1
|
Polat HU, Yalcin HA, Köm D, Aksoy Ö, Abaci I, Ekiz AT, Serhatli M, Onarici S. Antiviral effect of cannabidiol on K18-hACE2 transgenic mice infected with SARS-CoV-2. J Cell Mol Med 2024; 28:e70030. [PMID: 39267200 PMCID: PMC11392655 DOI: 10.1111/jcmm.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/03/2024] [Accepted: 07/09/2024] [Indexed: 09/14/2024] Open
Abstract
The aim of this study was to determine the antiviral activity of cannabidiol (CBD) against SARS-CoV-2 infection. CBD is the second most studied cannabinoid obtained from Cannabis plants. We investigated the potential use of CBD, which has so far proven to have a positive effect on different diseases, in the SARS-CoV-2 infection. To test this, in vivo studies were carried out using K18-hACE2 transgenic mice. To reveal the potential therapeutic effect of the CBD at the histopathological and molecular level challenge experiments were performed. The study was designed with two groups (n = 10) and in the treatment group animals were infected with SARS-CoV-2 virus strain B.1.1.7 alpha before the administration of CBD. While the disease progressed and resulted in death in the control group that was infected by the virus alone, it was observed that the infection slowed down and the survival rate increased in the mice treated with CBD along with the virus. In this study, K18-hACE2 transgenic mice infected with the wild SARS-CoV-2 virus were used to investigate and prove the antiviral activity of CBD.
Collapse
Affiliation(s)
| | | | - Deniz Köm
- TUBITAK Marmara Research Center, Life Sciences, TUBITAKKocaeliTurkey
| | - Özge Aksoy
- TUBITAK Marmara Research Center, Life Sciences, TUBITAKKocaeliTurkey
- Molecular Biology and Genetics, Institute of SciencesYildiz Technical UniversityIstanbulTurkey
| | - Irem Abaci
- TUBITAK Marmara Research Center, Life Sciences, TUBITAKKocaeliTurkey
- Department of Biotechnology, Institute of BiotechnologyGebze Technical UniversityKocaeliTurkey
| | - Arzu Tas Ekiz
- TUBITAK Marmara Research Center, Life Sciences, TUBITAKKocaeliTurkey
| | - Müge Serhatli
- TUBITAK Marmara Research Center, Life Sciences, TUBITAKKocaeliTurkey
| | - Selma Onarici
- TUBITAK Marmara Research Center, Life Sciences, TUBITAKKocaeliTurkey
| |
Collapse
|
2
|
Bayraktar C, Kayabolen A, Odabas A, Durgun A, Kok I, Sevinc K, Supramaniam A, Idris A, Bagci-Onder T. ACE2-Decorated Virus-Like Particles Effectively Block SARS-CoV-2 Infection. Int J Nanomedicine 2024; 19:6931-6943. [PMID: 39005960 PMCID: PMC11246629 DOI: 10.2147/ijn.s446093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/02/2024] [Indexed: 07/16/2024] Open
Abstract
Purpose Over the past three years, extensive research has been dedicated to understanding and combating COVID-19. Targeting the interaction between the SARS-CoV-2 Spike protein and the ACE2 receptor has emerged as a promising therapeutic strategy against SARS-CoV-2. This study aimed to develop ACE2-coated virus-like particles (ACE2-VLPs), which can be utilized to prevent viral entry into host cells and efficiently neutralize the virus. Methods Virus-like particles were generated through the utilization of a packaging plasmid in conjunction with a plasmid containing the ACE2 envelope sequence. Subsequently, ACE2-VLPs and ACE2-EVs were purified via ultracentrifugation. The quantification of VLPs was validated through multiple methods, including Nanosight 3000, TEM imaging, and Western blot analysis. Various packaging systems were explored to optimize the ACE2-VLP configuration for enhanced neutralization capabilities. The evaluation of neutralization effectiveness was conducted using pseudoviruses bearing different spike protein variants. Furthermore, the study assessed the neutralization potential against the Omicron BA.1 variant in Vero E6 cells. Results ACE2-VLPs showed a high neutralization capacity even at low doses and demonstrated superior efficacy in in vitro pseudoviral assays compared to extracellular vesicles carrying ACE2. ACE2-VLPs remained stable under various environmental temperatures and effectively blocked all tested variants of concern in vitro. Notably, they exhibited significant neutralization against Omicron BA.1 variant in Vero E6 cells. Given their superior efficacy compared to extracellular vesicles and proven success against live virus, ACE2-VLPs stand out as crucial candidates for treating SARS-CoV-2 infections. Conclusion This novel therapeutic approach of coating VLPs with receptor particles provides a proof-of-concept for designing effective neutralization strategies for other viral diseases in the future.
Collapse
Affiliation(s)
- Canan Bayraktar
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Alisan Kayabolen
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Arda Odabas
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Aysegul Durgun
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Ipek Kok
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Kenan Sevinc
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Aroon Supramaniam
- Menzies Health Institute Queensland, School of Medical Science Griffith University, Gold Coast Campus, Brisbane, QLD, Australia
| | - Adi Idris
- Menzies Health Institute Queensland, School of Medical Science Griffith University, Gold Coast Campus, Brisbane, QLD, Australia
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Tugba Bagci-Onder
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| |
Collapse
|
3
|
Gül A, Erkunt Alak S, Can H, Karakavuk M, Korukluoğlu G, Altaş AB, Gül C, Karakavuk T, Köseoğlu AE, Ülbeği Polat H, Yazıcı Malkoçoğlu H, Taş Ekiz A, Abacı İ, Aksoy Ö, Enül H, Adıay C, Uzar S, Saraç F, Ün C, Gürüz AY, Kantarcı AG, Akbaba H, Erel Akbaba G, Yılmaz H, Değirmenci Döşkaya A, Taşbakan M, Pullukçu H, Karasulu E, Tekin Ş, Döşkaya M. Immunogenicity and protection efficacy of a COVID-19 DNA vaccine encoding spike protein with D614G mutation and optimization of large-scale DNA vaccine production. Sci Rep 2024; 14:13865. [PMID: 38879684 PMCID: PMC11180131 DOI: 10.1038/s41598-024-64690-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/12/2024] [Indexed: 06/19/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 had devastating consequences for human health. Despite the introduction of several vaccines, COVID-19 continues to pose a serious health risk due to emerging variants of concern. DNA vaccines gained importance during the pandemic due to their advantages such as induction of both arms of immune response, rapid development, stability, and safety profiles. Here, we report the immunogenicity and protective efficacy of a DNA vaccine encoding spike protein with D614G mutation (named pcoSpikeD614G) and define a large-scale production process. According to the in vitro studies, pcoSpikeD614G expressed abundant spike protein in HEK293T cells. After the administration of pcoSpikeD614G to BALB/c mice through intramuscular (IM) route and intradermal route using an electroporation device (ID + EP), it induced high level of anti-S1 IgG and neutralizing antibodies (P < 0.0001), strong Th1-biased immune response as shown by IgG2a polarization (P < 0.01), increase in IFN-γ levels (P < 0.01), and increment in the ratio of IFN-γ secreting CD4+ (3.78-10.19%) and CD8+ (5.24-12.51%) T cells. Challenging K18-hACE2 transgenic mice showed that pcoSpikeD614G administered through IM and ID + EP routes conferred 90-100% protection and there was no sign of pneumonia. Subsequently, pcoSpikeD614G was evaluated as a promising DNA vaccine candidate and scale-up studies were performed. Accordingly, a large-scale production process was described, including a 36 h fermentation process of E. coli DH5α cells containing pcoSpikeD614G resulting in a wet cell weight of 242 g/L and a three-step chromatography for purification of the pcoSpikeD614G DNA vaccine.
Collapse
MESH Headings
- Vaccines, DNA/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Animals
- Humans
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- Mice
- COVID-19/prevention & control
- COVID-19/immunology
- HEK293 Cells
- Mice, Inbred BALB C
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Mutation
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Female
- Immunogenicity, Vaccine
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
Collapse
Affiliation(s)
- Aytül Gül
- Vaccine Development Application and Research Center, Ege University, 35100, İzmir, Türkiye
- Department of Bioengineering, Faculty of Engineering, Ege University, İzmir, Türkiye
- Department of Bioengineering, Graduate School of Natural and Applied Sciences, Ege University, İzmir, Türkiye
| | - Sedef Erkunt Alak
- Vaccine Development Application and Research Center, Ege University, 35100, İzmir, Türkiye
- Department of Biology, Molecular Biology Section, Faculty of Science, Ege University, İzmir, Türkiye
| | - Hüseyin Can
- Vaccine Development Application and Research Center, Ege University, 35100, İzmir, Türkiye
- Department of Biology, Molecular Biology Section, Faculty of Science, Ege University, İzmir, Türkiye
- Department of Vaccine Studies, Institute of Health Sciences, Ege University, İzmir, Türkiye
| | - Muhammet Karakavuk
- Vaccine Development Application and Research Center, Ege University, 35100, İzmir, Türkiye
- Department of Vaccine Studies, Institute of Health Sciences, Ege University, İzmir, Türkiye
- Ödemiş Vocational School, Ege University, İzmir, Türkiye
| | - Gülay Korukluoğlu
- Republic of Türkiye, General Directorate of Public Health, Ministry of Health, National Virology Reference Central Laboratory, Ankara, Türkiye
- Department of Medical Microbiology, Ankara Bilkent City Hospital, University of Health Sciences, Ankara, Türkiye
| | - Ayşe Başak Altaş
- Republic of Türkiye, General Directorate of Public Health, Ministry of Health, National Virology Reference Central Laboratory, Ankara, Türkiye
| | - Ceren Gül
- Vaccine Development Application and Research Center, Ege University, 35100, İzmir, Türkiye
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, İzmir, Türkiye
| | - Tuğba Karakavuk
- Vaccine Development Application and Research Center, Ege University, 35100, İzmir, Türkiye
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, İzmir, Türkiye
| | - Ahmet Efe Köseoğlu
- Department of Biology, Molecular Biology Section, Faculty of Science, Ege University, İzmir, Türkiye
- Department of Environmental Microbiology and Biotechnology, Faculty of Chemistry, Duisburg-Essen University, Essen, Germany
| | - Hivda Ülbeği Polat
- TÜBİTAK Marmara Research Center, Vice Presidency of Life Sciences, Kocaeli, Türkiye
| | | | - Arzu Taş Ekiz
- TÜBİTAK Marmara Research Center, Vice Presidency of Life Sciences, Kocaeli, Türkiye
| | - İrem Abacı
- TÜBİTAK Marmara Research Center, Vice Presidency of Life Sciences, Kocaeli, Türkiye
| | - Özge Aksoy
- TÜBİTAK Marmara Research Center, Vice Presidency of Life Sciences, Kocaeli, Türkiye
| | - Hakan Enül
- Pendik Veterinary Control Institute, İstanbul, Türkiye
| | - Cumhur Adıay
- Pendik Veterinary Control Institute, İstanbul, Türkiye
| | - Serdar Uzar
- Pendik Veterinary Control Institute, İstanbul, Türkiye
| | - Fahriye Saraç
- Pendik Veterinary Control Institute, İstanbul, Türkiye
| | - Cemal Ün
- Vaccine Development Application and Research Center, Ege University, 35100, İzmir, Türkiye
- Department of Biology, Molecular Biology Section, Faculty of Science, Ege University, İzmir, Türkiye
- Department of Vaccine Studies, Institute of Health Sciences, Ege University, İzmir, Türkiye
| | - Adnan Yüksel Gürüz
- Vaccine Development Application and Research Center, Ege University, 35100, İzmir, Türkiye
- Department of Vaccine Studies, Institute of Health Sciences, Ege University, İzmir, Türkiye
- Department of Parasitology, Faculty of Medicine, Ege University, İzmir, Türkiye
| | - Ayşe Gülten Kantarcı
- Vaccine Development Application and Research Center, Ege University, 35100, İzmir, Türkiye
- Department of Vaccine Studies, Institute of Health Sciences, Ege University, İzmir, Türkiye
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, İzmir, Türkiye
| | - Hasan Akbaba
- Department of Vaccine Studies, Institute of Health Sciences, Ege University, İzmir, Türkiye
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, İzmir, Türkiye
| | - Gülşah Erel Akbaba
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, İzmir Katip Çelebi University, İzmir, Türkiye
| | - Habibe Yılmaz
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Trakya University, Edirne, Türkiye
| | - Aysu Değirmenci Döşkaya
- Vaccine Development Application and Research Center, Ege University, 35100, İzmir, Türkiye
- Department of Vaccine Studies, Institute of Health Sciences, Ege University, İzmir, Türkiye
- Department of Parasitology, Faculty of Medicine, Ege University, İzmir, Türkiye
| | - Meltem Taşbakan
- Department of Vaccine Studies, Institute of Health Sciences, Ege University, İzmir, Türkiye
- Department of Infectious Diseases, Faculty of Medicine, Ege University, İzmir, Türkiye
| | - Hüsnü Pullukçu
- Department of Vaccine Studies, Institute of Health Sciences, Ege University, İzmir, Türkiye
- Department of Infectious Diseases, Faculty of Medicine, Ege University, İzmir, Türkiye
| | - Ercüment Karasulu
- Ege University Research and Application Center of Drug Development and Pharmacokinetics, İzmir, Türkiye
| | - Şaban Tekin
- Department of Basic Medical Sciences, Medical Biology, Faculty of Medicine, University of Health Sciences, İstanbul, Türkiye
| | - Mert Döşkaya
- Vaccine Development Application and Research Center, Ege University, 35100, İzmir, Türkiye.
- Department of Vaccine Studies, Institute of Health Sciences, Ege University, İzmir, Türkiye.
- Department of Parasitology, Faculty of Medicine, Ege University, İzmir, Türkiye.
| |
Collapse
|
4
|
Ameratunga R, Mears E, Leung E, Snell R, Woon ST, Kelton W, Medlicott N, Jordan A, Abbott W, Steele R, Rolleston W, Longhurst H, Lehnert K. Soluble wild-type ACE2 molecules inhibit newer SARS-CoV-2 variants and are a potential antiviral strategy to mitigate disease severity in COVID-19. Clin Exp Immunol 2023; 214:289-295. [PMID: 37565297 PMCID: PMC10719217 DOI: 10.1093/cei/uxad096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease of 2019 (COVID-19), has caused havoc around the world. While several COVID-19 vaccines and drugs have been authorized for use, these antiviral drugs remain beyond the reach of most low- and middle-income countries. Rapid viral evolution is reducing the efficacy of vaccines and monoclonal antibodies and contributing to the deaths of some fully vaccinated persons. Others with normal immunity may have chosen not to be vaccinated and remain at risk if they contract the infection. Vaccines may not protect some immunodeficient patients from SARS-CoV-2, who are also at increased risk of chronic COVID-19 infection, a dangerous stalemate between the virus and a suboptimal immune response. Intra-host viral evolution could rapidly lead to the selection and dominance of vaccine and monoclonal antibody-resistant clades of SARS-CoV-2. There is thus an urgent need to develop new treatments for COVID-19. The NZACE2-Pātari project, comprising modified soluble angiotensin-converting enzyme 2 (ACE2) molecules, seeks to intercept and block SARS-CoV-2 infection of the respiratory mucosa. In vitro data presented here show that soluble wild-type ACE2 molecules retain the ability to effectively block the Spike (S) glycoprotein of SARS-CoV-2 variants including the ancestral Wuhan, delta (B.1.617.2) and omicron (B.1.1.529) strains. This therapeutic strategy may prove effective if implemented early during the nasal phase of the infection and may act synergistically with other antiviral drugs such as Paxlovid to further mitigate disease severity.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical immunology, Auckland Hospital, AucklandNew Zealand
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Emily Mears
- Applied Translational Genetic Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Russell Snell
- Applied Translational Genetic Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - William Kelton
- Te Huataki Waiora School of Health, University of Waikato, Hamilton, New Zealand
- Te Aka Mātuatua School of Science, University of Waikato, Hamilton, New Zealand
| | | | - Anthony Jordan
- Department of Clinical immunology, Auckland Hospital, AucklandNew Zealand
| | - William Abbott
- Department of Surgery, Auckland Hospital, Auckland, New Zealand
| | - Richard Steele
- Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | | | - Hilary Longhurst
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Klaus Lehnert
- Applied Translational Genetic Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Ulbegi Polat H, Abaci I, Tas Ekiz A, Aksoy O, Oktelik FB, Yilmaz V, Tekin S, Okyar A, Oncul O, Deniz G. Therapeutic Effect of C-Vx Substance in K18-hACE2 Transgenic Mice Infected with SARS-CoV-2. Int J Mol Sci 2023; 24:11957. [PMID: 37569331 PMCID: PMC10418837 DOI: 10.3390/ijms241511957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
C-Vx is a bioprotective product designed to boost the immune system. This study aimed to determine the antiviral activity of the C-Vx substance against SARS-CoV-2 infection. The effect of C-Vx in K18-hACE2 transgenic mice against the SARS-CoV-2 virus was investigated. For this purpose, ten mice were separated into experimental and control groups. Animals were infected with SARS-CoV-2 prior to the administration of the product to determine whether the product has a therapeutic effect similar to that demonstrated in previous human studies, at a histopathological and molecular level. C-Vx-treated mice survived the challenge, whereas the control mice became ill and/or died. The cytokine-chemokine panel with blood samples taken during the critical days of the disease revealed detailed immune responses. Our findings showed that C-Vx presented 90% protection against the SARS-CoV-2 virus-infected mice. The challenge results and cytokine responses of K18-hACE2 transgenic mice matched previous scientific studies, demonstrating the C-Vx's antiviral efficiency.
Collapse
Affiliation(s)
- Hivda Ulbegi Polat
- TUBITAK Marmara Research Center, Kocaeli 41470, Türkiye; (H.U.P.); (I.A.); (A.T.E.); (O.A.)
| | - Irem Abaci
- TUBITAK Marmara Research Center, Kocaeli 41470, Türkiye; (H.U.P.); (I.A.); (A.T.E.); (O.A.)
- Department of Biotechnology, Institute of Biotechnology, Gebze Technical University, Kocaeli 41400, Türkiye
| | - Arzu Tas Ekiz
- TUBITAK Marmara Research Center, Kocaeli 41470, Türkiye; (H.U.P.); (I.A.); (A.T.E.); (O.A.)
| | - Ozge Aksoy
- TUBITAK Marmara Research Center, Kocaeli 41470, Türkiye; (H.U.P.); (I.A.); (A.T.E.); (O.A.)
- Department of Molecular Biology and Genetics, Institute of Sciences, Yildiz Technical University, Istanbul 34220, Türkiye
| | - Fatma Betul Oktelik
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34452, Türkiye;
| | - Vuslat Yilmaz
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34452, Türkiye;
| | - Saban Tekin
- Department of Medical Biology, University of Health Sciences, Istanbul 34865, Türkiye;
| | - Alper Okyar
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul 34452, Türkiye;
| | - Oral Oncul
- Department of Infectious Diseases and Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34452, Türkiye;
| | - Gunnur Deniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34452, Türkiye;
| |
Collapse
|
6
|
Kalyoncu S, Yilmaz S, Kuyucu AZ, Sayili D, Mert O, Soyturk H, Gullu S, Akinturk H, Citak E, Arslan M, Taskinarda MG, Tarman IO, Altun GY, Ozer C, Orkut R, Demirtas A, Tilmensagir I, Keles U, Ulker C, Aralan G, Mercan Y, Ozkan M, Caglar HO, Arik G, Ucar MC, Yildirim M, Yildirim TC, Karadag D, Bal E, Erdogan A, Senturk S, Uzar S, Enul H, Adiay C, Sarac F, Ekiz AT, Abaci I, Aksoy O, Polat HU, Tekin S, Dimitrov S, Ozkul A, Wingender G, Gursel I, Ozturk M, Inan M. Process development for an effective COVID-19 vaccine candidate harboring recombinant SARS-CoV-2 delta plus receptor binding domain produced by Pichia pastoris. Sci Rep 2023; 13:5224. [PMID: 36997624 PMCID: PMC10062263 DOI: 10.1038/s41598-023-32021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/21/2023] [Indexed: 04/01/2023] Open
Abstract
Recombinant protein-based SARS-CoV-2 vaccines are needed to fill the vaccine equity gap. Because protein-subunit based vaccines are easier and cheaper to produce and do not require special storage/transportation conditions, they are suitable for low-/middle-income countries. Here, we report our vaccine development studies with the receptor binding domain of the SARS-CoV-2 Delta Plus strain (RBD-DP) which caused increased hospitalizations compared to other variants. First, we expressed RBD-DP in the Pichia pastoris yeast system and upscaled it to a 5-L fermenter for production. After three-step purification, we obtained RBD-DP with > 95% purity from a protein yield of > 1 g/L of supernatant. Several biophysical and biochemical characterizations were performed to confirm its identity, stability, and functionality. Then, it was formulated in different contents with Alum and CpG for mice immunization. After three doses of immunization, IgG titers from sera reached to > 106 and most importantly it showed high T-cell responses which are required for an effective vaccine to prevent severe COVID-19 disease. A live neutralization test was performed with both the Wuhan strain (B.1.1.7) and Delta strain (B.1.617.2) and it showed high neutralization antibody content for both strains. A challenge study with SARS-CoV-2 infected K18-hACE2 transgenic mice showed good immunoprotective activity with no viruses in the lungs and no lung inflammation for all immunized mice.
Collapse
Affiliation(s)
| | - Semiramis Yilmaz
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- VIB-UGent Center for Medical Biotechnology, Gent, Belgium
| | | | - Dogu Sayili
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Olcay Mert
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | | | - Seyda Gullu
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | | | - Erhan Citak
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- VIB-UGent Center for Medical Biotechnology, Gent, Belgium
| | - Merve Arslan
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | | | | | | | - Ceren Ozer
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Ridvan Orkut
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | | | | | - Umur Keles
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Lund University, Lund, Sweden
| | - Ceren Ulker
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Gizem Aralan
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Yavuz Mercan
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Muge Ozkan
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Hasan Onur Caglar
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Erzurum Technical University, Erzurum, Turkey
| | - Gizem Arik
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Ankara Medipol University, Ankara, Turkey
| | - Mehmet Can Ucar
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Imperial College London, London, UK
| | | | | | | | - Erhan Bal
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir Tinaztepe University, Izmir, Turkey
| | - Aybike Erdogan
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Serif Senturk
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Serdar Uzar
- Pendik Veterinary Research and Control Institute, Istanbul, Turkey
| | - Hakan Enul
- Pendik Veterinary Research and Control Institute, Istanbul, Turkey
| | - Cumhur Adiay
- Pendik Veterinary Research and Control Institute, Istanbul, Turkey
| | - Fahriye Sarac
- Pendik Veterinary Research and Control Institute, Istanbul, Turkey
| | | | - Irem Abaci
- Marmara Research Center, TUBITAK, Kocaeli, Turkey
| | - Ozge Aksoy
- Marmara Research Center, TUBITAK, Kocaeli, Turkey
| | | | - Saban Tekin
- Marmara Research Center, TUBITAK, Kocaeli, Turkey
- University of Health Sciences, Istanbul, Turkey
| | | | | | | | - Ihsan Gursel
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Mehmet Ozturk
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir Tinaztepe University, Izmir, Turkey
| | - Mehmet Inan
- Izmir Biomedicine and Genome Center, Izmir, Turkey.
- Akdeniz University, Antalya, Turkey.
| |
Collapse
|
7
|
Nejat R, Torshizi MF, Najafi DJ. S Protein, ACE2 and Host Cell Proteases in SARS-CoV-2 Cell Entry and Infectivity; Is Soluble ACE2 a Two Blade Sword? A Narrative Review. Vaccines (Basel) 2023; 11:204. [PMID: 36851081 PMCID: PMC9968219 DOI: 10.3390/vaccines11020204] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Since the spread of the deadly virus SARS-CoV-2 in late 2019, researchers have restlessly sought to unravel how the virus enters the host cells. Some proteins on each side of the interaction between the virus and the host cells are involved as the major contributors to this process: (1) the nano-machine spike protein on behalf of the virus, (2) angiotensin converting enzyme II, the mono-carboxypeptidase and the key component of renin angiotensin system on behalf of the host cell, (3) some host proteases and proteins exploited by SARS-CoV-2. In this review, the complex process of SARS-CoV-2 entrance into the host cells with the contribution of the involved host proteins as well as the sequential conformational changes in the spike protein tending to increase the probability of complexification of the latter with angiotensin converting enzyme II, the receptor of the virus on the host cells, are discussed. Moreover, the release of the catalytic ectodomain of angiotensin converting enzyme II as its soluble form in the extracellular space and its positive or negative impact on the infectivity of the virus are considered.
Collapse
Affiliation(s)
- Reza Nejat
- Department of Anesthesiology and Critical Care Medicine, Laleh Hospital, Tehran 1467684595, Iran
| | | | | |
Collapse
|