1
|
Zhi H, Wang X, Chen Y, Cai Z, Li J, Guo D. Ceftriaxone affects ferroptosis and alleviates glial cell activation in Parkinson's disease. Int J Mol Med 2025; 55:85. [PMID: 40183389 PMCID: PMC12005368 DOI: 10.3892/ijmm.2025.5526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/26/2025] [Indexed: 04/05/2025] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, which is characterized by the death of dopaminergic neurons. It has been reported that ceftriaxone (CEF) exerts promising effects on alleviating dopaminergic neuron death in PD models. However, the neuroprotective mechanisms of CEF in PD have not been well understood. In the present study, to investigate the neuroprotective effects of CEF through western blot and immunofluorescence assays, two in vivo models were established, namely the 1‑methyl‑4‑phenyl‑1,2,3,6‑tetrahydropyridine (MPTP)‑ and lipopolysaccharide (LPS)‑induced models. Additionally, three in vitro models were used to explore the neuroprotective mechanisms of CEF, namely the 1‑methyl‑4‑phenylpyridinium ion (MPP+)‑induced dopaminergic neuron injury, LPS‑induced microglia activation and TNFα‑induced astrocyte activation models, with key insights derived from western blot and qPCR experiments. The in vivo studies demonstrated that CEF exerted neuroprotective effects and reduced glial cell activation. Additionally, CEF reversed the reduction of tyrosine hydroxylase and suppressed the activation of microglia and astrocytes. Furthermore, the in vitro experiments revealed that CEF could display both direct and indirect neuroprotective effects and could directly alleviate MPP+‑induced neuronal toxicity and suppress the activation of microglia and astrocytes. In addition, CEF indirectly reduced neuronal injury caused by conditioned medium from activated microglia and astrocytes. Mechanistic studies revealed that CEF inhibited the ferroptosis pathway via regulating the expression of solute carrier family 7 member 11 and glutathione peroxidase 4 in a non‑cell‑specific manner. Via inhibiting ferroptosis, CEF could directly protect dopaminergic neurons and prevent glial cell activation, and indirectly impair neurons. In conclusion, the results of the current study highlighted the potential research and therapeutic value of CEF in regulating ferroptosis in PD.
Collapse
Affiliation(s)
- Hui Zhi
- Department of Pharmacy, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu 215153, P.R. China
| | - Xiaoyu Wang
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu 215002, P.R. China
| | - Yujia Chen
- Department of Pharmacy, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu 215153, P.R. China
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, P.R. China
| | - Zenglin Cai
- Department of Pharmacy, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu 215153, P.R. China
| | - Jingwei Li
- Department of Pharmacy, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu 215153, P.R. China
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, P.R. China
| | - Dongkai Guo
- Department of Pharmacy, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu 215153, P.R. China
| |
Collapse
|
2
|
Bojuan L, Youdong Z, Lei W, Lixin X, Jinyang M. Oleanolic Acid Alleviates Neuronal Ferroptosis in Subarachnoid Hemorrhage by Inhibiting KEAP1-Nrf2 and NF-κB Pathways. Drug Dev Res 2025; 86:e70105. [PMID: 40358968 DOI: 10.1002/ddr.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/10/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025]
Abstract
Oleanolic acid (OA) is a pentacyclic triterpenoid compound, and we previously report that it ameliorates neurological injury in subarachnoid hemorrhage (SAH) model. However, the underlying mechanism is not clear. The aim of this study was to explore the effect and mechanism of OA on SAH. In this study, network pharmacology was applied to screen the targets of OA in SAH treatment. Based on these targets, protein-protein interaction network was constructed, and k-means cluster analysis was used to screen the core targets of OA in SAH treatment. In vitro SAH model was constructed with hemin-induced neuron HT22 and microglia BV2. Then cell counting Kit 8, flow cytometry, western blot, qPCR were performed to evaluate the effects of OA on neurons and microglia. 93 targets were identified as the core targets of OA in SAH treatment. Notably, these targets are closely related to neuroinflammation and oxidative stress responses. OA had good binding activity with KEAP1, NFKB1 and IKBA. OA significantly alleviated the inhibitory effect of hemin on HT22 cell viability. OA significantly inhibited the expression of CD86, promoted the expression of CD206, and promoted the transformation of microglia from M1 type to M2 type. Additionally, OA could inhibit the activation of NF-κB and KEAP1/Nrf2 pathways. In conclusion, OA ameliorates inflammatory response, oxidative stress and ferroptosis in SAH, and suppresses neuronal injury by inhibiting NF-κB and KEAP1/Nrf2 pathways.
Collapse
Affiliation(s)
- Lang Bojuan
- Department of Pathology, The First College of Clinical Medical Sciences, China Three Gorges University & Yichang Central People's Hospital, Yichang, PR China
| | - Zhou Youdong
- Department of Neurology, The First College of Clinical Medical Sciences, China Three Gorges University & Yichang Central People's Hospital, Yichang, PR China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Wang Lei
- Department of Neurology, The First College of Clinical Medical Sciences, China Three Gorges University & Yichang Central People's Hospital, Yichang, PR China
| | - Xue Lixin
- Department of Neurosurgery, Zhijiang Branch of Yichang Central People's Hospital, Yichang, PR China
| | - Ma Jinyang
- Department of Neurology, The First College of Clinical Medical Sciences, China Three Gorges University & Yichang Central People's Hospital, Yichang, PR China
| |
Collapse
|
3
|
Gong H, Zheng F, Niu B, Wang B, Xu L, Yang Y, Wang J, Tang X, Bi Y. Auricular Transcutaneous Vagus Nerve Stimulation Enhances Post-Stroke Neurological and Cognitive Recovery in Mice by Suppressing Ferroptosis Through α7 Nicotinic Acetylcholine Receptor Activation. CNS Neurosci Ther 2025; 31:e70439. [PMID: 40376919 DOI: 10.1111/cns.70439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/12/2025] [Accepted: 05/02/2025] [Indexed: 05/18/2025] Open
Abstract
AIMS Ferroptosis plays a critical role in stroke pathophysiology, yet its dynamics during recovery remain unclear. This study aimed to investigate the evolution of ferroptosis throughout post-stroke recovery and evaluate auricular transcutaneous vagus nerve stimulation (atVNS) as a therapeutic intervention, focusing on the involvement of α7 nicotinic acetylcholine receptor (α7nAChR)-mediated mechanisms. METHODS Using a middle cerebral artery occlusion (MCAO) mouse model, we examined ferroptosis-related protein expression (GPX4, ACSL4, TfR) and iron levels across acute to chronic recovery phases. The therapeutic effects of atVNS were evaluated through the assessment of ferroptosis markers, neurogenesis, angiogenesis, cognitive function, and neuroinflammation. α7nAChR knockout mice were used to investigate the receptor's role in atVNS-mediated recovery. RESULTS We observed sustained alterations in ferroptosis markers and iron levels throughout post-stroke recovery. atVNS treatment reduced ferroptosis progression by modulating GPX4 and ACSL4 expression, enhanced neurogenesis and angiogenesis, improved cognitive recovery, and reduced neuroinflammation. These beneficial effects were absent in α7nAChR knockout mice, while atVNS increased neuronal α7nAChR expression in wild-type mice. CONCLUSIONS This study reveals the persistent involvement of ferroptosis in stroke recovery and demonstrates that atVNS provides comprehensive neuroprotection through α7nAChR-dependent mechanisms. These findings establish atVNS as a promising noninvasive therapeutic approach for stroke recovery and highlight α7nAChR signaling as a potential therapeutic target.
Collapse
Affiliation(s)
- Hongyan Gong
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao Hospital of Health and Rehabilitation Sciences University, Qingdao, China
| | - Fang Zheng
- Department of Imaging Center, Qingdao Municipal Hospital, Qingdao Hospital of Health and Rehabilitation Sciences University, Qingdao, China
| | - Bochao Niu
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Bin Wang
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao Hospital of Health and Rehabilitation Sciences University, Qingdao, China
| | - Lin Xu
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao Hospital of Health and Rehabilitation Sciences University, Qingdao, China
| | - Yunchao Yang
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao Hospital of Health and Rehabilitation Sciences University, Qingdao, China
| | - Jiahan Wang
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao Hospital of Health and Rehabilitation Sciences University, Qingdao, China
| | - Xiaopeng Tang
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Yanlin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao Hospital of Health and Rehabilitation Sciences University, Qingdao, China
| |
Collapse
|
4
|
Gong Y, Yang F, Liu Y, Gong Y. Ferroptosis-associated pathological injury mechanisms and therapeutic strategies after intracerebral hemorrhage. Front Neurol 2025; 16:1508718. [PMID: 40376154 PMCID: PMC12078154 DOI: 10.3389/fneur.2025.1508718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 04/21/2025] [Indexed: 05/18/2025] Open
Abstract
Intracerebral hemorrhage (ICH) is an important neurological disease caused by the rupture of blood vessels in the brain parenchyma, with a high mortality and disability rate. At present, many studies have focused on the injury mechanisms and intervention strategies after ICH. However, there is no effective clinical treatment that can significantly improve the prognosis of ICH patients. Ferroptosis, a regulated form of cell death, has been identified as a significant contributor to brain tissues damage and neurological dysfunction following ICH. The hallmark of ferroptosis is iron-dependent lipid peroxidation, which is closely related to the pathological process of iron overload and oxidative stress after ICH. Exploring the interaction between ferroptosis and pathological injury mechanisms post-ICH will contribute to our understanding the key pathways involved in the ferroptosis-related injury mechanisms and facilitating the discovery of appropriate intervention strategies. On this basis, we present a comprehensive overview of ferroptosis-related brain injury mechanisms (e.g., iron overload, oxidative stress, inflammatory response and mass effect) in the pathogenesis and development of ICH. Following ICH, the degradation of hematoma and iron metabolism provide the fundamental material basis for ferroptosis, and oxidative stress primarily participates in the lipid peroxidation process of ferroptosis via related molecular pathways (such as the GPX4). By synthesizing current evidence, this article aims to provide a theoretical foundation for future research on therapeutic strategies targeting ferroptosis and related pathways in ICH.
Collapse
Affiliation(s)
- Yuhua Gong
- School of Smart Health, Chongqing Polytechnic University of Electronic Technology, Chongqing, China
- Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fumei Yang
- School of Smart Health, Chongqing Polytechnic University of Electronic Technology, Chongqing, China
| | - Ying Liu
- School of Smart Health, Chongqing Polytechnic University of Electronic Technology, Chongqing, China
| | - Yuping Gong
- Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Liu YJ, Jia GR, Zhang SH, Guo YL, Ma XZ, Xu HM, Xie JX. The role of microglia in neurodegenerative diseases: from the perspective of ferroptosis. Acta Pharmacol Sin 2025:10.1038/s41401-025-01560-4. [PMID: 40307457 DOI: 10.1038/s41401-025-01560-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/06/2025] [Indexed: 05/02/2025]
Abstract
Iron plays a pivotal role in numerous fundamental biological processes in the brain. Among the various cell types in the central nervous system, microglia are recognized as the most proficient cells in accumulating and storing iron. Nonetheless, iron overload can induce inflammatory phenotype of microglia, leading to the production of proinflammatory cytokines and contributing to neurodegeneration. A growing body of evidence shows that disturbances in iron homeostasis in microglia is associated with a range of neurodegenerative disorders. Recent research has revealed that microglia are highly sensitive to ferroptosis, a form of iron-dependent cell death. How iron overload influences microglial function? Whether disbiosis in iron metabolism and ferroptosis in microglia are involved in neurodegenerative disorders and the underlying mechanisms remain to be elucidated. In this review we focus on the recent advances in research on microglial iron metabolism as well as ferroptosis in microglia. Meanwhile, we provide a comprehensive overview of the involvement of microglial ferroptosis in neurodegenerative disorders from the perspective of crosstalk between microglia and neuron, with a focus on Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Ying-Juan Liu
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Guo-Rui Jia
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Sheng-Han Zhang
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yun-Liang Guo
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Xi-Zhen Ma
- College of Life Sciences and Health, University of Health and Rehabilitation Science, Qingdao, 266113, China.
| | - Hua-Min Xu
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Jun-Xia Xie
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
6
|
Zhang W, Li R, Lu D, Wang X, Wang Q, Feng X, Qi S, Zhang X. Phospholipids and peroxisomes in ferroptosis: the therapeutic target of acupuncture regulating vascular cognitive impairment and dementia. Front Aging Neurosci 2025; 17:1512980. [PMID: 40365351 PMCID: PMC12070441 DOI: 10.3389/fnagi.2025.1512980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/26/2025] [Indexed: 05/15/2025] Open
Abstract
Ferroptosis, since its conceptualization in 2012, has witnessed an exponential growth in research interest over recent years. It is regulated by various cellular metabolic pathways during chronic cerebral ischemia and hypoxia, including reactive oxygen species (ROS) generation, iron accumulation, abnormalities in glutathione metabolism, and disruptions in lipid and glucose metabolism. With the deepening and widespread research, ferroptosis has emerged as a critical pathway in the pathogenesis of vascular cognitive impairment and dementia (VCID). This unique cell death pathway caused by iron-dependent phospholipid peroxidation is strongly related to VICD. We examine the impact of phospholipid composition on neuronal susceptibility to ferroptosis, with a particular focus on the critical role of polyunsaturated fatty acids (PUFAs) in this process. Intriguingly, peroxisomes, as key regulators of lipid metabolism and oxidative stress, influence the susceptibility of neuronal cells to ferroptosis through the synthesis of plasmalogens and other lipid species. In this Review, we provide a critical analysis of the current molecular mechanisms and regulatory networks of acupuncture for ferroptosis, the potential functions of acupuncture in peroxisomal functions and phospholipid metabolism, and its neuroprotective effects in VCID, together with a potential for therapeutic targeting. As such, this highlights the theoretical basis for the application of acupuncture in VCID through multi-target regulation of ferroptosis. This review underscores the potential of acupuncture as a non-pharmacological therapeutic approach in VCID, offering new insights into its role in modulating ferroptosis and associated metabolic pathways for neuroprotection.
Collapse
Affiliation(s)
- Wenyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruiyu Li
- Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen, China
| | - Donglei Lu
- Sports Training Academy of Tianjin University of Sport, Tianjin, China
| | - Xinliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiuxuan Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuyang Feng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sai Qi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuezhu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
7
|
Shan G, Bian Y, Ren S, Hu Z, Pan B, Zeng D, Zheng Z, Fan H, Bi G, Yao G, Zhan C. Sarcosine sensitizes lung adenocarcinoma to chemotherapy by dual activation of ferroptosis via PDK4/PDHA1 signaling and NMDAR-mediated iron export. Exp Hematol Oncol 2025; 14:60. [PMID: 40275333 PMCID: PMC12023509 DOI: 10.1186/s40164-025-00657-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 04/16/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Ferroptosis, a regulated cell death driven by iron-dependent lipid peroxidation, is associated with chemoresistance in lung adenocarcinoma (LUAD). This study aims to investigate the role of sarcosine in ferroptosis and its underlying mechanisms. METHODS An RSL3-induced ferroptosis model was used to screen a library of 889 human endogenous metabolites and metabolomic profiling was harnessed to identify metabolites associated with ferroptosis. Cell viability, lipid-reactive oxygen species (ROS), ferrous iron, malondialdehyde (MDA), and mitochondrial integrity were assessed to evaluate sarcosine's effects on ferroptosis. Metabolic fate was studied using 15N-labeled sarcosine. Next, we used untargeted metabolomic profiling and next-generation sequencing to dissect metabolic and transcriptomic changes upon sarcosine supplementation. The effects of sarcosine on ferroptosis and chemotherapy were further validated in patient-derived organoids (PDOs), xenograft models, and LUAD tissues. RESULTS Sarcosine emerged as a potent ferroptosis inducer in the metabolic library screening, which was further confirmed via cell viability, lipid-ROS, ferrous iron, and MDA measurements. Metabolic flux analysis showed limited conversion of sarcosine to other metabolites in LUAD cells, while untargeted metabolomic profiling and seahorse assays indicated a metabolic shift from glycolysis to oxidative phosphorylation. Sarcosine enhanced pyruvate dehydrogenase activity to generate more ROS by interacting with PDK4, reducing PDHA1 phosphorylation. As a co-activator of N-methyl-D-aspartate receptor (NMDAR), sarcosine also exerted its pro-ferroptosis effect via regulating ferrous export through the NMDAR/MXD3/SLC40A1 axis. Given the significance of ferroptosis in chemotherapy, we validated that sarcosine enhanced the sensitization of cisplatin by promoting ferroptosis in LUAD cells, PDOs, and xenograft models. CONCLUSION Sarcosine promotes ferroptosis and enhances chemosensitivity, suggesting its potential as a therapeutic agent in treating LUAD.
Collapse
Affiliation(s)
- Guangyao Shan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, China
| | - Yunyi Bian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, China
| | - Shencheng Ren
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, China
| | - Binyang Pan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, China
| | - Dejun Zeng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, China
| | - Zhaolin Zheng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, China
| | - Hong Fan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, China
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University (Xiamen Branch), No. 668 Jinhu Road, Huli District, Xiamen, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, China.
| | - Guangyu Yao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, China.
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, China.
| |
Collapse
|
8
|
Prabhune NM, Ameen B, Prabhu S. Therapeutic potential of synthetic and natural iron chelators against ferroptosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3527-3555. [PMID: 39601820 DOI: 10.1007/s00210-024-03640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Ferroptosis, a regulated form of cell death, is characterized by iron accumulation that results in the production of reactive oxygen species. This further causes lipid peroxidation and damage to the cellular components, eventually culminating into oxidative stress. Recent studies have highlighted the pivotal role of ferroptosis in the pathophysiological development and progression of various diseases such as β-thalassemia, hemochromatosis, and neurodegenerative disorders like AD and PD. Extensive efforts are in progress to understand the molecular mechanisms governing the role of ferroptosis in these conditions, and chelation therapy stands out as a potential approach to mitigate ferroptosis and its related implications in their development. There are currently both synthetic and natural iron chelators that are being researched for their potential as ferroptosis inhibitors. While synthetic chelators are relatively well-established and studied, their short plasma half-life and toxic side effects necessitate the exploration and identification of natural products that can act as efficient and safe iron chelators. In this review, we comprehensively discuss both synthetic and natural iron chelators as potential therapeutic strategies against ferroptosis-induced pathologies.
Collapse
Affiliation(s)
- Nupura Manish Prabhune
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Bilal Ameen
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sudharshan Prabhu
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
9
|
Jin L, Zhang Y, Xia Y, Wu Q, Yan H, Tong H, Chu M, Wen Z. Polybrominated biphenyls induce liver injury by disrupting the KEAP1/Nrf2/SLC7A11 axis leading to impaired GSH synthesis and ferroptosis in hepatocytes. Arch Toxicol 2025; 99:1545-1559. [PMID: 39934342 DOI: 10.1007/s00204-025-03973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025]
Abstract
Polybrominated biphenyls (PBBs) are persistent organic pollutants (POPs) widespread in the environment, presenting significant health hazards due to their bioaccumulation, particularly in liver. Ferroptosis, an iron-dependent form of cell death, has not been previously linked to PBBs-induced hepatotoxicity. This study investigated whether PBBs induce hepatotoxicity through ferroptosis and the toxicological mechanism using mice and THLE-2 cells models exposed to PBB mixture (BP-6). Histopathological and biochemical analyses revealed that BP-6 exposure-induced hepatic injury, oxidative stress, and inflammatory response in mice. BP-6 exposure induced a significant increase in Fe2+ content and a decrease in FTH1, SLC7A11 and GPX4 protein expression in hepatocytes, resulting in severe lipid peroxide accumulation and GSH depletion. Ferroptosis inhibitors, Fer-1 and DFO, reversed the iron metabolism disruption caused by BP-6, underscoring the critical role of ferroptosis in BP-6-induced liver injury. Mechanistically, BP-6 exposure impaired GSH synthesis by preventing Nrf2 nuclear translocation and Slc7a11 transcription through upregulating KEAP1 levels. Keap1 knockdown or Slc7a11 overexpression reversed BP-6-induced lipid peroxide accumulation and GSH depletion, confirming the involvement of ferroptosis in BP-6-induced hepatotoxicity. In addition, curcumin, a natural Nrf2 agonist, significantly alleviated BP-6-induced ferroptosis and liver injury in vitro and in vivo by restoring SLC7A11 protein expression and GSH synthesis. These findings elucidate the toxicological mechanism of PBBs and suggest potential therapeutic strategies to counteract PBBs exposure.
Collapse
Affiliation(s)
- Longteng Jin
- Department of Pediatric Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ya Zhang
- Hepatology Diagnosis and Treatment Center & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yuhan Xia
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Afliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Qifang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Huanjuan Yan
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| | - Maoping Chu
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Afliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325000, China.
| | - Zhengwang Wen
- Department of Pediatric Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
10
|
Liu X, Wang W, Nie Q, Liu X, Sun L, Ma Q, Zhang J, Wei Y. The Role and Mechanisms of Ubiquitin-Proteasome System-Mediated Ferroptosis in Neurological Disorders. Neurosci Bull 2025; 41:691-706. [PMID: 39775589 PMCID: PMC11979074 DOI: 10.1007/s12264-024-01343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/29/2024] [Indexed: 01/11/2025] Open
Abstract
Ferroptosis is a form of cell death elicited by an imbalance in intracellular iron concentrations, leading to enhanced lipid peroxidation. In neurological disorders, both oxidative stress and mitochondrial damage can contribute to ferroptosis, resulting in nerve cell dysfunction and death. The ubiquitin-proteasome system (UPS) refers to a cellular pathway in which specific proteins are tagged with ubiquitin for recognition and degradation by the proteasome. In neurological conditions, the UPS plays a significant role in regulating ferroptosis. In this review, we outline how the UPS regulates iron metabolism, ferroptosis, and their interplay in neurological diseases. In addition, we discuss the future application of small-molecule inhibitors and identify potential drug targets. Further investigation into the mechanisms of UPS-mediated ferroptosis will provide novel insights and strategies for therapeutic interventions and clinical applications in neurological diseases.
Collapse
Affiliation(s)
- Xin Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Wei Wang
- Cancer Biology Institute, Baotou Medical College, Baotou, 014010, China
| | - Qiucheng Nie
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xinjing Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Lili Sun
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Qiang Ma
- Cancer Biology Institute, Baotou Medical College, Baotou, 014010, China
| | - Jie Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
- Biomedical Sciences College & Shandong Medicinal Biotechnology Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Yiju Wei
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
11
|
Romanucci V, Pagano R, Koeberle SC, Koeberle A, Hoang MB, Di Gaetano S, Capasso D, Sciacca MFM, Lanza V, Tempra C, Lolicato F, Zarrelli A, Milardi D, Di Fabio G. Synthesis of Ethylphosphonate Curcumin Mimics: Substituents Allow Switching Between Cytotoxic and Cytoprotective Activities. Antioxidants (Basel) 2025; 14:412. [PMID: 40298666 PMCID: PMC12024457 DOI: 10.3390/antiox14040412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Curcumin is recognized for its diverse biological activities, including the ability to induce apoptosis and ferroptosis. Therefore, it represents a promising candidate for the development of new compounds with neuroprotective and anticancer properties. In order to synthesize mimics with improved pharmacokinetic properties (better solubility and stability than curcumin) here, we present the design and synthesis of novel curcumin analogues named Ethylphosphonate-based curcumin mimics (EPs), which preserve the pharmacophoric features of curcumin. New EP mimics were synthesized by tyrosol- and melatonin-based building blocks using an orthogonal protection approach of the different precursors' OH functions with good yields and in a few steps. Comparative screenings of the cytotoxic and cytoprotective properties (curcumin was used as a reference compound) were carried out on all new mimics in different cell lines (HeLa, A375, WM266, MDA-MB-231, LX2, and HDF). Assays with inhibitors of ferroptosis (Ferrostatin-1, Fer-1) and apoptosis (Quinoline-Val-Asp-difluorophenoxymethyl ketone, Q-VD), in combination with curcumin, suggested the specific cell death pathway (apoptotic or ferroptotic) of EPs, depending on the aromatic moieties contained in them. Interestingly, EP4 exhibited substantial cytotoxic effects against various human cancer cell lines (HeLa, A375, WM266) while sparing normal cells (HDFs). EP4 displayed a five-times-higher toxicity in triple-negative MDA-MB-231 and LX2 stellate cells than curcumin. The cytotoxicity exerted by EP4 involves only an apoptotic mechanism, contrary to curcumin, which exerts both apoptotic and ferroptotic effects. Additionally, EP4 was also found to be a very potent inhibitor of the ubiquitin-activating enzyme E1, reinforcing the anticancer potential of this compound. Furthermore, EP2 possesses high antioxidant properties, efficiently protects against cell death by ferroptosis, and inhibits the amyloid aggregation involved in AD.
Collapse
Affiliation(s)
- Valeria Romanucci
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, 80126 Naples, Italy; (V.R.); (R.P.); (A.Z.)
| | - Rita Pagano
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, 80126 Naples, Italy; (V.R.); (R.P.); (A.Z.)
| | - Solveigh C. Koeberle
- Institute of Pharmaceutical Sciences/Pharmacognosy and Excellence Field BioHealth, University of Graz, 8010 Graz, Austria; (S.C.K.); (A.K.)
- Michael Popp Institute, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria;
| | - Andreas Koeberle
- Institute of Pharmaceutical Sciences/Pharmacognosy and Excellence Field BioHealth, University of Graz, 8010 Graz, Austria; (S.C.K.); (A.K.)
- Michael Popp Institute, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria;
| | - Minh Bui Hoang
- Michael Popp Institute, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria;
| | - Sonia Di Gaetano
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy;
| | - Domenica Capasso
- Department of Physics Ettore Pancini, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy;
| | - Michele Francesco Maria Sciacca
- Istituto di Cristallografia, National Research Council (CNR), Via Paolo Gaifami 18, 95125 Catania, Italy; (M.F.M.S.); (V.L.); (D.M.)
| | - Valeria Lanza
- Istituto di Cristallografia, National Research Council (CNR), Via Paolo Gaifami 18, 95125 Catania, Italy; (M.F.M.S.); (V.L.); (D.M.)
| | - Carmelo Tempra
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague 6, Czech Republic;
| | - Fabio Lolicato
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany;
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, 80126 Naples, Italy; (V.R.); (R.P.); (A.Z.)
| | - Danilo Milardi
- Istituto di Cristallografia, National Research Council (CNR), Via Paolo Gaifami 18, 95125 Catania, Italy; (M.F.M.S.); (V.L.); (D.M.)
| | - Giovanni Di Fabio
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, 80126 Naples, Italy; (V.R.); (R.P.); (A.Z.)
| |
Collapse
|
12
|
Alves Fernandes TA, Tourville A, Ciss I, Ribeiro Silva R, Andretto de Mattos B, Dos Santos Pereira M, Oblaza M, Brunel JM, Ferrié L, Raisman-Vozari R, Figadère B, Del-Bel E, Michel PP. Oxytetracycline and its Non-Antibiotic Derivative DOT Protect Midbrain Dopamine Neurons from Iron-Driven Oxidative Damage. Neurotox Res 2025; 43:16. [PMID: 40119187 DOI: 10.1007/s12640-025-00742-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/24/2025]
Abstract
This study aimed to investigate the neuroprotective potential of the tetracycline (TC) antibiotic oxytetracycline (OT) and its non-antibiotic derivative 4-dedimethylamino 12a-deoxy-oxytetracycline (DOT), in experimental conditions that mimic the gradual loss of dopamine (DA) neurons in Parkinson's disease (PD). Specifically, we established a model system of mouse midbrain cultures where DA neurons progressively die when exposed to an iron-containing medium. We found that OT (EC50 = 0.25µM) and DOT (EC50 = 0.34µM) efficiently protected DA neurons from degeneration, with these effects observable until advanced stages of neurodegeneration. The reference antibiotic TC doxycycline (DOX) also exhibited protective effects in this context. Importantly, DA neurons rescued by OT, DOT, and DOX retained their capacity to accumulate and release DA, indicating full functional integrity. Additionally, molecules with iron-chelating properties (apotransferrin, desferoxamine), as well as inhibitors of lipid peroxidation and ferroptosis (Trolox, Liproxstatin-1), could replicate the rescue of DA neurons provided by OT, DOT, and DOX. Live-cell imaging studies showed that test TCs and other neuroprotective molecules prevented the emission of intracellular reactive oxygen species and the associated disruption of the mitochondrial membrane potential. However, neither OT, DOT, nor DOX could protect DA neurons from selective mitochondrial poisoning by 1-methyl-4-phenylpyridinium. This suggests that test TCs may be protective against iron-mediated damage through a mechanism not directly involving mitochondria. Overall, we demonstrate that OT and DOT possess promising properties that could be useful for combating PD neurodegeneration. However, the absence of antimicrobial activity makes DOT a better candidate drug compared to its parent compound OT.
Collapse
Affiliation(s)
- Thaís Antonia Alves Fernandes
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France
- Department of Basic and Oral Biology, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, SP, 14049-904, Brazil
- Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Aurore Tourville
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France
| | - Ismaila Ciss
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France
- Université Paris-Saclay, BioCIS, CNRS, Orsay, 91190, France
| | - Rafaela Ribeiro Silva
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France
| | - Bianca Andretto de Mattos
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France
- Department of Basic and Oral Biology, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, SP, 14049-904, Brazil
- Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Maurício Dos Santos Pereira
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France
- Stanley Center, Broad Institute, Cambridge, MA, 02142, USA
| | - Maxime Oblaza
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France
- Université Paris-Saclay, BioCIS, CNRS, Orsay, 91190, France
| | - Jean-Michel Brunel
- Aix Marseille Univ, Inserm, Membranes et Cibles Thérapeutiques, Service de Santé des Armées, Marseille, 13385, France
| | - Laurent Ferrié
- Université Paris-Saclay, BioCIS, CNRS, Orsay, 91190, France
| | - Rita Raisman-Vozari
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France
| | - Bruno Figadère
- Université Paris-Saclay, BioCIS, CNRS, Orsay, 91190, France
| | - Elaine Del-Bel
- Department of Basic and Oral Biology, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, SP, 14049-904, Brazil.
| | - Patrick Pierre Michel
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France.
| |
Collapse
|
13
|
Gao XD, Ding JE, Xie JX, Xu HM. Epigenetic regulation of iron metabolism and ferroptosis in Parkinson's disease: Identifying novel epigenetic targets. Acta Pharmacol Sin 2025:10.1038/s41401-025-01499-6. [PMID: 40069488 DOI: 10.1038/s41401-025-01499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/28/2025] [Indexed: 03/17/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease, and emerging evidence has shown that iron deposition, ferroptosis and epigenetic modifications are implicated in the pathogenesis of PD. However, the interplay among these factors in PD has not been fully understood. In this review, we provide an overview of the current research progress on iron metabolism, ferroptosis and epigenetic alterations associated with PD. Furthermore, we present new frontiers concerning various epigenetic modifications related to iron metabolism and ferroptosis that might contribute to the pathology of PD. Notably, epigenetic modifications of iron metabolism and ferroptosis as both diagnostic and therapeutic targets in PD have been discussed. This opens new avenues for the regulation of iron homeostasis and ferroptosis in PD from epigenetic perspectives, and provides evidence for their potential implications in the diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Xiao-Die Gao
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Jian-E Ding
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Jun-Xia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
| | - Hua-Min Xu
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
14
|
Russo A, Putaggio S, Tellone E, Calderaro A, Cirmi S, Laganà G, Ficarra S, Barreca D, Patanè GT. Emerging Ferroptosis Involvement in Amyotrophic Lateral Sclerosis Pathogenesis: Neuroprotective Activity of Polyphenols. Molecules 2025; 30:1211. [PMID: 40141987 PMCID: PMC11944684 DOI: 10.3390/molecules30061211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Neurodegenerative diseases are a group of diseases that share common features, such as the generation of misfolded protein deposits and increased oxidative stress. Among them, amyotrophic lateral sclerosis (ALS), whose pathogenesis is still not entirely clear, is a complex neurodegenerative disease linked both to gene mutations affecting different proteins, such as superoxide dismutase 1, Tar DNA binding protein 43, Chromosome 9 open frame 72, and Fused in Sarcoma, and to altered iron homeostasis, mitochondrial dysfunction, oxidative stress, and impaired glutamate metabolism. The purpose of this review is to highlight the molecular targets common to ALS and ferroptosis. Indeed, many pathways implicated in the disease are hallmarks of ferroptosis, a recently discovered type of iron-dependent programmed cell death characterized by increased reactive oxygen species (ROS) and lipid peroxidation. Iron accumulation results in mitochondrial dysfunction and increased levels of ROS, lipid peroxidation, and ferroptosis triggers; in addition, the inhibition of the Xc- system results in reduced cystine levels and glutamate accumulation, leading to excitotoxicity and the inhibition of GPx4 synthesis. These results highlight the potential involvement of ferroptosis in ALS, providing new molecular and biochemical targets that could be exploited in the treatment of the disease using polyphenols.
Collapse
Affiliation(s)
| | - Stefano Putaggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.R.); (A.C.); (S.C.); (G.L.); (S.F.); (D.B.); (G.T.P.)
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.R.); (A.C.); (S.C.); (G.L.); (S.F.); (D.B.); (G.T.P.)
| | | | | | | | | | | | | |
Collapse
|
15
|
Liu Y, Fleishman JS, Wang H, Huo L. Pharmacologically Targeting Ferroptosis and Cuproptosis in Neuroblastoma. Mol Neurobiol 2025; 62:3863-3876. [PMID: 39331355 PMCID: PMC11790790 DOI: 10.1007/s12035-024-04501-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Neuroblastoma is a deadly pediatric cancer that originates from the neural crest and frequently develops in the abdomen or adrenal gland. Although multiple approaches, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy, are recommended for treating neuroblastoma, the tumor will eventually develop resistance, leading to treatment failure and cancer relapse. Therefore, a firm understanding of the molecular mechanisms underlying therapeutic resistance is vital for the development of new effective therapies. Recent research suggests that cancer-specific modifications to multiple subtypes of nonapoptotic regulated cell death (RCD), such as ferroptosis and cuproptosis, contribute to therapeutic resistance in neuroblastoma. Targeting these specific types of RCD may be viable novel targets for future drug discovery in the treatment of neuroblastoma. In this review, we summarize the core mechanisms by which the inability to properly execute ferroptosis and cuproptosis can enhance the pathogenesis of neuroblastoma. Therefore, we focus on emerging therapeutic compounds that can induce ferroptosis or cuproptosis, delineating their beneficial pharmacodynamic effects in neuroblastoma treatment. Cumulatively, we suggest that the pharmacological stimulation of ferroptosis and ferroptosis may be a novel and therapeutically viable strategy to target neuroblastoma.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pediatrics, The Fourth Affiliated Hospital of China Medical University, Shenyang, 100012, China.
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Hongquan Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Liang Huo
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 11004, China.
| |
Collapse
|
16
|
Zhu F, Dan T, Hua S. KEAP1-NRF2/HO-1 Pathway Promotes Ferroptosis and Neuronal Injury in Schizophrenia. Brain Behav 2025; 15:e70311. [PMID: 40021790 PMCID: PMC11870791 DOI: 10.1002/brb3.70311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/31/2024] [Accepted: 01/16/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND This study investigates the role of the KEAP1-NRF2/HO-1 signaling pathway in inducing ferroptosis and contributing to neuronal damage in schizophrenia. METHODS We retrieved schizophrenia-related data and ferroptosis-related genes from the RNA microarray dataset GSE27383 and FerrDB database, respectively. Bioinformatics data identified KEAP1 as a downregulated gene, which was validated using qRT-PCR and Western blot. We assessed intracellular Fe2⁺ content, MDA levels, GSH, and GPX4 in the prefrontal cortex and peripheral blood mononuclear cells (PBMCs) of patients with schizophrenia. Cortical interneurons (cINs) were generated from human-induced pluripotent stem cells (hiPSCs) of patients with schizophrenia and used to explore KEAP1 alterations during neurodevelopment. In addition, KEAP1 overexpression was induced in cINs via transfection with pcDNA KEAP1. The intracellular Fe⁺ levels, oxidative stress indicators, lipid peroxidation, and inflammatory cytokines were measured after transfection. To investigate molecular mechanisms, KI696-a high-affinity probe that disrupts the KEAP1-NRF2 interaction-was applied, and changes in oxidative stress, lipid peroxidation (C11-BODIPY staining), iron metabolism, and inflammatory pathways were evaluated. RESULTS Patients with schizophrenia exhibited underexpression of KEAP1, a key regulator of ferroptosis, along with elevated intracellular Fe2⁺ levels and increased MDA concentrations, indicating enhanced lipid peroxidation and oxidative stress. Reduced GPX4 activity and GSH levels were also observed, suggesting an increased susceptibility to ferroptosis. To further explore this, cINs derived from hiPSCs of patients with schizophrenia were studied. These cells showed decreased KEAP1 expression. Overexpression of KEAP1 in cINs led to a reduction in intracellular Fe2⁺ concentrations and oxidative damage, highlighting KEAP1's regulatory role in ferroptosis. In addition, treatment with KI696 induced significant alterations in pathways related to oxidative stress, iron metabolism, antioxidant defenses, and inflammation. CONCLUSION Our findings indicate that the KEAP1-NRF2/HO-1 pathway contributes to ferroptosis and neuronal injury in schizophrenia.
Collapse
Affiliation(s)
- Feng Zhu
- Department of PsychiatryThe Second Affiliated Hospital of Hubei University of Science and TechnologyXianningHubeiChina
| | - Tangqun Dan
- Department of PsychiatryThe Second Affiliated Hospital of Hubei University of Science and TechnologyXianningHubeiChina
| | - Shuguang Hua
- Department of PsychiatryThe Second Affiliated Hospital of Hubei University of Science and TechnologyXianningHubeiChina
| |
Collapse
|
17
|
Yang N, Jia K, Dai K, Wu Q, Yan H, Tong H, Zhang Y, Shao X. Perfluorooctane sulfonate mediates GSH degradation leading to oral keratinocytes ferroptosis and mucositis through activation of the ER stress-ATF4-CHAC1 axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117964. [PMID: 40037075 DOI: 10.1016/j.ecoenv.2025.117964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/15/2025] [Accepted: 02/23/2025] [Indexed: 03/06/2025]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant that induces inflammatory response and oxidative stress in oral mucosa. Ferroptosis, a form of cell death characterized by iron-dependent lipid peroxidation (the oxidative degradation of lipids), was believed to play a crucial role in pathogenesis of oral mucositis; however, the involvement of PFOS-induced ferroptosis remained unclear. Our findings demonstrated that PFOS inhibited proliferation and induced pro-apoptotic effects in oral cells, with the most pronounced effects observed in human oral keratinocytes (HOK). PFOS significantly increased reactive oxygen species (ROS) and lipid peroxidation, and depleted glutathione (GSH) in HOK cells. Notably, PFOS decreased glutathione peroxidase 4 (GPX4) expression and elevated Fe2 + levels, suggesting a potential induction of ferroptosis. Ferroptosis inhibitors mitigated PFOS-induced lipid peroxidation and GSH depletion, subsequently enhancing cell viability. Mechanistically, PFOS-induced endoplasmic reticulum (ER) stress contributed to the increased expression and nuclear translocation (from the cytoplasm into the nucleus) of activating transcription factor 4 (ATF4) and up-regulated its downstream target gene Chac1. Glutathione-specific gamma-glutamylcyclotransferase 1 (CHAC1) catalyzed the conversion of GSH into cysteinylglycine and 5-oxoproline, resulting in GSH depletion-a critical factor in PFOS-induced ferroptosis. Knocking down CHAC1 attenuated PFOS-induced ferroptosis. Tauroursodeoxycholic acid (TUDCA), the classical ER stress inhibitor, attenuated PFOS-induced oral keratinocytes ferroptosis and mucositis by inhibiting ATF4/CHAC1 pathway activation. These findings elucidated the toxicological mechanisms of PFOS and proposed potential therapeutic strategies to counteract PFOS exposure induced oral mucositis.
Collapse
Affiliation(s)
- Ningning Yang
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Kemin Jia
- Department of Stomatology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Kaixi Dai
- Department of Stomatology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Qifang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Huanjuan Yan
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Ya Zhang
- Hepatology Diagnosis and Treatment Center & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Xia Shao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
18
|
Xu W, Guan G, Yue R, Dong Z, Lei L, Kang H, Song G. Chemical Design of Magnetic Nanomaterials for Imaging and Ferroptosis-Based Cancer Therapy. Chem Rev 2025; 125:1897-1961. [PMID: 39951340 DOI: 10.1021/acs.chemrev.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Ferroptosis, an iron-dependent form of regulatory cell death, has garnered significant interest as a therapeutic target in cancer treatment due to its distinct characteristics, including lipid peroxide generation and redox imbalance. However, its clinical application in oncology is currently limited by issues such as suboptimal efficacy and potential off-target effects. The advent of nanotechnology has provided a new way for overcoming these challenges through the development of activatable magnetic nanoparticles (MNPs). These innovative MNPs are designed to improve the specificity and efficacy of ferroptosis induction. This Review delves into the chemical and biological principles guiding the design of MNPs for ferroptosis-based cancer therapies and imaging-guided therapies. It discusses the regulatory mechanisms and biological attributes of ferroptosis, the chemical composition of MNPs, their mechanism of action as ferroptosis inducers, and their integration with advanced imaging techniques for therapeutic monitoring. Additionally, we examine the convergence of ferroptosis with other therapeutic strategies, including chemodynamic therapy, photothermal therapy, photodynamic therapy, sonodynamic therapy, and immunotherapy, within the context of nanomedicine strategies utilizing MNPs. This Review highlights the potential of these multifunctional MNPs to surpass the limitations of conventional treatments, envisioning a future of drug-resistance-free, precision diagnostics and ferroptosis-based therapies for treating recalcitrant cancers.
Collapse
Affiliation(s)
- Wei Xu
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Guoqiang Guan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Renye Yue
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, PR China
| | - Zhe Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Lingling Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Heemin Kang
- Department of Materials Science and Engineering and College of Medicine, Korea University, 12 Seoul 02841, Republic of Korea
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
19
|
Kacemi R, Campos MG. Bee Pollen Potential to Modulate Ferroptosis: Phytochemical Insights for Age-Related Diseases. Antioxidants (Basel) 2025; 14:265. [PMID: 40227202 PMCID: PMC11939620 DOI: 10.3390/antiox14030265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 04/15/2025] Open
Abstract
Bee pollen (BP) is one of the richest known natural resources of micronutrients and bioactive phytochemicals. Some captivating bioactivities of BP compounds, although being largely investigated for the latter as individual molecules, remain very scarcely investigated or completely uninvestigated in bee pollen as a whole product. Among the most intriguing of these bioactivities, we identified ferroptosis as a major one. Ferroptosis, a recently discovered form of cell death (connecting oxidative stress and inflammation), is a complex pathophysiological process and one of the most crucial and perplexing events in current challenging human diseases such as cancer, neurodegeneration, and general aging diseases. Many BP compounds were found to intricately modulate ferroptosis depending on the cellular context by inducing this cell death mechanism in malignant cells and preventing it in non-malignant cells. Since research in both fields, i.e., BP and ferroptosis, is still recent, we deemed it necessary to undertake this review to figure out the extent of BP potential in modulating ferroptosis mechanisms. Our research proved that a wide range of BP compounds (polyphenols, phenolamides, carotenoids, vitamins, minerals, and others) substantially modulate diverse ferroptosis mechanisms. Accordingly, these phytochemicals and nutrients showed interesting potential in preclinical studies to lead to ferroptosis-mediated outcomes in important pathophysiological processes, including many aging-related disorders. One of the most paramount challenges that remain to be resolved is to determine how different BP compounds act on ferroptosis in different biological and pathophysiological contexts, either through synergistic or antagonistic behaviors. We hope that our current work constitutes a valuable incentive for future investigations in this promising and very relevant research avenue.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3000-548 Coimbra, Portugal
| |
Collapse
|
20
|
Zhou B, Guo J, Xiao K, Liu Y. The multifaceted role of ferroptosis in infection and injury and its nutritional regulation in pigs. J Anim Sci Biotechnol 2025; 16:29. [PMID: 39994824 PMCID: PMC11854094 DOI: 10.1186/s40104-025-01165-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/15/2025] [Indexed: 02/26/2025] Open
Abstract
Ferroptosis is a newly identified form of regulated cell death (RCD) characterized by iron overload and excessive lipid peroxidation. To date, numerous studies in human and mouse models have shown that ferroptosis is closely related to tissue damage and various diseases. In recent years, ferroptosis has also been found to play an indispensable and multifaceted role in infection and tissue injury in pigs, and nutritional regulation strategies targeting ferroptosis show great potential. In this review, we summarize the research progress of ferroptosis and its role in infection and tissue injury in pigs. Furthermore, we discuss the existing evidence on ferroptosis regulation by nutrients, aiming to provide valuable insights for future investigation into ferroptosis in pigs and offer a novel perspective for the treatment of infection and injury in pigs.
Collapse
Affiliation(s)
- Bei Zhou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Junjie Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
21
|
Yang Y, Lv M, Liu R, Yu P, Shen Z, Bai D, Zhao P, Yang J, Tang X, Yang H, Yong Y, Jiang G. Tungsten-based polyoxometalate nanoclusters as ferroptosis inhibitors modulating S100A8/A9-mediated iron metabolism pathway for managing intracerebral haemorrhage. J Nanobiotechnology 2025; 23:122. [PMID: 39972331 PMCID: PMC11837349 DOI: 10.1186/s12951-025-03149-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/22/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Intracerebral haemorrhage (ICH) is a devastating neurological disorder with high morbidity and mortality rates, largely owing to the lack of effective therapeutic strategies. Growing evidence has underscored the pivotal role of ferroptosis in intracerebral haemorrhage, and its contribution to neuronal death and exacerbation of brain injury, thus establishing it as a crucial target for therapeutic intervention. In recent years, polyoxometalate nanoclusters (NCs) have been applied in various neurodegenerative diseases, demonstrating neuroprotective effects. However, their impact on brain iron content and neurological function following ICH has yet to be reported. Here, we explored the potential of tungsten-based polyoxometalate (W-POM) NCs as ferroptosis inhibitors targeting the iron metabolic pathway mediated by S100A8/A9 for the treatment of ICH. RESULTS We successfully synthesized ultra-small reduced W-POM NCs that can rapidly cross the blood-brain barrier and are cleared through the kidney. In vitro experiments demonstrated that W-POM NCs exhibit significant and stable ROS scavenging activity while effectively alleviating iron overload and associated neuronal damage. In vivo, W-POM NCs treatment restored iron metabolism homeostasis, suppressed neuroinflammation and oxidative stress, ultimately alleviating severe neurological damage and motor deficits in ICH mice. Proteomic combined with bioinformatic analyses identified two core genes, S100A8 and S100A9, most associated with W-POM NCs intervention in ICH. Further experiments confirmed that W-POM NCs act by modulating the toll-like receptor 4/hepcidin/ferroportin signaling pathway, thereby regulating iron metabolism and reducing secondary brain injury. CONCLUSIONS This study pioneers the application of polyoxometalates in intracerebral haemorrhage, offering a novel and promising therapeutic approach for the management of ferroptosis-related brain injuries.
Collapse
Affiliation(s)
- Yang Yang
- Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong, Sichuan, 637000, China
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Mingzhu Lv
- Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong, Sichuan, 637000, China
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan, China
| | - Ruihong Liu
- Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong, Sichuan, 637000, China
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Peilu Yu
- Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong, Sichuan, 637000, China
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ziyi Shen
- Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong, Sichuan, 637000, China
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Dazhang Bai
- Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong, Sichuan, 637000, China
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Peilin Zhao
- Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong, Sichuan, 637000, China
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jin Yang
- Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong, Sichuan, 637000, China
| | - Xiaoping Tang
- Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong, Sichuan, 637000, China.
| | - Hanfeng Yang
- Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong, Sichuan, 637000, China.
| | - Yuan Yong
- Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong, Sichuan, 637000, China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan, China.
| | - Guohui Jiang
- Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong, Sichuan, 637000, China.
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China.
| |
Collapse
|
22
|
Wang H, Wu S, Li Q, Sun H, Wang Y. Targeting Ferroptosis: Acteoside as a Neuroprotective Agent in Salsolinol-Induced Parkinson's Disease Models. FRONT BIOSCI-LANDMRK 2025; 30:26679. [PMID: 40018928 DOI: 10.31083/fbl26679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/29/2024] [Accepted: 11/30/2024] [Indexed: 03/01/2025]
Abstract
BACKGROUND Salsolinol (SAL) is a dopamine metabolite and endogenous neurotoxin that exerts neurotoxicity to dopaminergic neurons and is involved in the genesis of Parkinson's disease (PD). However, the machinery underlying SAL-induced neurotoxicity in PD is still being elucidated. METHODS In the present study, we first used RNA-seq and KEGG analysis to examine differentially expressed genes in SAL-challenged SH-SY5Y cells. PD animal models were established and treated with acteoside. Cell viability assays, lipid peroxidation assessments (malondialdehyde [MDA] and 4-Hydroxynonenal [4-HNE]), immunoblot, and transmission electron microscopy were used to confirm acteoside-mediated inhibition of ferroptosis and its neuroprotective effect on dopaminergic (DA) neurons. RESULTS We found that ferroptosis-related pathway was enriched by SAL. SAL inducing ferroptosis through upregulating long-chain acyl-CoA synthetase family member 4 (ACSL4) in SH-SY5Y cells, which neurotoxic effect was reversed by ferroptosis inhibitors ferrostatin-1 (Fer-1) and deferoxamine (DFO). Acteoside, a phenylethanoid glycoside of plant origin with a neuroprotective effect, attenuates SAL-induced neurotoxicity by inhibiting ferroptosis in in vitro and in vivo PD models through downregulating ACSL4. CONCLUSIONS The present study revealed a novel molecular mechanism underlying SAL-induced neurotoxicity via induction of ferroptosis in PD, and uncovered a new pharmacological effect against PD through inhibiting ferroptosis. This study highlights SAL-induced neurotoxicity via ferroptosis as a potential therapeutic target in PD.
Collapse
Affiliation(s)
- Hongquan Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, 100049 Beijing, China
| | - Shuang Wu
- Department of Neurology, Zhongnan Hospital of Wuhan University, 430000 Wuhan, Hubei, China
| | - Qiang Li
- Department of Neurology, The Affiliated Hospital of Chifeng University, 024005 Chifeng, Inner Mongolia, China
| | - Huiyan Sun
- Chifeng University Health Science Center, 024000 Chifeng, Inner Mongolia, China
| | - Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, 100049 Beijing, China
| |
Collapse
|
23
|
Wang Y, Liao B, Shan X, Ye H, Wen Y, Guo H, Xiao F, Zhu H. Revealing rutaecarpine's promise: A pathway to parkinson's disease relief through PPAR modulation. Int Immunopharmacol 2025; 147:114076. [PMID: 39809102 DOI: 10.1016/j.intimp.2025.114076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
The pathological mechanisms of Parkinson's disease (PD) is complex, and no definitive cure currently exists. This study identified Rutaecarpine (Rut), an alkaloid extracted from natural plants, as a potential therapeutic agent for PD. To elucidate its mechanisms of action and specific effects in PD, network pharmacology, molecular docking, and experimental validation methods were employed. Our findings demonstrated the efficacy of Rut in ameliorating PD symptoms. Network pharmacology analysis indicated that Rut exerts its therapeutic effects through the PPAR signaling pathway and the lipid pathway. Molecular docking results revealed that Rut forms stable protein-ligand complexes with PPARα and PPARγ. Animal experiments showed that Rut improved motor function in PD mice, protected dopaminergic neurons, ameliorated lipid metabolism disorders, and reduced neuroinflammation. This study identified the critical molecular mechanisms and therapeutic targets of Rut in the treatment of PD, providing a theoretical foundation for future investigations into the pharmacodynamics of Rut as a potential anti-PD agent.
Collapse
Affiliation(s)
- Yeying Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; The Second Clinical Medical College of Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Bin Liao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Xuesong Shan
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Haonan Ye
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Yuqi Wen
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Hua Guo
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Feng Xiao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Hong Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| |
Collapse
|
24
|
Lv S, Luo C. Ferroptosis in schizophrenia: Mechanisms and therapeutic potentials (Review). Mol Med Rep 2025; 31:37. [PMID: 39611491 PMCID: PMC11613623 DOI: 10.3892/mmr.2024.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Schizophrenia, a complex psychiatric disorder, presents with multifaceted symptoms and important challenges in treatment, primarily due to its pathophysiological complexity, which involves oxidative stress and aberrant iron metabolism. Recent insights into ferroptosis, a unique form of iron‑dependent cell death characterized by lipid peroxidation and antioxidant system failures, open new avenues for understanding the neurobiological foundation of schizophrenia. The present review explores the interplay between ferroptosis and schizophrenia, emphasizing the potential contributions of disrupted iron homeostasis and oxidative mechanisms to the pathology and progression of this disease. The emerging evidence linking ferroptosis with the oxidative stress observed in schizophrenia provides a compelling narrative for re‑evaluating current therapeutic strategies and exploring novel interventions targeting these molecular pathways, such as the glutathione peroxidase 4 pathway and the ferroptosis suppressor protein 1 pathway. By integrating recent advances in ferroptosis research, the current review highlights innovative therapeutic potentials, including N‑acetylcysteine, selenium, omega‑3 fatty acids and iron chelation therapy, which could address the limitations of existing treatments and improve clinical outcomes for individuals with schizophrenia.
Collapse
Affiliation(s)
- Shuang Lv
- Department of Psychiatry, Guangzhou Kangning Hospital (The Psychiatric Hospital of Guangzhou Civil Administration Bureau), Guangzhou, Guangdong 510430, P.R. China
| | - Chunxia Luo
- Department of Psychiatry, Guangzhou Kangning Hospital (The Psychiatric Hospital of Guangzhou Civil Administration Bureau), Guangzhou, Guangdong 510430, P.R. China
| |
Collapse
|
25
|
Chen J, Wang L, Peng X, Cheng T, Yang Y, Su J, Zou H, Wang S, Mao Y, Wu L, Yin X, Li M, Zhu M, Zhou W. Identification of CSPG4 as a Biomarker and Therapeutic Target for Infantile Post-Hemorrhagic Hydrocephalus via Multi-Omics Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410056. [PMID: 39686677 PMCID: PMC11809374 DOI: 10.1002/advs.202410056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/27/2024] [Indexed: 12/18/2024]
Abstract
Intraventricular hemorrhage in preterm neonates has become a major global health problem and is associated with a high risk of post-hemorrhagic hydrocephalus (PHH). Identifying diagnostic markers and therapeutic targets is a focal challenge in the PHH prevention and control. Here, this study applies multi-omics analyses to characterize the biochemical, proteomic, and metabolomic profiles of the cerebrospinal fluid (CSF) in clinical human cohorts to investigate disease development and recovery processes occurring due to PHH. Integrative multiomics analysis suggests that the over-representation of ferroptosis, calcium, calcium ion binding, and cell adhesion signaling pathways is associated with PHH. Bioinformatic analysis indicates that chondroitin sulfate proteoglycan 4 (CSPG4) is discovered as a CSF biomarker and positively correlated with the ventricular size and the rate of periventricular leukomalacia. Next, it is further demonstrated that these signaling pathways are dysregulated in the choroid plexus (ChP) in PHH by using in vitro cellular experiments and rat models of PHH, whereas CSPG4 silencing can suppress ferroptosis, cell adhesion function, and the intracellular flow of Ca2+. These findings broaden the understanding of the pathophysiological mechanisms of PHH and suggest that CSPG4 may be an effective therapeutic target for PHH.
Collapse
Affiliation(s)
- Juncao Chen
- Department of NeonatologyGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Lin Wang
- Department of RadiologyGuangzhou Women and Children's Medical CenterGuangdong Provincial Clinical Research Center for Child HealthGuangzhou510623China
- Institute of PediatricsGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Xiangwen Peng
- Changsha Hospital for Maternal and Child HealthcareChangsha410100China
| | - Tingting Cheng
- Department of NeonatologyGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Yihui Yang
- Department of NeonatologyGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Jingzhen Su
- Department of NeonatologyDongguan Maternal and Child Health HospitalDongguan523057China
| | - Hongmei Zou
- Department of NeonatologyGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Siyao Wang
- Department of NeonatologyGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Yueting Mao
- Department of NeonatologyGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Lixiang Wu
- Department of NeonatologyGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Xuntao Yin
- Department of RadiologyGuangzhou Women and Children's Medical CenterGuangdong Provincial Clinical Research Center for Child HealthGuangzhou510623China
| | - Minxu Li
- Department of NeonatologyDongguan Maternal and Child Health HospitalDongguan523057China
| | - Mingwei Zhu
- Institute of PediatricsGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
- Key Laboratory of Developmental Disorders in ChildrenLiuzhou Maternity and Child Healthcare HospitalLiuzhou545006China
| | - Wei Zhou
- Department of NeonatologyGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| |
Collapse
|
26
|
Hu N, Zhang G, An L, Wang W, An R, Li Y. PF4 inhibits ferroptosis-mediated intracerebral hemorrhage through modulating the CXCR3/AKT1/SLC7A11 signaling pathway. BIOMOLECULES & BIOMEDICINE 2025; 25:563-577. [PMID: 39558855 PMCID: PMC12010983 DOI: 10.17305/bb.2024.11283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Ferroptosis plays a crucial role in the secondary pathophysiological damage to brain tissue surrounding hematomas after intracerebral hemorrhage (ICH). While platelet factor 4 (PF4) is known to promote regeneration following peripheral nerve injury, its role in brain tissue repair after cerebral hemorrhage remains unclear. In this study, Hemin-induced PC12 cells were treated with various inhibitors and assessed for viability, oxidative stress, and ferroptosis using a combination of assays, including CCK-8 (Cell Counting Kit-8), EdU (5-Ethynyl-2'-deoxyuridine), flow cytometry, and immunofluorescence. ICH cells were also treated with recombinant PF4 (Rm-PF4) and a CXCR3 antagonist (AMG487) to investigate the mechanism by which Rm-PF4 influences Hemin-induced PC12 cell injury and inflammation. Subsequently, ICH mouse models were established via collagenase injection. Neurological function in these mice was evaluated using the Cylinder and Corner tests. Histopathological damage to brain tissue was analyzed through HE, TUNEL, and Nissl staining, as well as immunohistochemistry, to further explore the role of Rm-PF4 in controlling neuroinflammation in vivo. Results showed that Rm-PF4 inhibited Hemin-mediated ferroptosis-induced PC12 cell damage and inflammation by activating the CXCR3/AKT1/SLC7A11 signaling pathway. Blocking the CXCR3/AKT1/SLC7A11 pathway partially reversed PF4's protective effects on Hemin-induced PC12 cells.In ICH mice, pro-inflammatory marker CD16 (3rd day) and anti-inflammatory marker Arg1 (7th day) were significantly decreased and increased, respectively (p<0.05). IL-6, TNF-α, and IL-1β levels were down-regulated in brain tissues after Rm-PF4 injection, which was significantly reversed by AMG487. PF4 inhibits ferroptosis after ICH reduced PC12 cell damage and the inflammatory response via activating the CXCR3/AKT1/SLC7A11 pathway.
Collapse
Affiliation(s)
- Na Hu
- Department of Biochemistry and Biology, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei Province, China
| | - Guohong Zhang
- Department of Biochemistry and Biology, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei Province, China
| | - Liping An
- Department of Biochemistry and Biology, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei Province, China
| | - Wei Wang
- Department of Biochemistry and Biology, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei Province, China
| | - Ran An
- Department of Biochemistry and Biology, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei Province, China
| | - Yunfeng Li
- Department of Biochemistry and Biology, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei Province, China
- The Seventh People's Hospital of Hebei Province, China
| |
Collapse
|
27
|
Alatawi AD, Venkatesan K, Asseri K, Paulsamy P, Alqifari SF, Ahmed R, Nagoor Thangam MM, Sirag N, Qureshi AA, Elsayes HA, Faried Bahgat Z, Bahnsawy NSM, Prabahar K, Dawood BMAE. Targeting Ferroptosis in Rare Neurological Disorders Including Pediatric Conditions: Innovations and Therapeutic Challenges. Biomedicines 2025; 13:265. [PMID: 40002678 PMCID: PMC11853599 DOI: 10.3390/biomedicines13020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
Ferroptosis, characterized by iron dependency and lipid peroxidation, has emerged as a key mechanism underlying neurodegeneration in rare neurological disorders. These conditions, often marked by significant therapeutic gaps and high unmet medical needs, present unique challenges for intervention development. This review examines the involvement of ferroptosis in rare neurological disease pathogenesis, focusing on its role in oxidative damage and neuronal dysfunction. We explore recent pharmacological advancements, including iron chelators, lipid peroxidation blockers, and antioxidant-based strategies, designed to target ferroptosis. While these approaches show promise, challenges such as disease heterogeneity, limited diagnostic tools, and small patient cohorts hinder progress. Furthermore, we discuss the translational and regulatory barriers to implementing ferroptosis-based therapies in clinical practice. By addressing these obstacles and fostering innovative solutions, this review underscores the potential of ferroptosis-targeting strategies to revolutionize treatment paradigms for rare neurological disorders.
Collapse
Affiliation(s)
- Ahmed D. Alatawi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Krishnaraju Venkatesan
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia; (K.A.); (A.A.Q.)
| | - Khalid Asseri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia; (K.A.); (A.A.Q.)
| | - Premalatha Paulsamy
- College of Nursing, Mahalah Branch for Girls, King Khalid University, Abha 62521, Saudi Arabia;
| | - Saleh F. Alqifari
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (S.F.A.); (K.P.)
| | - Rehab Ahmed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (N.S.)
| | | | - Nizar Sirag
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (N.S.)
| | - Absar A. Qureshi
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia; (K.A.); (A.A.Q.)
| | - Hala Ahmed Elsayes
- Department of Psychiatric and Mental Health Nursing, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Psychiatric and Mental Health, Faculty of Nursing, Tanta University, Tanta 31527, Egypt
| | - Zeinab Faried Bahgat
- Department of Medical-Surgical Nursing, Faculty of Nursing, Tanta University, Tanta 31527, Egypt;
- Department of Medical-Surgical Nursing, College of Nursing, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center, Al-Ahsa 31982, Saudi Arabia
| | - Nesren S. M. Bahnsawy
- Department of Pediatric Nursing, College of Nursing, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh 11481, Saudi Arabia;
- Department of Pediatric Nursing, Faculty of Nursing, Cairo University, Giza 12613, Egypt
| | - Kousalya Prabahar
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (S.F.A.); (K.P.)
| | - Basma Mahmoud Abd Elhamid Dawood
- Department of Pediatric Nursing, Faculty of Nursing, Tanta University, Tanta 31527, Egypt;
- Department of Pediatric Nursing, College of Nursing, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
28
|
Zhou Y, Rashad S, Ando D, Kobayashi Y, Tominaga T, Niizuma K. Dynamic mRNA Stability Buffer Transcriptional Activation During Neuronal Differentiation and Is Regulated by SAMD4A. J Cell Physiol 2025; 240:e31477. [PMID: 39513231 PMCID: PMC11747957 DOI: 10.1002/jcp.31477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/26/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Neurons are exceptionally sensitive to oxidative stress, which is the basis for many neurodegenerative disease pathophysiologies. The posttranscriptional basis for neuronal differentiation and behavior is not well characterized. The steady-state levels of mRNA are outcomes of an interplay between RNA transcription and decay. However, the correlation between mRNA transcription, translation, and stability remains elusive. We utilized a SH-SY5Y-based neural differentiation model that is widely used to study neurodegenerative diseases. After neuronal differentiation, we observed enhanced sensitivity of mature neurons to mitochondrial stresses and ferroptosis induction. We employed a newly developed simplified mRNA stability profiling technique to explore the role of mRNA stability in SH-SY5Y neuronal differentiation model. Transcriptome-wide mRNA stability analysis revealed neural-specific RNA stability kinetics. Our analysis revealed that mRNA stability could either exert the buffering effect on gene products or change in the same direction as transcription. Importantly, we observed that changes in mRNA stability corrected over or under transcription of mRNAs to maintain mRNA translation dynamics. Furthermore, we conducted integrative analysis of our mRNA stability data set, and a published CRISPR-i screen focused on neuronal oxidative stress responses. Our analysis unveiled novel neuronal stress response genes that were not evident at the transcriptional or translational levels. SEPHS2 emerged as an important neuronal stress regulator based on this integrative analysis. Motif analysis unveiled SAMD4A as a major regulator of the dynamic changes in mRNA stability observed during differentiation. Knockdown of SAMD4A impaired neuronal differentiation and influenced the response to oxidative stress. Mechanistically, SAMD4A was found to alter the stability of several mRNAs. The novel insights into the interplay between mRNA stability and cellular behaviors provide a foundation for understanding neurodevelopmental processes and neurodegenerative disorders and highlight dynamic mRNA stability as an important layer of gene expression.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Neurosurgical Engineering and Translational NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
| | - Sherif Rashad
- Department of Neurosurgical Engineering and Translational NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
| | - Daisuke Ando
- Department of Neurosurgical Engineering and Translational NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
- Department of NeurosurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Yuki Kobayashi
- Department of Neurosurgical Engineering and Translational NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
| | - Teiji Tominaga
- Department of NeurosurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Kuniyasu Niizuma
- Department of Neurosurgical Engineering and Translational NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
- Department of NeurosurgeryTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
29
|
Li Y, Liu C, Fang B, Chen X, Wang K, Xin H, Wang K, Yang SM. Ferroptosis, a therapeutic target for cardiovascular diseases, neurodegenerative diseases and cancer. J Transl Med 2024; 22:1137. [PMID: 39710702 DOI: 10.1186/s12967-024-05881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
The identification of ferroptosis represents a pivotal advancement in the field of cell death research, revealing an entirely novel mechanism of cellular demise and offering new insights into the initiation, progression, and therapeutic management of various diseases. Ferroptosis is predominantly induced by intracellular iron accumulation, lipid peroxidation, or impairments in the antioxidant defense system, culminating in membrane rupture and consequent cell death. Studies have associated ferroptosis with a wide range of diseases, and by enhancing our comprehension of its underlying mechanisms, we can formulate innovative therapeutic strategies, thereby providing renewed hope for patients.
Collapse
Affiliation(s)
- Yinghui Li
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Cuiyun Liu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Bo Fang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Xinzhe Chen
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Kai Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China.
| | - Kun Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| | - Su-Min Yang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
30
|
Kacemi R, Campos MG. Bee Pollen as a Source of Biopharmaceuticals for Neurodegeneration and Cancer Research: A Scoping Review and Translational Prospects. Molecules 2024; 29:5893. [PMID: 39769981 PMCID: PMC11677910 DOI: 10.3390/molecules29245893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025] Open
Abstract
Bee Pollen (BP) has many advantageous properties relying on its multitargeting potential, a new tendency in managing many challenging illnesses. In cancer and neurodegeneration, the multiple effects of BP could be of unequaled importance and need further investigation. Although still limited, available data interestingly spotlights some floral sources with promising activities in line with this investigation. Adopting scoping review methodology, we have identified many crucial bioactivities that are widely recognized to individual BP compounds but remain completely untapped in this valuable bee cocktail. A wide range of these compounds have been recently found to be endowed with great potential in modulating pivotal processes in neurodegeneration and cancer pathophysiology. In addition, some ubiquitous BP compounds have only been recently isolated, while the number of studied BPs remains extremely limited compared to the endless pool of plant species worldwide. We have also elucidated that clinical profits from these promising perspectives are still impeded by challenging hurdles such as limited bioavailability of the studied phytocompounds, diversity and lack of phytochemical standardization of BP, and the difficulty of selective targeting in some pathophysiological mechanisms. We finally present interesting insights to guide future research and pave the way for urgently needed and simplified clinical investigations.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3004-531 Coimbra, Portugal
| |
Collapse
|
31
|
Hussain S, Gupta G, Shahwan M, Bansal P, Kaur H, Deorari M, Pant K, Ali H, Singh SK, Rama Raju Allam VS, Paudel KR, Dua K, Kumarasamy V, Subramaniyan V. Non-coding RNA: A key regulator in the Glutathione-GPX4 pathway of ferroptosis. Noncoding RNA Res 2024; 9:1222-1234. [PMID: 39036600 PMCID: PMC11259992 DOI: 10.1016/j.ncrna.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/26/2024] [Accepted: 05/19/2024] [Indexed: 07/23/2024] Open
Abstract
Ferroptosis, a form of regulated cell death, has emerged as a crucial process in diverse pathophysiological states, encompassing cancer, neurodegenerative ailments, and ischemia-reperfusion injury. The glutathione (GSH)-dependent lipid peroxidation pathway, chiefly governed by glutathione peroxidase 4 (GPX4), assumes an essential part in driving ferroptosis. GPX4, as the principal orchestrator of ferroptosis, has garnered significant attention across cancer, cardiovascular, and neuroscience domains over the past decade. Noteworthy investigations have elucidated the indispensable functions of ferroptosis in numerous diseases, including tumorigenesis, wherein robust ferroptosis within cells can impede tumor advancement. Recent research has underscored the complex regulatory role of non-coding RNAs (ncRNAs) in regulating the GSH-GPX4 network, thus influencing cellular susceptibility to ferroptosis. This exhaustive review endeavors to probe into the multifaceted processes by which ncRNAs control the GSH-GPX4 network in ferroptosis. Specifically, we delve into the functions of miRNAs, lncRNAs, and circRNAs in regulating GPX4 expression and impacting cellular susceptibility to ferroptosis. Moreover, we discuss the clinical implications of dysregulated interactions between ncRNAs and GPX4 in several conditions, underscoring their capacity as viable targets for therapeutic intervention. Additionally, the review explores emerging strategies aimed at targeting ncRNAs to modulate the GSH-GPX4 pathway and manipulate ferroptosis for therapeutic advantage. A comprehensive understanding of these intricate regulatory networks furnishes insights into innovative therapeutic avenues for diseases associated with perturbed ferroptosis, thereby laying the groundwork for therapeutic interventions targeting ncRNAs in ferroptosis-related pathological conditions.
Collapse
Affiliation(s)
- Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, 346, United Arab Emirates
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Kumud Pant
- Graphic Era (Deemed to be University), Clement Town, Dehradun, 248002, India
- Graphic Era Hill University, Clement Town, Dehradun, 248002, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | | | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, 2007, Australia
| | - Kamal Dua
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, P.O. Box: 123 Broadway, Ultimo, NSW, 2007, Australia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
32
|
Zhou Q, Meng Y, Le J, Sun Y, Dian Y, Yao L, Xiong Y, Zeng F, Chen X, Deng G. Ferroptosis: mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e70010. [PMID: 39568772 PMCID: PMC11577302 DOI: 10.1002/mco2.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024] Open
Abstract
Ferroptosis is a nonapoptotic form of cell death characterized by iron-dependent lipid peroxidation in membrane phospholipids. Since its identification in 2012, extensive research has unveiled its involvement in the pathophysiology of numerous diseases, including cancers, neurodegenerative disorders, organ injuries, infectious diseases, autoimmune conditions, metabolic disorders, and skin diseases. Oxidizable lipids, overload iron, and compromised antioxidant systems are known as critical prerequisites for driving overwhelming lipid peroxidation, ultimately leading to plasma membrane rupture and ferroptotic cell death. However, the precise regulatory networks governing ferroptosis and ferroptosis-targeted therapy in these diseases remain largely undefined, hindering the development of pharmacological agonists and antagonists. In this review, we first elucidate core mechanisms of ferroptosis and summarize its epigenetic modifications (e.g., histone modifications, DNA methylation, noncoding RNAs, and N6-methyladenosine modification) and nonepigenetic modifications (e.g., genetic mutations, transcriptional regulation, and posttranslational modifications). We then discuss the association between ferroptosis and disease pathogenesis and explore therapeutic approaches for targeting ferroptosis. We also introduce potential clinical monitoring strategies for ferroptosis. Finally, we put forward several unresolved issues in which progress is needed to better understand ferroptosis. We hope this review will offer promise for the clinical application of ferroptosis-targeted therapies in the context of human health and disease.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Yu Meng
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Jiayuan Le
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery Xiangya Hospital Central South University Changsha Hunan Province China
| | - Yating Dian
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Lei Yao
- Department of General Surgery Xiangya Hospital Central South University Changsha Hunan Province China
| | - Yixiao Xiong
- Department of Dermatology Tongji Hospital Huazhong University of Science and Technology Wuhan Hubei China
| | - Furong Zeng
- Department of Oncology Xiangya Hospital Central South University Changsha Hunan Province China
| | - Xiang Chen
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Guangtong Deng
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| |
Collapse
|
33
|
Qian S, Long Y, Tan G, Li X, Xiang B, Tao Y, Xie Z, Zhang X. Programmed cell death: molecular mechanisms, biological functions, diseases, and therapeutic targets. MedComm (Beijing) 2024; 5:e70024. [PMID: 39619229 PMCID: PMC11604731 DOI: 10.1002/mco2.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 11/02/2024] [Accepted: 11/11/2024] [Indexed: 01/12/2025] Open
Abstract
Programmed cell death represents a precisely regulated and active cellular demise, governed by a complex network of specific genes and proteins. The identification of multiple forms of programmed cell death has significantly advanced the understanding of its intricate mechanisms, as demonstrated in recent studies. A thorough grasp of these processes is essential across various biological disciplines and in the study of diseases. Nonetheless, despite notable progress, the exploration of the relationship between programmed cell death and disease, as well as its clinical application, are still in a nascent stage. Therefore, further exploration of programmed cell death and the development of corresponding therapeutic methods and strategies holds substantial potential. Our review provides a detailed examination of the primary mechanisms behind apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis. Following this, the discussion delves into biological functions and diseases associated dysregulated programmed cell death. Finally, we highlight existing and potential therapeutic targets and strategies focused on cancers and neurodegenerative diseases. This review aims to summarize the latest insights on programmed cell death from mechanisms to diseases and provides a more reliable approach for clinical transformation.
Collapse
Affiliation(s)
- Shen'er Qian
- Department of Otolaryngology Head and Neck SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Yao Long
- Cancer Research InstituteSchool of Basic MedicineCentral South UniversityChangshaHunanChina
- Department of PathologyXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Guolin Tan
- Department of Otolaryngology Head and Neck SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Xiaoguang Li
- Department of Otolaryngology Head and Neck SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of Medicine, Shanghai Key LabShanghaiChina
| | - Bo Xiang
- Cancer Research InstituteSchool of Basic MedicineCentral South UniversityChangshaHunanChina
- Furong LaboratoryCentral South UniversityChangshaHunanChina
| | - Yongguang Tao
- Cancer Research InstituteSchool of Basic MedicineCentral South UniversityChangshaHunanChina
| | - Zuozhong Xie
- Department of Otolaryngology Head and Neck SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xiaowei Zhang
- Department of Otolaryngology Head and Neck SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaHunanChina
| |
Collapse
|
34
|
Papadimitriou‐Tsantarliotou A, Avgeros C, Konstantinidou M, Vizirianakis IS. Analyzing the role of ferroptosis in ribosome-related bone marrow failure disorders: From pathophysiology to potential pharmacological exploitation. IUBMB Life 2024; 76:1011-1034. [PMID: 39052023 PMCID: PMC11580388 DOI: 10.1002/iub.2897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
Within the last decade, the scientific community has witnessed the importance of ferroptosis as a novel cascade of molecular events leading to cellular decisions of death distinct from apoptosis and other known forms of cell death. Notably, such non- apoptotic and iron-dependent regulated cell death has been found to be intricately linked to several physiological processes as well as to the pathogenesis of various diseases. To this end, recent data support the notion that a potential molecular connection between ferroptosis and inherited bone marrow failure (IBMF) in individuals with ribosomopathies may exist. In this review, we suggest that in ribosome-related IBMFs the identified mutations in ribosomal proteins lead to changes in the ribosome composition of the hematopoietic progenitors, changes that seem to affect ribosomal function, thus enhancing the expression of some mRNAs subgroups while reducing the expression of others. These events lead to an imbalance inside the cell as some molecular pathways are promoted while others are inhibited. This disturbance is accompanied by ROS production and lipid peroxidation, while an additional finding in most of them is iron accumulation. Once lipid peroxidation and iron accumulation are the two main characteristics of ferroptosis, it is possible that this mechanism plays a key role in the manifestation of IBMF in this type of disease. If this molecular mechanism is further confirmed, new pharmacological targets such as ferroptosis inhibitors that are already exploited for the treatment of other diseases, could be utilized to improve the treatment of ribosomopathies.
Collapse
Affiliation(s)
| | - Chrysostomos Avgeros
- Laboratory of Pharmacology, School of PharmacyAristotle University of ThessalonikiThessalonikiGreece
| | - Maria Konstantinidou
- Laboratory of Pharmacology, School of PharmacyAristotle University of ThessalonikiThessalonikiGreece
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of PharmacyAristotle University of ThessalonikiThessalonikiGreece
- Department of Health Sciences, School of Life and Health SciencesUniversity of NicosiaNicosiaCyprus
| |
Collapse
|
35
|
She H, Hu Y, Zhao G, Du Y, Wu Y, Chen W, Li Y, Wang Y, Tan L, Zhou Y, Zheng J, Li Q, Yan H, Mao Q, Zuo D, Liu L, Li T. Dexmedetomidine Ameliorates Myocardial Ischemia-Reperfusion Injury by Inhibiting MDH2 Lactylation via Regulating Metabolic Reprogramming. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409499. [PMID: 39467114 DOI: 10.1002/advs.202409499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/16/2024] [Indexed: 10/30/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) significantly worsens the outcomes of patients with cardiovascular diseases. Dexmedetomidine (Dex) is recognized for its cardioprotective properties, but the related mechanisms, especially regarding metabolic reprogramming, have not been fully clarified. A total of 60 patients with heart valve disease are randomly assigned to Dex or control group. Blood samples are collected to analyze cardiac injury biomarkers and metabolomics. In vivo and vitro rat models of MIRI are utilized to assess the effects of Dex on cardiac function, lactate production, and mitochondrial function. It is found that postoperative CK-MB and cTNT levels are significantly lower in the Dex group. Metabolomics reveals that Dex regulates metabolic reprogramming and reduces lactate level. In Dex-treated rats, the myocardial infarction area is reduced, and myocardial contractility is improved. Dex inhibits glycolysis, reduces lactate, and improves mitochondrial function following MIRI. Lactylation proteomics identifies that Dex reduces the lactylation of Malate Dehydrogenase 2(MDH2), thus alleviating myocardial injury. Further studies reveal that MDH2 lactylation induces ferroptosis, leading to MIRI by impairing mitochondrial function. Mechanistic analyses reveal that Dex upregulates Nuclear Receptor Subfamily 3 Group C Member 1(NR3C1) phosphorylation, downregulates Pyruvate Dehydrogenase Kinase 4 (PDK4), and reduces lactate production and MDH2 lactylation. These findings provide new therapeutic targets and mechanisms for the treatment for MIRI.
Collapse
Affiliation(s)
- Han She
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yi Hu
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Guozhi Zhao
- Department of Urology Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yunxia Du
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yinyu Wu
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Wei Chen
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yong Li
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yi Wang
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Lei Tan
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yuanqun Zhou
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jie Zheng
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Qinghui Li
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hong Yan
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Qingxiang Mao
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Deyu Zuo
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing University of Chinese Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
- Department of Research and Development, Chongqing Precision Medical Industry Technology Research Institute, Chongqing, 400000, China
| | - Liangming Liu
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Tao Li
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China
| |
Collapse
|
36
|
Lee J, Geum D, Park DH, Kim JH. Molecular Targeting of Ischemic Stroke: The Promise of Naïve and Engineered Extracellular Vesicles. Pharmaceutics 2024; 16:1492. [PMID: 39771472 PMCID: PMC11678501 DOI: 10.3390/pharmaceutics16121492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025] Open
Abstract
Ischemic stroke (IS) remains a leading cause of mortality and long-term disability worldwide, with limited therapeutic options available. Despite the success of early interventions, such as tissue-type plasminogen activator administration and mechanical thrombectomy, many patients continue to experience persistent neurological deficits. The pathophysiology of IS is multifaceted, encompassing excitotoxicity, oxidative and nitrosative stress, inflammation, and blood-brain barrier disruption, all of which contribute to neural cell death, further complicating the treatment of IS. Recently, extracellular vesicles (EVs) secreted naturally by various cell types have emerged as promising therapeutic agents because of their ability to facilitate selective cell-to-cell communication, neuroprotection, and tissue regeneration. Furthermore, engineered EVs, designed to enhance targeted delivery and therapeutic cargo, hold the potential to improve their therapeutic benefits by mitigating neuronal damage and promoting neurogenesis and angiogenesis. This review summarizes the characteristics of EVs, the molecular mechanisms underlying IS pathophysiology, and the emerging role of EVs in IS treatment at the molecular level. This review also explores the recent advancements in EV engineering, including the incorporation of specific proteins, RNAs, or pharmacological agents into EVs to enhance their therapeutic efficacy.
Collapse
Affiliation(s)
- Jihun Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea;
| | - Dongho Geum
- Department of Medical Science, College of Medicine, Korea University, Seoul 02841, Republic of Korea;
| | - Dong-Hyuk Park
- Department of Neurosurgery, Anam Hospital, College of Medicine, Korea University, Seoul 02841, Republic of Korea;
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea;
| |
Collapse
|
37
|
De Leon-Oliva D, Boaru DL, Minaya-Bravo AM, De Castro-Martinez P, Fraile-Martinez O, Garcia-Montero C, Cobo-Prieto D, Barrena-Blázquez S, Lopez-Gonzalez L, Albillos A, Alvarez-Mon M, Saez MA, Diaz-Pedrero R, Ortega MA. Improving understanding of ferroptosis: Molecular mechanisms, connection with cellular senescence and implications for aging. Heliyon 2024; 10:e39684. [PMID: 39553553 PMCID: PMC11564042 DOI: 10.1016/j.heliyon.2024.e39684] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
In the face of cell damage, cells can initiate a response ranging from survival to death, the balance being crucial for tissue homeostasis and overall health. Cell death, in both accidental and regulated forms, plays a fundamental role in maintaining tissue homeostasis. Among the regulated mechanisms of cell death, ferroptosis has garnered attention for its iron-dependent phospholipid (PL) peroxidation and its implications in aging and age-related disorders, as well as for its therapeutic relevance. In this review, we provide an overview of the mechanisms, regulation, and physiological and pathological roles of ferroptosis. We present new insights into the relationship between ferroptosis, cellular senescence and aging, emphasizing how alterations in ferroptosis pathways contribute to aging-related tissue dysfunction. In addition, we examine the therapeutic potential of ferroptosis in aging-related diseases, offering innovative insights into future interventions aimed at mitigating the effects of aging and promoting longevity.
Collapse
Affiliation(s)
- Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Ana M. Minaya-Bravo
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Patricia De Castro-Martinez
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - David Cobo-Prieto
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Immune System Diseases-Rheumatology Service, Central University Hospital of Defence-UAH Madrid, 28801, Alcala de Henares, Spain
| | - Silvestra Barrena-Blázquez
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, Alcala de Henares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Agustín Albillos
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Gastroenterology and Hepatology Service, Ramón y Cajal University Hospital, University of Alcalá, IRYCIS, Network Biomedical Research Center for Liver and Digestive Diseases (CIBERehd), Carlos III Health Institute, Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806, Alcala de Henares, Spain
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801, Alcala de Henares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, Alcala de Henares, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| |
Collapse
|
38
|
Wang LQ, Ma Y, Zhang MY, Yuan HY, Li XN, Xia W, Zhao K, Huang X, Chen J, Li D, Zou L, Wang Z, Le W, Liu C, Liang Y. Amyloid fibril structures and ferroptosis activation induced by ALS-causing SOD1 mutations. SCIENCE ADVANCES 2024; 10:eado8499. [PMID: 39475611 PMCID: PMC11524188 DOI: 10.1126/sciadv.ado8499] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024]
Abstract
Over 200 genetic mutations in copper-zinc superoxide dismutase (SOD1) have been linked to amyotrophic lateral sclerosis (ALS). Among these, two ALS-causing mutants, histidine-46→arginine (H46R) and glycine-85→arginine (G85R), exhibit a decreased capacity to bind metal ions. Here, we report two cryo-electron microscopy structures of amyloid fibrils formed by H46R and G85R. These mutations lead to the formation of amyloid fibrils with unique structures distinct from those of the native fibril. The core of these fibrils features a serpentine arrangement with seven or eight β strands, secured by a hydrophobic cavity and a salt bridge between arginine-85 and aspartic acid-101 in the G85R fibril. We demonstrate that these mutant fibrils are notably more toxic and capable of promoting the aggregation of wild-type SOD1 more effectively, causing mitochondrial impairment and activating ferroptosis in cell cultures, compared to wild-type SOD1 fibrils. Our study provides insights into the structural mechanisms by which SOD1 mutants aggregate and induce cytotoxicity in ALS.
Collapse
Affiliation(s)
- Li-Qiang Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Yeyang Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mu-Ya Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Han-Ye Yuan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Xiang-Ning Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Wencheng Xia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Huang
- Department of Neurology, Shenzhen People’s Hospital (the First Affiliated Hospital of Southern University of Science and Technology), the Second Clinical Medical College, Jinan University, Shenzhen 518020, China
| | - Jie Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
- Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| | - Dan Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liangyu Zou
- Department of Neurology, Shenzhen People’s Hospital (the First Affiliated Hospital of Southern University of Science and Technology), the Second Clinical Medical College, Jinan University, Shenzhen 518020, China
| | - Zhengzhi Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Weidong Le
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 200237, China
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Yi Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
- Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
39
|
Yu H, Gou X. Overexpression of miR-451a Aggravates Renal Ischemia-Reperfusion Injury by Targeting KLF1-ACSL4 to Promote Ferroptosis. Curr Issues Mol Biol 2024; 46:11853-11867. [PMID: 39590298 PMCID: PMC11592523 DOI: 10.3390/cimb46110704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/13/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) is a predominant factor leading to delayed graft function (DGF) following kidney transplantation. MicroRNAs (miRNAs) play a pivotal role in the pathogenesis of renal IRI, with ferroptosis being a critical driving force throughout the process. In this study, we utilized bioinformatics methods to construct a network diagram of differentially expressed miRNAs, transcription factors (TFs), and ferroptosis-related genes. An I/R-induced renal injury model in mice and an in vitro H/R-induced HK-2 cell injury model were established. Quantitative real-time PCR (qRT-PCR) and Western blot analysis were used to measure the mRNA and miRNA levels in cells and tissues. The MDA concentration, iron levels, and GSH concentration were measured to evaluate the ferroptosis levels. CCK-8 assays were performed to assess cell viability. Luciferase reporter assays were conducted to validate the downstream targets of miRNA, and chromatin immunoprecipitation assays were performed to verify the interaction between TFs and mRNAs. Both the in vivo and in vitro results demonstrate that miR-451a was significantly enriched in the IRI renal tissues and cells, exacerbating ferroptosis. MiR-451a was found to reduce the expression of Kruppel-like factor 1 (KLF1) by directly binding to the 3'UTR of KLF1 mRNA. Additionally, KLF1 was identified as a negative transcription factor for acyl-CoA synthetase long-chain family member 4 (ACSL4). We demonstrated that IRI induced the upregulation of miR-451a, which reduced KLF1 expression, thereby promoting ferroptosis by upregulating ACSL4 expression, ultimately aggravating IRI-induced renal damage.
Collapse
Affiliation(s)
- Haitao Yu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China;
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China;
| |
Collapse
|
40
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
41
|
Wang X, Xu L, Meng Y, Chen F, Zhuang J, Wang M, An W, Han Y, Chu B, Chai R, Liu W, Wang H. FOXO1-NCOA4 Axis Contributes to Cisplatin-Induced Cochlea Spiral Ganglion Neuron Ferroptosis via Ferritinophagy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402671. [PMID: 39206719 PMCID: PMC11515924 DOI: 10.1002/advs.202402671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Mammalian cochlea spiral ganglion neurons (SGNs) are crucial for sound transmission, they can be damaged by chemotherapy drug cisplatin and lead to irreversible sensorineural hearing loss (SNHL), while such damage can also render cochlear implants ineffective. However, the mechanisms underlying cisplatin-induced SGNs damage and subsequent SNHL are still under debate and there is no currently effective clinical treatment. Here, this study demonstrates that ferroptosis is triggered in SGNs following exposure to cisplatin. Inhibiting ferroptosis protects against cisplatin-induced SGNs damage and hearing loss, while inducing ferroptosis intensifies these effects. Furthermore, cisplatin prompts nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy in SGNs, while knocking down NCOA4 mitigates cisplatin-induced ferroptosis and hearing loss. Notably, the upstream regulator of NCOA4 is identified and transcription factor forkhead box O1 (FOXO1) is shown to directly suppress NCOA4 expression in SGNs. The knocking down of FOXO1 amplifies NCOA4-mediated ferritinophagy, increases ferroptosis and lipid peroxidation, while disrupting the interaction between FOXO1 and NCOA4 in NCOA4 knock out mice prevents the cisplatin-induced SGN ferroptosis and hearing loss. Collectively, this study highlights the critical role of the FOXO1-NCOA4 axis in regulating ferritinophagy and ferroptosis in cisplatin-induced SGNs damage, offering promising therapeutic targets for SNHL mitigation.
Collapse
Affiliation(s)
- Xue Wang
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Lei Xu
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Yu Meng
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Fang Chen
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Jinzhu Zhuang
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Man Wang
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Weibin An
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Yuechen Han
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Bo Chu
- Department of Cell BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinan250012China
| | - Renjie Chai
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Department of NeurologyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyBeijing100081China
- Department of Otolaryngology Head and Neck SurgerySichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610072China
- Southeast University Shenzhen Research InstituteShenzhen518063China
| | - Wenwen Liu
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Haibo Wang
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| |
Collapse
|
42
|
Zhong S, Wang Z, Yang J, Jiang D, Wang K. Ferroptosis-related oxaliplatin resistance in multiple cancers: Potential roles and therapeutic Implications. Heliyon 2024; 10:e37613. [PMID: 39309838 PMCID: PMC11414570 DOI: 10.1016/j.heliyon.2024.e37613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Oxaliplatin (OXA)-based therapy is effective in the treatment of multiple cancers. However, primary or acquired OXA resistance remains an emerging challenge for its clinical application. Ferroptosis is an iron-dependent mode of cell death that has been demonstrated to play an essential role in the chemoresistance of many drugs, including OXA. In particular, dysregulation of SLC7A11-GPX4, one of the major antioxidant systems of ferroptosis, was found in the OXA resistance of colorectal cancer (CRC) and hepatocellular carcinoma (HCC). In addition, Nrf2, the upstream regulator of GPX4 and many other antioxidant factors, is also involved in the OXA resistance of CRC and HCC. Inhibition of SLC7A11-GPX4 or Nrf2 by genetic deletion of pharmaceutical inhibition could significantly reverse OXA resistance. Long noncoding RNA (lncRNA) also participates in chemoresistance and ferroptosis of cancer cells. Specifically, LINC01134 promotes the recruitment of Nrf2 to the promoter of GPX4, thereby exerting transcriptional regulation of GPX4, which eventually increases the OXA sensitivity of HCC through upregulation of ferroptosis. On the other hand, a novel lncRNA DACT3-AS1 sensitizes gastric cancer cells to OXA through miR-181a-5p/sirtuin 1(SIRT1)-mediated ferroptosis. Therapies based on ferroptosis or a combination of OXA and ferroptosis enhancers could provide new therapeutic insights to overcome OXA resistance. In the present review, we present the current understanding of ferroptosis-related OXA resistance, highlight ferroptosis pathogenesis in OXA chemoresistance, and summarize available therapies that target OXA resistance by enhancing ferroptosis.
Collapse
Affiliation(s)
- Sijia Zhong
- Department of Gastrointestinal Surgery, the First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Zihan Wang
- Department of Oral Implantology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, 110122, China
| | - Jiaxi Yang
- Department of Gastrointestinal Surgery, the First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Di Jiang
- China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, China
| | - Kewei Wang
- Department of Gastrointestinal Surgery, the First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| |
Collapse
|
43
|
Dong J, Ma F, Cai M, Cao F, Li H, Liang H, Li Y, Ding G, Li J, Cheng X, Qin JJ. Heat Shock Protein 90 Interactome-Mediated Proteolysis Targeting Chimera (HIM-PROTAC) Degrading Glutathione Peroxidase 4 to Trigger Ferroptosis. J Med Chem 2024; 67:16712-16736. [PMID: 39230973 DOI: 10.1021/acs.jmedchem.4c01518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Targeted protein degradation (TPD) is an emerging therapeutic paradigm aimed at eliminating the disease-causing protein with aberrant expression. Herein, we report a new approach to inducing intracellular glutathione peroxidase 4 (GPX4) protein degradation to trigger ferroptosis by bridging the target protein to heat shock protein 90 (HSP90), termed HSP90 interactome-mediated proteolysis targeting chimera (HIM-PROTAC). Different series of HIM-PROTACs were synthesized and evaluated, and two of them, GDCNF-2/GDCNF-11 potently induced ferroptosis via HSP90-mediated ubiquitin-proteasomal degradation of GPX4 in HT-1080 cells with DC50 values of 0.18 and 0.08 μM, respectively. In particular, GDCNF-11 showed 15-fold more ferroptosis selectivity over GPX4 inhibitor ML162. Moreover, these two degraders effectively suppress tumor growth in the mice model with relatively low toxicity as compared to the combination therapy of GPX4 and HSP90 inhibitors. In general, this study demonstrated the feasibility of degrading GPX4 via HSP90 interactome, and thus provided a significant complement to existing TPD strategies.
Collapse
Affiliation(s)
- Jinyun Dong
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Furong Ma
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Maohua Cai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fei Cao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Haobin Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hui Liang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yulong Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Guangyu Ding
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Juan Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Xiangdong Cheng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Jiang-Jiang Qin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| |
Collapse
|
44
|
Peng L, Hu XZ, Liu ZQ, Liu WK, Huang Q, Wen Y. Therapeutic potential of resveratrol through ferroptosis modulation: insights and future directions in disease therapeutics. Front Pharmacol 2024; 15:1473939. [PMID: 39386035 PMCID: PMC11461341 DOI: 10.3389/fphar.2024.1473939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Resveratrol, a naturally occurring polyphenolic compound, has captivated the scientific community with its promising therapeutic potential across a spectrum of diseases. This review explores the complex role of resveratrol in modulating ferroptosis, a newly identified form of programmed cell death, and its potential implications for managing cardiovascular and cerebrovascular disorders, cancer, and other conditions. Ferroptosis is intricately linked to the pathogenesis of diverse diseases, with resveratrol exerting multifaceted effects on this process. It mitigates ferroptosis by modulating lipid peroxidation, iron accumulation, and engaging with specific cellular receptors, thereby manifesting profound therapeutic benefits in cardiovascular and cerebrovascular conditions, as well as oncological settings. Moreover, resveratrol's capacity to either suppress or induce ferroptosis through the modulation of signaling pathways, including Sirt1 and Nrf2, unveils novel therapeutic avenues. Despite resveratrol's limited bioavailability, advancements in molecular modification and drug delivery optimization have amplified its clinical utility. Future investigations are poised to unravel the comprehensive mechanisms underpinning resveratrol's action and expand its therapeutic repertoire. We hope this review could furnish a detailed and novel insight into the exploration of resveratrol in the regulation of ferroptosis and its therapeutic prospects.
Collapse
Affiliation(s)
- Liu Peng
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xi-Zhuo Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhi-Qiang Liu
- Department of General Surgery, Deyang Sixth People’s Hospital, Deyang, China
| | - Wen-Kai Liu
- Department of General Surgery, Deyang Sixth People’s Hospital, Deyang, China
| | - Qun Huang
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Wen
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Di Carlo E, Sorrentino C. Oxidative Stress and Age-Related Tumors. Antioxidants (Basel) 2024; 13:1109. [PMID: 39334768 PMCID: PMC11428699 DOI: 10.3390/antiox13091109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress is the result of the imbalance between reactive oxygen and nitrogen species (RONS), which are produced by several endogenous and exogenous processes, and antioxidant defenses consisting of exogenous and endogenous molecules that protect biological systems from free radical toxicity. Oxidative stress is a major factor in the aging process, contributing to the accumulation of cellular damage over time. Oxidative damage to cellular biomolecules, leads to DNA alterations, lipid peroxidation, protein oxidation, and mitochondrial dysfunction resulting in cellular senescence, immune system and tissue dysfunctions, and increased susceptibility to age-related pathologies, such as inflammatory disorders, cardiovascular and neurodegenerative diseases, diabetes, and cancer. Oxidative stress-driven DNA damage and mutations, or methylation and histone modification, which alter gene expression, are key determinants of tumor initiation, angiogenesis, metastasis, and therapy resistance. Accumulation of genetic and epigenetic damage, to which oxidative stress contributes, eventually leads to unrestrained cell proliferation, the inhibition of cell differentiation, and the evasion of cell death, providing favorable conditions for tumorigenesis. Colorectal, breast, lung, prostate, and skin cancers are the most frequent aging-associated malignancies, and oxidative stress is implicated in their pathogenesis and biological behavior. Our aim is to shed light on the molecular and cellular mechanisms that link oxidative stress, aging, and cancers, highlighting the impact of both RONS and antioxidants, provided by diet and exercise, on cellular senescence, immunity, and development of an antitumor response. The dual role of ROS as physiological regulators of cell signaling responsible for cell damage and diseases, as well as its use for anti-tumor therapeutic purposes, will also be discussed. Managing oxidative stress is crucial for promoting healthy aging and reducing the risk of age-related tumors.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
46
|
Delgado-Martín S, Martínez-Ruiz A. The role of ferroptosis as a regulator of oxidative stress in the pathogenesis of ischemic stroke. FEBS Lett 2024; 598:2160-2173. [PMID: 38676284 DOI: 10.1002/1873-3468.14894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024]
Abstract
Ferroptosis is a unique form of cell death that was first described in 2012 and plays a significant role in various diseases, including neurodegenerative conditions. It depends on a dysregulation of cellular iron metabolism, which increases free, redox-active, iron that can trigger Fenton reactions, generating hydroxyl radicals that damage cells through oxidative stress and lipid peroxidation. Lipid peroxides, resulting mainly from unsaturated fatty acids, damage cells by disrupting membrane integrity and propagating cell death signals. Moreover, lipid peroxide degradation products can further affect cellular components such as DNA, proteins, and amines. In ischemic stroke, where blood flow to the brain is restricted, there is increased iron absorption, oxidative stress, and compromised blood-brain barrier integrity. Imbalances in iron-transport and -storage proteins increase lipid oxidation and contribute to neuronal damage, thus pointing to the possibility of brain cells, especially neurons, dying from ferroptosis. Here, we review the evidence showing a role of ferroptosis in ischemic stroke, both in recent studies directly assessing this type of cell death, as well as in previous studies showing evidence that can now be revisited with our new knowledge on ferroptosis mechanisms. We also review the efforts made to target ferroptosis in ischemic stroke as a possible treatment to mitigate cellular damage and death.
Collapse
Affiliation(s)
- Susana Delgado-Martín
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Antonio Martínez-Ruiz
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| |
Collapse
|
47
|
Yu W, Gong E, Wang C, Che C, Zhao Y, Wu X, Yang Y, Shi H, Chen M, Li M, Xie L, Guo Y, Guo M, Mu L, Wang Z, Zhang Z, Zhang K, Liu J, Shi J. In situ implantable DNA hydrogel for diagnosis and therapy of postoperative rehemorrhage following intracerebral hemorrhage surgery. SCIENCE ADVANCES 2024; 10:eado3919. [PMID: 39141742 PMCID: PMC11323940 DOI: 10.1126/sciadv.ado3919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/26/2024] [Indexed: 08/16/2024]
Abstract
Postoperative rehemorrhage following intracerebral hemorrhage surgery is intricately associated with a high mortality rate, yet there is now no effective clinical treatment. In this study, we developed a hemoglobin (Hb)-responsive in situ implantable DNA hydrogel comprising Hb aptamers cross-linked with two complementary chains and encapsulating deferoxamine mesylate (DFO). Functionally, the hydrogel generates signals upon postoperative rehemorrhage by capturing Hb, demonstrating a distinctive "self-diagnosis" capability. In addition, the ongoing capture of Hb mediates the gradual disintegration of the hydrogel, enabling the on-demand release of DFO without compromising physiological iron-dependent functions. This process achieves self-treatment by inhibiting the ferroptosis of neurocytes. In a collagenase and autologous blood injection model-induced mimic postoperative rehemorrhage model, the hydrogel exhibited a 5.58-fold increase in iron absorption efficiency, reducing hematoma size significantly (from 8.674 to 4.768 cubic millimeters). This innovative Hb-responsive DNA hydrogel not only offers a therapeutic intervention for postoperative rehemorrhage but also provides self-diagnosis feedback, holding notable promise for enhancing clinical outcomes.
Collapse
Affiliation(s)
- Wenyan Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
| | - Enpeng Gong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
| | - Changlin Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| | - Chengyuan Che
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuzhen Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xinyun Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yi Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Haiyu Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mengjuan Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mingge Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Li Xie
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yue Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mingming Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Liya Mu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenya Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
| |
Collapse
|
48
|
Deng JL, Wang GY, Zhai YJ, Feng XY, Deng L, Han WB, Tang JJ. Herpotrichone A Exerts Neuroprotective Effects by Relieving Ferroptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17356-17367. [PMID: 39042602 DOI: 10.1021/acs.jafc.4c02418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Inhibition of oxidative stress and ferroptosis is currently considered to be a promising therapeutic approach for neurodegenerative diseases. Herpotrichones, a class of compounds derived from insect symbionts, have shown potential for neuroprotective activity with low toxicity. However, the specific mechanisms through which herpotrichones exert their neuroprotective effects remain to be fully elucidated. In this study, the natural [4 + 2] adducts herpotrichone A (He-A) and its new analogues were isolated from the isopod-associated fungus Herpotrichia sp. SF09 and exhibited significantly protective effects in H2O2-, 6-OHDA-, and RSL3-stimulated PC12 cells and LPS-stimulated BV-2 cells. Moreover, He-A was able to relieve ferroptotic cell death in RSL3-stimulated PC12 cells and 6-OHDA-induced zebrafish larvae. Interestingly, He-A can activate antioxidant elements and modulate the SLC7A11 pathway without capturing oxidic free radical and chelating iron. These findings highlight He-A as a novel hit that protects against ferroptosis-like neuronal damage in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jia-Le Deng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Guo-Yan Wang
- College of Animal Science and Technology, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Yi-Jie Zhai
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Xu-Yao Feng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Lu Deng
- College of Animal Science and Technology, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Wen-Bo Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi 712100, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen Virtual University Park Building, High-Tech Industrial Park, Shenzhen, Guangdong 518000, China
| |
Collapse
|
49
|
Mielke Cabello LA, Meresman G, Darici D, Carnovale N, Heitkötter B, Schulte M, Espinoza-Sánchez NA, Le QK, Kiesel L, Schäfer SD, Götte M. Assessment of the Ferroptosis Regulators: Glutathione Peroxidase 4, Acyl-Coenzyme A Synthetase Long-Chain Family Member 4, and Transferrin Receptor 1 in Patient-Derived Endometriosis Tissue. Biomolecules 2024; 14:876. [PMID: 39062590 PMCID: PMC11274870 DOI: 10.3390/biom14070876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Ferroptosis, an iron-dependent form of non-apoptotic cell death, plays a pivotal role in various diseases and is gaining considerable attention in the realm of endometriosis. Considering the classical pathomechanism theories, we hypothesized that ferroptosis, potentially driven by increased iron content at ectopic sites, may contribute to the progression of endometriosis. This retrospective case-control study provides a comprehensive immunohistochemical assessment of the expression and tissue distribution of established ferroptosis markers: GPX4, ACSL4, and TfR1 in endometriosis patients. The case group consisted of 38 women with laparoscopically and histologically confirmed endometriosis and the control group consisted of 18 women with other gynecological conditions. Our study revealed a significant downregulation of GPX4 in stromal cells of endometriosis patients (M = 59.7% ± 42.4 versus 90.0% ± 17.5 in the control group, t (54) = -2.90, p = 0.005). This finding aligned with slightly, but not significantly, higher iron levels detected in the blood of endometriosis patients, using hemoglobin as an indirect predictor (Hb 12.8 (12.2-13.5) g/dL versus 12.5 (12.2-13.4) g/dL in the control group; t (54) = -0.897, p = 0.374). Interestingly, there was no concurrent upregulation of TfR1 (M = 0.7 ± 1.2 versus 0.2 ± 0.4 for EM, t (54) = 2.552, p = 0.014), responsible for iron uptake into cells. Our empirical findings provide support for the involvement of ferroptosis in the context of endometriosis. However, variances in expression patterns within stromal and epithelial cellular subsets call for further in-depth investigations.
Collapse
Affiliation(s)
- Lidia A. Mielke Cabello
- Department of Gynecology and Obstetrics, University Hospital of Muenster, 48149 Muenster, Germany (L.K.); (S.D.S.)
| | - Gabriela Meresman
- Institute of Biology and Experimental Medicine IBYME-CONICET, Buenos Aires C1428, Argentina; (G.M.)
| | - Dogus Darici
- Institute of Anatomy and Molecular Neurobiology, University Hospital of Muenster, 48149 Muenster, Germany
| | - Noelia Carnovale
- Institute of Biology and Experimental Medicine IBYME-CONICET, Buenos Aires C1428, Argentina; (G.M.)
| | - Birthe Heitkötter
- Gerhard-Domagk-Institute of Pathology, University Hospital of Muenster, 48149 Muenster, Germany
| | - Miriam Schulte
- Gerhard-Domagk-Institute of Pathology, University Hospital of Muenster, 48149 Muenster, Germany
| | - Nancy A. Espinoza-Sánchez
- Department of Gynecology and Obstetrics, University Hospital of Muenster, 48149 Muenster, Germany (L.K.); (S.D.S.)
| | - Quang-Khoi Le
- Department of Gynecology and Obstetrics, University Hospital of Muenster, 48149 Muenster, Germany (L.K.); (S.D.S.)
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, University Hospital of Muenster, 48149 Muenster, Germany (L.K.); (S.D.S.)
| | - Sebastian D. Schäfer
- Department of Gynecology and Obstetrics, University Hospital of Muenster, 48149 Muenster, Germany (L.K.); (S.D.S.)
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital of Muenster, 48149 Muenster, Germany (L.K.); (S.D.S.)
| |
Collapse
|
50
|
Soni P, Ammal Kaidery N, Sharma SM, Gazaryan I, Nikulin SV, Hushpulian DM, Thomas B. A critical appraisal of ferroptosis in Alzheimer's and Parkinson's disease: new insights into emerging mechanisms and therapeutic targets. Front Pharmacol 2024; 15:1390798. [PMID: 39040474 PMCID: PMC11260649 DOI: 10.3389/fphar.2024.1390798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Neurodegenerative diseases represent a pressing global health challenge, and the identification of novel mechanisms underlying their pathogenesis is of utmost importance. Ferroptosis, a non-apoptotic form of regulated cell death characterized by iron-dependent lipid peroxidation, has emerged as a pivotal player in the pathogenesis of neurodegenerative diseases. This review delves into the discovery of ferroptosis, the critical players involved, and their intricate role in the underlying mechanisms of neurodegeneration, with an emphasis on Alzheimer's and Parkinson's diseases. We critically appraise unsolved mechanistic links involved in the initiation and propagation of ferroptosis, such as a signaling cascade resulting in the de-repression of lipoxygenase translation and the role played by mitochondrial voltage-dependent anionic channels in iron homeostasis. Particular attention is given to the dual role of heme oxygenase in ferroptosis, which may be linked to the non-specific activity of P450 reductase in the endoplasmic reticulum. Despite the limited knowledge of ferroptosis initiation and progression in neurodegeneration, Nrf2/Bach1 target genes have emerged as crucial defenders in anti-ferroptotic pathways. The activation of Nrf2 and the inhibition of Bach1 can counteract ferroptosis and present a promising avenue for future therapeutic interventions targeting ferroptosis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Priyanka Soni
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC, United States
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - Navneet Ammal Kaidery
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC, United States
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - Sudarshana M. Sharma
- Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Irina Gazaryan
- Department of Chemical Enzymology, School of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
- Department of Chemistry and Physical Sciences, Dyson College of Arts and Sciences, Pace University, Pleasantville, NY, United States
| | - Sergey V. Nikulin
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia
| | - Dmitry M. Hushpulian
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia
- A.N.Bach Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - Bobby Thomas
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC, United States
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
- Department of Drug Discovery, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|