1
|
Lawal TA, Wires ES, Terry NL, Dowling JJ, Todd JJ. Preclinical model systems of ryanodine receptor 1-related myopathies and malignant hyperthermia: a comprehensive scoping review of works published 1990-2019. Orphanet J Rare Dis 2020; 15:113. [PMID: 32381029 PMCID: PMC7204063 DOI: 10.1186/s13023-020-01384-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pathogenic variations in the gene encoding the skeletal muscle ryanodine receptor (RyR1) are associated with malignant hyperthermia (MH) susceptibility, a life-threatening hypermetabolic condition and RYR1-related myopathies (RYR1-RM), a spectrum of rare neuromuscular disorders. In RYR1-RM, intracellular calcium dysregulation, post-translational modifications, and decreased protein expression lead to a heterogenous clinical presentation including proximal muscle weakness, contractures, scoliosis, respiratory insufficiency, and ophthalmoplegia. Preclinical model systems of RYR1-RM and MH have been developed to better understand underlying pathomechanisms and test potential therapeutics. METHODS We conducted a comprehensive scoping review of scientific literature pertaining to RYR1-RM and MH preclinical model systems in accordance with the PRISMA Scoping Reviews Checklist and the framework proposed by Arksey and O'Malley. Two major electronic databases (PubMed and EMBASE) were searched without language restriction for articles and abstracts published between January 1, 1990 and July 3, 2019. RESULTS Our search yielded 5049 publications from which 262 were included in this review. A majority of variants tested in RYR1 preclinical models were localized to established MH/central core disease (MH/CCD) hot spots. A total of 250 unique RYR1 variations were reported in human/rodent/porcine models with 95% being missense substitutions. The most frequently reported RYR1 variant was R614C/R615C (human/porcine total n = 39), followed by Y523S/Y524S (rabbit/mouse total n = 30), I4898T/I4897T/I4895T (human/rabbit/mouse total n = 20), and R163C/R165C (human/mouse total n = 18). The dyspedic mouse was utilized by 47% of publications in the rodent category and its RyR1-null (1B5) myotubes were transfected in 23% of publications in the cellular model category. In studies of transfected HEK-293 cells, 57% of RYR1 variations affected the RyR1 channel and activation core domain. A total of 15 RYR1 mutant mouse strains were identified of which ten were heterozygous, three were compound heterozygous, and a further two were knockout. Porcine, avian, zebrafish, C. elegans, canine, equine, and drosophila model systems were also reported. CONCLUSIONS Over the past 30 years, there were 262 publications on MH and RYR1-RM preclinical model systems featuring more than 200 unique RYR1 variations tested in a broad range of species. Findings from these studies have set the foundation for therapeutic development for MH and RYR1-RM.
Collapse
Affiliation(s)
- Tokunbor A Lawal
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emily S Wires
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Nancy L Terry
- National Institutes of Health Library, National Institutes of Health, Bethesda, MD, USA
| | - James J Dowling
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Joshua J Todd
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Goes ESR, Lara JAF, Gasparino E, Del Vesco AP, Goes MD, Alexandre Filho L, Ribeiro RP. Pre-Slaughter Stress Affects Ryanodine Receptor Protein Gene Expression and the Water-Holding Capacity in Fillets of the Nile Tilapia. PLoS One 2015; 10:e0129145. [PMID: 26053858 PMCID: PMC4459807 DOI: 10.1371/journal.pone.0129145] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/05/2015] [Indexed: 11/23/2022] Open
Abstract
Current study evaluated the effect of pre-slaughter stress on serum cortisol levels, pH, colorimetry, water-holding capacity (WHC) and gene expression of ryanodine receptors (RyR1 and RyR3) in the Nile tilapia. A 3x4 factorial scheme experiment was conducted comprising three densities (100, 200, 400 kg/m³) with four transportation times (60, 120, 180, and 240 minutes).Transportation times alone reduced cortisol levels up to 180 minutes, followed by increased WHC and mRNA expression, RyR1 and RyR3 (200 kg/m³ density). No effect of density x transportation time interacted on the evaluated parameters. Results provided the first evidence that pre-slaughter stress affected ryanodine gene expression receptors and, consequently, the water-holding capacity in tilapia fillets.
Collapse
Affiliation(s)
- Elenice S. R. Goes
- Universidade Estadual de Maringá–UEM–Maringá, Paraná, 87020–900, Brazil
- * E-mail:
| | - Jorge A. F. Lara
- Empresa Brasileira de Pesquisa Agropecuária–EMBRAPA Pantanal–Corumbá, Mato Grosso do Sul, Brazil
| | - Eliane Gasparino
- Department of Animal Science, Universidade Estadual de Maringá–UEM–Maringá, Paraná, Brazil
| | - Ana P. Del Vesco
- Department of Animal Science, Universidade Estadual de Maringá–UEM–Maringá, Paraná, Brazil
| | - Marcio D. Goes
- Universidade Federal do Paraná–UFPR–Palotina, Paraná, Brazil
| | - Luiz Alexandre Filho
- Department of Animal Science, Universidade Estadual de Maringá–UEM–Maringá, Paraná, Brazil
| | - Ricardo P. Ribeiro
- Department of Animal Science, Universidade Estadual de Maringá–UEM–Maringá, Paraná, Brazil
| |
Collapse
|
3
|
Dowling JJ, Lillis S, Amburgey K, Zhou H, Al-Sarraj S, Buk SJ, Wraige E, Chow G, Abbs S, Leber S, Lachlan K, Baralle D, Taylor A, Sewry C, Muntoni F, Jungbluth H. King–Denborough syndrome with and without mutations in the skeletal muscle ryanodine receptor (RYR1) gene. Neuromuscul Disord 2011; 21:420-7. [DOI: 10.1016/j.nmd.2011.03.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 03/16/2011] [Accepted: 03/22/2011] [Indexed: 11/25/2022]
|
4
|
Strasburg G, Chiang W. Pale, soft, exudative turkey—The role of ryanodine receptor variation in meat quality. Poult Sci 2009; 88:1497-505. [DOI: 10.3382/ps.2009-00181] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
5
|
Chiang W, Yoon HJ, Linz JE, Airey JA, Strasburg GM. Divergent mechanisms in generating molecular variations of αRYR and βRYR in turkey skeletal muscle. J Muscle Res Cell Motil 2008; 28:343-54. [DOI: 10.1007/s10974-008-9130-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 02/20/2008] [Indexed: 10/22/2022]
|
6
|
Valasek P, Macharia R, Neuhuber WL, Wilting J, Becker DL, Patel K. Lymph heart in chick--somitic origin, development and embryonic oedema. Development 2007; 134:4427-36. [PMID: 18003736 DOI: 10.1242/dev.004697] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The lymph heart is a sac-like structure on either side of avian tail. In some adult birds, it empties the lymph from the copulatory organ; however, during embryonic development, it is thought to circulate extra-embryonic lymph. Very little is known about the origin, innervation and the cellular changes it undergoes during development. Using immunohistochemistry and gene expression profiling we show that the musculature of the lymph heart is initially composed solely of striated skeletal muscle but later develops an additional layer composed of smooth myofibroblasts. Chick-quail fate-mapping demonstrates that the lymph heart originates from the hypaxial compartments of somites 34-41. The embryonic lymph heart is transiently innervated by somatic motoneurons with no autonomic input. In comparison to body muscles, the lymph heart has different sensitivity to neuromuscular junction blockers (sensitive only to decamethonium). Furthermore, its abundant bungarotoxin-positive acetylcholinesterase receptors are unique as they completely lack specific acetylcholinesterase activity. Several lines of evidence suggest that the lymph heart may possess an intrinsic pacing mechanism. Finally, we assessed the function of the lymph heart during embryogenesis and demonstrate that it is responsible for preventing embryonic oedema in birds, a role previously thought to be played by body skeletal muscle contractions.
Collapse
Affiliation(s)
- Petr Valasek
- School of Biological Sciences, University of Reading, Reading RG6 6AJ, UK.
| | | | | | | | | | | |
Collapse
|
7
|
Campbell NR, Podugu SP, Ferrari MB. Spatiotemporal characterization of short versus long duration calcium transients in embryonic muscle and their role in myofibrillogenesis. Dev Biol 2006; 292:253-64. [PMID: 16460724 DOI: 10.1016/j.ydbio.2005.11.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 11/10/2005] [Accepted: 11/29/2005] [Indexed: 10/25/2022]
Abstract
Intracellular calcium (Ca(2+)) signals are essential for several aspects of muscle development, including myofibrillogenesis-the terminal differentiation of the sarcomeric lattice. Ryanodine receptor (RyR) Ca(2+) stores must be operative during this period and contribute to the production of spontaneous global Ca(2+) transients of long duration (LDTs; mean duration approximately 80 s). In this study, high-speed confocal imaging of intracellular Ca(2+) in embryonic myocytes reveals a novel class of spontaneous Ca(2+) transient. These short duration transients (SDTs; mean duration approximately 2 s) are blocked by ryanodine, independent of extracellular Ca(2+), insensitive to changes in membrane potential, and propagate in the subsarcolemmal space. SDTs arise from RyR stores localized to the subsarcolemmal space during myofibrillogenesis. While both LDTs and SDTs occur prior to myofibrillogenesis, LDT production ceases and only SDTs persist during a period of rapid sarcomere assembly. However, eliminating SDTs during this period results in only minor myofibril disruption. On the other hand, artificial extension of LDT production completely inhibits sarcomere assembly. In conjunction with earlier work, these results suggest that LDTs have at least two roles during myofibrillogenesis-activation of sarcoplasmic regulatory cascades and regulation of gene expression. The distinct spatiotemporal patterns of LDTs versus SDTs may be utilized for differential regulation of cytosolic cascades, control of nuclear gene expression, and localized activation of assembly events at the sarcolemma.
Collapse
Affiliation(s)
- Nolan R Campbell
- School of Biological Sciences, University of Missouri, 5100 Rockhill Road, Kansas City, MO 64110-2499, USA.
| | | | | |
Collapse
|
8
|
Perez CF, Voss A, Pessah IN, Allen PD. RyR1/RyR3 chimeras reveal that multiple domains of RyR1 are involved in skeletal-type E-C coupling. Biophys J 2003; 84:2655-63. [PMID: 12668474 PMCID: PMC1302832 DOI: 10.1016/s0006-3495(03)75071-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Skeletal-type E-C coupling is thought to require a direct interaction between RyR1 and the alpha(1S)-DHPR. Most available evidence suggests that the cytoplasmic II-III loop of the dihydropyridine receptor (DHPR) is the primary source of the orthograde signal. However, identification of the region(s) of RyR1 involved in bidirectional signaling with the alpha(1S)-DHPR remains elusive. To identify these regions we have designed a series of chimeric RyR cDNAs in which different segments of RyR1 were inserted into the corresponding region of RyR3 and expressed in dyspedic 1B5 myotubes. RyR3 provides a preferable background than RyR2 for defining domains essential for E-C coupling because it possesses less sequence homology to RyR1 than the RyR2 backbone used in previous studies. Our data show that two regions of RyR1 (chimera Ch-10 aa 1681-2641 and Ch-9 aa 2642-3770), were independently able to restore skeletal-type E-C coupling to RyR3. These two regions were further mapped and the critical RyR1 residues were 1924-2446 (Ch-21) and 2644-3223 (Ch-19). These results both support and refine the previous hypothesis that multiple domains of RyR1 combine to functionally interact with the DHPR during E-C coupling.
Collapse
Affiliation(s)
- Claudio F Perez
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
9
|
Murayama T, Ogawa Y. Selectively suppressed Ca2+-induced Ca2+ release activity of alpha-ryanodine receptor (alpha-RyR) in frog skeletal muscle sarcoplasmic reticulum: potential distinct modes in Ca2+ release between alpha- and beta-RyR. J Biol Chem 2001; 276:2953-60. [PMID: 11054412 DOI: 10.1074/jbc.m005809200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We reported earlier that the two ryanodine receptor (RyR) isoforms (alpha- and beta-RyR) purified from frog skeletal muscle were equipotent in the Ca(2+)-induced Ca(2+) release (CICR) activity (Murayama, T., Kurebayashi, N., and Ogawa, Y. (2000) Biophys. J. 78, 1810-1824). Whether this is also the case with the native Ca(2+) release channel in the sarcoplasmic reticulum (SR), however, remains to be determined. Taking advantage of the facts that [(3)H]ryanodine binds only to the open form of the channels and that it is practically irreversible at 4 degrees C, we devised a method to separate the total binding to contributions of alpha- and beta-RyR, using immunoprecipitation with an alpha-RyR-specific monoclonal antibody. Surprisingly, the binding of alpha-RyR was strongly suppressed to as low as approximately 4% that of beta-RyR in the SR vesicles. The two isoforms, however, showed no difference in sensitivity to Ca(2+), adenine nucleotides, or caffeine. This reduced binding of alpha-RyR was ascribed to the low affinity for [(3)H]ryanodine, with no change in the maximal binding sites. Solubilization of SR with 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonic acid partly remedied this nonequivalence, whereas 1 m NaCl was ineffective. 12-kDa FK506-binding protein (FKBP12), however, could not be responsible for it, because FK506 treatment did not eliminate the suppression, in contrast to marked removal of 12-kDa FK506-binding protein from alpha-RyR. These results suggest that alpha-RyR in the SR may serve Ca(2+) release in a mode other than CICR, being selectively suppressed in CICR.
Collapse
Affiliation(s)
- T Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | | |
Collapse
|
10
|
Abstract
Inhibition of programmed cell death of motoneurons during embryonic development requires the presence of their target muscle and coincides with the initial stages of synaptogenesis. To evaluate the role of synapse formation on motoneuron survival during embryonic development, we counted the number of motoneurons in rapsyn-deficient mice. Rapsyn is a 43 kDa protein needed for the formation of postsynaptic specialisations at vertebrate neuromuscular synapses. Here we show that the rapsyn-deficient mice have a significant increase in the number of motoneurons in the brachial lateral motor column during the period of naturally occurring programmed cell death compared to their wild-type littermates. In addition, we observed an increase in intramuscular axonal branching in the rapsyn-deficient diaphragms compared to their wild-type littermates at embryonic day 18.5. These results suggest that deficits in the formation of the postsynaptic specialisation at the neuromuscular synapse, brought about by the absence of rapsyn, are sufficient to induce increases in both axonal branching and the survival of the innervating motoneuron. Moreover, these results support the idea that skeletal muscle activity through effective synaptic transmission and intramuscular axonal branching are major mechanisms that regulate motoneuron survival during development.
Collapse
Affiliation(s)
- G B Banks
- Department of Physiology and Pharmacology, University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | | | | |
Collapse
|
11
|
Protasi F, Takekura H, Wang Y, Chen SR, Meissner G, Allen PD, Franzini-Armstrong C. RYR1 and RYR3 have different roles in the assembly of calcium release units of skeletal muscle. Biophys J 2000; 79:2494-508. [PMID: 11053125 PMCID: PMC1301133 DOI: 10.1016/s0006-3495(00)76491-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Calcium release units (CRUs) are junctions between the sarcoplasmic reticulum (SR) and exterior membranes that mediates excitation contraction (e-c) coupling in muscle cells. In skeletal muscle CRUs contain two isoforms of the sarcoplasmic reticulum Ca(2+)release channel: ryanodine receptors type 1 and type 3 (RyR1 and RyR3). 1B5s are a mouse skeletal muscle cell line that carries a null mutation for RyR1 and does not express either RyR1 or RyR3. These cells develop dyspedic SR/exterior membrane junctions (i.e., dyspedic calcium release units, dCRUs) that contain dihydropyridine receptors (DHPRs) and triadin, two essential components of CRUs, but no RyRs (or feet). Lack of RyRs in turn affects the disposition of DHPRs, which is normally dictated by a linkage to RyR subunits. In the dCRUs of 1B5 cells, DHPRs are neither grouped into tetrads nor aligned in two orthogonal directions. We have explored the structural role of RyR3 in the assembly of CRUs in 1B5 cells independently expressing either RyR1 or RyR3. Either isoform colocalizes with DHPRs and triadin at the cell periphery. Electron microscopy shows that expression of either isoform results in CRUs containing arrays of feet, indicating the ability of both isoforms to be targeted to dCRUs and to assemble in ordered arrays in the absence of the other. However, a significant difference between RyR1- and RyR3-rescued junctions is revealed by freeze fracture. While cells transfected with RyR1 show restoration of DHPR tetrads and DHPR orthogonal alignment indicative of a link to RyRs, those transfected with RyR3 do not. This indicates that RyR3 fails to link to DHPRs in a specific manner. This morphological evidence supports the hypothesis that activation of RyR3 in skeletal muscle cells must be indirect and provides the basis for failure of e-c coupling in muscle cells containing RyR3 but lacking RyR1 (see the accompanying report, ).
Collapse
Affiliation(s)
- F Protasi
- Department of Anesthesia Research, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Missiaen L, Robberecht W, van den Bosch L, Callewaert G, Parys JB, Wuytack F, Raeymaekers L, Nilius B, Eggermont J, De Smedt H. Abnormal intracellular ca(2+)homeostasis and disease. Cell Calcium 2000; 28:1-21. [PMID: 10942700 DOI: 10.1054/ceca.2000.0131] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A whole range of cell functions are regulated by the free cytosolic Ca(2+)concentration. Activator Ca(2+)from the extracellular space enters the cell through various types of Ca(2+)channels and sometimes the Na(+)/Ca(2+)-exchanger, and is actively extruded from the cell by Ca(2+)pumps and Na(+)/Ca(2+)-exchangers. Activator Ca(2+)can also be released from internal Ca(2+)stores through inositol trisphosphate or ryanodine receptors and is taken up into these organelles by means of Ca(2+)pumps. The resulting Ca(2+)signal is highly organized in space, frequency and amplitude because the localization and the integrated free cytosolic Ca(2+)concentration over time contain specific information. Mutations or functional abnormalities in the various Ca(2+)transporters, which in vitro seem to induce trivial functional alterations, therefore, often lead to a plethora of diseases. Skeletal-muscle pathology can be caused by mutations in ryanodine receptors (malignant hyperthermia, porcine stress syndrome, central-core disease), dihydropyridine receptors (familial hypokalemic periodic paralysis, malignant hyperthermia, muscular dysgenesis) or Ca(2+)pumps (Brody disease). Ca(2+)-pump mutations in cutaneous epidermal keratinocytes and cochlear hair cells lead to, skin diseases (Darier and Hailey-Hailey) and hearing/vestibular problems respectively. Mutated Ca(2+)channels in the photoreceptor plasma membrane cause vision problems. Hemiplegic migraine, spinocerebellar ataxia type-6, one form of episodic ataxia and some forms of epilepsy can be due to mutations in plasma-membrane Ca(2+)channels, while antibodies against these channels play a pathogenic role in all patients with the Lambert-Eaton myasthenic syndrome and may be of significance in sporadic amyotrophic lateral sclerosis. Brain inositol trisphosphate receptors have been hypothesized to contribute to the pathology in opisthotonos mice, manic-depressive illness and perhaps Alzheimer's disease. Various abnormalities in Ca(2+)-handling proteins have been described in heart during aging, hypertrophy, heart failure and during treatment with immunosuppressive drugs and in diabetes mellitus. In some instances, disease-causing mutations or abnormalities provide us with new insights into the cell biology of the various Ca(2+)transporters.
Collapse
Affiliation(s)
- L Missiaen
- Laboratory of Physiology, K.U.Leuven Campus Gasthuisberg O/N, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Embryonic Xenopus myocytes generate spontaneous calcium (Ca(2+)) transients during differentiation in culture. Suppression of these transients disrupts myofibril organization and the formation of sarcomeres through an identified signal transduction cascade. Since transients often occur during myocyte polarization and migration in culture, we hypothesized they might play additional roles in vivo during tissue formation. We have tested this hypothesis by examining Ca(2+) dynamics in the intact Xenopus paraxial mesoderm as it differentiates into the mature myotome. We find that Ca(2+) transients occur in cells of the developing myotome with characteristics remarkably similar to those in cultured myocytes. Transients produced within the myotome are correlated with somitogenesis as well as myocyte maturation. Since transients arise from intracellular stores in cultured myocytes, we examined the functional distribution of both IP(3) and ryanodine receptors in the intact myotome by eliciting Ca(2+) elevations in response to photorelease of caged IP(3) and superfusion of caffeine, respectively. As in culture, transients in vivo depend on Ca(2+) release from ryanodine receptor (RyR) stores, and blocking RyR during development interferes with somite maturation.
Collapse
Affiliation(s)
- M B Ferrari
- Department of Biology and Center for Molecular Genetics, University of California at San Diego, La Jolla, CA, 92093-0357, USA.
| | | |
Collapse
|
14
|
Ferrari MB, Ribbeck K, Hagler DJ, Spitzer NC. A calcium signaling cascade essential for myosin thick filament assembly in Xenopus myocytes. J Cell Biol 1998; 141:1349-56. [PMID: 9628891 PMCID: PMC2132793 DOI: 10.1083/jcb.141.6.1349] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Spontaneous calcium release from intracellular stores occurs during myofibrillogenesis, the process of sarcomeric protein assembly in striated muscle. Preventing these Ca2+ transients disrupts sarcomere formation, but the signal transduction cascade has not been identified. Here we report that specific blockade of Ca2+ release from the ryanodine receptor (RyR) activated Ca2+ store blocks transients and disrupts myosin thick filament (A band) assembly. Inhibition of an embryonic Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) by blocking the ATP-binding site, by allosteric phosphorylation, or by intracellular delivery of a pseudosubstrate peptide, also disrupts sarcomeric organization. The results indicate that both RyRs and MLCK, which have well-described calcium signaling roles in mature muscle contraction, have essential developmental roles during construction of the contractile apparatus.
Collapse
Affiliation(s)
- M B Ferrari
- Department of Biology and Center for Molecular Genetics, University of California San Diego, La Jolla, California 92093-0357, USA.
| | | | | | | |
Collapse
|
15
|
Ouyang Y, Martone ME, Deerinck TJ, Airey JA, Sutko JL, Ellisman MH. Differential distribution and subcellular localization of ryanodine receptor isoforms in the chicken cerebellum during development. Brain Res 1997; 775:52-62. [PMID: 9439828 DOI: 10.1016/s0006-8993(97)00840-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The distribution of ryanodine receptor (RyR) isoforms was examined using isoform-specific monoclonal antibodies in the developing chicken brain, from E18 through adulthood, using light and electron microscopic immunocytochemistry. Monoclonal antibody 110F is specific for the alpha-skeletal muscle form of RyR, while monoclonal antibody 110E recognizes both the beta-skeletal muscle and cardiac isoforms, but does not distinguish between the two. Significant differences in the distribution of the alpha- and beta/cardiac forms were observed. Labeling for the alpha-form was restricted to cerebellar Purkinje neurons while the beta/cardiac form was observed in neurons throughout the brain. A major finding was the presence of labeling for the beta/cardiac in presynaptic terminals of the parallel fibers in the molecular layer and the mossy fiber terminals in the granular layer glomeruli in late development and during adulthood. Labeling for the beta/cardiac, but not the alpha-form, underwent a major redistribution in the cerebellum during the course of development. At 1 day of age, beta/cardiac labeling was present mainly in Purkinje neurons. From 1 day to 4 weeks, immunolabeling for the beta/cardiac form gradually disappeared from Purkinje neurons, but increased in granule cells. Within the molecular layer, the labeling pattern changed from being primarily within Purkinje dendrites to a more diffuse pattern. Electron microscopic examination of the cerebellar molecular layer of 2-week-old chicks revealed that beta/cardiac-labeling was mainly present in the axons and presynaptic processes of the parallel fibers. No developmental changes were observed in other brain regions. This study represents the first demonstration of ryanodine receptor immunoreactivity in presynaptic boutons and suggests that the ryanodine receptor may modulate neurotransmitter release through local regulation of intracellular calcium in the parallel fiber synapse.
Collapse
Affiliation(s)
- Y Ouyang
- Department of Neurosciences, University of California at San Diego, School of Medicine, La Jolla 92093-0608, USA
| | | | | | | | | | | |
Collapse
|
16
|
Patterson JM, Zakon HH. Transdifferentiation of muscle to electric organ: regulation of muscle-specific proteins is independent of patterned nerve activity. Dev Biol 1997; 186:115-26. [PMID: 9188757 DOI: 10.1006/dbio.1997.8580] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transdifferentiation is the conversion of one differentiated cell type into another. The electric organ of fishes transdifferentiates from muscle but little is known about how this occurs. To begin to address this question, we studied the expression of muscle- and electrocyte-specific proteins with immunohistochemistry during regeneration of the electric organ. In the early stages of regeneration, a blastema forms. Blastemal cells cluster, express desmin, fuse into myotubes, and then express alpha-actinin, tropomyosin, and myosin. Myotubes in the periphery of the blastema continue to differentiate as muscle; those in the center grow in size, probably by fusing with each other, and lose their sarcomeres as they become electrocytes. Tropomyosin is rapidly down-regulated while desmin, alpha-actinin, and myosin continue to be diffusely expressed in newly formed electrocytes despite the absence of organized sarcomeres. During this time an isoform of keratin that is a marker for mature electrocytes is expressed. One week later, the immunoreactivities of myosin disappears and alpha-actinin weakens, while that of desmin and keratin remain strong. Since nerve fibers grow into the blastema preceding the appearance of any differentiated cells, we tested whether the highly rhythmic nerve activity associated with electromotor input plays a role in transdifferentiation and found that electrocytes develop normally in the absence of electromotor neuron activity.
Collapse
Affiliation(s)
- J M Patterson
- Department of Zoology and Center for Developmental Biology, University of Texas at Austin, 78712, USA
| | | |
Collapse
|
17
|
Oppenheim RW, Prevette D, Houenou LJ, Pincon-Raymond M, Dimitriadou V, Donevan A, O'Donovan M, Wenner P, Mckemy DD, Allen PD. Neuromuscular development in the avian paralytic mutant crooked neck dwarf (cn/cn): further evidence for the role of neuromuscular activity in motoneuron survival. J Comp Neurol 1997; 381:353-72. [PMID: 9133573 DOI: 10.1002/(sici)1096-9861(19970512)381:3<353::aid-cne7>3.0.co;2-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neuromuscular transmission and muscle activity during early stages of embryonic development are known to influence the differentiation and survival of motoneurons and to affect interactions with their muscle targets. We have examined neuromuscular development in an avian genetic mutant, crooked neck dwarf (cn/cn), in which a major phenotype is the chronic absence of the spontaneous, neurally mediated movements (motility) that are characteristic of avian and other vertebrate embryos and fetuses. The primary genetic defect in cn/cn embryos responsible for the absence of motility appears to be the lack of excitation-contraction coupling. Although motility in mutant embryos is absent from the onset of activity on embryonic days (E) 3-4, muscle differentiation appears histologically normal up to about E8. After E8, however, previously separate muscles fuse or coalesce secondarily, and myotubes exhibit a progressive series of histological and ultrastructural degenerative changes, including disarrayed myofibrils, dilated sarcoplasmic vesicles, nuclear membrane blebbing, mitochondrial swelling, nuclear inclusions, and absence of junctional end feet. Mutant muscle cells do not develop beyond the myotube stage, and by E18-E20 most muscles have almost completely degenerated. Prior to their breakdown and degeneration, mutant muscles are innervated and synaptic contacts are established. In fact, quantitative analysis indicates that, prior to the onset of muscle degeneration, mutant muscles are hyperinnervated. There is increased branching of motoneuron axons and an increased number of synaptic contacts in the mutant muscle on E8. Naturally occurring cell death of limb-innervating motoneurons is also significantly reduced in cn/cn embryos. Mutant embryos have 30-40% more motoneurons in the brachial and lumbar spinal cord by the end of the normal period of cell death. Electrophysiological recordings (electromyographic and direct records form muscle nerves) failed to detect any differences in the activity of control vs. mutant embryos despite the absence of muscular contractile activity in the mutant embryos. The alpha-ryanodine receptor that is genetically abnormal in homozygote cn/cn embryos is not normally expressed in the spinal cord. Taken together, these data argue against the possibility that the mutant phenotype described here is caused by the perturbation of a central nervous system (CNS)-expressed alpha-ryanodine receptor. The hyperinnervation of skeletal muscle and the reduction of motoneuron death that are observed in cn/cn embryos also occur in genetically paralyzed mouse embryos and in pharmacologically paralyzed avian and rat embryos. Because a primary common feature in all three of these models is the absence of muscle activity, it seems likely that the peripheral excitation of muscle by motoneurons during normal development is a major factor in regulating retrograde muscle-derived (or muscle-associated) signals that control motoneuron differentiation and survival.
Collapse
Affiliation(s)
- R W Oppenheim
- Department of Neurobiology and Anatomy, Wake Forest University, Bowman Gray School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rapid DNA purification for Hal gene PCR diagnosis in porcine tissues and extension to other meat species. Meat Sci 1997; 45:17-22. [DOI: 10.1016/s0309-1740(96)00095-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/1996] [Revised: 07/22/1996] [Accepted: 07/22/1996] [Indexed: 11/17/2022]
|
19
|
Abstract
We examined the massive early cell death that occurs in the ventral horn of the cervical spinal cord of the chick embryo between embryonic days 4 and 5 (E4 and E5). Studies with immunohistochemical, in situ hybridization, and retrograde-tracing methods revealed that many dying cells express Islet proteins and Lim-3 mRNA (motoneuron markers) and send their axons to the somatic region of the embryo before cell death. Together, these data strongly suggest that the dying cells are somatic motoneurons. Cervical motoneurons die by apoptosis and can be rescued by treatment with cycloheximide and actinomycin D. Counts by motoneuron numbers between E3.5 and E10 revealed that, in addition to cell death between E4 and E5, motoneuron death also occur between E6 and E10 in the cervical cord. Studies with [3H]thymidine autoradiography and morphological techniques revealed that in the early cell-death phase (E4-E5), genesis of motoneurons, axonal elongation, and innervation of muscles is still ongoing. However, studies with [3H]thymidine autoradiography also revealed that the cells dying between E4 and E5 become postmitotic before E3.5. Increased size of peripheral targets, treatment with neuromuscular blockade, and treatment with partially purified muscle or brain extracts and defined neurotropic agents, such as NGF, BDNF, neurotrophin-3, CNTF, bFGF, PDGF, S100-beta, activin, cholinergic differentiation factor/leukemia inhibitory factor, bone morphogenetic protein-2, IGF-I, interleukin-6, and TGF-beta 1, were all ineffective in rescuing motoneurons dying between E4 and E5. By contrast, motoneurons that undergo programmed cell death at later stages (E6-E10) in the cervical cord are target-dependent and respond to activity blockade and trophic factors. Experimental approaches revealed that early cell death also occurs in a notochord-induced ectopic supernumerary motoneuron column in the cervical cord. Transplantation of the cervical neural tube to other segmental regions failed to alter the early death of motoneurons, whereas transplantation of other segments to the cervical region failed to induce early motoneuron death. These results suggest that the mechanisms that regulate motoneuron death in the cervical spinal cord between E4 and E5 are independent of interactions with targets. Rather, this novel type of cell death seems to be determined by signals that either are cell-autonomous or are derived from other cells within the cervical neural tube.
Collapse
|
20
|
Ottini L, Marziali G, Conti A, Charlesworth A, Sorrentino V. Alpha and beta isoforms of ryanodine receptor from chicken skeletal muscle are the homologues of mammalian RyR1 and RyR3. Biochem J 1996; 315 ( Pt 1):207-16. [PMID: 8670108 PMCID: PMC1217172 DOI: 10.1042/bj3150207] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To define the relationship between the two ryanodine receptor (RyR) isoforms present in chicken skeletal muscle, we cloned two groups of cDNAs encoding the chicken homologues of mammalian RyR1 and RyR3. Equivalent amounts of the two chicken isoform mRNAs were detected in thigh and pectoral skeletal muscles. RyR1 and RyR3 mRNAs were co-expressed in testis and cerebellum whereas RyR3 mRNA was expressed also in the cerebrum and heart. The full-length sequence of the chicken RyR3 cDNA was established. The RyR3 receptor from chicken had the same general structure as mammalian and amphibian RyRs. The 15089 nt cDNA encoded a 4869-amino-acid-long protein with a molecular mass of 552445. The predicted amino acid sequence of the chicken RyR3 showed 86.9% identity to mammalian RyR3 and 85.6% to frog RyR3. Antibodies specific for chicken RyR1 and RyR3 recognized two different proteins with an apparent molecular mass of about 500 kDa. The two proteins differ slightly in their apparent molecular mass on SDS/PAGE: the protein recognized by antibodies against RyR3 had a higher mobility than the protein recognized by the antiserum against RyR1. Antibodies against RyR1 detected a protein already present in chicken skeletal muscle from 12-day-old embryos and older, while antibodies against RyR3 isoform detected a protein in muscle from only 18-day-old embryos and older. The expression patterns of RyR1 and RyR3 superimpose with those previously reported for the alpha and beta isoforms respectively. We conclude that alpha and beta isoforms present in chicken skeletal muscle are the homologues of mammalian RyR1 and RyR3.
Collapse
Affiliation(s)
- L Ottini
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
21
|
Abstract
Although the RNA for the third isoform (Ryr3) of ryanodine receptor (RyR), a Ca2+ release channel, is detected in specific regions of mammalian brain, little is known about the protein. We investigated Ryr3 in rabbit brain, using an antibody raised against the synthetic peptide corresponding to amino acid sequence 4375-4387 of rabbit Ryr3, the homologue of bullfrog beta-RyR. The antibody which reacted with bullfrog beta-RyR, but not with the other isoforms, Ryr1 or Ryr2, specifically precipitated a single polypeptide from rabbit brain microsomes having a size similar to beta-RyR. Sucrose gradient ultracentrifugation revealed that Ryr3 forms a homotetramer, as true of the other isoforms. Being consistent with the distribution of its RNA, Ryr3 was abundantly expressed in hippocampus, corpus striatum, and diencephalon. Ryr3 demonstrated Ca2+-dependent [3H]ryanodine binding, and caffeine increased its Ca2+ sensitivity. The Ca2+ sensitivity of Ryr3 was also enhanced in a medium containing 1 m NaCl, as observed with beta-RyR. [3H]Ryanodine binding gave an estimate of Ryr3 which would be only 2% or less of total RyR in rabbit brain. These results confirm the expression of functional Ryr3 in mammalian brain which is similar to nonmammalian beta-RyR.
Collapse
Affiliation(s)
- T Murayama
- Department of Pharmacology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
| | | |
Collapse
|
22
|
Murayama T, Ogawa Y. Similar Ca2+ dependences of [3H]ryanodine binding to alpha- and beta-ryanodine receptors purified from bullfrog skeletal muscle in an isotonic medium. FEBS Lett 1996; 380:267-71. [PMID: 8601438 DOI: 10.1016/0014-5793(96)00053-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To understand the functions of the two ryanodine receptor isoforms (alpha- and beta-RyRs) in nonmammalian skeletal muscles, we determined [3H]ryanodine binding to these isoforms purified from bullfrog skeletal muscle. In 0.17 M-NaCl medium both isoforms demonstrated similar Ca2+ dependent ryanodine binding activities, while the Ca2+ sensitivity for activation of beta-RyR was increased in 1 M-NaCl medium. This enhancement in Ca2+ sensitivity depended on the kinds of salts used. These results imply that alpha- and beta-RyRs may have similar properties as Ca2+-induced Ca2+ release channels in bullfrog skeletal muscle.
Collapse
Affiliation(s)
- T Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
23
|
Kenyon JL, McKemy DD, Airey JA, Sutko JL. Interaction between ryanodine receptor function and sarcolemmal Ca2+ currents. THE AMERICAN JOURNAL OF PHYSIOLOGY 1995; 269:C334-40. [PMID: 7653515 DOI: 10.1152/ajpcell.1995.269.2.c334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We used the whole cell voltage-clamp technique to investigate the effects of disruption of Ca2+ release from the sarcoplasmic reticulum (SR) on sarcolemmal Ca2+ currents of chick myotubes kept in culture for 7 or 8 days. Ca2+ currents were recorded in 145 mM tetraethylammonium chloride and 10 mM Ca2+ with pipettes containing cesium and 10 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. We found two components of Ca2+ current: 1) relatively large T-type currents that were activated near -50 mV and inactivated during 100-ms depolarizations to potentials positive to -60 mV (they were of similar magnitude in Ba2+ or Ca2+ and were insensitive to nifedipine) and 2) L-type currents that were activated near 0 mV and showed little or no inactivation during 100-ms depolarizations (they were larger when Ba2+ was the charge carrier and were blocked by 10 microM nifedipine). Addition of 1 or 100 microM ryanodine to the culture medium for 6-7 days caused a modest but significant increase in the L-type Ca2+ current density (pA/pF). Ryanodine (1 or 100 microM) exposure for 1-7 days reduced the T-type Ca2+ current density to < 10% of control. In contrast, exposure to 1 microM ryanodine for 0.5-3 h had no significant effect on either component of Ca2+ current. These data indicate that ryanodine has no direct action on Ca2+ currents in chick myotubes. However, disruption of SR Ca2+ release for > 24 h changes sarcolemmal Ca2+ channel expression or function.
Collapse
Affiliation(s)
- J L Kenyon
- Department of Physiology, University of Nevada School of Medicine, Reno 89557, USA
| | | | | | | |
Collapse
|
24
|
Giannini G, Sorrentino V. Molecular structure and tissue distribution of ryanodine receptors calcium channels. Med Res Rev 1995; 15:313-23. [PMID: 7475506 DOI: 10.1002/med.2610150405] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- G Giannini
- Department of Experimental Medicine, University of Roma, Italy
| | | |
Collapse
|
25
|
Ivanenko A, McKemy DD, Kenyon JL, Airey JA, Sutko JL. Embryonic chicken skeletal muscle cells fail to develop normal excitation-contraction coupling in the absence of the alpha ryanodine receptor. Implications for a two-ryanodine receptor system. J Biol Chem 1995; 270:4220-3. [PMID: 7876181 DOI: 10.1074/jbc.270.9.4220] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Two ryanodine receptor (RyR), sarcoplasmic reticulum Ca2+ release channels, alpha and beta, co-exist in chicken skeletal muscles. To investigate a two-RyR Ca2+ release system, we compared electrically evoked Ca2+ transients in Crooked Neck Dwarf (cn/cn) cultured muscle cells, which do not make alpha RyR, and normal (+/?) cells. At day 3 in culture, Ca2+ release in +/? cells required extracellular Ca2+ (Ca2+o), and Ca2+ transients had slow kinetics. At day 5, Ca2+ release was Ca2+o-independent in 40% of the cells, and transients were more rapid. By day 7, all +/? cells had Ca2+o-independent Ca2+ release. Contractions were observed in +/? cells on all days. Ca2+ transients were observed in cn/cn cells on days 3, 5, and 7, but in each case they were Ca2+o-dependent and exhibited slow kinetics. Localized vesiculations, not contractions, occurred in cn/cn cells. By day 10, Ca2+ transients were no longer observed in cn/cn cells even in Ca2+o. Sarcoplasmic reticulum Ca2+ was not depleted, as caffeine induced Ca2+ transients. Thus, in the absence of alpha RyR there is a failure to develop Ca2+o-independent Ca2+ release and contractions and to sustain Ca2+o-dependent release. Moreover, contributions by the alpha RyR cannot be duplicated by the beta RyR alone.
Collapse
Affiliation(s)
- A Ivanenko
- Department of Pharmacology, University of Nevada School of Medicine, Reno 89557
| | | | | | | | | |
Collapse
|
26
|
Sorrentino V. The ryanodine receptor family of intracellular calcium release channels. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1995; 33:67-90. [PMID: 7495677 DOI: 10.1016/s1054-3589(08)60666-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- V Sorrentino
- DIBIT, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
27
|
Percival AL, Williams AJ, Kenyon JL, Grinsell MM, Airey JA, Sutko JL. Chicken skeletal muscle ryanodine receptor isoforms: ion channel properties. Biophys J 1994; 67:1834-50. [PMID: 7532019 PMCID: PMC1225557 DOI: 10.1016/s0006-3495(94)80665-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
To define the roles of the alpha- and beta-ryanodine receptor (RyR) (sarcoplasmic reticulum Ca2+ release channel) isoforms expressed in chicken skeletal muscles, we investigated the ion channel properties of these proteins in lipid bilayers. alpha- and beta RyRs embody Ca2+ channels with similar conductances (792, 453, and 118 pS for K+, Cs+ and Ca2+) and selectivities (PCa2+/PK+ = 7.4), but the two channels have different gating properties. alpha RyR channels switch between two gating modes, which differ in the extent they are activated by Ca2+ and ATP, and inactivated by Ca2+. Either mode can be assumed in a spontaneous and stable manner. In a low activity mode, alpha RyR channels exhibit brief openings (tau o = 0.14 ms) and are minimally activated by Ca2+ in the absence of ATP. In a high activity mode, openings are longer (tau o1-3 = 0.17, 0.51, and 1.27 ms), and the channels are activated by Ca2+ in the absence of ATP and are in general less sensitive to the inactivating effects of Ca2+. beta RyR channel openings are longer (tau 01-3 = 0.34, 1.56, and 3.31 ms) than those of alpha RyR channels in either mode. beta RyR channels are activated to a greater relative extent by Ca2+ than ATP and are inactivated by millimolar Ca2+ in the absence, but not the presence, of ATP. Both alpha- and beta RyR channels are activated by caffeine, inhibited by Mg2+ and ruthenium red, inactivated by voltage (cytoplasmic side positive), and modified to a long-lived substate by ryanodine, but only alpha RyR channels are activated by perchlorate anions. The differences in gating and responses to channel modifiers may give the alpha- and beta RyRs distinct roles in muscle activation.
Collapse
Affiliation(s)
- A L Percival
- Department of Pharmacology, University of Nevada School of Medicine, Reno 89557
| | | | | | | | | | | |
Collapse
|
28
|
Oyamada H, Murayama T, Takagi T, Iino M, Iwabe N, Miyata T, Ogawa Y, Endo M. Primary structure and distribution of ryanodine-binding protein isoforms of the bullfrog skeletal muscle. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32541-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Paddock SW. To boldly glow ... applications of laser scanning confocal microscopy in developmental biology. Bioessays 1994; 16:357-65. [PMID: 8024544 DOI: 10.1002/bies.950160511] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The laser scanning confocal microscope (LSCM) is now established as an invaluable tool in developmental biology for improved light microscope imaging of fluorescently labelled eggs, embryos and developing tissues. The universal application of the LSCM in biomedical research has stimulated improvements to the microscopes themselves and the synthesis of novel probes for imaging biological structures and physiological processes. Moreover the ability of the LSCM to produce an optical series in perfect register has made computer 3-D reconstruction and analysis of light microscope images a practical option.
Collapse
Affiliation(s)
- S W Paddock
- Howard Hughes Medical Institute, Laboratory of Molecular Biology, University of Wisconsin, Madison 53706
| |
Collapse
|
30
|
Abstract
Recent findings on the ryanodine receptor of vertebrates, a Ca-release channel protein for the caffeine- and ryanodine-sensitive Ca pools, are reviewed in this article. Three distinct genes, i.e., ryr1, ryr2, and ryr3, express different isoforms in specific locations: Ryr1 in skeletal muscle and Purkinje cells of cerebellum; Ryr2 in cardiac muscle and brain, especially cerebellum; Ryr3 in skeletal muscle of nonmammalian vertebrates, the corpus striatum, and limbic cortex of brain, smooth muscles, and the other cells in vertebrates. While only one isoform (Ryr1) is expressed in mammalian skeletal muscles, two isoforms (alpha- and beta-isoforms expressed by ryr1 and ryr3, respectively) are found in nonmammalian vertebrate skeletal muscles. Although the coexistence of two isoforms may merely be related to differentiation and specialization, the biological significance remains to be clarified. Ryanodine receptors in vertebrate skeletal muscles are believed to mediate two different modes of Ca release: Ca(2+)-induced Ca release and action potential-induced Ca release. All results obtained so far with any isoform of ryanodine receptor are related to Ca(2+)-induced Ca release and show very similar characteristics. Ca(2+)-induced Ca release, however, cannot be the underlying mechanism of Ca release on skeletal muscle activation. Susceptibility of the ryanodine receptor's ryanodine-binding activity to modification by physical factors, such as osmolality of the medium, might be related to action potential-induced Ca release. A hypothesis of molecular interaction in view of the plunger model of action potential-induced Ca release is discussed, suggesting that the model could be compatible with Ryr1 and Ryr3, but incompatible with Ryr2. The functional relevance of ryanodine receptor isoforms, especially Ryr3, in brain also remains to be clarified. Among ryr1 gene-related diseases, malignant hyperthermia was the first to be identified; however, there is still the possibility of involvement of the other genes. Central core disease has been added to the list recently. A molecular approach for the diagnosis and treatment of diseases is now in progress.
Collapse
Affiliation(s)
- Y Ogawa
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo
| |
Collapse
|
31
|
Airey JA, Deerinck TJ, Ellisman MH, Houenou LJ, Ivanenko A, Kenyon JL, McKemy DD, Sutko JL. Crooked neck dwarf (cn) mutant chicken skeletal muscle cells in low density primary cultures fail to express normal alpha ryanodine receptor and exhibit a partial mutant phenotype. Dev Dyn 1993; 197:189-202. [PMID: 8219360 DOI: 10.1002/aja.1001970304] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Crooked Neck Dwarf (cn) mutation in chickens causes marked changes in intact embryonic skeletal muscle. We have investigated whether the cn/cn phenotype develops in vitro, and if cultured muscle cells are suitable for studies of this mutation. The properties of cn/cn muscle cells maintained in low density primary cultures (6.25 x 10(3) cells/cm2) are described in this report. In normal muscle cells, the alpha ryanodine receptor (RyR) isoform appears prior to, and at greater levels than, the beta RyR, and is detected in mononucleated myocytes. The beta RyR isoform appears within 24 hr after the initiation of myotube formation, which is earlier than anticipated from studies with intact embryonic muscle. Normal alpha RyR protein is not detected in cultured cn/cn muscle cells, whereas the beta RyR, the alpha 1-subunit of the dihydropyridine receptor, the sarcoplasmic reticulum Ca(2+)-ATPase, and calsequestrin are expressed at comparable levels in normal and mutant muscle cells. Calcium transients elicited by electrical stimulation, acetylcholine, and caffeine are similar in normal and cn/cn cultured myotubes and are blocked by ryanodine in both cell types. In addition, comparable L- and T-type calcium currents are observed in normal and mutant muscle cells, suggesting that both the alpha 1-subunit of the dihydropyridine receptor and the beta RyR in mutant muscle cells are functional. Normal and cn/cn muscle cells proliferate and form myotubes in a similar manner. These latter events do not appear to depend on sarcoplasmic reticulum calcium release, as they also occur in normal muscle cells in which calcium release is prevented by chronic treatment with 100 microM ryanodine. Both cn/cn and ryanodine-treated normal muscle cells exhibit morphological changes similar to those observed in intact cn/cn skeletal muscle. Thus, the mutant phenotype observed in ovo is partially expressed under low density culture conditions, and neither beta RyR protein nor its function appear to be capable of preventing the associated changes.
Collapse
Affiliation(s)
- J A Airey
- Department of Pharmacology, University of Nevada School of Medicine, Reno 89557
| | | | | | | | | | | | | | | |
Collapse
|