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yiping Yang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yingxi Mo
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Rahul K Kollipara
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ralf Kittler
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA; Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA; Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA.
| |
Collapse
|
29
|
Apfelbaum AA, Wrenn ED, Lawlor ER. The importance of fusion protein activity in Ewing sarcoma and the cell intrinsic and extrinsic factors that regulate it: A review. Front Oncol 2022; 12:1044707. [PMID: 36505823 PMCID: PMC9727305 DOI: 10.3389/fonc.2022.1044707] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Accumulating evidence shows that despite clonal origins tumors eventually become complex communities comprised of phenotypically distinct cell subpopulations. This heterogeneity arises from both tumor cell intrinsic programs and signals from spatially and temporally dynamic microenvironments. While pediatric cancers usually lack the mutational burden of adult cancers, they still exhibit high levels of cellular heterogeneity that are largely mediated by epigenetic mechanisms. Ewing sarcomas are aggressive bone and soft tissue malignancies with peak incidence in adolescence and the prognosis for patients with relapsed and metastatic disease is dismal. Ewing sarcomas are driven by a single pathognomonic fusion between a FET protein and an ETS family transcription factor, the most common of which is EWS::FLI1. Despite sharing a single driver mutation, Ewing sarcoma cells demonstrate a high degree of transcriptional heterogeneity both between and within tumors. Recent studies have identified differential fusion protein activity as a key source of this heterogeneity which leads to profoundly different cellular phenotypes. Paradoxically, increased invasive and metastatic potential is associated with lower EWS::FLI1 activity. Here, we review what is currently understood about EWS::FLI1 activity, the cell autonomous and tumor microenvironmental factors that regulate it, and the downstream consequences of these activity states on tumor progression. We specifically highlight how transcription factor regulation, signaling pathway modulation, and the extracellular matrix intersect to create a complex network of tumor cell phenotypes. We propose that elucidation of the mechanisms by which these essential elements interact will enable the development of novel therapeutic approaches that are designed to target this complexity and ultimately improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Elizabeth R. Lawlor
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute and Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
30
|
Yang X, Zhu Q. SPOP in Cancer: Phenomena, Mechanisms and Its Role in Therapeutic Implications. Genes (Basel) 2022; 13:2051. [PMID: 36360288 PMCID: PMC9690554 DOI: 10.3390/genes13112051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/14/2022] [Accepted: 11/04/2022] [Indexed: 11/15/2023] Open
Abstract
Speckle-type POZ (pox virus and zinc finger protein) protein (SPOP) is a cullin 3-based E3 ubiquitin ligase adaptor protein that plays a crucial role in ubiquitin-mediated protein degradation. Recently, SPOP has attracted major research attention as it is frequently mutated in a range of cancers, highlighting pleiotropic tumorigenic effects and associations with treatment resistance. Structurally, SPOP contains a functionally critical N-terminal meprin and TRAF homology (MATH) domain for many SPOP substrates. SPOP has two other domains, including the internal Bric-a-brac-Tramtrack/Broad (BTB) domain, which is linked with SPOP dimerization and binding to cullin3, and a C-terminal nuclear localization sequence (NLS). The dysregulation of SPOP-mediated proteolysis is associated with the development and progression of different cancers since abnormalities in SPOP function dysregulate cellular signaling pathways by targeting oncoproteins or tumor suppressors in a tumor-specific manner. SPOP is also involved in genome stability through its role in the DNA damage response and DNA replication. More recently, studies have shown that the expression of SPOP can be modulated in various ways. In this review, we summarize the current understanding of SPOP's functions in cancer and discuss how to design a rational therapeutic target.
Collapse
Affiliation(s)
| | - Qing Zhu
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
31
|
Mishra A, Prabha PK, Singla R, Kaur G, Sharma AR, Joshi R, Suroy B, Medhi B. Epigenetic Interface of Autism Spectrum Disorders (ASDs): Implications of Chromosome 15q11-q13 Segment. ACS Chem Neurosci 2022; 13:1684-1696. [PMID: 35635007 DOI: 10.1021/acschemneuro.2c00060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorders (ASDs) are multifactorial in nature and include both genetic and environmental factors. The increasing evidence advocates an important role of epigenetics in ASD etiology. One of the most common forms of epigenetic changes observed in the case of neurodevelopmental disorders is imprinting which is tightly regulated by developmental and tissue-specific mechanisms. Interestingly, many of these disorders that demonstrate autism-like phenotypes at varying degrees have found involvement of chromosome 15q11-q13 segment. Numerous studies demonstrate occurrence of ASD in the presence of chromosomal abnormalities located mainly in Chr15q11-q13 region. Several plausible candidate genes associated with ASD are in this chromosomal segment, including gamma aminobutyric acid A (GABAA) receptor genes GABRB3, GABRA5 and GABRG3, UBE3A, ATP 10A, MKRN3, ZNF, MAGEL2, Necdin (NDN), and SNRPN. The main objective of this review is to highlight the contribution of epigenetic modulations in chromosome 15q11-q13 segment toward the genetic etiology and pathophysiology of ASD. The present review reports the abnormalities in epigenetic regulation on genes and genomic regions located on chromosome 15 in relation to either syndromic (15q11-q13 maternal duplication) or nonsyndromic forms of ASD. Furthermore, studies reviewed in this article demonstrate conditions in which epigenetic dysregulation has been found to be a pathological factor for ASD development, thereby supporting a role for epigenetics in the multifactorial etiologies of ASD. Also, on the basis of the evidence found so far, we strongly emphasize the need to develop future therapeutic strategies as well as screening procedures for ASD that target mechanisms involving genes located on the chromosomal 15q11-q13 segment.
Collapse
Affiliation(s)
- Abhishek Mishra
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Praisy K Prabha
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Rubal Singla
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Gurjeet Kaur
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Amit Raj Sharma
- Dept. of Neurology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Rupa Joshi
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Benjamin Suroy
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Bikash Medhi
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
32
|
Pedot G, Marques JG, Ambühl PP, Wachtel M, Kasper S, Ngo QA, Niggli FK, Schäfer BW. Retracted: Inhibition of HDACs reduces Ewing sarcoma tumor growth through EWS-FLI1 protein destabilization. Neoplasia 2022; 27:100784. [PMID: 35366465 PMCID: PMC8971315 DOI: 10.1016/j.neo.2022.100784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/26/2022] [Accepted: 03/10/2022] [Indexed: 11/24/2022]
Abstract
Oncogenic transcription factors lacking enzymatic activity or targetable binding pockets are typically considered "undruggable". An example is provided by the EWS-FLI1 oncoprotein, whose continuous expression and activity as transcription factor are critically required for Ewing sarcoma tumor formation, maintenance, and proliferation. Because neither upstream nor downstream targets have so far disabled its oncogenic potential, we performed a high-throughput drug screen (HTS), enriched for FDA-approved drugs, coupled to a Global Protein Stability (GPS) approach to identify novel compounds capable to destabilize EWS-FLI1 protein by enhancing its degradation through the ubiquitin-proteasome system. The protein stability screen revealed the dual histone deacetylase (HDAC) and phosphatidylinositol-3-kinase (PI3K) inhibitor called fimepinostat (CUDC-907) as top candidate to modulate EWS-FLI1 stability. Fimepinostat strongly reduced EWS-FLI1 protein abundance, reduced viability of several Ewing sarcoma cell lines and PDX-derived primary cells and delayed tumor growth in a xenograft mouse model, whereas it did not significantly affect healthy cells. Mechanistically, we demonstrated that EWS-FLI1 protein levels were mainly regulated by fimepinostat's HDAC activity. Our study demonstrates that HTS combined to GPS is a reliable approach to identify drug candidates able to modulate stability of EWS-FLI1 and lays new ground for the development of novel therapeutic strategies aimed to reduce Ewing sarcoma tumor progression.
Collapse
Affiliation(s)
- Gloria Pedot
- Department of Oncology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland
| | - Joana Graça Marques
- Department of Oncology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland
| | - Philip P Ambühl
- Department of Oncology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland
| | - Marco Wachtel
- Department of Oncology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland
| | - Stephanie Kasper
- Department of Oncology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland
| | - Quy A Ngo
- Department of Oncology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland
| | - Felix K Niggli
- Department of Oncology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland
| | - Beat W Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland.
| |
Collapse
|
33
|
Flores G, Grohar PJ. One oncogene, several vulnerabilities: EWS/FLI targeted therapies for Ewing sarcoma. J Bone Oncol 2021; 31:100404. [PMID: 34976713 PMCID: PMC8686064 DOI: 10.1016/j.jbo.2021.100404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
EWS/FLI is the defining mutation of Ewing sarcoma. This oncogene drives malignant transformation and progression and occurs in a genetic background characterized by few other recurrent cooperating mutations. In addition, the tumor is absolutely dependent on the continued expression of EWS/FLI to maintain the malignant phenotype. However, EWS/FLI is a transcription factor and therefore a challenging drug target. The difficulty of directly targeting EWS/FLI stems from unique features of this fusion protein as well as the network of interacting proteins required to execute the transcriptional program. This network includes interacting proteins as well as upstream and downstream effectors that together reprogram the epigenome and transcriptome. While the vast number of proteins involved in this process challenge the development of a highly specific inhibitors, they also yield numerous therapeutic opportunities. In this report, we will review how this vast EWS-FLI transcriptional network has been exploited over the last two decades to identify compounds that directly target EWS/FLI and/or associated vulnerabilities.
Collapse
Affiliation(s)
- Guillermo Flores
- Van Andel Research Institute, Grand Rapids, MI, USA
- Michigan State University, College of Human Medicine, USA
| | - Patrick J Grohar
- Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, 3501 Civic Center Blvd., Philadelphia, PA, USA
| |
Collapse
|