1
|
Li W, Shen Q, Tong T, Tian H, Lian X, Wang H, Yang K, Dai Z, Li Y, Chen X, Wang Q, Yang D, Wang F, Hao F, Wang L. Sequential simulation of regeneration-specific microenvironments using scaffolds loaded with nanoplatelet vesicles enhances bone regeneration. Bioact Mater 2025; 50:475-493. [PMID: 40342486 PMCID: PMC12059598 DOI: 10.1016/j.bioactmat.2025.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 03/27/2025] [Accepted: 04/16/2025] [Indexed: 05/11/2025] Open
Abstract
Bone regeneration is a complex and coordinated physiological process, and the different stages of this process have corresponding microenvironments to support cell development and physiological activities. However, biological scaffolds that provide different three-dimensional environments during different stages of bone regeneration are lacking. In this study, we report a novel composite scaffold (NPE@DCBM) inspired by the stages of bone regeneration; this scaffold was composed of a fibrin hydrogel loaded with nanoplatelet vesicles (NPVs), designated as NPE, and decellularized cancellous bone matrix (DCBM) microparticles. Initially, the NPE rapidly established a temporary microenvironment conducive to cell migration and angiogenesis. Subsequently, the DCBM simulated the molecular structure of bone and promoted new bone formation. In vitro, the NPVs regulated lipid metabolism in bone marrow mesenchymal stem cells (BMSCs), reprogramed the fate of BMSCs by activating the PI3K/AKT and MAPK/ERK positive feedback pathways, and increased BMSC functions, including proliferation, migration and proangiogenic potential. In vivo, NPV@DCBM accelerated bone tissue regeneration and repair. Initially, the NPE rapidly induced angiogenesis between DCBM microparticles, and subsequently, BMSCs differentiated into osteoblasts with DCBM microparticles at their core. In summary, the design of this composite scaffold that sequentially mimics different bone regeneration microenvironments may provide a promising strategy for bone regeneration, with clinical translational potential.
Collapse
Affiliation(s)
- Wenshuai Li
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
- The Key Laboratory of Orthopedic Biomechanics of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
- Hangzhou OrigO Biotechnology Co. Ltd., Hangzhou, Zhejiang, 310016, China
| | - Qichen Shen
- Hangzhou OrigO Biotechnology Co. Ltd., Hangzhou, Zhejiang, 310016, China
| | - Tong Tong
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
- The Key Laboratory of Orthopedic Biomechanics of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Hongsen Tian
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Xiaowei Lian
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
- The Key Laboratory of Orthopedic Biomechanics of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Haoli Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Ke Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Zhanqiu Dai
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Yijun Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xianhua Chen
- Zhejiang Institute of Medical Device Testing, Hangzhou, Zhejiang, 310016, China
| | - Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315000, China
| | - Dan Yang
- Zhejiang DecellMatrix Biotechnology Co. Ltd., Hangzhou, Zhejiang, 310016, China
| | - Feng Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
- The Key Laboratory of Orthopedic Biomechanics of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Feng Hao
- Zhejiang DecellMatrix Biotechnology Co. Ltd., Hangzhou, Zhejiang, 310016, China
| | - Linfeng Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
- The Key Laboratory of Orthopedic Biomechanics of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| |
Collapse
|
2
|
Perveen R, Bibi S, Saleem MA, Helal MH, Afzal A, Wattoo MA, Ur Rehman A. Recent progress in ZIF-polymer composites for advanced drug delivery applications. J Mater Chem B 2025. [PMID: 40434734 DOI: 10.1039/d5tb00147a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
This review article provides an in-depth study of recent advancements in ZIF-polymer composites, focusing on their transformative potential in drug delivery systems. It also reveals their multiple advantages, including increased drug loading efficiency, controlled and sustained release, and targeted delivery capabilities. In addition, this article explores various applications of ZIFs in diverse therapeutic areas such as orthopedic, ocular, transdermal, gastrointestinal, and pulmonary drug delivery. This review also offers key insights into the synthesis approaches, current scenario, and future directions of ZIF-polymer composites, along with some aspects of critical factors such as stimuli-responsiveness, stability, and toxicity. Zeolitic imidazolate frameworks (ZIFs), a new subclass of MOFs, are synthesized from tetrahedral metal ions and imidazolate linkers. ZIFs are valued for their exceptional porosity, robust chemical stability, and thermal characteristics. They show excellent compatibility with polymers and fabrication of ZIF-polymer hybrids with high loading efficiency is achieved using methods such as in situ synthesis, self-assembly, grafting, electrospinning, and microfluidic synthesis techniques. By consolidating knowledge of the role of ZIF-polymer hybrids in drug delivery, this article provides a valued resource for researchers and scientists seeking to revolutionize patient care through cutting-edge materials. It also emphasizes the potential of ZIF-polymer composites to redefine drug delivery systems and improve clinical outcomes, marking a significant milestone in the quest for ideal drug delivery platforms. In summary, this review emphasizes the importance of innovative ZIF-polymer materials as promising alternatives to conventional therapeutic systems, contributing to the development of advanced healthcare solutions.
Collapse
Affiliation(s)
- Rimsha Perveen
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Shumaila Bibi
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Mohamad A Saleem
- Health Specialties, Basic Sciences and Their Applications Unit, Applied College, Muhayl Asir, King Khalid University, Abha 62529, Saudi Arabia
| | - Mohamed H Helal
- Center for Scientific Research and Entrepreneurship, Northern Border University, Arar 73213, Saudi Arabia
| | - Adeel Afzal
- Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore, Pakistan
| | | | - Aziz Ur Rehman
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| |
Collapse
|
3
|
Nazar LA, Al-Salman SS, Torki SH, Al-Musawi MH, Najafinezhad A, Noory P, Rajab ES, Khosravi N, Talebi S, Azamian F, Valizadeh H, Sharifianjazi F, Tavamaishvili K, Mohabbatkhah M, Shahriari-Khalaji M, Nasiri-Harchegani S, Mehrjoo M, Tavakoli M, Mirhaj M. 3D printed PHB-dextran-whitlockite porous construct coated with sildenafil-loaded nanofibers: a hybrid scaffold for craniofacial reconstruction. Int J Biol Macromol 2025; 314:144352. [PMID: 40389012 DOI: 10.1016/j.ijbiomac.2025.144352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 05/02/2025] [Accepted: 05/16/2025] [Indexed: 05/21/2025]
Abstract
In this study, a novel hybrid scaffold comprising 3D-printed porous polyhydroxybutyrate (PHB), dextran (Dex), and magnesium-doped whitlockite (WL) nanoparticles was developed, which were further enhanced with an electrospun nanofibrous coating composed of Dex and Pluronic F127 (F127) loaded with Sildenafil (Sil) for use in craniofacial regeneration. This design was intended to improve the solubility of sildenafil and enable controlled release. Scanning electron microscopy (SEM) revealed a well-integrated structure between the 3D-printed strands and electrospun nanofibers. The scaffold exhibited sustained release of Sil over 28 days, with mechanical testing showing a compressive strength of 3.70 ± 0.33 MPa and an elastic modulus of 49.04 ± 4.62 MPa. Non-toxicity was confirmed via MTT assay on the MG63 cell line, and qRT-PCR results indicated significantly higher expression levels of collagen I, RUNX2, osteocalcin, VEGF, and CD31 markers associated with osteogenesis and angiogenesis. Following implantation in a rat calvarial defect model, the scaffold demonstrated robust osteogenic activity and new bone tissue formation over an eight-week period. This innovative scaffold design offers a promising solution for overcoming the challenges in craniofacial defect repair by integrating bioactive materials with advanced drug delivery systems, leading to more effective tissue regeneration strategies.
Collapse
Affiliation(s)
- Lara Ali Nazar
- Department of Chemistry, College of Sciences, Mustansiriyah University, Baghdad, Iraq.
| | - Sarah Sameer Al-Salman
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | - Sumyah Hasan Torki
- Department of Plant Biotechnology College of Biotechnology, Al-Nahrain University, Baghdad, Iraq.
| | - Mastafa H Al-Musawi
- Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq.
| | - Aliakbar Najafinezhad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Parastoo Noory
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Eslah Shakir Rajab
- Department of Microbiology, College of Science, Al_Karkh University for Science, Baghdad, Iraq.
| | - Negin Khosravi
- School of Science and Health, The University of Georgia, Tbilisi, Georgia.
| | - Sina Talebi
- Department of Orthopaedics, Isfahan University of Medical Science, Isfahan, Iran
| | - Fariba Azamian
- Department of Materials Science and Nanotechnology, Sharif University of Technology, International Campus-Kish, 794117-76655 Kish, Iran.
| | - Hamideh Valizadeh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fariborz Sharifianjazi
- Center for Advanced Materials and Structures, School of Science and Technology, The University of Georgia, Tbilisi 0171, Georgia; Department of Civil Engineering, School of Science and Technology, The University of Georgia, 0171, Tbilisi, Georgia.
| | - Ketevan Tavamaishvili
- Georgian American University, School of Medicine, 10 Merab Aleksidze Str., Tbilisi 0160, Georgia.
| | - Mehdi Mohabbatkhah
- Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | | | - Sepideh Nasiri-Harchegani
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Morteza Mehrjoo
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
4
|
Liu X, Wang B, Ma J, Hu H. Biomineral/VEGF-functionalized fiber - enhanced 3D printed GelMA hydrogel to facilitate bone regeneration through osteogenesis and angiogenesis modulation. Int J Biol Macromol 2025; 312:143991. [PMID: 40348247 DOI: 10.1016/j.ijbiomac.2025.143991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/25/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Three-dimensionally (3D) printed hydrogels face significant challenges in promoting osteogenesis and angiogenesis for bone tissue engineering. In this study, we designed a bioactive 3D-printed hydrogel to enhance bone regeneration through osteogenesis and angiogenesis modulation. An enzymatic mineralization strategy was proposed to develop biomineral/vascular endothelial growth factor (VEGF)-functionalized poly (L-lactic acid) (PLLA) micro-nanofibers (m-PLLA@VEGF). These micro-nanofibers were incorporated into gelatin methacryloyl (GelMA) bioink to develop GelMA/m-PLLA@VEGF hydrogel scaffold. The m-PLLA@VEGF micro-nanofibers provided multiple benefits. Specifically, they improved the rheological properties of the GelMA bioink and mechanical properties of the hydrogel, and promoted osteogenesis and angiogenesis of the hydrogel scaffold. The resulting GelMA/m-PLLA@VEGF hydrogel scaffold effectively promoted osteogenesis by enhancing osteoblast-related expression and mineralized matrix deposition, aided by the sustained release of biominerals (Ca and P ions). It also significantly enhanced endothelial cell proliferation, scratch wound healing, and the expression of angiogenesis-related genes. When implanted in a critical-sized rat calvarial bone defect model, the composite hydrogel scaffold facilitated bone regeneration through the synergistic modulation of angiogenesis and osteogenesis. Overall, this work presented an innovative approach for developing functionalized micro-nanofibers, with the enhanced bioactive hydrogel showing significant potential for bone regeneration.
Collapse
Affiliation(s)
- Xiaokang Liu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Baoxiu Wang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Jinghong Ma
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China.
| | - Haoran Hu
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China.
| |
Collapse
|
5
|
Bai Z, Zhao Y, Zhang W, Cui C, Yan J, Du M, Tong J, Liu Y, Zhang Y, Zhang K, Zhang B, Li X, Wu X, Li B. Mussel-inspired bifunctional chimeric peptides macromolecules functionalize 3D-printed porous scaffolds for enhanced antimicrobial and osseointegration properties in bone defect repair. Int J Biol Macromol 2025; 308:142668. [PMID: 40174844 DOI: 10.1016/j.ijbiomac.2025.142668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/21/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
Polyetheretherketone (PEEK) is a promising material for bone defect repair due to its superior mechanical properties and chemical stability. However, its limited bioactivity and susceptibility to infection hinder its clinical use. To address these limitations, we developed antibacterial and osteogenic bifunctional chimeric peptides (CP) and integrated them onto 3D-printed PEEK scaffolds (3DP) using the adhesive properties of 3,4-dihydroxy-L-phenylalanine (DOPA). The CP, composed of antimicrobial peptide (GL13K) and osteogenic peptide (PFS) linked by DOPA, enhances bacterial membrane disruption while promoting bone marrow mesenchymal stem cell (BMSCs) adhesion and osteogenic differentiation. Through DOPA-mediated attachment, a hydrophilic and stable layer is formed on the scaffold surface via a simple immersion process. In vitro studies showed that CP@3DP effectively destroys bacterial membranes of Staphylococcus aureus and Escherichia coli, while promoting BMSCs adhesion, proliferation, and differentiation. In a rat skull defect model infected with S. aureus, CP@3DP demonstrated synergistic antibacterial effects and enhanced bone regeneration. Micro-CT imaging and histologic analysis confirmed that CP@3DP was firmly bound to host bone. This study highlights the potential of DOPA as a versatile adhesion molecule and the CP's bifunctional design for bone defect repair in infected environments, offering a novel approach for tissue engineering applications.
Collapse
Affiliation(s)
- Ziyang Bai
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Yifan Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Wenjun Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Chenying Cui
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Jingyu Yan
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Meijun Du
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Jiahui Tong
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Yingyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Ying Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Ke Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Binbin Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Xia Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Xiuping Wu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China.
| |
Collapse
|
6
|
Dutta SD, Hexiu J, Moniruzzaman M, Patil TV, Acharya R, Kim JS, Lim KT. Tailoring osteoimmunity and hemostasis using 3D-Printed nano-photocatalytic bactericidal scaffold for augmented bone regeneration. Biomaterials 2025; 316:122991. [PMID: 39662273 DOI: 10.1016/j.biomaterials.2024.122991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Bone hemorrhage, infection, and large bone defects following surgical treatment of traumatic bone injury have raised potential concerns, underscoring the urgent need to develop multifunctional therapeutic platforms that can effectively address traumatic bone regeneration. Advancements in three-dimensional (3D) printing technology have propelled the development of several engineering disciplines, such as tissue engineering. Nevertheless, 3D-printed frameworks with conventional materials often lack multifunctional capabilities to promote specific activities for diverse regeneration purposes. In this study, we developed a highly oxidized two-dimensional (2D) graphitic carbon nitride (Ox-gCN) as a nano-photocatalyst to reinforce alginate/gelatin (ALG)-based hydrogel scaffolds (ALG/CN) to achieve an anti-inflammatory and osteo-immunomodulatory niche with superior hemostatic ability for traumatic bone injury repair. Sulfuric acid oxidation enhances the oxygen-containing functional groups of the g-CN surface and promotes cell adhesion and differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) in vitro. Moreover, the excellent visible light-activated photocatalytic characteristics of the ALG/CN scaffold were used in antibacterial studies. In addition, the ALG/CN bio/nanocomposite scaffold facilitates M2 polarization of macrophages than did pristine ALG scaffolds. Furthermore, ALG/CN scaffold induced hBMSCs differentiation by upregulating ERK and MAPKs phosphorylation during osteo-immunomodulation. In a rat calvaria defect model, the fabricated ALG/CN scaffolds induced new bone formation through collagen deposition and activation of osteocalcin proteins without inflammation in vivo. These results highlight the potential of 3D-printed functionalized 2D carbon nitrides in regulating the bone immune microenvironment, which may be beneficial for developing advanced tissue constructs, especially for traumatic bone regeneration in clinical settings.
Collapse
Affiliation(s)
- Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea; Center for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Jin Hexiu
- Department of Oral and Maxillofacial Surgery, Capital Medical University, Beijing-1000054, China
| | - Md Moniruzzaman
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rumi Acharya
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jong Sung Kim
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, 13120, Republic of Korea.
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
7
|
Wang X, Wu S, Li R, Yang H, Sun Y, Cao Z, Chen X, Hu Y, Zhang H, Geng Z, Bai L, Shi Z, Xu K, Tan H, Su J. ROS-Activated Nanohydrogel Scaffolds with Multi-Factors Controlled Release for Targeted Dual-Lineage Repair of Osteochondral Defects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412410. [PMID: 40156774 PMCID: PMC12120736 DOI: 10.1002/advs.202412410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 03/04/2025] [Indexed: 04/01/2025]
Abstract
Achieving self-healing for osteochondral defects caused by trauma, aging, or disease remains a significant challenge in clinical practice. It is an effective therapeutic strategy to construct gradient-biomimetic biomaterials that replicate the hierarchical structure and complex microenvironment of osteochondral tissues for dual-lineage regeneration of both cartilage and subchondral bone. Herein, ROS-activated nanohydrogels composite bilayer scaffolds with multi-factors controlled release are rationally designed using the combination of 3D printing and gelatin placeholder methods. The resulting nanohydrogel scaffolds exhibit micro-nano interconnected porous bilayer structure and soft-hard complex mechanical strength for facilitating 3D culture of BMSCs in vitro. More importantly, multi-stage continuous responses of anti-inflammation, chondrogenesis and osteogenesis, are effectively induced via the sequential release of multi-factors, including diclofenac sodium (DS), kartogenin (KGN) and bone morphogenetic protein 2 (BMP-2), from ROS-activated nanohydrogel scaffolds, thereby improved dual-lineage regeneration of cartilage and subchondral bone tissue in the osteochondral defect model of SD rats. These findings suggest that ROS-activated nanohydrogel scaffolds with such specific soft-hard bilayer structure and sequential delivery of functional factors, provides a promising strategy in dual-lineage regeneration of osteochondral defects.
Collapse
Affiliation(s)
- Xiuhui Wang
- Institute of Translational MedicineShanghai UniversityShanghai200444China
- Organoid Research CenterShanghai UniversityShanghai200444China
- National Center for Translational Medicine (Shanghai) SHU BranchShanghai UniversityShanghai200444China
| | - Shunli Wu
- Institute of Translational MedicineShanghai UniversityShanghai200444China
- Organoid Research CenterShanghai UniversityShanghai200444China
- National Center for Translational Medicine (Shanghai) SHU BranchShanghai UniversityShanghai200444China
| | - Ruiyang Li
- Department of Orthopedics, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
| | - Huijian Yang
- Department of Clinical LaboratoryShanghai Zhongye HospitalShanghai200941China
| | - Yue Sun
- Institute of Translational MedicineShanghai UniversityShanghai200444China
- Organoid Research CenterShanghai UniversityShanghai200444China
- National Center for Translational Medicine (Shanghai) SHU BranchShanghai UniversityShanghai200444China
| | - Zijie Cao
- Department of OrthopaedicsPeople's Liberation Army Joint Logistic Support Force 920th HospitalKunming650118China
| | - Xiao Chen
- Department of Orthopedics, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
| | - Yan Hu
- Department of Orthopedics, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
| | - Hao Zhang
- Department of Orthopedics, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
| | - Zhen Geng
- Institute of Translational MedicineShanghai UniversityShanghai200444China
- Organoid Research CenterShanghai UniversityShanghai200444China
- National Center for Translational Medicine (Shanghai) SHU BranchShanghai UniversityShanghai200444China
| | - Long Bai
- Institute of Translational MedicineShanghai UniversityShanghai200444China
- Organoid Research CenterShanghai UniversityShanghai200444China
- National Center for Translational Medicine (Shanghai) SHU BranchShanghai UniversityShanghai200444China
| | - Zhongmin Shi
- National Center for OrthopaedicsDepartment of Orthopedic SurgeryShanghai Sixth People's HospitalShanghai200233China
| | - Ke Xu
- Institute of Translational MedicineShanghai UniversityShanghai200444China
- Organoid Research CenterShanghai UniversityShanghai200444China
- National Center for Translational Medicine (Shanghai) SHU BranchShanghai UniversityShanghai200444China
| | - Hongbo Tan
- Department of OrthopaedicsPeople's Liberation Army Joint Logistic Support Force 920th HospitalKunming650118China
| | - Jiacan Su
- Institute of Translational MedicineShanghai UniversityShanghai200444China
- Organoid Research CenterShanghai UniversityShanghai200444China
- National Center for Translational Medicine (Shanghai) SHU BranchShanghai UniversityShanghai200444China
- Department of Orthopedics, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
| |
Collapse
|
8
|
Alarcin E, Akguner ZP, Ozturk AB, Yasayan G, Ilhan-Ayisigi E, Kazan A, Yesil-Celiktas O, Akcora DS, Akakin D, Kocaaga B, Eren G, Gunes K, Kerimoglu O, Seki HK, Guner FS. Biomimetic 3D bioprinted bilayer GelMA scaffolds for the delivery of BMP-2 and VEGF exogenous growth factors to promote vascularized bone regeneration in a calvarial defect model in vivo. Int J Biol Macromol 2025; 306:141440. [PMID: 40015394 DOI: 10.1016/j.ijbiomac.2025.141440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 02/15/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
The effective treatment of critical-sized bone defects requires a coordinated interaction between osteogenesis and angiogenesis. Inspired by natural bone tissue, we developed a bilayer vascularized bone construct using extrusion-based dual 3D bioprinting. The construct consists of two layers: a bone-mimetic layer, which includes highly methacrylated gelatin (GelMAHIGH), hyaluronic acid, alginate, osteoblast cells, and bone morphogenetic protein-2 (BMP-2) loaded polylactic-co-glycolic acid (PLGA) nanoparticles; and a vessel-mimetic layer, composed of low methacrylated gelatin (GelMALOW), alginate, endothelial cells, and vascular endothelial growth factor (VEGF)-loaded PLGA nanoparticles. These layers were designed to form hierarchical microstructures that enable sustained release of growth factor (GF) thereby stimulating both osteogenic and angiogenic processes. The nanoparticles were synthesized using a microfluidic platform, achieving a narrow size distribution. The hydrogel bioinks were systematically optimized for printability, and it was found that incorporation of nanoparticles improved their mechanical properties, surface roughness, degradability, and GF release profiles. Notably, GF release followed zero-order kinetics, ensuring consistent delivery over time. The bilayer scaffolds demonstrated superior cell proliferation and spreading compared to single-layer scaffolds, and in vivo experiments showed enhanced repair of calvarial bone defects. These findings highlight the significant clinical potential of bilayer scaffolds with sequential GF delivery for treating critical-sized bone defects.
Collapse
Affiliation(s)
- Emine Alarcin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, 34668, Istanbul, Türkiye.
| | - Zeynep Puren Akguner
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul, Türkiye
| | - Ayca Bal Ozturk
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul, Türkiye; Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, Zeytinburnu, Türkiye
| | - Gokcen Yasayan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, 34755, Istanbul, Türkiye
| | - Esra Ilhan-Ayisigi
- Department of Genetic and Bioengineering, Faculty of Engineering and Architecture, Kirsehir Ahi Evran University, Kirsehir, Türkiye
| | - Aslihan Kazan
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Türkiye
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Türkiye
| | - Dila Sener Akcora
- School of Medicine, Department of Histology and Embryology, Marmara University, 34854, Istanbul, Türkiye
| | - Dilek Akakin
- School of Medicine, Department of Histology and Embryology, Marmara University, 34854, Istanbul, Türkiye
| | - Banu Kocaaga
- Department of Chemical Engineering, Istanbul Technical University, Maslak, 34469, İstanbul, Türkiye
| | | | - Kasım Gunes
- School of Medicine, Department of Histology and Embryology, Marmara University, 34854, Istanbul, Türkiye; Department of Histology and Embryology, Faculty of Medicine, Sakarya University, Sakarya, Türkiye
| | - Oya Kerimoglu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, 34668, Istanbul, Türkiye
| | - Hatice Kubra Seki
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, 34755, Istanbul, Türkiye; Institute of Health Sciences, Marmara University, Istanbul, Türkiye
| | - F Seniha Guner
- Department of Chemical Engineering, Istanbul Technical University, Maslak, 34469, İstanbul, Türkiye; Sabancı University Nanotechnology Research and Application Center (SUNUM), Sabancı University, 34956, Istanbul, Türkiye
| |
Collapse
|
9
|
Chang W, Lu P, Li S, Xiang J, Liu J, Wang Y, Zhang L, Sun H. Injectable Functional Microspheres Capable of BMSC Recruitment and Osteogenic Induction for In Situ Bone Regeneration. ACS Biomater Sci Eng 2025; 11:2236-2248. [PMID: 40131171 DOI: 10.1021/acsbiomaterials.4c01720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Currently, bone defects remain a major challenge in clinical treatment. Recruiting target cells at the defect site and inducing them to differentiate into bone tissue are effective treatment methods. In previous studies, we used the CD271 antibody to construct bone marrow mesenchymal stem cell (BMSC) recruitment microspheres for the treatment of bone defects. However, the osteoconductivity of the microspheres themselves was poor, and the system lacked osteoinductivity, which affected the repair efficiency. In this study, we prepared submillimeter-sized porous chitosan (CS) microspheres through process optimization, and the BMSCs were able to directly adhere and proliferate on their surfaces. After the bioconjugation of the CD271 antibody, bone morphogenetic protein-2 (BMP-2) was further loaded onto the pore structure of microspheres to obtain the injectable microspheres with BMSC recruitment and osteogenic differentiation induction functions. Microspheres could efficiently recruit BMSCs through the combined action of the CD271 antibody and BMP-2 and further induce the recruited BMSCs, differentiating into osteoblasts through BMP-2, which ultimately exhibited promising bone regeneration ability in rats. We expect that the novel functional microspheres have great potential in biomedical applications for in situ treatment of bone defects.
Collapse
Affiliation(s)
- Wenliao Chang
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China
- Changzhou Medical Center, Nanjing Medical University, 123 Hexiang Road, Changzhou 213000, Jiangsu, China
| | - Peipei Lu
- Nursing Department, Changzhou Hygiene Vocational Technology College, Changzhou 213000, Jiangsu, China
| | - Shuxiang Li
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China
- Changzhou Medical Center, Nanjing Medical University, 123 Hexiang Road, Changzhou 213000, Jiangsu, China
| | - Jinghua Xiang
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China
- Changzhou Medical Center, Nanjing Medical University, 123 Hexiang Road, Changzhou 213000, Jiangsu, China
| | - Jiachen Liu
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China
- Changzhou Medical Center, Nanjing Medical University, 123 Hexiang Road, Changzhou 213000, Jiangsu, China
| | - Yimin Wang
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China
- Changzhou Medical Center, Nanjing Medical University, 123 Hexiang Road, Changzhou 213000, Jiangsu, China
| | - Lei Zhang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, Anhui, China
- China State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Han Sun
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China
- Changzhou Medical Center, Nanjing Medical University, 123 Hexiang Road, Changzhou 213000, Jiangsu, China
| |
Collapse
|
10
|
Su H, Ren H, Xuan Z, Maimaitikelimu X, Fang Y, Wang H, Wang H. Magnetic structural color microspheres for the multiplex detection of acute kidney injury biomarkers. Anal Chim Acta 2025; 1346:343767. [PMID: 40021321 DOI: 10.1016/j.aca.2025.343767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/02/2025] [Accepted: 02/01/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Acute kidney injury (AKI) is a frequent acute condition that features sharp loss of kidney functions and often leads to severe situations such as end-stage renal disease and even death. The incidence and mortality of AKI in hospitalized patients are high worldwide, and one of the reasons for this poor prognosis is the inability to diagnose AKI promptly. The sensitive and specific assay of biomarkers is considered a promising method for early diagnosis of AKI. RESULTS We designed a magnetic-responsive structural colored inverse opal hydrogel microspheres (IOHMs) for the multiplex detection of cystatin C (CysC) and neutrophil gelatinase-associated lipocalin (NGAL), which are two early biomarkers of AKI. The microsphere possessed structural colors for encoding and directional motion ability for improved detection sensitivity and separation efficiency, showing the detection ranges of CysC and NGAL in 10-5000 ng/mL and 10-1000 ng/mL, respectively. SIGNIFICANCE The method's accuracy and reliability were consistent with commonly used enzyme-linked immunosorbent assay methods. Therefore, these magnetic IOHMs have a promising application for early AKI diagnosis.
Collapse
Affiliation(s)
- Haiwen Su
- Department of Nephrology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Haoyu Ren
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Zhiyan Xuan
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | | | - Yile Fang
- Department of Nephrology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China.
| | - Hengjin Wang
- Department of Nephrology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China.
| | - Huan Wang
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China.
| |
Collapse
|
11
|
Chen Y, Chen L, Wu J, Xu X, Yang C, Zhang Y, Chen X, Lin K, Zhang S. Throw out an oligopeptide to catch a protein: Deep learning and natural language processing-screened tripeptide PSP promotes Osteolectin-mediated vascularized bone regeneration. Bioact Mater 2025; 46:37-54. [PMID: 39734571 PMCID: PMC11681832 DOI: 10.1016/j.bioactmat.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/26/2024] [Accepted: 11/06/2024] [Indexed: 12/31/2024] Open
Abstract
Angiogenesis is imperative for bone regeneration, yet the conventional cytokine therapies have been constrained by prohibitive costs and safety apprehensions. It is urgent to develop a safer and more efficient therapeutic alternative. Herein, utilizing the methodologies of Deep Learning (DL) and Natural Language Processing (NLP), we proposed a paradigm algorithm that amalgamates Word2vec with a TF-IDF variant, TF-IIDF, to deftly discern potential pro-angiogenic peptides from intrinsically disordered regions (IDRs) of 262 related proteins, where are fertile grounds for developing safer and highly promising bioactive peptides. After the evaluation of the candidate oligopeptides, one tripeptide, PSP, emerged as particularly notable for its exceptional ability to stimulate the vascularization of endothelial cells (ECs), enhance vascular-osteo communication, and then boost the osteogenic differentiation of bone marrow stem cells (BMSCs), evidenced in mouse critical-sized cranial model. Moreover, we found that PSP serves as a 'priming' agent, activating the body's innate ability to produce Osteolectin (Oln) - prompting ECs to release small extracellular vesicles (sEVs) enriched with Oln to facilitate bone formation. In summary, our study established a precise and efficient composite model of DL and NLP to screen bioactive peptides, opening an avenue for the development of various peptide-based therapeutic strategies applicable to a broader range of diseases.
Collapse
Affiliation(s)
- Yu Chen
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stom, Shanghai, 200011, China
| | - Long Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jinyang Wu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stom, Shanghai, 200011, China
| | - Xiaofeng Xu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stom, Shanghai, 200011, China
| | - Chengshuai Yang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stom, Shanghai, 200011, China
| | - Yong Zhang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stom, Shanghai, 200011, China
| | - Xinrong Chen
- Academy for Engineering and Technology, Fudan University, Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention, Shanghai, 200000, China
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stom, Shanghai, 200011, China
| | - Shilei Zhang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stom, Shanghai, 200011, China
| |
Collapse
|
12
|
Hoveidaei AH, Sadat-Shojai M, Nabavizadeh SS, Niakan R, Shirinezhad A, MosalamiAghili S, Tabaie S. Clinical challenges in bone tissue engineering - A narrative review. Bone 2025; 192:117363. [PMID: 39638083 DOI: 10.1016/j.bone.2024.117363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Bone tissue engineering (BTE) has emerged as a promising approach to address large bone defects caused by trauma, infections, congenital malformations, and tumors. This review focuses on scaffold design, cell sources, growth factors, and vascularization strategies, highlighting their roles in developing effective treatments. We explore the complexities of balancing mechanical properties, porosity, and biocompatibility in scaffold materials, alongside optimizing mesenchymal stem cell delivery methods. The critical role of growth factors in bone regeneration and the need for controlled release systems are discussed. Vascularization remains a significant hurdle, with strategies such as angiogenic factors, co-culture systems, and bioprinting under investigation. Mechanical challenges, tissue responses, and inflammation management are examined, alongside gene therapy's potential for enhancing osteogenesis and angiogenesis via both viral and non-viral delivery methods. The review emphasizes the impact of patient-specific factors on bone healing outcomes and the importance of personalized approaches. Future directions are described, emphasizing the necessity of interdisciplinary cooperation to advance the field of BTE and convert laboratory results into clinically feasible solutions.
Collapse
Affiliation(s)
- Amir Human Hoveidaei
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, MD, USA.
| | - Mehdi Sadat-Shojai
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran.
| | - Sara S Nabavizadeh
- Otolaryngology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Niakan
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Sean Tabaie
- Department of Orthopaedic Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
13
|
Huang L, Guo Z, Yang X, Zhang Y, Liang Y, Chen X, Qiu X, Chen X. Advancements in GelMA bioactive hydrogels: Strategies for infection control and bone tissue regeneration. Theranostics 2025; 15:460-493. [PMID: 39744697 PMCID: PMC11671377 DOI: 10.7150/thno.103725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025] Open
Abstract
Infectious bone defects present a significant clinical challenge, characterized by infection, inflammation, and subsequent bone tissue destruction. Traditional treatments, including antibiotic therapy, surgical debridement, and bone grafting, often fail to address these defects effectively. However, recent advancements in biomaterials research have introduced innovative solutions for managing infectious bone defects. GelMA, a three-dimensional network of hydrophilic polymers that can absorb and retain substantial amounts of water, has attracted considerable attention in the fields of materials science and biomedical engineering. Its distinctive properties, such as biocompatibility, responsiveness to stimuli, and customisable mechanical characteristics make GelMA an exemplary scaffold material for bone tissue engineering. This review aims to thoroughly explore the current literature on antibacterial and osteogenic strategies using GelMA hydrogels for the restoration of infected bones. It discusses their fabrication methods, biocompatibility, antibacterial effectiveness, and bioactivity. We conclude by discussing the existing challenges and future research directions in this field, with the hope of inspiring further innovations in the synthesis, modification, and application of GelMA-based hydrogels for infection control and bone tissue regeneration.
Collapse
Affiliation(s)
- Lei Huang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Ziyao Guo
- SCP 11A of the International Department, Guangzhou Experimental Foreign Language School, Guangzhou, China
| | - Xiaoxia Yang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yinchun Zhang
- Department of Periodontology, Shaoxing Stomatological Hospital, Shaoxing, Zhejiang, China
| | - Yiyun Liang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Xiaxue Chen
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Xiaoling Qiu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Xuan Chen
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Yang L, Li W, Ding X, Zhao Y, Qian X, Shang L. Biomimetic Mineralized Organic–Inorganic Hybrid Scaffolds From Microfluidic 3D Printing for Bone Repair. ADVANCED FUNCTIONAL MATERIALS 2025; 35. [DOI: 10.1002/adfm.202410927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Indexed: 01/12/2025]
Abstract
AbstractBone defect is a common clinical orthopedic disease. The trend in this field is to develop tissue engineering scaffolds with appropriately designed components and structures for bone repair. Herein, inspired by the organic and inorganic components of bone matrix and the natural biomineralization mechanism, a MgSiO3@Fe3O4 nanoparticle composite polycaprolactone (PCL) hybrid mineralized scaffold for bone repair is developed by microfluidic 3D printing. The incorporation of MgSiO3@Fe3O4 within the PCL scaffold can effectively improve the bioactivity. In addition, a biomimetic mineralized layer is prepared on the surface of the scaffold, which endowed it with unique microstructural characteristics, enhanced cell adhesion and osteogenic activity, and thus improved the bone repair performance. Owing to these advantages, both in vivo and in vitro experiments have demonstrated that the designed scaffold has outstanding biocompatibility and bone repair performance. These features indicate that the organic–inorganic biomineralized hybrid scaffold can be a potential bone graft substitute for clinical bone repair.
Collapse
Affiliation(s)
- Lei Yang
- Department of Otolaryngology Head and Neck Surgery Nanjing Drum Tower Hospital School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health) Wenzhou Institute University of Chinese Academy of Sciences Wenzhou 325001 China
| | - Wenzhao Li
- Department of Otolaryngology Head and Neck Surgery Nanjing Drum Tower Hospital School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health) Wenzhou Institute University of Chinese Academy of Sciences Wenzhou 325001 China
| | - Xiaoya Ding
- Department of Otolaryngology Head and Neck Surgery Nanjing Drum Tower Hospital School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health) Wenzhou Institute University of Chinese Academy of Sciences Wenzhou 325001 China
| | - Yuanjin Zhao
- Department of Otolaryngology Head and Neck Surgery Nanjing Drum Tower Hospital School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health) Wenzhou Institute University of Chinese Academy of Sciences Wenzhou 325001 China
| | - Xiaoyun Qian
- Department of Otolaryngology Head and Neck Surgery Nanjing Drum Tower Hospital Affiliated Hospital of Medical School Nanjing University Nanjing 210008 China
| | - Luoran Shang
- Department of Otolaryngology Head and Neck Surgery Nanjing Drum Tower Hospital School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
- Shanghai Xuhui Central Hospital Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology) Institutes of Biomedical Sciences Fudan University Shanghai 200032 China
| |
Collapse
|
15
|
Hui Y, Mao J, Rui M, Huang Y, Jiang X, Xu Y, Wang W, Wu J, Zhou L, Xi K, Huang L, Chen L. Hydrogel Microsphere-Encapsulated Bimetallic Nanozyme for Promoting Diabetic Bone Regeneration via Glucose Consumption and ROS Scavenging. Adv Healthc Mater 2024; 13:e2402596. [PMID: 39252661 DOI: 10.1002/adhm.202402596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/24/2024] [Indexed: 09/11/2024]
Abstract
The healing of bone defects among diabetic patients presents a critical challenge due to the pathological microenvironment, characterized by hyperglycemia, excessive reactive oxygen species (ROS) production, and inflammation. Herein, multifunctional composite microspheres, termed GMAP are developed, using a microfluidic technique by incorporating Au@Pt nanoparticles (NPs) and GelMA hydrogel to modulate the diabetic microenvironment for promoting bone regeneration. The GMAP enables the sustained release of Au@Pt NPs, which function as bimetallic nanozymes with dual enzyme-like activities involving glucose oxidase and catalase. The synergistic effect allows for efficient glucose consumption and ROS elimination concurrently. Thus, the GMAP effectively protects the proliferation of bone marrow mesenchymal stem cells (BMSCs) under adverse high-glucose conditions. Furthermore, it also promotes the osteogenic differentiation and paracrine capabilities of BMSCs, and subsequently inhibits inflammation and enhances angiogenesis. In vivo diabetic rats bone defect model, it is demonstrated that GMAP microspheres significantly improve bone regeneration, as verified by micro-computed tomography and histological examinations. This study provides a novel strategy for bone regeneration by modulating the diabetic microenvironment, presenting a promising approach for addressing the complex challenges associated with bone healing in diabetic patients.
Collapse
Affiliation(s)
- Yujian Hui
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
- Department of Orthopedics, Jiangyin Clinical College of Xuzhou Medical University, No.163 Shoushan Road, Jiangyin, 214400, P. R. China
| | - Jiannan Mao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
- Department of Orthopedics, Jiangyin Clinical College of Xuzhou Medical University, No.163 Shoushan Road, Jiangyin, 214400, P. R. China
| | - Min Rui
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
- Department of Orthopedics, Jiangyin Clinical College of Xuzhou Medical University, No.163 Shoushan Road, Jiangyin, 214400, P. R. China
| | - Yiyang Huang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Xinzhao Jiang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Yichang Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Wei Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Jie Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Liang Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Kun Xi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Lixin Huang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Liang Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| |
Collapse
|
16
|
Zeng J, Lu M, Wang Y, Zhao X, Zhao Y. Photothermal Fish Gelatin-Graphene Microneedle Patches for Chronic Wound Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405847. [PMID: 39248682 DOI: 10.1002/smll.202405847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Indexed: 09/10/2024]
Abstract
Microneedles are demonstrated as an effective strategy for chronic wound treatment. Great endeavors are devoted to developing microneedles with natural compositions and potent functions to promote therapeutic effects for wound healing. Herein, a novel graphene oxide-integrated methacrylated fish gelatin (GO-FGelMA) microneedle patch encapsulated with bacitracin and vascular endothelial growth factor (VEGF) is developed for chronic wound management. As the natural components and porous structures of FGelMA, the fabricated microneedle patches display satisfactory biocompatibility and drug-loading ability. Owing to the integration of graphene oxide, the microneedle patches can realize promoted drug release via near-infrared (NIR) irradiation. Besides, the encapsulated bacitracin and VEGF endow the microneedle patches with the ability to inhibit bacterial growth and promote angiogenesis. It is demonstrated that the GO-FGelMA microneedle patches with efficient drug release exert a positive influence on the wound healing process through reduced inflammation, enhanced wound closure, and improved tissue regeneration. Thus, it is believed that the proposed drugs-loaded GO-FGelMA microneedle patches will hold great potential in future chronic wound treatment.
Collapse
Affiliation(s)
- Junjie Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Minhui Lu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Xiaozhi Zhao
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Shenzhen Research Institute, Southeast University, Shenzhen, 518071, China
| |
Collapse
|
17
|
Dan X, Li S, Chen H, Xue P, Liu B, Ju Y, Lei L, Li Y, Fan X. Tailoring biomaterials for skin anti-aging. Mater Today Bio 2024; 28:101210. [PMID: 39285945 PMCID: PMC11402947 DOI: 10.1016/j.mtbio.2024.101210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Skin aging is the phenomenon of degenerative changes in the structure and function of skin tissues over time and is manifested by a gradual loss of skin elasticity and firmness, an increased number of wrinkles, and hyperpigmentation. Skin anti-aging refers to a reduction in the skin aging phenomenon through medical cosmetic technologies. In recent years, new biomaterials have been continuously developed for improving the appearance of the skin through mechanical tissue filling, regulating collagen synthesis and degradation, inhibiting pigmentation, and repairing the skin barrier. This review summarizes the mechanisms associated with skin aging, describes the biomaterials that are commonly used in medical aesthetics and their possible modes of action, and discusses the application strategies of biomaterials in this area. Moreover, the synergistic effects of such biomaterials and other active ingredients, such as stem cells, exosomes, growth factors, and antioxidants, on tissue regeneration and anti-aging are evaluated. Finally, the possible challenges and development prospects of biomaterials in the field of anti-aging are discussed, and novel ideas for future innovations in this area are summarized.
Collapse
Affiliation(s)
- Xin Dan
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Songjie Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Han Chen
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ping Xue
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Bo Liu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yang Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xing Fan
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
18
|
Huan Z, Li J, Luo Z, Yu Y, Li L. Hydrogel-Encapsulated Pancreatic Islet Cells as a Promising Strategy for Diabetic Cell Therapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0403. [PMID: 38966749 PMCID: PMC11221926 DOI: 10.34133/research.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024]
Abstract
Islet transplantation has now become a promising treatment for insulin-deficient diabetes mellitus. Compared to traditional diabetes treatments, cell therapy can restore endogenous insulin supplementation, but its large-scale clinical application is impeded by donor shortages, immune rejection, and unsuitable transplantation sites. To overcome these challenges, an increasing number of studies have attempted to transplant hydrogel-encapsulated islet cells to treat diabetes. This review mainly focuses on the strategy of hydrogel-encapsulated pancreatic islet cells for diabetic cell therapy, including different cell sources encapsulated in hydrogels, encapsulation methods, hydrogel types, and a series of accessorial manners to improve transplantation outcomes. In addition, the formation and application challenges as well as prospects are also presented.
Collapse
Affiliation(s)
- Zhikun Huan
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| | - Jingbo Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| | - Zhiqiang Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
| | - Yunru Yu
- Pharmaceutical Sciences Laboratory,
Åbo Akademi University, Turku 20520, Finland
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| |
Collapse
|
19
|
Chen M, Wang F, Yan Q, Da M, Wang F. Photothermally responsive graphene hybrid dry powders for diabetic wound healing. Biomed Phys Eng Express 2024; 10:045055. [PMID: 38821043 DOI: 10.1088/2057-1976/ad5295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/31/2024] [Indexed: 06/02/2024]
Abstract
The treatment of diabetic wounds remains a significant challenge in the medical field. In this study, we present a novel approach using photothermally responsive graphene hybrid dry powders for the treatment of diabetic wounds. These powders, derived from polyacrylic acid (PAA) and polyethyleneimine (PEI), exhibit rapid water absorption at the interface, leading to thein situformation of physically crosslinked hydrogels due to interactions between polymers. Furthermore, by incorporating graphene into the PAA/PEI powder mixture, we establish a multifunctional platform with capabilities such as photothermal antibacterial effects and drug release. Given the outstanding performance of this hybrid material, we demonstrate its potential in wound healing by incorporating the tumor necrosis factor-alpha (TNF-α) inhibitor Etanercept into the PAA/PEI powder. This intervention resulted in a significant improvement in the wound healing process in diabetic rats, as evidenced by the downregulation of inflammatory factors, promotion of collagen deposition, and enhanced vascularization. These remarkable attributes underscore the enormous potential value of the presented hydrogel patches in the field of biomedicine.
Collapse
Affiliation(s)
- Mei Chen
- Department of Dermatology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Fengyuan Wang
- Department of Dermatology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Qiao Yan
- Department of Dermatology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Meihong Da
- Department of Dermatology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Fei Wang
- Department of Dermatology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
20
|
Zhang M, Han F, Duan X, Zheng D, Cui Q, Liao W. Advances of biological macromolecules hemostatic materials: A review. Int J Biol Macromol 2024; 269:131772. [PMID: 38670176 DOI: 10.1016/j.ijbiomac.2024.131772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Achieving hemostasis is a necessary intervention to rapidly and effectively control bleeding. Conventional hemostatic materials currently used in clinical practice may aggravate the damage at the bleeding site due to factors such as poor adhesion and poor adaptation. Compared to most traditional hemostatic materials, polymer-based hemostatic materials have better biocompatibility and offer several advantages. They provide a more effective method of stopping bleeding and avoiding additional damage to the body in case of excessive blood loss. Various hemostatic materials with greater functionality have been developed in recent years for different organs using diverse design strategies. This article reviews the latest advances in the development of polymeric hemostatic materials. We introduce the coagulation cascade reaction after bleeding and then discuss the hemostatic mechanisms and advantages and disadvantages of various polymer materials, including natural, synthetic, and composite polymer hemostatic materials. We further focus on the design strategies, properties, and characterization of hemostatic materials, along with their applications in different organs. Finally, challenges and prospects for the application of hemostatic polymeric materials are summarized and discussed. We believe that this review can provide a reference for related research on hemostatic materials, contributing to the further development of polymer hemostatic materials.
Collapse
Affiliation(s)
- Mengyang Zhang
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Feng Han
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Xunxin Duan
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Dongxi Zheng
- School of Mechanical and Intelligent Manufacturing, Jiujiang University, Jiujiang, Jiangxi, China
| | - Qiuyan Cui
- The Second Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Weifang Liao
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China.
| |
Collapse
|
21
|
Song W, Li L, Liu X, Zhu Y, Yu S, Wang H, Wang L. Hydrogel microrobots for biomedical applications. Front Chem 2024; 12:1416314. [PMID: 38841335 PMCID: PMC11150770 DOI: 10.3389/fchem.2024.1416314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
Recent years have witnessed a surge in the application of microrobots within the medical sector, with hydrogel microrobots standing out due to their distinctive advantages. These microrobots, characterized by their exceptional biocompatibility, adjustable physico-mechanical attributes, and acute sensitivity to biological environments, have emerged as pivotal tools in advancing medical applications such as targeted drug delivery, wound healing enhancement, bio-imaging, and precise surgical interventions. The capability of hydrogel microrobots to navigate and perform tasks within complex biological systems significantly enhances the precision, efficiency, and safety of therapeutic procedures. Firstly, this paper delves into the material classification and properties of hydrogel microrobots and compares the advantages of different hydrogel materials. Furthermore, it offers a comprehensive review of the principal categories and recent innovations in the synthesis, actuation mechanisms, and biomedical application of hydrogel-based microrobots. Finally, the manuscript identifies prevailing obstacles and future directions in hydrogel microrobot research, aiming to furnish insights that could propel advancements in this field.
Collapse
Affiliation(s)
- Wenping Song
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
- Chongqing Research Institute of HIT, Chongqing, China
| | - Leike Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Xuejia Liu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
- Department of Medical Imaging, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanhe Zhu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Shimin Yu
- College of Engineering, Ocean University of China, Qingdao, China
| | - Haocheng Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Lin Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
22
|
Wang S, Jia Z, Dai M, Feng X, Tang C, Liu L, Cao L. Advances in natural and synthetic macromolecules with stem cells and extracellular vesicles for orthopedic disease treatment. Int J Biol Macromol 2024; 268:131874. [PMID: 38692547 DOI: 10.1016/j.ijbiomac.2024.131874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Serious orthopedic disorders resulting from myriad diseases and impairments continue to pose a considerable challenge to contemporary clinical care. Owing to its limited regenerative capacity, achieving complete bone tissue regeneration and complete functional restoration has proven challenging with existing treatments. By virtue of cellular regenerative and paracrine pathways, stem cells are extensively utilized in the restoration and regeneration of bone tissue; however, low survival and retention after transplantation severely limit their therapeutic effect. Meanwhile, biomolecule materials provide a delivery platform that improves stem cell survival, increases retention, and enhances therapeutic efficacy. In this review, we present the basic concepts of stem cells and extracellular vesicles from different sources, emphasizing the importance of using appropriate expansion methods and modification strategies. We then review different types of biomolecule materials, focusing on their design strategies. Moreover, we summarize several forms of biomaterial preparation and application strategies as well as current research on biomacromolecule materials loaded with stem cells and extracellular vesicles. Finally, we present the challenges currently impeding their clinical application for the treatment of orthopedic diseases. The article aims to provide researchers with new insights for subsequent investigations.
Collapse
Affiliation(s)
- Supeng Wang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; Jiujiang City Key Laboratory of Cell Therapy, The First Hospital of Jiujiang City, Jiujiang 332000, China; Ningxia Medical University, Ningxia 750004, China
| | - Zhiqiang Jia
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Xujun Feng
- Jiujiang City Key Laboratory of Cell Therapy, The First Hospital of Jiujiang City, Jiujiang 332000, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| | - Lingling Cao
- Jiujiang City Key Laboratory of Cell Therapy, The First Hospital of Jiujiang City, Jiujiang 332000, China.
| |
Collapse
|
23
|
Yu Y, Gao Y, Zeng Y, Ge W, Tang C, Xie X, Liu L. Multifunctional hyaluronic acid/gelatin methacryloyl core-shell microneedle for comprehensively treating oral mucosal ulcers. Int J Biol Macromol 2024; 266:131221. [PMID: 38554926 DOI: 10.1016/j.ijbiomac.2024.131221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Oral ulceration is the most common oral mucosal disease. Oral mucosal ulcers are extremely painful, may interfere with eating and speaking, and potentially complicate systemic symptoms in severe cases. The humid and highly dynamic environment of the oral cavity makes local drug administration for treating oral mucosal ulcers challenging. To overcome these challenges, we designed and prepared a novel dissolving microneedle (MN) patch containing multiple drugs in a core-shell to promote oral ulcer healing. The MNs contained a methacrylate gelatin shell layer of basic fibroblast growth factor (bFGF), a hyaluronic acid (HA) core loaded with dexamethasone (DXMS), and zeolite imidazoline framework-8 (ZIF-8) encapsulated in the HA-based backplane. Progressive degradation of gelatin methacryloyl (GelMA) from the tip of the MN patch in the oral mucosa resulted in sustained bFGF release at the lesion site, significantly promoting cell migration, proliferation, and angiogenesis. Moreover, the rapid release of HA and, subsequently, DXMS inhibited inflammation, and the remaining MN backing after the tip dissolved behaved as a dressing, releasing ZIF-8 for its antimicrobial effects. This novel, multifunctional, transmucosal core-shell MN patch exhibited excellent anti-inflammatory, antimicrobial, and pro-healing effects in vivo and in vitro, suggesting that it can promote oral ulcer healing.
Collapse
Affiliation(s)
- Yi Yu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yijun Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yiyu Zeng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Wenhui Ge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical university, Wenzhou 325200, China
| | - Xiaoyan Xie
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical university, Wenzhou 325200, China..
| |
Collapse
|
24
|
Shi L, Zhou Y, Yin Y, Zhang J, Chen K, Liu S, Chen P, Jiang H, Liu J, Wu Y. Advancing Tissue Damage Repair in Geriatric Diseases: Prospects of Combining Stem Cell-Derived Exosomes with Hydrogels. Int J Nanomedicine 2024; 19:3773-3804. [PMID: 38708181 PMCID: PMC11068057 DOI: 10.2147/ijn.s456268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/19/2024] [Indexed: 05/07/2024] Open
Abstract
Geriatric diseases are a group of diseases with unique characteristics related to senility. With the rising trend of global aging, senile diseases now mainly include endocrine, cardiovascular, neurodegenerative, skeletal, and muscular diseases and cancer. Compared with younger populations, the structure and function of various cells, tissues and organs in the body of the elderly undergo a decline as they age, rendering them more susceptible to external factors and diseases, leading to serious tissue damage. Tissue damage presents a significant obstacle to the overall health and well-being of older adults, exerting a profound impact on their quality of life. Moreover, this phenomenon places an immense burden on families, society, and the healthcare system.In recent years, stem cell-derived exosomes have become a hot topic in tissue repair research. The combination of these exosomes with biomaterials allows for the preservation of their biological activity, leading to a significant improvement in their therapeutic efficacy. Among the numerous biomaterial options available, hydrogels stand out as promising candidates for loading exosomes, owing to their exceptional properties. Due to the lack of a comprehensive review on the subject matter, this review comprehensively summarizes the application and progress of combining stem cell-derived exosomes and hydrogels in promoting tissue damage repair in geriatric diseases. In addition, the challenges encountered in the field and potential prospects are presented for future advancements.
Collapse
Affiliation(s)
- Ling Shi
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Yunjun Zhou
- The Affiliated Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Yongkui Yin
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Jin Zhang
- Clinical Laboratory, Zhejiang Medical & Health Group Quzhou Hospital, Quzhou, 324004, People’s Republic of China
| | - Kaiyuan Chen
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Sen Liu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Peijian Chen
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Hua Jiang
- The Affiliated Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Jieting Liu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| |
Collapse
|
25
|
Ege D, Boccaccini AR. Investigating the Effect of Processing and Material Parameters of Alginate Dialdehyde-Gelatin (ADA-GEL)-Based Hydrogels on Stiffness by XGB Machine Learning Model. Bioengineering (Basel) 2024; 11:415. [PMID: 38790283 PMCID: PMC11117982 DOI: 10.3390/bioengineering11050415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/26/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
To address the limitations of alginate and gelatin as separate hydrogels, partially oxidized alginate, alginate dialdehyde (ADA), is usually combined with gelatin to prepare ADA-GEL hydrogels. These hydrogels offer tunable properties, controllable degradation, and suitable stiffness for 3D bioprinting and tissue engineering applications. Several processing variables affect the final properties of the hydrogel, including degree of oxidation, gelatin content and type of crosslinking agent. In addition, in 3D-printed structures, pore size and the possible addition of a filler to make a hydrogel composite also affect the final physical and biological properties. This study utilized datasets from 13 research papers, encompassing 33 unique combinations of ADA concentration, gelatin concentration, CaCl2 and microbial transglutaminase (mTG) concentrations (as crosslinkers), pore size, bioactive glass (BG) filler content, and one identified target property of the hydrogels, stiffness, utilizing the Extreme Boost (XGB) machine learning algorithm to create a predictive model for understanding the combined influence of these parameters on hydrogel stiffness. The stiffness of ADA-GEL hydrogels is notably affected by the ADA to GEL ratio, and higher gelatin content for different ADA gel concentrations weakens the scaffold, likely due to the presence of unbound gelatin. Pore size and the inclusion of a BG particulate filler also have a significant impact on stiffness; smaller pore sizes and higher BG content lead to increased stiffness. The optimization of ADA-GEL composition and the inclusion of BG fillers are key determinants to tailor the stiffness of these 3D printed hydrogels, as found by the analysis of the available data.
Collapse
Affiliation(s)
- Duygu Ege
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany;
- Institute of Biomedical Engineering, Bogazici University, Rasathane St., Kandilli, 34684 İstanbul, Turkey
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany;
| |
Collapse
|
26
|
Jin H, Xue Z, Liu J, Ma B, Yang J, Lei L. Advancing Organoid Engineering for Tissue Regeneration and Biofunctional Reconstruction. Biomater Res 2024; 28:0016. [PMID: 38628309 PMCID: PMC11018530 DOI: 10.34133/bmr.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024] Open
Abstract
Tissue damage and functional abnormalities in organs have become a considerable clinical challenge. Organoids are often applied as disease models and in drug discovery and screening. Indeed, several studies have shown that organoids are an important strategy for achieving tissue repair and biofunction reconstruction. In contrast to established stem cell therapies, organoids have high clinical relevance. However, conventional approaches have limited the application of organoids in clinical regenerative medicine. Engineered organoids might have the capacity to overcome these challenges. Bioengineering-a multidisciplinary field that applies engineering principles to biomedicine-has bridged the gap between engineering and medicine to promote human health. More specifically, bioengineering principles have been applied to organoids to accelerate their clinical translation. In this review, beginning with the basic concepts of organoids, we describe strategies for cultivating engineered organoids and discuss the multiple engineering modes to create conditions for breakthroughs in organoid research. Subsequently, studies on the application of engineered organoids in biofunction reconstruction and tissue repair are presented. Finally, we highlight the limitations and challenges hindering the utilization of engineered organoids in clinical applications. Future research will focus on cultivating engineered organoids using advanced bioengineering tools for personalized tissue repair and biofunction reconstruction.
Collapse
Affiliation(s)
- Hairong Jin
- Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, China
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
- Ningxia Medical University, Ningxia 750004, China
| | - Zengqi Xue
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Jinnv Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Binbin Ma
- Department of Biology,
The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jianfeng Yang
- Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, China
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Lanjie Lei
- Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
27
|
Tan S, Liu Z, Cong M, Zhong X, Mao Y, Fan M, Jiao F, Qiao H. Dandelion-derived vesicles-laden hydrogel dressings capable of neutralizing Staphylococcus aureus exotoxins for the care of invasive wounds. J Control Release 2024; 368:355-371. [PMID: 38432468 DOI: 10.1016/j.jconrel.2024.02.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/01/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Delayed wound healing caused by bacterial infection remains a major challenge in clinical treatment. Exotoxins incorporated in bacterial extracellular vesicles play a key role as the disease-causing virulence factors. Safe and specific antivirulence agents are expected to be developed as an effective anti-bacterial infection strategy, instead of single antibiotic therapy. Plant-derived extracellular vesicle-like nanoparticles have emerged as promising therapeutic agents for skin diseases, but the elucidations of specific mechanisms of action and clinical transformation still need to be advanced. Here, dandelion-derived extracellular vesicle-like nanoparticles (TH-EVNs) are isolated and exert antivirulence activity through specifically binding to Staphylococcus aureus (S. aureus) exotoxins, thereby protecting the host cell from attack. The neutralization of TH-EVNs against exotoxins has considerable binding force and stability, showing complete detoxification effect in vivo. Then gelatin methacryloyl hydrogel is developed as TH-EVNs-loaded dressing for S. aureus exotoxin-invasive wounds. Hydrogel dressings demonstrate good physical and mechanical properties, thus achieving wound retention and controlled release of TH-EVNs, in addition to promoting cell proliferation and migration. In vivo results show accelerated re-epithelialization, promotion of collagen maturity and reduction of inflammation after treatment. Collectively, the developed TH-EVNs-laden hydrogel dressings provide a potential therapeutic approach for S. aureus exotoxin- associated trauma.
Collapse
Affiliation(s)
- Shenyu Tan
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhuoya Liu
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Minghui Cong
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoqing Zhong
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yinping Mao
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mingjie Fan
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fangwen Jiao
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hongzhi Qiao
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
28
|
Wang J, Zhang L, Wang L, Tang J, Wang W, Xu Y, Li Z, Ding Z, Jiang X, Xi K, Chen L, Gu Y. Ligand-Selective Targeting of Macrophage Hydrogel Elicits Bone Immune-Stem Cell Endogenous Self-Healing Program to Promote Bone Regeneration. Adv Healthc Mater 2024; 13:e2303851. [PMID: 38226706 PMCID: PMC11468030 DOI: 10.1002/adhm.202303851] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/05/2024] [Indexed: 01/17/2024]
Abstract
Targeting macrophages can facilitate the site-specific repair of critical bone defects. Herein, a composite hydrogel, gelatin-Bletilla striata polysaccharide-mesoporous bioactive glass hydrogel (GBMgel), is constructed via the self-assembly of mesoporous bioactive glass on polysaccharide structures, through the Schiff base reaction. GBMgel can efficiently capture macrophages and drive the recruitment of seed stem cells and vascular budding required for regeneration in the early stages of bone injury, and the observed sustained release of inorganic silicon ions further enhances bone matrix deposition, mineralization, and vascular maturation. Moreover, the use of macrophage-depleted rat calvarial defect models further confirms that GBMgel, with ligand-selective macrophage targeting, increases the bone regeneration area and the proportion of mature bone. Mechanistic studies reveal that GBMgel upregulates the TLR4/NF-κB and MAPK macrophage pathways in the early stages and the JAK/STAT3 pathway in the later stages; thus initiating macrophage polarization at different time points. In conclusion, this study is based on the endogenous self-healing properties of bone macrophages, which enhances stem cell homing, and provides a research and theoretical basis upon which bone tissue can be reshaped and regenerated using the body's immune power, providing a new strategy for the treatment of critical bone defects.
Collapse
Affiliation(s)
- Jiahao Wang
- Department of Orthopedicsthe First Affiliated Hospital of Soochow University188 Shizi Road, Gusu DistrictSuzhouJiangsu215006P. R. China
| | - Liang Zhang
- Department of OrthopedicsBeijing Friendship HospitalCapital Medical UniversityNo. 95, Yong An Road, XiCheng DistrictBeijing100050P. R. China
| | - Lingjun Wang
- Department of Orthopedicsthe First Affiliated Hospital of Soochow University188 Shizi Road, Gusu DistrictSuzhouJiangsu215006P. R. China
| | - Jincheng Tang
- Department of Orthopedicsthe First Affiliated Hospital of Soochow University188 Shizi Road, Gusu DistrictSuzhouJiangsu215006P. R. China
| | - Wei Wang
- Department of Orthopedicsthe First Affiliated Hospital of Soochow University188 Shizi Road, Gusu DistrictSuzhouJiangsu215006P. R. China
| | - Yichang Xu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow University188 Shizi Road, Gusu DistrictSuzhouJiangsu215006P. R. China
| | - Ziang Li
- Department of Orthopedicsthe First Affiliated Hospital of Soochow University188 Shizi Road, Gusu DistrictSuzhouJiangsu215006P. R. China
| | - Zhouye Ding
- Department of Orthopedicsthe First Affiliated Hospital of Soochow University188 Shizi Road, Gusu DistrictSuzhouJiangsu215006P. R. China
| | - Xinzhao Jiang
- Department of Orthopedicsthe First Affiliated Hospital of Soochow University188 Shizi Road, Gusu DistrictSuzhouJiangsu215006P. R. China
| | - Kun Xi
- Department of Orthopedicsthe First Affiliated Hospital of Soochow University188 Shizi Road, Gusu DistrictSuzhouJiangsu215006P. R. China
| | - Liang Chen
- Department of Orthopedicsthe First Affiliated Hospital of Soochow University188 Shizi Road, Gusu DistrictSuzhouJiangsu215006P. R. China
| | - Yong Gu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow University188 Shizi Road, Gusu DistrictSuzhouJiangsu215006P. R. China
| |
Collapse
|
29
|
Wang L, Wei X, He X, Xiao S, Shi Q, Chen P, Lee J, Guo X, Liu H, Fan Y. Osteoinductive Dental Pulp Stem Cell-Derived Extracellular Vesicle-Loaded Multifunctional Hydrogel for Bone Regeneration. ACS NANO 2024; 18:8777-8797. [PMID: 38488479 DOI: 10.1021/acsnano.3c11542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Stem cell-derived extracellular vesicles (EVs) show great potential for promoting bone tissue regeneration. However, normal EVs (Nor-EVs) have a limited ability to direct tissue-specific regeneration. Therefore, it is necessary to optimize the osteogenic capacity of EV-based systems for repairing extensive bone defects. Herein, we show that hydrogels loaded with osteoinductive dental pulp stem cell-derived EVs (Ost-EVs) enhanced bone tissue remodeling, resulting in a 2.23 ± 0.25-fold increase in the expression of bone morphogenetic protein 2 (BMP2) compared to the hydrogel control group. Moreover, Ost-EVs led to a higher expression of alkaline phosphatase (ALP) (1.88 ± 0.16 of Ost-EVs relative to Nor-EVs) and the formation of orange-red calcium nodules (1.38 ± 0.10 of Ost-EVs relative to Nor-EVs) in vitro. RNA sequencing revealed that Ost-EVs showed significantly high miR-1246 expression. An ideal hydrogel implant should also adhere to surrounding moist tissues. In this study, we were drawn to mussel-inspired adhesive modification, where the hydrogel carrier was crafted from hyaluronic acid (HA) and polyethylene glycol derivatives, showcasing impressive tissue adhesion, self-healing capabilities, and the ability to promote bone growth. The modified HA (mHA) hydrogel was also responsive to environmental stimuli, making it an effective carrier for delivering EVs. In an ectopic osteogenesis animal model, the Ost-EV/hydrogel system effectively alleviated inflammation, accelerated revascularization, and promoted tissue mineralization. We further used a rat femoral condyle defect model to evaluate the in situ osteogenic ability of the Ost-EVs/hydrogel system. Collectively, our results suggest that Ost-EVs combined with biomaterial-based hydrogels hold promising potential for treating bone defects.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| | - Xinbo Wei
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| | - Xi He
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| | - Shengzhao Xiao
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Qiusheng Shi
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| | - Peng Chen
- Department of Ultrasound, The Third Medical Center, Chinese PLA General Hospital, Beijing 100039, P.R. China
| | - Jesse Lee
- Arova Biosciences, Inc., Life Sciences Innovation Hub, Calgary Alberta T2L 1Y8, Canada
| | - Ximin Guo
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Beijing 100850, P.R. China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| |
Collapse
|
30
|
Jin J, Sun C, Xu K, Sun X, Cao L, Liu L. Multifunctional self-healing peptide hydrogel for wound healing. Int J Biol Macromol 2024; 261:129734. [PMID: 38281530 DOI: 10.1016/j.ijbiomac.2024.129734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
The complete healing of wounds remains a challenge in clinical care. In addition, various complications such as inflammation and infection that may occur during skin wound healing can impede the healing process. Here, we constructed a multifunctional self-repairing hydrogel by utilizing Schiff base bonds. This hydrogel exhibited good self-healing properties and could cope with destructive external influences. The self-healing hydrogel was injectable, ensuring that the hydrogel dressing adhered to the wound. Carboxymethyl chitosan and oxidized chondroitin sulfate demonstrated good biocompatibility and multiple bioactivities and were successfully used to prepare self-healing hydrogels. Meanwhile, the SIKVAV biopeptide was less expensive and more morphologically stable than vascular endothelial growth factor and had a high pro-angiogenic activity. Thus, the SIKVAV biopeptide was cross-linked to the oxidized chondroitin sulfate of the hydrogel through covalent bonding to avoid rapid biopeptide degradation, achieving a slow release of the drug. This peptide hydrogel exhibited good biocompatibility and antimicrobial properties; moreover, experiments conducted on mice revealed that it could effectively promote angiogenesis and skin tissue repair. These findings suggest that the injectable self-repairing peptide hydrogel may facilitate skin wound healing and other applications.
Collapse
Affiliation(s)
- Jiman Jin
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Chuchu Sun
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Keyuan Xu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Xiaoliang Sun
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Lingling Cao
- Jiujiang City Key Laboratory of Cell Therapy, The First Hospital of Jiujiang City, Jiujiang 332000, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| |
Collapse
|
31
|
Zhang S, Wang S, Chen J, Cui Y, Lu X, Xiong S, Yue C, Yang B. Human dental pulp stem cell-derived exosomes decorated titanium scaffolds for promoting bone regeneration. Colloids Surf B Biointerfaces 2024; 235:113775. [PMID: 38330688 DOI: 10.1016/j.colsurfb.2024.113775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Exosomes, nanoscale extracellular vesicles crucial for intercellular communication, hold great promise as a therapeutic avenue in cell-free tissue regeneration. In this study, we identified and utilized exosomes to adorn anodized titanium scaffolds, inducing osteogenic differentiation in human dental pulp stem cells (hDPSCs). The osteogenesis of hDPSCs was stimulated by exosomes derived from hDPSCs that underwent various periods of osteogenic differentiation. After purification, these exosomes were loaded onto anodized titanium scaffolds. Notably, the scaffolds loaded with exosomes deriving from osteogenic differentiated hDPSCs demonstrated superior bone tissue regeneration compared to those loaded with exosomes deriving from hDPSCs within 10-week. RNA-sequencing analysis shed light on the underlying mechanism, revealing that the osteogenic exosomes carried specific cargo, which is due to upregulated miRNAs (Hsa-miR-29c-5p, Hsa-miR-378a-5p, Hsa-miR-10b-5p and Hsa-miR-9-3p) associated with osteogenesis. And down-regulated anti-osteogenic miRNA (Hsa-miR-31-3p, Hsa-miR-221-3p, Hsa-miR-183-5p and Hsa-miR-503-5p). In conclusion, the identification and utilization of exosomes derived from osteogenic differentiated stem cells offer a novel and promising strategy for achieving cell-free bone regeneration.
Collapse
Affiliation(s)
- Siqi Zhang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China; National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Simeng Wang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China; National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Jun Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China; National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yifan Cui
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China; National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Xugang Lu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China; National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Shibing Xiong
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China; National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Chongxia Yue
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China; National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, People's Republic of China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China.
| | - Bangcheng Yang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China; National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China.
| |
Collapse
|
32
|
Wang J, Duan X, Zhong D, Zhang M, Li J, Hu Z, Han F. Pharmaceutical applications of chitosan in skin regeneration: A review. Int J Biol Macromol 2024; 261:129064. [PMID: 38161006 DOI: 10.1016/j.ijbiomac.2023.129064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/15/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Skin regeneration is the process that restores damaged tissues. When the body experiences trauma or surgical incisions, the skin and tissues on the wound surface become damaged. The body repairs this damage through complex physiological processes to restore the original structural and functional states of the affected tissues. Chitosan, a degradable natural bioactive polysaccharide, has attracted widespread attention partly owing to its excellent biocompatibility and antimicrobial properties; additionally, a modified form of this compound has been shown to promote skin regeneration. This review evaluates the recent research progress in the application of chitosan to promote skin regeneration. First, we discuss the basic principles of the extraction and preparation processes of chitosan from its source. Subsequently, we describe the functional properties of chitosan and the optimization of these properties through modification. We then focus on the existing chitosan-based biomaterials developed for clinical applications and their corresponding effects on skin regeneration, particularly in cases of diabetic and burn wounds. Finally, we explore the challenges and prospects associated with the use of chitosan in skin regeneration. Overall, this review provides a reference for related research and contributes to the further development of chitosan-based products in cutaneous skin regeneration.
Collapse
Affiliation(s)
- Jie Wang
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Xunxin Duan
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Donghuo Zhong
- Medical college of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Mengqi Zhang
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Jianying Li
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Zhijian Hu
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Feng Han
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China.
| |
Collapse
|
33
|
Li J, Zhu T, Jiang Y, Zhang Q, Zu Y, Shen X. Microfluidic printed 3D bioactive scaffolds for postoperative treatment of gastric cancer. Mater Today Bio 2024; 24:100911. [PMID: 38188649 PMCID: PMC10770549 DOI: 10.1016/j.mtbio.2023.100911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Tumor recurrence and tissue regeneration are two major challenges in the postoperative treatment of cancer. Current research hotspots are focusing on developing novel scaffold materials that can simultaneously suppress tumor recurrence and promote tissue repair. Here, we propose a microfluidic 3D-printed methacrylate fish gelatin (F-GelMA@BBR) scaffold loaded with berberine (BBR) for the postoperative treatment of gastric cancer. The F-GelMA@BBR scaffold displayed a significant killing effect on gastric cancer MKN-45 cells in vitro and demonstrated excellent anti-recurrence efficiency in gastric cancer postoperative models. In vitro experiments have shown that F-GelMA@BBR exhibits significant cytotoxicity on gastric cancer cells while maintaining the cell viability of normal cells. The results of in vivo experiments show that F-GelMA@BBR can significantly suppress the tumor volume to 49.7 % of the control group. In addition, the scaffold has an ordered porous structure and good biocompatibility, which could support the attachment and proliferation of normal cells to promote tissue repair at the tumor resection site. These features indicated that such scaffold material is a promising candidate for postoperative tumor treatment in the practical application.
Collapse
Affiliation(s)
- Jiante Li
- Department of Anorectal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Tianru Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yiwei Jiang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Qingfei Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
- The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yan Zu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Xian Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
34
|
Sun M, Zhong X, Dai M, Feng X, Tang C, Cao L, Liu L. Antibacterial microneedle patch releases oxygen to enhance diabetic wound healing. Mater Today Bio 2024; 24:100945. [PMID: 38229885 PMCID: PMC10789642 DOI: 10.1016/j.mtbio.2024.100945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024] Open
Abstract
Cell growth and metabolism require an adequate supply of oxygen. However, obtaining sufficient oxygen from the blood circulating around diabetic wounds is challenging. Nevertheless, achieving a continuous and stable oxygen supply is required for these wounds to heal. Hence, in this study, we report a novel antibacterial oxygen-producing silk fibroin methacryloyl hydrogel microneedle (MN) patch comprising tips encapsulated with calcium peroxide and catalase and a base coated with antibacterial Ag nanoparticles (AgNPs). The tip of the MN patch continuously releases oxygen and inhibits the production of reactive oxygen species. This accelerates diabetic wound healing by promoting cellular accretion and migration, macrophage M2 polarization, and angiogenesis. The AgNPs at the base of the MN patch effectively combat microbial infection, further facilitating wound repair. These findings suggest that using this multifunctional oxygen-producing MN patch may be a promising strategy for diabetic wound healing in clinical settings.
Collapse
Affiliation(s)
- Mengli Sun
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Xiqiang Zhong
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Xujun Feng
- Jiujiang City Key Laboratory of Cell Therapy, The First Hospital of Jiujiang City, Jiujiang, 332000, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Lingling Cao
- Jiujiang City Key Laboratory of Cell Therapy, The First Hospital of Jiujiang City, Jiujiang, 332000, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| |
Collapse
|
35
|
Lv N, Zhou Z, Hou M, Hong L, Li H, Qian Z, Gao X, Liu M. Research progress of vascularization strategies of tissue-engineered bone. Front Bioeng Biotechnol 2024; 11:1291969. [PMID: 38312513 PMCID: PMC10834685 DOI: 10.3389/fbioe.2023.1291969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/06/2023] [Indexed: 02/06/2024] Open
Abstract
The bone defect caused by fracture, bone tumor, infection, and other causes is not only a problematic point in clinical treatment but also one of the hot issues in current research. The development of bone tissue engineering provides a new way to repair bone defects. Many animal experimental and rising clinical application studies have shown their excellent application prospects. The construction of rapid vascularization of tissue-engineered bone is the main bottleneck and critical factor in repairing bone defects. The rapid establishment of vascular networks early after biomaterial implantation can provide sufficient nutrients and transport metabolites. If the slow formation of the local vascular network results in a lack of blood supply, the osteogenesis process will be delayed or even unable to form new bone. The researchers modified the scaffold material by changing the physical and chemical properties of the scaffold material, loading the growth factor sustained release system, and combining it with trace elements so that it can promote early angiogenesis in the process of induced bone regeneration, which is beneficial to the whole process of bone regeneration. This article reviews the local vascular microenvironment in the process of bone defect repair and the current methods of improving scaffold materials and promoting vascularization.
Collapse
Affiliation(s)
- Nanning Lv
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Orthopedic Surgery, The Second People’s Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu, China
| | - Zhangzhe Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mingzhuang Hou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lihui Hong
- Department of Orthopedic Surgery, The Second People’s Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu, China
| | - Hongye Li
- Department of Orthopedic Surgery, The Second People’s Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu, China
| | - Zhonglai Qian
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xuzhu Gao
- Department of Orthopedic Surgery, The Second People’s Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu, China
| | - Mingming Liu
- Department of Orthopedic Surgery, The Second People’s Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu, China
| |
Collapse
|
36
|
Chen H, Xue H, Zeng H, Dai M, Tang C, Liu L. 3D printed scaffolds based on hyaluronic acid bioinks for tissue engineering: a review. Biomater Res 2023; 27:137. [PMID: 38142273 DOI: 10.1186/s40824-023-00460-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/07/2023] [Indexed: 12/25/2023] Open
Abstract
Hyaluronic acid (HA) is widely distributed in human connective tissue, and its unique biological and physicochemical properties and ability to facilitate biological structure repair make it a promising candidate for three-dimensional (3D) bioprinting in the field of tissue regeneration and biomedical engineering. Moreover, HA is an ideal raw material for bioinks in tissue engineering because of its histocompatibility, non-immunogenicity, biodegradability, anti-inflammatory properties, anti-angiogenic properties, and modifiability. Tissue engineering is a multidisciplinary field focusing on in vitro reconstructions of mammalian tissues, such as cartilage tissue engineering, neural tissue engineering, skin tissue engineering, and other areas that require further clinical applications. In this review, we first describe the modification methods, cross-linking methods, and bioprinting strategies for HA and its derivatives as bioinks and then critically discuss the strengths, shortcomings, and feasibility of each method. Subsequently, we reviewed the practical clinical applications and outcomes of HA bioink in 3D bioprinting. Finally, we describe the challenges and opportunities in the development of HA bioink to provide further research references and insights.
Collapse
Affiliation(s)
- Han Chen
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
- Ningxia Medical University, Ningxia, 750004, China
- Xijing Hospital of Air Force Military Medical University, Xi'an, 710032, China
| | - Huaqian Xue
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
- Ningxia Medical University, Ningxia, 750004, China
| | - Huanxuan Zeng
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China.
| |
Collapse
|
37
|
Dal-Fabbro R, Huang YC, Toledo PTA, Capalbo LC, Coleman RM, Sasaki H, Fenno JC, Bottino MC. Injectable Methacrylated Gelatin Hydrogel for Safe Sodium Hypochlorite Delivery in Endodontics. Gels 2023; 9:897. [PMID: 37998987 PMCID: PMC10670887 DOI: 10.3390/gels9110897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023] Open
Abstract
Keeping sodium hypochlorite (NaOCl) within the root canal is challenging in regenerative endodontics. In this study, we developed a drug delivery system using a gelatin methacryloyl (GelMA) hydrogel incorporated with aluminosilicate clay nanotubes (HNTs) loaded with NaOCl. Pure GelMA, pure HNTs, and NaOCl-loaded HNTs carrying varying concentrations were assessed for chemo-mechanical properties, degradability, swelling capacity, cytocompatibility, antimicrobial and antibiofilm activities, and in vivo for inflammatory response and degradation. SEM images revealed consistent pore sizes of 70-80 µm for all samples, irrespective of the HNT and NaOCl concentration, while HNT-loaded hydrogels exhibited rougher surfaces. The hydrogel's compressive modulus remained between 100 and 200 kPa, with no significant variations. All hydrogels demonstrated a 6-7-fold mass increase and complete degradation by the seventh day. Despite an initial decrease in cell viability, all groups recovered to 65-80% compared to the control. Regarding antibacterial and antibiofilm properties, 12.5 HNT(Double) showed the highest inhibition zone on agar plates and the most significant reduction in biofilm compared to other groups. In vivo, the 12.5 HNT(Double) group displayed partial degradation after 21 days, with mild localized inflammatory responses but no tissue necrosis. In conclusion, the HNT-NaOCl-loaded GelMA hydrogel retains the disinfectant properties, providing a safer option for endodontic procedures without harmful potential.
Collapse
Affiliation(s)
- Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (R.D.-F.); (Y.-C.H.); (P.T.A.T.); (L.C.C.); (H.S.)
| | - Yu-Chi Huang
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (R.D.-F.); (Y.-C.H.); (P.T.A.T.); (L.C.C.); (H.S.)
| | - Priscila T. A. Toledo
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (R.D.-F.); (Y.-C.H.); (P.T.A.T.); (L.C.C.); (H.S.)
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Aracatuba 16015-050, SP, Brazil
| | - Leticia C. Capalbo
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (R.D.-F.); (Y.-C.H.); (P.T.A.T.); (L.C.C.); (H.S.)
| | - Rhima M. Coleman
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hajime Sasaki
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (R.D.-F.); (Y.-C.H.); (P.T.A.T.); (L.C.C.); (H.S.)
| | - J. Christopher Fenno
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (R.D.-F.); (Y.-C.H.); (P.T.A.T.); (L.C.C.); (H.S.)
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|