1
|
Peng ZL, Wu W, Tang CY, Ren JL, Jiang D, Li JT. Transcriptome Analysis Reveals Olfactory System Expression Characteristics of Aquatic Snakes. Front Genet 2022; 13:825974. [PMID: 35154285 PMCID: PMC8829814 DOI: 10.3389/fgene.2022.825974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Animal olfactory systems evolved with changes in habitat to detect odor cues from the environment. The aquatic environment, as a unique habitat, poses a formidable challenge for olfactory perception in animals, since the higher density and viscosity of water. The olfactory system in snakes is highly specialized, thus providing the opportunity to explore the adaptive evolution of such systems to unique habitats. To date, however, few studies have explored the changes in gene expression features in the olfactory systems of aquatic snakes. In this study, we carried out RNA sequencing of 26 olfactory tissue samples (vomeronasal organ and olfactory bulb) from two aquatic and two non-aquatic snake species to explore gene expression changes under the aquatic environment. Weighted gene co-expression network analysis showed significant differences in gene expression profiles between aquatic and non-aquatic habitats. The main olfactory systems of the aquatic and non-aquatic snakes were regulated by different genes. Among these genes, RELN may contribute to exploring gene expression changes under the aquatic environment by regulating the formation of inhibitory neurons in the granular cell layer and increasing the separation of neuronal patterns to correctly identify complex chemical information. The high expression of TRPC2 and V2R family genes in the accessory olfactory systems of aquatic snakes should enhance their ability to bind water-soluble odor molecules, and thus obtain more information in hydrophytic habitats. This work provides an important foundation for exploring the olfactory adaptation of snakes in special habitats.
Collapse
Affiliation(s)
- Zhong-Liang Peng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chen-Yang Tang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jin-Long Ren
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dechun Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jia-Tang Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin Nay Pyi Taw, Myanmar
- *Correspondence: Jia-Tang Li,
| |
Collapse
|
2
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
3
|
Kaczmarek P, Metscher B, Rupik W. Embryology of the naso-palatal complex in Gekkota based on detailed 3D analysis in Lepidodactylus lugubris and Eublepharis macularius. J Anat 2021; 238:249-287. [PMID: 33169847 PMCID: PMC7812140 DOI: 10.1111/joa.13312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/10/2020] [Accepted: 08/26/2020] [Indexed: 02/03/2023] Open
Abstract
The vomeronasal organ (VNO), nasal cavity, lacrimal duct, choanal groove, and associated parts of the superficial (soft tissue) palate are called the naso-palatal complex. Despite the morphological diversity of the squamate noses, little is known about the embryological basis of this variation. Moreover, developmental data might be especially interesting in light of the morpho-molecular discordance of squamate phylogeny, since a 'molecular scenario' implies an occurrence of unexpected scale of homoplasy also in olfactory systems. In this study, we used X-ray microtomography and light microscopy to describe morphogenesis of the naso-palatal complex in two gekkotans: Lepidodactylus lugubris (Gekkonidae) and Eublepharis macularius (Eublepharidae). Our embryological data confirmed recent findings about the nature of some developmental processes in squamates, for example, involvement of the lateral nasal prominence in the formation of the choanal groove. Moreover, our study revealed previously unknown differences between the studied gekkotans and allows us to propose redefinition of the anterior concha of Sphenodon. Interpretation of some described conditions might be problematic in the phylogenetic context, since they represent unknown: squamate, nonophidian squamate, or gekkotan features.
Collapse
Affiliation(s)
- Paweł Kaczmarek
- Institute of Biology, Biotechnology and Environmental ProtectionFaculty of Natural SciencesUniversity of Silesia in KatowiceKatowicePoland
| | - Brian Metscher
- Department of Evolutionary BiologyUniversity of ViennaViennaAustria
| | - Weronika Rupik
- Institute of Biology, Biotechnology and Environmental ProtectionFaculty of Natural SciencesUniversity of Silesia in KatowiceKatowicePoland
| |
Collapse
|
4
|
Kaczmarek P, Rupik W. Structural and ultrastructural studies on the developing vomeronasal sensory epithelium in the grass snake Natrix natrix (Squamata: Colubroidea). J Morphol 2020; 282:378-407. [PMID: 33340145 DOI: 10.1002/jmor.21311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/25/2022]
Abstract
The sensory olfactory epithelium and the vomeronasal sensory epithelium (VSE) are characterized by continuous turnover of the receptor cells during postnatal life and are capable of regeneration after injury. The VSE, like the entire vomeronasal organ, is generally well developed in squamates and is crucial for detection of pheromones and prey odors. Despite the numerous studies on embryonic development of the VSE in squamates, especially in snakes, an ultrastructural analysis, as far as we know, has never been performed. Therefore, we investigated the embryology of the VSE of the grass snake (Natrix natrix) using electron microscopy (SEM and TEM) and light microscopy. As was shown for adult snakes, the hypertrophied ophidian VSE may provide great resolution of changes in neuron morphology located at various epithelial levels. The results of this study suggest that different populations of stem/progenitor cells occur at the base of the ophidian VSE during embryonic development. One of them may be radial glia-like cells, described previously in mouse. The various structure and ultrastructure of neurons located at different parts of the VSE provide evidence for neuronal maturation and aging. Based on these results, a few nonmutually exclusive hypotheses explaining the formation of the peculiar columnar organization of the VSE in snakes were proposed.
Collapse
Affiliation(s)
- Paweł Kaczmarek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Weronika Rupik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
5
|
Kaczmarek P, Janiszewska K, Metscher B, Rupik W. Development of the squamate naso-palatal complex: detailed 3D analysis of the vomeronasal organ and nasal cavity in the brown anole Anolis sagrei (Squamata: Iguania). Front Zool 2020; 17:28. [PMID: 32983242 PMCID: PMC7507828 DOI: 10.1186/s12983-020-00369-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
Background Despite the diverse morphology of the adult squamate naso-palatal complex - consisting of the nasal cavity, vomeronasal organ (VNO), choanal groove, lacrimal duct and superficial palate - little is known about the embryology of these structures. Moreover, there are no comprehensive studies concerning development of the nasal cavity and VNO in relation to the superficial palate. In this investigation, we used X-ray microtomography and histological sections to describe embryonic development of the naso-palatal complex of iguanian lizard, the brown anole (Anolis sagrei). The purpose of the study was to describe the mechanism of formation of adult morphology in this species, which combines the peculiar anole features with typical iguanian conditions. Considering the uncertain phylogenetic position of the Iguania within Squamata, embryological data and future comparative studies may shed new light on the evolution of this large squamate clade. Results Development of the naso-palatal complex was divided into three phases: early, middle and late. In the early developmental phase, the vomeronasal pit originates from medial outpocketing of the nasal pit, when the facial prominences are weakly developed. In the middle developmental phase, the following events can be noted: the formation of the frontonasal mass, separation of the vestibulum, appearance of the lacrimal duct, and formation of the choanal groove, which leads to separation of the VNO from the nasal cavity. In late development, the nasal cavity and the VNO attain their adult morphology. The lacrimal duct establishes an extensive connection with the choanal groove, which eventually becomes largely separated from the oral cavity. Conclusions Unlike in other tetrapods, the primordium of the lacrimal duct in the brown anole develops largely beyond the nasolacrimal groove. In contrast to previous studies on squamates, the maxillary prominence is found to participate in the initial fusion with the frontonasal mass. Moreover, formation of the choanal groove occurs due to the fusion of the vomerine cushion to the subconchal fold, rather than to the choanal fold. The loss or significant reduction of the lateral nasal concha is secondary. Some features of anole adult morphology, such as the closure of the choanal groove, may constitute adaptations to vomeronasal chemoreception.
Collapse
Affiliation(s)
- Paweł Kaczmarek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Katarzyna Janiszewska
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Brian Metscher
- Department of Evolutionary Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Weronika Rupik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
6
|
Farouk SM, Hassan SA, Emam MA. Histochemical and surface ultrastructural characteristics of the nasal cavity of laughing dove. Anat Histol Embryol 2017; 46:592-599. [DOI: 10.1111/ahe.12317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/06/2017] [Indexed: 12/01/2022]
Affiliation(s)
- S. M. Farouk
- Department of Cytology and Histology; Faculty of Veterinary Medicine; Suez Canal University; Ismailia Egypt
| | - S. A. Hassan
- Department of Anatomy and Embryology; Faculty of Veterinary Medicine; Suez Canal University; Ismailia Egypt
| | - M. A. Emam
- Department of Histology and Cytology; Faculty of Veterinary Medicine; Benha University; Moshtohor Egypt
| |
Collapse
|
7
|
Wittmer C, Nowack C. Epithelial crypts: A complex and enigmatic olfactory organ in African and South American lungfish (Lepidosireniformes, Dipnoi). J Morphol 2017; 278:791-800. [PMID: 28333390 DOI: 10.1002/jmor.20673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/23/2016] [Accepted: 02/26/2017] [Indexed: 11/07/2022]
Abstract
African lungfish (Protopterus) seem unique among osteognathostomes in possessing a potential vomeronasal organ homolog in form of accessory epithelial crypts within their nasal cavity. Many details regarding structural and functional properties of these crypts are still unexplored. In this study, we reinvestigate the issue and also present the first data on epithelial crypts in the South American lungfish Lepidosiren paradoxa. The nasal cavities of L. paradoxa and Protopterus annectens were studied using histology, scanning electron microscopy, and alcian blue and PAS staining. In both species, the epithelial crypts consist of a pseudostratified sensory epithelium and a monolayer of elongated glandular cells, in accordance with previously published data on Protopterus. In addition, we found a new second and anatomically distinct type of mucous cell within the duct leading into the crypt. These glandular duct cells are PAS positive, whereas the elongated glandular cells are stainable with alcian blue, suggesting distinct functions of their respective secretions. Furthermore, the two lungfish species show differently structured crypt sensory epithelia and external crypt morphology, with conspicuous bilaterally symmetrical stripes of ciliated cells in L. paradoxa. Taken together, our data suggest that stimulus transport into the crypts involves both ciliary movement and odorant binding mucus.
Collapse
Affiliation(s)
- Carolin Wittmer
- Department of Zoology, Institute for Biology, University of Kassel, Heinrich-Plett-Straße 40, Kassel, 34132, Germany
| | - Christine Nowack
- Department of Cell Biology, Institute for Biology, University of Kassel, Heinrich-Plett-Straße 40, Kassel, 34132, Germany
| |
Collapse
|
8
|
Kaczmarek P, Hermyt M, Rupik W. Embryology of the VNO and associated structures in the grass snake Natrix natrix (Squamata: Naticinae): a 3D perspective. Front Zool 2017; 14:1. [PMID: 28101121 PMCID: PMC5237294 DOI: 10.1186/s12983-017-0188-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/02/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Snakes are considered to be vomerolfaction specialists. They are members of one of the most diverse groups of vertebrates, Squamata. The vomeronasal organ and the associated structures (such as the lacrimal duct, choanal groove, lamina transversalis anterior and cupola Jacobsoni) of adult lizards and snakes have received much anatomical, histological, physiological and behavioural attention. However, only limited embryological investigation into these structures, constrained to some anatomical or cellular studies and brief surveys, has been carried out thus far. The purpose of this study was, first, to examine the embryonic development of the vomeronasal organ and the associated structures in the grass snake (Natrix natrix), using three-dimensional reconstructions based on histological studies, and, second, to compare the obtained results with those presented in known publications on other snakes and lizards. RESULTS Five major developmental processes were taken into consideration in this study: separation of the vomeronasal organ from the nasal cavity and its specialization, development of the mushroom body, formation of the lacrimal duct, development of the cupola Jacobsoni and its relation to the vomeronasal nerve, and specialization of the sensory epithelium. Our visualizations showed the VNO in relation to the nasal cavity, choanal groove, lacrimal duct and cupola Jacobsoni at different embryonic stages. We confirmed that the choanal groove disappears gradually, which indicates that this structure is absent in adult grass snakes. On our histological sections, we observed a gradual growth in the height of the columns of the vomeronasal sensory epithelium and widening of the spaces between them. CONCLUSIONS The main ophidian taxa (Scolecophidia, Henophidia and Caenophidia), just like other squamate clades, seem to be evolutionarily conservative at some levels with respect to the VNO and associated structures morphology. Thus, it was possible to homologize certain embryonic levels of the anatomical and histological complexity, observed in the grass snake, with adult conditions of certain groups of Squamata. This may reflect evolutionary shift in Squamata from visually oriented predators to vomerolfaction specialists. Our descriptions offer material useful for future comparative studies of Squamata, both at their anatomical and histological levels.
Collapse
Affiliation(s)
- Paweł Kaczmarek
- Department of Animal Histology and Embryology, University of Silesia, 9 Bankowa Str, 40-007 Katowice, Poland
| | - Mateusz Hermyt
- Department of Animal Histology and Embryology, University of Silesia, 9 Bankowa Str, 40-007 Katowice, Poland
| | - Weronika Rupik
- Department of Animal Histology and Embryology, University of Silesia, 9 Bankowa Str, 40-007 Katowice, Poland
| |
Collapse
|
9
|
Brykczynska U, Tzika AC, Rodriguez I, Milinkovitch MC. Contrasted evolution of the vomeronasal receptor repertoires in mammals and squamate reptiles. Genome Biol Evol 2013; 5:389-401. [PMID: 23348039 PMCID: PMC3590772 DOI: 10.1093/gbe/evt013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The vomeronasal organ (VNO) is an olfactory structure that detects pheromones and environmental cues. It consists of sensory neurons that express evolutionary unrelated groups of transmembrane chemoreceptors. The predominant V1R and V2R receptor repertoires are believed to detect airborne and water-soluble molecules, respectively. It has been suggested that the shift in habitat of early tetrapods from water to land is reflected by an increase in the ratio of V1R/V2R genes. Snakes, which have a very large VNO associated with a sophisticated tongue delivery system, are missing from this analysis. Here, we use RNA-seq and RNA in situ hybridization to study the diversity, evolution, and expression pattern of the corn snake vomeronasal receptor repertoires. Our analyses indicate that snakes and lizards retain an extremely limited number of V1R genes but exhibit a large number of V2R genes, including multiple lineages of reptile-specific and snake-specific expansions. We finally show that the peculiar bigenic pattern of V2R vomeronasal receptor gene transcription observed in mammals is conserved in squamate reptiles, hinting at an important but unknown functional role played by this expression strategy. Our results do not support the hypothesis that the shift to a vomeronasal receptor repertoire dominated by V1Rs in mammals reflects the evolutionary transition of early tetrapods from water to land. This study sheds light on the evolutionary dynamics of the vomeronasal receptor families in vertebrates and reveals how mammals and squamates differentially adapted the same ancestral vomeronasal repertoire to succeed in a terrestrial environment.
Collapse
Affiliation(s)
- Urszula Brykczynska
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Sciences III, Geneva, Switzerland
| | | | | | | |
Collapse
|
10
|
Kondoh D, Koshi K, Ono HK, Sasaki K, Nakamuta N, Taniguchi K. Identification of G protein α subunits in the main olfactory system and vomeronasal system of the Japanese Striped snake, Elaphe quadrivirgata. J Vet Med Sci 2012; 75:381-5. [PMID: 23090693 DOI: 10.1292/jvms.12-0383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the olfactory system, G proteins couple to the olfactory receptors, and G proteins expressed in the main olfactory system and vomeronasal system vary according to animal species. In this study, G protein α subunits expressed in the main olfactory system and vomeronasal system of the snake were identified by immunohistochemistry. In the olfactory epithelium, only anti-Gαolf/s antibody labeled the cilia of the receptor cells. In the vomeronasal epithelium, only anti-Gαo antibody labeled the microvilli of the receptor cells. In the accessory olfactory bulb, anti-Gαo antibody stained the whole glomerular layer. These results suggest that the main olfactory system and the vomeronasal system of the snake express Gαolf and Gαo as G proteins coupling to the olfactory receptors, respectively.
Collapse
Affiliation(s)
- Daisuke Kondoh
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Kondoh D, Yamamoto Y, Nakamuta N, Taniguchi K, Taniguchi K. Lectin histochemical studies on the olfactory epithelium and vomeronasal organ in the Japanese striped snake, Elaphe quadrivirgata. J Morphol 2010; 271:1197-203. [PMID: 20597100 DOI: 10.1002/jmor.10864] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The olfactory epithelium and the vomeronasal organ of the Japanese striped snake were examined by lectin histochemistry. Of the 21 lectins used in the study, all lectins except succinylated-wheat germ agglutinin (s-WGA) showed similar binding patterns in the vomeronasal receptor cells and the olfactory receptor cells with varying intensities. The binding patterns of s-WGA varied among individuals in the vomeronasal and olfactory receptor cells, respectively. Four lectins, Bandeiraea simplicifolia lectin-II (BSL-II), Dolichos biflorus agglutinin (DBA), Sophora japonica agglutinin (SJA), and Erythrina cristagalli lectin (ECL) stained secretory granules and the organelles in the olfactory supporting cells and did not stain them in the vomeronasal supporting cells. These results suggest that the glycoconjugate moieties are similar in the vomeronasal and olfactory receptor cells of the Japanese striped snake.
Collapse
Affiliation(s)
- Daisuke Kondoh
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | | | | | | | | |
Collapse
|
12
|
Makino N, Ookawara S, Katoh K, Ohta Y, Ichikawa M, Ichimura K. The morphological change of supporting cells in the olfactory epithelium after bulbectomy. Chem Senses 2008; 34:171-9. [PMID: 19091696 DOI: 10.1093/chemse/bjn074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transmission electron microscopy was used to study the responses of the supporting cells of the olfactory epithelium at 1-5 days after surgical ablation of the olfactory bulb (bulbectomy). In intact olfactory epithelium, lamellar smooth endoplasmic reticulum and rod-shaped mitochondria were distinctly observed in the supporting cells. On the first day after bulbectomy, bending of the microvilli and an increase in the smooth endoplasmic reticulum were observed. Cristae of the mitochondria became obscure, and the density of the mitochondrial matrix decreased. On the second day after bulbectomy, the number of microvilli decreased, broad cytoplasmic projections that contained cytoplasmic organelles protruded into the luminal side, and the mitochondria were swollen. On the fifth day after bulbectomy, microvilli seemed to be normal and some cells had large cytoplasmic projections that protruded toward the lumen of the nasal cavity. Within the cytoplasmic projections of the supporting cells, a large lamellar and reticular-shaped smooth endoplasmic reticulum was evident. Mitochondria exhibited almost normal morphology. The current findings demonstrate that morphological changes occur in the supporting cells after bulbectomy. This new evidence hypothesizes that these changes represent events that contribute to the regeneration of the olfactory epithelium after bulbectomy.
Collapse
Affiliation(s)
- Nobuko Makino
- Department of Otolaryngology-Head and Neck Surgery, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
Wakabayashi Y, Ichikawa M. Localization of G protein alpha subunits and morphology of receptor neurons in olfactory and vomeronasal epithelia in Reeve's turtle, Geoclemys reevesii. Zoolog Sci 2008; 25:178-87. [PMID: 18533749 DOI: 10.2108/zsj.25.178] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 09/27/2007] [Indexed: 11/17/2022]
Abstract
Most vertebrates have two nasal epithelia: the olfactory epithelium (OE) and the vomeronasal epithelium (VNE). The apical surfaces of OE and VNE are covered with cilia and microvilli, respectively. In rodents, signal transduction pathways involve G alpha olf and G alpha i2/G alpha o in OE and VNE, respectively. Reeve's turtles (Geoclemys reevesii) live in a semiaquatic environment. The aim of this study was to investigate the localization of G proteins and the morphological characteristics of OE and VNE in Reeve's turtle. In-situ hybridization analysis revealed that both G alpha olf and G alpha o are expressed in olfactory receptor neurons (ORNs) and vomeronasal receptor neurons (VRNs). Immunocytochemistry of G alpha olf/s and G alpha o revealed that these two G proteins were located at the apical surface, cell bodies, and axon bundles in ORNs and VRNs. Electron microscopic analysis revealed that ORNs had both cilia and microvilli on the apical surface of the same neuron, whereas VRNs had only microvilli. Moreover G alpha olf/s was located on only the cilia of OE, whereas G alpha o was not located on cilia but on microvilli. Both G alpha olf/s and G alpha o were located on microvilli of VNE. These results imply that, in Reeve's turtle, both G alpha olf/s and G alpha o function as signal transduction molecules for chemoreception in ORNs and VRNs.
Collapse
Affiliation(s)
- Yoshihiro Wakabayashi
- Laboratory of Cell Biology and Anatomy, Department of Neuroscience Basic Technology, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo 183-8526, Japan
| | | |
Collapse
|
14
|
Smith CF, Schwenk K, Earley RL, Schuett GW. Sexual size dimorphism of the tongue in a North American pitviper. J Zool (1987) 2008. [DOI: 10.1111/j.1469-7998.2007.00396.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Nomura T, Takahashi S, Ushiki T. Cytoarchitecture of the normal rat olfactory epithelium: Light and scanning electron microscopic studies. ACTA ACUST UNITED AC 2004; 67:159-70. [PMID: 15468955 DOI: 10.1679/aohc.67.159] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The three-dimensional cytoarchitecture of the normal rat olfactory epithelium was examined by scanning electron microscopy (SEM) of KOH digested tissues as well as by light and transmission electron microscopy of plastic sections. Observations specimens from the lateral side of the olfactory epithelium allowed identification of four cell types by their surface structure: olfactory neurons, supporting cells, basal cells, and duct cells of the Bowman's gland. The olfactory neurons were characterized by the presence of a thick apical process (i.e., dendrite) and a thin basal process (i.e., axon). These olfactory neurons tended to be aligned along the vertical axis of the epithelium. Immature olfactory neurons were present at the basal part of the epithelium and had a pear-shaped cell body with a thin and long axon and a short dendrite which failed to reach the epithelial surface. Supporting cells were roughly columnar in shape and occupied the full length of the epithelium. They became thinner in the basal two thirds of their length but had branched foot processes spreading on the basal surface of the epithelium. Basal cells located in the basal epithelial region were oval, round or cuboidal and present among the foot processes of the supporting cells. The ducts of the Bowman's gland entered the epithelium from the lamina propria and took straight, perpendicular courses within the epithelium. These intraepithelial ducts were composed of several slender cells. The acinar cells are sometimes present in the epithelium and appeared as a globular bulge of the duct at the basal part of the epithelium. SEM observation of the basal surface of the olfactory epithelium also clearly showed that axon bundles were surrounded by the sheet-like processes of Schwann cells, the investment being found at the base of the epithelium just before axon bundles leave the epithelium.
Collapse
Affiliation(s)
- Tomoyuki Nomura
- Division of Microscopic Anatomy and Bio-imaging, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | |
Collapse
|
16
|
Cinelli AR, Wang D, Chen P, Liu W, Halpern M. Calcium transients in the garter snake vomeronasal organ. J Neurophysiol 2002; 87:1449-72. [PMID: 11877519 DOI: 10.1152/jn.00651.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The signaling cascade involved in chemosensory transduction in the VN organ is incompletely understood. In snakes, the response to nonvolatile prey chemicals is mediated by the vomeronasal (VN) system. Using optical techniques and fluorescent Ca(2+) indicators, we found that prey-derived chemoattractants produce initially a transient cytosolic accumulation of [Ca(2+)](i) in the dendritic regions of VN neurons via two pathways: Ca(2+) release from IP(3)-sensitive intracellular stores and, to a lesser extent, Ca(2+) influx through the plasma membrane. Both components seem to be dependent on IP(3) production. Chemoattractants evoke a short-latency Ca(2+) elevation even in the absence of extracellular Ca(2+), suggesting that in snake VN neurons, Ca(2+) release from intracellular stores is independent of a preceding Ca(2+) influx, and both components are activated in parallel during early stages of chemosensory transduction. Once the response develops in apical dendritic segments, other mechanisms can also contribute to the amplification and modulation of these chemoattractant-mediated cytosolic Ca(2+) transients. In regions close to the cell bodies of the VN neurons, the activation of voltage-sensitive Ca(2+) channels and a Ca(2+)-induced Ca(2+) release from intracellular ryanodine-sensitive stores secondarily boost initial cytosolic Ca(2+) elevations increasing their magnitude and durations. Return of intracellular Ca(2+) to prestimulation levels appears to involve a Ca(2+) extrusion mediated by a Na(+)/Ca(2+) exchanger mechanism that probably plays an important role in limiting the magnitude and duration of the stimulation-induced Ca(2+) transients.
Collapse
Affiliation(s)
- Angel R Cinelli
- Department of Anatomy and Cell Biology, State University of New York Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA
| | | | | | | | | |
Collapse
|
17
|
Rehorek SJ, Firth BT, Hutchinson MN. The structure of the nasal chemosensory system in squamate reptiles. 1. The olfactory organ, with special reference to olfaction in geckos. J Biosci 2000. [DOI: 10.1007/bf03404912] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Bhatnagar KP, Meisami E. Vomeronasal organ in bats and primates: extremes of structural variability and its phylogenetic implications. Microsc Res Tech 1998; 43:465-75. [PMID: 9880162 DOI: 10.1002/(sici)1097-0029(19981215)43:6<465::aid-jemt1>3.0.co;2-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mere appearance of a tubular, epithelially-covered, bilateral structure, no matter how minuscule, on the anteroventral nasal septum of tetrapods, is generally called the vomeronasal organ (of Jacobson). However, considering the functionality of this chemosensory structure, the presence of a non-cilated (microvillar) neuroepithelium (and not just any odd type of epithelium) encased in a variously shaped vomeronasal cartilage, along with vomeronasal nerve bundles and above all an accessory olfactory bulb connected to the limbic vomeronasal amygdala, are the absolute essential neurostructural characteristics and anatomic requirement for a functional VNO and the accessory olfactory system in any tetrapod. The distribution of the vomeronasal organ is reported here in two mammalian orders: Chiroptera and Primates. An impressive data pool on the vomeronasal organ of bats is now available, pointing to the fact that at this time bats may be the only group in which this organ system is extremely variable, ranging from total absence (even in the embryo) to spectacular development with numerous intervening stages in different chiropteran species. Of the eighteen bat families, only one family of New World leaf-nosed bats, family Phyllostomidae, exhibits functional vomeronasal organs. The vespertilionid bat Miniopterus, and the mormoopid bat Pteronotus, present exceptions to this rule. Among Primates, very few species have been rigorously studied. As a result, developmental variability of the vomeronasal organ is almost unknown; either the vomeronasal organ is well developed (such as in New World monkeys) or absent (as in Old World monkeys and great apes) in the adult. The concept whether adult humans or embryonic and fetal forms are endowed with this so-called sixth sense, is a controversial one and is under intense study in our laboratory and by others. The general phylogenetic implications based on our cladistic analysis of bats are that the vomeronasal organ complex has evolved several times. Among the prosimians and platyrrhine primates, the organ is well developed, although to a varying degree. Among catarrhine primates, its loss has occurred only once, as it is generally absent in the adult forms.
Collapse
Affiliation(s)
- K P Bhatnagar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Kentucky 40292, USA.
| | | |
Collapse
|
19
|
Ferrari CC, Aldana Marcos HJ, Carmanchahi PD, Affanni JM. Olfactory mucosa of the South American armadillo Chaetophractus villosus: an ultrastructural study. Anat Rec (Hoboken) 1998; 252:325-39. [PMID: 9811211 DOI: 10.1002/(sici)1097-0185(199811)252:3<325::aid-ar1>3.0.co;2-t] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The sense of olfaction in armadillos plays an important role, suggested by the great development of the nasal structures, olfactory bulbs, and related brain regions. The mammalian olfactory mucosa is a privileged site of neuronal death and regeneration during the whole life span. A detailed knowledge of its ultrastructure is convenient for gaining insight into the factors controlling those phenomena. We performed this work in species not previously studied in order to provide a firm basis for further research on those factors. No information is available on the histology and ultrastructure of the olfactory mucosa in the order Xenarthra to which armadillos belong. Samples from the endoturbinals of the armadillo Chaetophractus villosus were prepared for light and electron microscopic examination by the usual conventional means. The olfactory epithelium of Chaetophractus villosus shows the classical three types of cells: supporting cells, olfactory receptor neurons, and basal cells. The olfactory neurons and the basal cells were similar to that described in other species. Two different types of supporting cells are described. An outstanding characteristic of the supporting cells is the normal presence of abundant phagosomes, apical secretory granules, apocrine-like protrusions, and highly developed smooth endoplasmic reticulum. Apoptotic bodies are frequently found in the infranuclear cytoplasm of supporting cells. The ductular epithelium of Bowman's glands reveals secretory activity. The lamina propria shows mixed Bowman's glands. Great development of smooth endoplasmic reticulum is observed in the mucous acinar cells. Evidence for merocrine and apocrine mechanisms in the Bowman's glands is presented. The presence of apoptotic bodies and phagosomes in supporting cells suggests a participation in the cellular events induced by cell death and proliferation of the olfactory epithelium. The variety of characteristics exhibited by the supporting cells of the olfactory mucosa may contribute to a deeper understanding of their scarcely known functions.
Collapse
Affiliation(s)
- C C Ferrari
- Instituto de Neurociencia (INEUCI-CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
20
|
Abstract
There is no report on the fine structure of three types of olfactory organs in Xenopus laevis. Their functional assignments in olfaction are not yet established. The fine structure of three types of olfactory organs, olfactory epithelium (OE), vomeronasal organ (VNO), and middle chamber epithelium (MCE), was examined in Xenopus laevis by light and electron microscopy. The olfactory cells of the OE and the sensory cells of the VNO were equipped with cilia and microvilli, respectively, similar to terrestrial animals that possess both the OE and the VNO. On the other hand, the sensory cells of the MCE were classified into two types, the sensory cells with cilia and the sensory cells with microvilli, like those of the OE in fish. These findings suggest that the OE and the VNO in Xenopus laevis detect different kinds of odoriferous molecules in air, whereas the MCE is involved in the perception of odorants in water.
Collapse
Affiliation(s)
- T Oikawa
- Department of Laboratory Animal Science, Nippon Veterinary and Animal Science University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
21
|
Abstract
This review will discuss changes observed in the cell dynamics of the vomeronasal epithelium (VNE) of snakes during embryonic and postnatal growth. Recent work suggests that neuronal differentiation occurs early in VNE development. We have used an antibody to an evolutionarily conserved peptide sequence (the PSTAIRE region) in a family of cell cycle regulatory proteins, the cyclin-dependent kinases, to identify neuronal precursors in the embryonic and postnatal VNE. During prenatal development, the location of neuronal precursors changes in the VNE. Significant postnatal changes occur in cell proliferation in the VNE (as determined by 3H-thymidine autoradiography) and possibly in the larger complement of VNE receptor cell precursors (as determined by anti-PSTAIRE staining). A model is proposed for changes in cell proliferation and death during embryonic development and postnatal maintenance and senescence in VNE of snakes, which may be applicable to the VNE and olfactory epithelium of other vertebrates.
Collapse
Affiliation(s)
- D A Holtzman
- Department of Brain and Cognitive Sciences, University of Rochester, New York 14627, USA.
| |
Collapse
|
22
|
Abstract
Differences in the sizes of sensory and neural structures are used as an indication of differences in the function of those structures. Large VNOs often are interpreted to mean that this sense is particularly important in the life history of the animal. They also are assumed to be associated with more primitive animals. I examined VNO sizes across mammalian, reptilian, and amphibian lineages while attempting to account for total body size, because VNO and total body sizes are related. Most descriptions of VNO size and development are not quantified and often ambiguous. Large VNOs in a lineage should not be interpreted necessarily as primitive. Comparisons across smaller taxonomic ranges are easier to interpret. Plethodontid salamanders are a diverse set of species for which VNO descriptions show trends in size associated with habitat, sex, and season. Semiaquatic species tend to have proportionately larger VNOs than terrestrial species, males have larger organs than females, and VNOs can show increases and decreases in size that may be associated with seasonal activities. Salamanders may use their VNOs to locate and identify mates, as part of the courtship sequences, or to identify and assess neighboring territory holders.
Collapse
Affiliation(s)
- E M Dawley
- Department of Biology, Ursinus College, Collegeville, Pennsylvania 19426, USA
| |
Collapse
|
23
|
Salazar I, Quinteiro PS, Cifuentes JM. The soft-tissue components of the vomeronasal organ in pigs, cows and horses. Anat Histol Embryol 1997; 26:179-86. [PMID: 9334496 DOI: 10.1111/j.1439-0264.1997.tb00122.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The soft-tissue components of the vomeronasal organ of the pig, the cow and the horse were studied with the aid of dissection, microdissection, and light microscopy and immunohistochemistry of series of transverse sections. In horses, the rostral end of the incisive duct was blind: thus, unlike in pigs and cows, there was no communication between the vomeronasal organ and the oral cavity. In all three species, the central part of the vomeronasal duct bore the 'typical' respiratory/ receptor epithelium lining on its lateral and medical walls. The rostral part of the duct was characterized by stratified columnar epithelium, while more caudal parts bore simple columnar type. The patterns of distribution of glands, blood vessels and nerves were closely associated with the patterns of distribution of duct linings. The distribution of soft-tissue components in pigs was less clearly defined than in cows and horses. Of the three species, nerves were detected in the rostral half of the vomeronasal parenchyma only in the horse.
Collapse
Affiliation(s)
- I Salazar
- Department of Anatomy and Embriology, Faculty of Veterinary Medicine, Lugo, Spain
| | | | | |
Collapse
|
24
|
Luo Y, Lu S, Chen P, Wang D, Halpern M. Identification of chemoattractant receptors and G-proteins in the vomeronasal system of garter snakes. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)89471-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Getchell ML, Getchell TV. Fine structural aspects of secretion and extrinsic innervation in the olfactory mucosa. Microsc Res Tech 1992; 23:111-27. [PMID: 1421551 DOI: 10.1002/jemt.1070230203] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The mucus at the surface of the olfactory mucosa constitutes the milieu in which perireceptor events associated with olfactory transduction occur. In this review, the ultrastructure of olfactory mucus and of the secretory cells that synthesize and secrete olfactory mucus in the vertebrate olfactory mucosa is described. Bowman's glands are present in the olfactory mucosa of all vertebrates except fish. They consist of acini, which may contain mucous or serous cells or both, and ducts that traverse the olfactory epithelium to deliver secretions to the epithelial surface. Sustentacular cells are present in the olfactory epithelium of all vertebrates. In fish, amphibia, reptiles, and birds, they are secretory; in mammals, they generally are considered to be "non-secretory," although they may participate in the regulation of the mucous composition through micropinocytotic secretion and uptake. Goblet cells occur in the olfactory epithelium of fish and secrete a mucous product. Secretion from Bowman's glands and vasomotor activity in the olfactory mucosa are regulated by neural elements extrinsic to the primary olfactory neurons. Nerve fibers described in early anatomical studies and characterized by immunohistochemical studies contain a variety of neuroactive peptides and have several targets within the olfactory mucosa. Ultrastructural studies of nerve terminals in the olfactory mucosa have demonstrated the presence of adrenergic, cholinergic and peptidergic input to glands, blood vessels, and melanocytes in the lamina propria and of peptidergic terminals in the olfactory epithelium. The neural origins of the extrinsic nerve fibers and terminals are the trigeminal, terminal, and autonomic systems.
Collapse
Affiliation(s)
- M L Getchell
- Department of Surgery, University of Kentucky College of Medicine, Lexington 40536
| | | |
Collapse
|
26
|
Adams DR. Fine structure of the vomeronasal and septal olfactory epithelia and of glandular structures. Microsc Res Tech 1992; 23:86-97. [PMID: 1392074 DOI: 10.1002/jemt.1070230108] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The vomeronasal and septal olfactory organs are two neurosensory structures in the mammalian nasal septum which are poorly understood relative to the main olfactory system. The vomeronasal organ is a paired, blind-ending tubular structure that opens rostrally into the nasal cavity in some species and into the incisive ducts in others. When present in mammals, the septal olfactory organ is an island of olfactory mucosa positioned such that it is in the primary air pathway in the caudal portion of the nasal cavity. Mammalian nasal glands, with a diverse histochemical and ultrastructural morphology, secrete a variety of substances onto the mucosal surface. One of these substances, odorant binding protein, localized in bovine nasal glands and lateral nasal glands of rodents, may be important in the capture and conveyance of odorant molecules to olfactory receptors. The objectives of this paper are to present original data while reviewing the literature on the ultrastructure of vomeronasal and septal olfactory neuroepithelia, and of vomeronasal, bovine nasal, and lateral nasal glands. Nasal tissues from pigs, calves, and hamsters were prepared for electron microscopy. Neurosensory epithelia of the porcine vomeronasal organ and the hamster septal olfactory organ are similar to that described for the vomeronasal and septal olfactory organs of other mammals. Bovine nasal and rodent lateral nasal glands consist of subregions which differ morphologically; the most abundant acinar cell type in the bovine nasal gland contains lightly electron dense secretory granules while that of the rodent lateral nasal gland contains both small electron dense and large, electron lucent granules. The porcine vomeronasal gland contains numerous small, dense granules of a diverse morphology.
Collapse
Affiliation(s)
- D R Adams
- Department of Veterinary Anatomy, College of Veterinary Medicine, Iowa State University, Ames 50011
| |
Collapse
|
27
|
Eisthen HL. Phylogeny of the vomeronasal system and of receptor cell types in the olfactory and vomeronasal epithelia of vertebrates. Microsc Res Tech 1992; 23:1-21. [PMID: 1392068 DOI: 10.1002/jemt.1070230102] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this paper, the evolutionary origin of the vomeronasal system as a discrete sensory system separate from olfaction is examined. The presence of a discrete vomeronasal system appears to be a derived character in tetrapods, and its presence in larval amphibians indicates that the system did not arise as a terrestrial adaptation. The vomeronasal system has been lost independently in several taxa, including crocodilians, some bats, cetaceans, and some primates. The presence of microvillar receptor cells in the vomeronasal epithelium appears to be the ancestral condition for tetrapods, and alternative hypotheses concerning the ancestral condition for receptor cell types in the vertebrate olfactory epithelium are discussed. Finally, the possibility that the vomeronasal system is present in some fishes in a form that has not been recognized is discussed in relation to the phylogenetic distribution of receptor cell types in vertebrates.
Collapse
Affiliation(s)
- H L Eisthen
- Program in Neural Science, Indiana University, Bloomington 47405
| |
Collapse
|
28
|
Affiliation(s)
- S G Shirley
- Department of Chemistry, University of Warwick, Coventry, England
| |
Collapse
|
29
|
Stensaas LJ, Lavker RM, Monti-Bloch L, Grosser BI, Berliner DL. Ultrastructure of the human vomeronasal organ. J Steroid Biochem Mol Biol 1991; 39:553-60. [PMID: 1892785 DOI: 10.1016/0960-0760(91)90252-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Virtually all vertebrates have a vomeronasal system whose involvement in pheromone detection plays a crucial role in reproduction. In humans, the vomeronasal organ has been assumed to be vestigial or absent and without functional significance. In the present study involving over 400 subjects, vomeronasal pits were observed in all individuals except those with pathological conditions affecting the septum. Electron microscopy of the adult human vomeronasal organ indicates the presence of two potential receptor elements in the pseudostratified epithelial lining: microvillar cells, and unmyelinated, intraepithelial axons. In addition, unmyelinated axons are common in the lamina propria surrounding the organ. They appear to constitute the components essential for a functional chemosensory system, and may thus provide the basis for a pheromone detection system as in other animals.
Collapse
Affiliation(s)
- L J Stensaas
- Department of Physiology, University of Utah School of Medicine, Salt Lake City
| | | | | | | | | |
Collapse
|
30
|
Mao SH, Wang JJ, Huang SC, Chao CF, Chen CC. Ultrastructure of the tongue and anterior process of the sublingual plica in four species of venomous snakes. J Morphol 1991; 208:279-292. [PMID: 29865528 DOI: 10.1002/jmor.1052080305] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The general histology and ultrastructure of the tongue and anterior process of the sublingual plica of four Taiwanese venomous snakes, the Chinese cobra (Naja naja atra), banded krait (Bungarus multicinctus), Taiwan habu (Trimeresurus mucrosquamatus), and bamboo snake (Trimeresurus stejnegeri stejnegeri) are described. The tongue fork exhibits a mid-dorsal invagination that broadens gradually toward its base. No mid-ventral invagination is observed. The epithelial cells on both dorsal and ventral aspects of the tongue fork have large and small microfacets, micropores and microvilli. The cell size, distribution pattern of the large microfacets, and the number of small microfacets present on both sides of the fork are essentially the same within a species, but vary among species. The function of these ultrastructures on the cell surface might be for the capture of chemical substances. The large microfacets are raised areas of the cell membrane, each with a pale granule contained within. The chemical nature of the pale granule is not yet known. The small pores surrounding the large microfacets are shallow hollows left after the release of the pale granules from the microfacets. The basic histological pattern of the tongue fork of these species is similar, being composed of a mucosal layer outside and dense musculature inside. No taste buds are discernible. The anterior processes are concave-like expansions of the anteriormost portions of the sublingual plicae. The oblique folds and micropapillae of this organ might be helpful for receiving the chemicals collected on the tongue, when the tongue makes contact with the elevated processes. The elevated processes may penetrate the ducts of Jacobson's organs to effect the final transfer.
Collapse
Affiliation(s)
- Shou-Hsian Mao
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan 10700, Republic of China
| | - Jaang-Jiun Wang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan 10700, Republic of China
| | - Shu-Chuan Huang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan 10700, Republic of China
| | - Chung-Faye Chao
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan 10700, Republic of China
| | - Cheng-Chen Chen
- Department of Parasitology and Tropical Medicine, National Defense Medical Center, Taipei, Taiwan 10700, Republic of China
| |
Collapse
|
31
|
Holtzman DA, Halpern M. Incorporation of 3H-thymidine in the embryonic vomeronasal and olfactory epithelial of garter snakes. J Comp Neurol 1991; 304:435-49. [PMID: 2022758 DOI: 10.1002/cne.903040308] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Previous studies have shown that the vomeronasal and olfactory epithelia of adult vertebrates provide good models for studying normal neuronal turnover and regeneration in response to axotomy. However, little is known about the cell dynamics in the embryonic vomeronasal and olfactory epithelia or the origins of different cell types in these structures. By using 3H-thymidine autoradiography, both in vivo and in vitro, the origins of receptor and supporting cells and the survival of labelled cells in the embryonic vomeronasal and olfactory epithelial of garter snakes were examined. The results of this study suggest that the receptor and supporting cells of both epithelial arise from separate stem cells and that two subpopulations of stem cells exist for receptor cells in the embryonic vomeronasal epithelium. One subpopulation generates cells that migrate through the receptor cell columns, while another subpopulation remains at the base of the epithelium for approximately 50 days. Although it is unclear how long receptor cells in the embryonic olfactory epithelium survive, the results of this study suggest that they survive at least 37 days and may survive over 56 days. In addition, the development of these sensory epithelia appears different in early versus late embryos, and regeneration in the vomeronasal and olfactory epithelia of adult garter snakes appears similar to development during late gestation. Cells in the developing receptor cell layer of the olfactory epithelium lose their ability to incorporate 3H-thymidine before those in the vomeronasal epithelium, suggesting that the onset of neuronal maturation occurs earlier in the olfactory epithelium than in the vomeronasal epithelium.
Collapse
Affiliation(s)
- D A Holtzman
- State University of New York, Health Science Center, Brooklyn 11203
| | | |
Collapse
|
32
|
Aiba T, Nakai Y. Influence of experimental rhino-sinusitis on olfactory epithelium. ACTA OTO-LARYNGOLOGICA. SUPPLEMENTUM 1991; 486:184-92. [PMID: 1842866 DOI: 10.3109/00016489109134995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The pathology of olfactory epithelium in rhino-sinusitis caused by experimental bacterial infection was studied by scanning electron microscopy. Masses of non-ciliated or microvillous cells were observed on the marginal region of olfactory epithelium as spotted or insular lesions 1 week after onset of inflammation. These masses sporadically contained respiratory ciliated cells which might have replaced cells of olfactory epithelium during recovery from inflammatory damage. Prolonged inflammation with repeated flare-ups promoted the transformation to the respiratory ciliated epithelium at the margin of the olfactory epithelium and made the boundary between olfactory and respiratory epithelium intricate and obscure. The present study suggests that repeated infection with aging could be responsible for a decreased olfactory region.
Collapse
Affiliation(s)
- T Aiba
- Department of Otolaryngology, Osaka City University Medical School, Japan
| | | |
Collapse
|
33
|
Takami S, Hirosawa K. Electron microscopic observations on the vomeronasal sensory epithelium of a crotaline snake,Trimeresurus flavoviridis. J Morphol 1990; 205:45-61. [DOI: 10.1002/jmor.1052050106] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Abstract
The human olfactory epithelium has been previously studied with scanning electron microscopy; however, most studies have been limited to examining the epithelial surface. In an attempt to examine structures below the surface, we scanned epithelial fractures that occurred during tissue preparation. This made it possible to obtain unique three-dimensional images of cell profiles from the mucosal surface through the full depth of the epithelium. We examined supporting cells, olfactory neurons, basal cells, and a fourth cell type, the microvillar cell. Supporting cells had a microvillar surface and were in close contact with olfactory neurons and their processes. Olfactory neurons were primarily located in the middle and lower epithelial regions. Basal cells occurred alone or in clusters adjacent to the basal lamina. Microvillar cells were always observed in the upper epithelial region. They were flask- or pear-shaped, had a tuft of microvilli that extended into the nasal cavity, and a thin axon-like process that passed basally towards the lamina propria. This study represents the first comprehensive scanning electron microscopy examination of the human olfactory epithelium. Three-dimensional images obtained for each epithelial cell type allowed us to examine cell processes and their close contacts, especially between supporting cells and olfactory neurons. These results also revealed the irregular and patchy distribution of olfactory receptors within the human nasal cavity. Further studies that examine the detailed morphology of the human olfactory epithelium should provide a better understanding of the physiological mechanism and clinical disorders that affect olfactory function in humans.
Collapse
Affiliation(s)
- E E Morrison
- Department of Physiology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0551
| | | |
Collapse
|
35
|
Holtzman DA, Halpern M. Embryonic and neonatal development of the vomeronasal and olfactory systems in garter snakes (Thamnophis spp.). J Morphol 1990; 203:123-40. [PMID: 2304083 DOI: 10.1002/jmor.1052030202] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Newborn, unfed garter snakes (Thamnophis spp.) respond preferentially to aqueous extracts of natural prey items, and these responses are mediated by the vomeronasal system (VNS). Since the VNS, and possibly the olfactory system (OS), are functional at birth, we examined the ontogeny of VNS and OS structures in four embryonic stages and two postnatal ages in garter snakes. The results of this study show 1) significant changes in thickness of the receptor epithelia for both systems; 2) temporal differences in the innervation of the telencephalon for each system; and 3) concurrent development of primary and secondary projection sites in both systems. Possible interactions between different cell populations and their significance for morphogenesis are discussed.
Collapse
Affiliation(s)
- D A Holtzman
- State University of New York, Health Science Center, Brooklyn 11203
| | | |
Collapse
|
36
|
|
37
|
Morrison EE, Costanzo RM. Scanning electron microscopic study of degeneration and regeneration in the olfactory epithelium after axotomy. JOURNAL OF NEUROCYTOLOGY 1989; 18:393-405. [PMID: 2746310 DOI: 10.1007/bf01190842] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The olfactory epithelium of the adult hamster (Mesocricetus auratus) was examined with the scanning electron microscope following olfactory nerve axotomy. Axotomy results in retrograde degeneration of mature olfactory neurons. Maximum degeneration was observed around day 4. During the degeneration period the epithelium consists primarily of supporting and basal cells. Microvillar columnar supporting cells were observed to have fine cellular processes extending from their lateral border to neighbouring cells. Supporting cells extended to the basal lamina where they terminated in foot-like processes of variable shapes (club, splay and hook). Basal cells which gave rise to new replacement olfactory neurons were observed near the basal lamina. They had a rough cellular surface covered with small granules and fine cellular extensions. Bowman's gland duct cells extended unbranched through the epithelium where they formed funnel duct openings covered with microvilli. During early recovery periods (5-30 days) the number of olfactory neurons in the lower epithelium region increased. We observed olfactory neurons with developing axon and dendritic processes. Specialized growth cone structures were seen at the tips. Olfactory neuron growth cones were elongated or club-shaped and had a ruffled membrane surface. Several thin filopodia extended from the growth cone and made contact with adjacent cells. At late recovery periods (35-120 days) there was a marked increase in the number of olfactory neurons within the middle and lower epithelium regions. Numerous dendritic processes extended to the epithelial surface and terminated in knob-like ciliated structures. Olfactory axons passed basally, forming small intra-epithelial bundles that penetrated the basal lamina then fasciculated into larger bundles within the lamina propria. This study provides detailed three-dimensional observations of the olfactory epithelium following neuron injury, and describes neural degenerative changes, replacement of olfactory neurons, development and maturation. In addition, we describe the structure and basal attachment of supporting cells and their glial-like relation with olfactory neurons.
Collapse
Affiliation(s)
- E E Morrison
- Department of Physiology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0551
| | | |
Collapse
|
38
|
Costanzo RM, Morrison EE. Three-dimensional scanning electron microscopic study of the normal hamster olfactory epithelium. JOURNAL OF NEUROCYTOLOGY 1989; 18:381-91. [PMID: 2746309 DOI: 10.1007/bf01190841] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The olfactory epithelium of the adult hamster (Mesocricetus auratus) was studied using the scanning electron microscope. A method that produced fractures in the epithelium exposed structures below the surface and made it possible to examine the morphological and structural relationships among cells. Three cell types were studied: supporting cells, olfactory neurons (receptor cells) and basal cells. Supporting cells were observed spanning the full extent of the epithelium, and had basal foot processes that terminated at or near the basal lamina. Along the lateral margin of supporting cells, cellular processes were observed extending outwards, reaching olfactory neurons and adjacent supporting cells. These cellular contacts among supporting cells and olfactory neurons were present at different levels of the epithelium. Olfactory neurons were located primarily in the middle and lower epithelial regions. Their dendritic processes reached the epithelial surface in a straight or tortuous manner, passing between the supporting cells. Olfactory axons were observed as thin unbranched processes that emerged from a conical hillock region, passed basally, and fasciculated into larger sensory bundles within the lamina propria. Basal cells were observed adjacent to the basal lamina as a row of single cells or clustered in groups. Within the lamina propria connective tissue, blood vessels, axon bundles and Bowman's glands were examined. Bowman's glands were composed of pyramidal secretory cells arranged about a single duct that extended to the epithelial surface. Scanning electron microscopy provided a unique three-dimensional analysis of cell structure within the olfactory epithelium. The results provide new and different observations on the detailed morphology and intimate relationships that exist among epithelial cells, and complement previous light and transmission EM observations.
Collapse
Affiliation(s)
- R M Costanzo
- Department of Physiology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0551
| | | |
Collapse
|
39
|
Wang RT, Halpern M. Neurogenesis in the vomeronasal epithelium of adult garter snakes: 3. Use of H3-thymidine autoradiography to trace the genesis and migration of bipolar neurons. THE AMERICAN JOURNAL OF ANATOMY 1988; 183:178-85. [PMID: 3202083 DOI: 10.1002/aja.1001830208] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Use of H3-thymidine autoradiography and unilateral vomeronasal (VN) axotomy has permitted us to demonstrate directly the existence of VN stem cells in the adult garter snake and to trace continuous bipolar neuron development and migration in the normal VN and deafferentated VN epithelium in the same animal. The vomeronasal epithelium and olfactory epithelium of adult garter snakes are both capable of incorporating H3-thymidine. In the sensory epithelium of the vomeronasal organ, H3-thymidine-labeled cells were initially restricted to the base of the undifferentiated cell layer in animals surviving 1 day following H3-thymidine injection. With increasing survival time, labeled cells progressively migrated vertically within the receptor cell column toward the apex of the bipolar neuron layer. In both the normal and denervated VN epithelium, labeled cells were observed through the 56 days of postoperative survival. In the normal epithelium, labeled cells were always located within the matrix of the intact receptor cell columns. However, labeled cells of the denervated epithelium were always located at the apical front of the newly formed cell mass following depletion of the original neuronal cell population. In addition, at postoperative days 28 and 56, labeled cells of the denervated VN epithelium achieved neuronal differentiation and maturation by migrating much farther away from the base of the receptor cell column than the labeled cells on the normal, unoperated contralateral side. This study directly demonstrates that basal cells initially incorporating H3-thymidine are indeed stem cells of the VN epithelium in adult garter snakes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R T Wang
- Department of Anatomy, Marshall University School of Medicine, Huntington, West Virginia 25704
| | | |
Collapse
|
40
|
Naguro T, Breipohl W. The vomeronasal epithelia of NMRI mouse. A scanning electron-microscopic study. Cell Tissue Res 1982; 227:519-34. [PMID: 7151135 DOI: 10.1007/bf00204782] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The features of the apical and lateral surfaces of cells of the vomeronasal epithelium were studied in adult male mice by scanning electron microscopy. Supporting cells and receptor cells of the neuroepithelium are covered with microvilli. Microvilli of the sensory cells are longer and thinner than those of the supporting cells. Additionally, the former differ in local distribution, orientation, occurrence of branching and appearance of the cell coat. The receptor-free epithelium consists most likely of one cell type only, which shows different structural modifications including the presence, number and length of microvilli and cilia. In the transitional region, between the neuroepithelium and the receptor-free epithelium, immature receptor cells are present.
Collapse
|
41
|
Neurogenesis in the vomeronasal epithelium of adult garter snakes. 2. Reconstitution of the bipolar neuron layer following experimental vomeronasal axotomy. Brain Res 1982. [DOI: 10.1016/0006-8993(82)90556-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|